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Abstract In this paper, we propose a lexicon optimization method based on a con-
fusability measure (CM) to develop a large vocabulary continuous speech recogni-
tion (LVCSR) system with unseen words. When a lexicon is built or expanded for
unseen words by using grapheme-to-phoneme (G2P) conversion, the lexicon size in-
creases since G2P is generally realized by 1-to-N-best mapping. Thus, the proposed
method attempts to prune the confusable words in the lexicon by a CM defined as
an acoustic model distance between two phonemic sequences. It is demonstrated
by LVCSR experiments that the proposed lexicon optimization method achieves a
relative word error rate (WER) reduction of 14.72% in a Wall Street Journal task
compared to the 1-to-4-best G2P converted lexicon approach.

1 Introduction

Recently, many research works have been proposed to develop large vocabulary
continuous speech recognition (LVCSR) systems, such as feature extraction, acous-
tic modeling, pronunciation modeling, language modeling, decoding, and so on [1].
Among them, decoding or search with acoustic feature vectors for word sequences
plays a main role in the performance of LVCSR systems in which decision tree-
based approaches or weighted finite-state transducer (WFST) approaches have been
typically used for LVCSR decoding [2]. The decision tree-based approach requires
a small amount of decoding memory. However, since on-the-fly composition must
be performed with language models (LMs) during the recognition of test utterances,
this approach makes decoding speed slow [2]. Conversely, a WFST for LVCSR de-
coding can generally be constructed by the composition of different speech recog-
nition knowledge sources, such as a hidden Markov model (HMM) topology, a
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context-dependent phone model, a lexicon, and an n-gram LM, where each source is
also represented by an individual WFST [3]. Thus, due to such modular representa-
tion and optimization techniques, a WFST-based decoder offers simpler realization
and faster decoding than a decision-tree based decoder [3].

When the domain for an LVCSR system is dynamically changed due to new-
coined words, a word lexicon must be reconstructed to accommodate unseen words
by using a data-driven approach. A method to deal with this problem is grapheme-
to-phoneme (G2P) conversion of such unseen words, which can be used for an ex-
panded lexicon [4]. However, the accuracy of G2P conversion depends on how much
knowledge is incorporated into the design of the G2P conversion, which is liable to
be erroneous [4]. Thus, it is better to make multiple pronunciations for a given un-
seen word by using an N-best G2P conversion, which unfortunately results in the
excessive increase of the lexicon size and a further increased size of the LVCSR de-
coder. Consequently, the word error rate (WER) of the LVCSR system is increased.

For a decision-tree based decoder, eliminating the unnecessary nodes of a de-
cision tree was proposed in [5]. This approach reduced the size of the decoder,
but the WER of the reduced decision-tree based decoder was similar to that of the
original decision-tree based one. For WFST-based decoders, several structural op-
timization techniques were proposed by sharing silence and short-pause states and
restructuring the beam depending on the token path [6]. While this approach effi-
ciently optimized the WFST, it was hard to apply to the unseen word problem. In
addition, a minimum classification error (MCE) model [7] and a conditional ran-
dom field (CRF) model [8] were proposed to optimize the decoding network size
during WFST training. However, these methods need to be applied repeatedly for
retraining the WFST if unseen words are given. As an alternative, the decoding net-
work sizXe was reduced by using a confusability measure (CM) [9]. This approach
reduced the size, but it suffered from the excessive removal of words, causing an
out-of-vocabulary problem [10].

In this paper, we propose a method to optimize a G2P converted lexicon that is
realized by the N-best phoneme sequences of each word. To this end, a CM is first
defined by an acoustic distance between two phoneme sequences and the length of
the phoneme sequences. Then, a G2P model-based N-best lexicon is constructed
to find the most probable phoneme sequences of unseen words. However, since the
lexicon becomes oversized, the lexicon is then optimized by pruning the confusable
phoneme sequences using the CM.

Following this introduction, Section 2 briefly explains a lexicon construction us-
ing a G2P model. Section 3 describes the CM using the acoustic models and the
dynamic programming-based alignment between two phoneme sequences. Next, a
lexicon optimization method based on the CM is proposed. Section 4 evaluates the
performance of an automatic speech recognition system (ASR) system employing
the proposed method in terms of computational complexity and WERs. Finally, the
findings are summarized in Section 5.
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Fig. 1 Example of G2P conversion for given word JOINT.

