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Abstract Stochastic regular bi-languages has been recently proposed to model
the joint probability distributions appearing in some statistical approaches of Spo-
ken Dialog Systems. To this end a deterministic and probabilistic finite state bi-
automaton was defined to model the distribution probabilities for the dialog model.
In this work we propose and evaluate decision strategies over the defined proba-
bilistic finite state bi-automaton to select the best system action at each step of the
interaction. To this end the paper proposes some heuristic decision functions that
consider both action probabilities learn from a corpus and number of known at-
tributes at running time. We compare either heuristics based on