2 G2P Model-Based Lexicon Generation

G2P conversion tries to predict phoneme sequences by aligning graphemes of words
or sentences with phonemes [4]. Among many approaches for realizing such align-
ments, the simplest G2P conversion is achieved by a dictionary look-up [4]. That is,
for a given input grapheme sequence, a possible phoneme sequence is obtained by
a look-up table. Therefore, the dictionary look-up approach is time- consuming and
tedious. Moreover, it is hard to find the pronunciation of unseen words, because the
dictionary used for the look-up is finite. In addition, it does not enable unseen words
to be found that do not exist in the dictionary. To overcome the limitations of such
finite dictionaries, a data-driven approach is used for the G2P conversion [4]. This
is usually performed by mapping 1 to N-best after designing a joint-sequence model
from a training corpus. Fig. 1 shows an example of the G2P conversion for the given
word JOINT. As shown in the figure, this word can be represented by three different
phoneme sequences.

3 Proposed Lexicon Optimization

A CM can be defined by the linguistic distance between two phoneme sequences
in the expanded lexicon of a G2P model [4]. In this section, we propose a lexicon
optimization method that is defined by an acoustic distance between two phoneme
sequences using inter-phone and inter-word distances. The proposed method is ex-
plained in detail in the following subsections.

3.1 Confusability Measure Using Distance between Phoneme
Sequences

First, let Wi be the i-th word in the original N-best lexicon from the G2P conversion
that has phoneme sequences in which the number is N, the number of words is NW ,
and si, j( j = 1, ...,N) are the 1-to-N-best mapped phoneme sequences. Then, the CM
of si, j is defined as [9]
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Fig. 2 Subset of alignments used to calculate inter-HMM distance, where bold lines correspond to
alignment Q in Eq. (3). The values of q1i and q2i are the aligned states [11].

CM(si, j) = L(si, j) · min
1≤k≤Nw, k 6=i
1≤l≤N

(D(si, j, sk,l) ·L(sk,l)) (1)

where D(x,y) is the dynamic programming (DP)-based phoneme sequence distance
that is defined by the HMM-based phoneme distance [11]. Moreover, L(x) is defined
as the normalized length by lmax That is,

L(x) =
#(x)
lmax

(2)

where #(x) is the number of phonemes in x and lmax(= max
1≤i≤NW ,1≤ j≤N

#(si, j)) is the

maximum length in the N-best G2P converted lexicon.

3.2 Phoneme Sequence Distance Measure

3.2.1 HMM-Based Phoneme Distance Measure

An acoustic distance between two phonemes can be calculated by using acoustic
models [11], which is defined as

dHMM(p1, p2) =

∑
Q

P(Q) 1
L

L
∑

i=1
DN(Nq1i ,Nq2i)

∑
Q

P(Q)
(3)

where Q is an alignment between the states of the HMMs of the phones p1 and p2,
P(Q) is the probability of Q, L is the length of the alignment, q1i and q2i are the
states of the models that are aligned according to Q, Nq1i and Nq2i are the Gaussian
distributions associated with the states Nq1i and Nq2i , DN( · ) is the distance between
the two Gaussian distributions. In Eq. (3), P(Q) is calculated by multiplying the
transition probabilities of both phoneme state sequences. Fig. 2 shows an example
of possible P(Q)’s that are represented as (q11→ q12,q21→ q22), (q12→ q12,q22→
q23) and (q12→ q13,q33→ q23).
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Table 1 Example of CM scores for phoneme sequences of the word STATUE obtained by 1-to-4-
best mapping.

4-best Phoneme Sequence CM score

S T AE CH UW 0.0497

S T AE CH Y UW 0.0499

S T AE CH UW EH 0.019

S T AE CH UW AH 0.0181

The acoustic model for calculating the distance between the two phonemes can
be represented as one Gaussian distribution for each state of HMM models [8]. In
this paper, we calculated DN( ·) using each of three different distance measures such
as a Euclidean (EUC) distance, a Mahalanobis (MAH) distance, and a symmetric
KullbackLeibler (KL) distance [12].

3.2.2 DP-Based Phoneme Sequence Distance Measure

A dynamic time warping (DTW) technique is incorporated into the acoustic distance
to determine how different the two phoneme sequences are. The DTW is defined as
[11]

D(x,y) = dDTW (sx,sy) (4)

where

dDTW (sx,sy) = min
F


K
∑

k=1
dHMM(px(k), py(k)) w(k)

K
∑

k=1
w(k)

 (5)

In Eq. (5), dHMM(px(k), py(k)) is the distance between the HMMs described in Eq.
(3). The weighting function, w(k) applied to the DTW distance is used to normalize
for the path F and it is defined as [11]

w(k) = i(k)− i(k−1)+ j(k)− j(k−1) (6)

where i(1) = j(1) = 0. In addition, c(k) in the path F = {c(1),c(2), · · · ,c(K)} con-
sists of the pair of coordinates (i(k), j(k)) in the i and j directions when K is the
number of alignments of the two phoneme sequences.

The measure obtained with DTW is the minimum weighted sum of the distance
between the phoneme sequences for all the possible alignments between the se-
quences. Therefore, the DTW technique forces an alignment that minimizes the
accumulated distance and forces the two sequences to consider the similarity.
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Table 2 Performance evaluation of LVCSR system.

ASR System Baseline
4-best G2P Proposed Method

Converted Lexicon EUC KL MAH

WER (%) 12.19 13.93 12.58 12.42 11.88

RTF 0.239 0.476 0.364 0.381 0.380

3.3 Lexicon Optimization Using CM

In this subsection, we describe how to optimize the lexicon using CM. The proposed
method selects the phoneme sequences with CM scores above a pre-defined thresh-
old, except one phoneme sequence for each word in the original lexicon that has
the highest CM score first maintained in the optimized lexicon. Next, the phoneme
sequences having CM scores lower than the threshold are assumed to be confusable
words and will not appear in the pruned lexicon.

Table 1 provides an example of the phoneme sequences obtained by the 1-to-4-
best G2P conversion for the word STATUE and their CM scores. In this case, the
most probable phoneme sequence is /S T AE CH Y UW/. If the threshold is 0.02,
two phoneme sequences, /S T AE CH UW/ and /S T AE CH Y UW/, will remain in
the lexicon.

3.4 Decoding Network Generation

A WFST-based decoder for LVCSR is fully composed as H ◦C ◦L ◦G where four
different WFSTs H, C, L and Grepresent the HMM state level topology, the context
dependency expansion, the lexicon, and the n-gram LM, respectively [3]. Therefore,
the proposed lexicon optimization method transforms the lexicon, L, into the opti-
mized lexicon, L′. Thus, we obtain the WFST-based decoder that is composed as
H ◦C ◦L′ ◦G.

4 Speech Recognition Experiment

To evaluate the performance of the lexicon optimization method, we constructed the
following ASR systems: a baseline ASR system (Baseline), an ASR system of a 1-
to-4 best G2P converted lexicon and three ASR systems based on lexicons that were
pruned by the proposed lexicon optimization method using different acoustic dis-
tances. The baseline system was constructed by the Kaldi speech recognition toolkit
[13] with 7,138 utterances of the Wall Street Journal (WSJ0) [14]. In addition, for
the baseline lexicon, a 1-best G2P lexicon was used. As a feature of the system, 39-
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Fig. 3 Performance of the proposed method by changing a threshold

dimensional mel-frequency cepstral coefficients (MFCCs) were used, and cepstral
mean normalization (CMN) was applied to the feature vector. The acoustic model
was constructed by means of concatenating context-dependent HMMs, and a tri-
gram LM was constructed from a set of sentences from WSJ0 with a vocabulary
of 20k different words. The test sub-corpus was also extracted from WSJ0 and was
composed by 333 utterances containing 5,643 different words.

Table 2 compares the WER and real time factor (RTF) for each ASR system us-
ing a lexicon obtained from the 1-best G2P converted lexicon, a 1-to-4 best G2P
converted lexicon, and a pruned lexicon based on the proposed method with differ-
ent phoneme distances, using EUC, KL, and MAH distances [12]. As shown in the
table, with the different phoneme distances, the RTF and WER were lowered. In Fig.
3, we evaluated the performance of the proposed method by changing the threshold
from 0.01 to 0.04 at a step of 0.01. As shown in the figure, average word error rate
(WER) was lowered. However, as the threshold became greater than 0.02, average
WER of the proposed method also went higher. This was because phoneme se-
quences were pruned excessively. Consequently, by applying the proposed method
with MAH, we could achieve a relative WER reduction of 14.72% compared to that
achieved with a lexicon of a 1-to-4-best G2P conversion.

5 Conclusion

In this paper, we proposed a lexicon optimization method based on CM to reduce
the decoding network of lexicons constructed by the G2P model. When the lexicon
was built to find the phoneme sequences of unseen words, the lexicon often became
oversized, causing an increase in the size of the LVCSR decoder. As a result, the per-
formance of the LVCSR was lowered. The proposed lexicon optimization method
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was used for reducing the decoding network by pruning phoneme sequences that
were much more confusable than other phoneme sequences. It was shown from
ASR experiments that an ASR system employing a lexicon optimized by the pro-
posed method provided a relative WER reduction of 14.72% compared to that of a
lexicon from a 1-to-4-best G2P conversion.
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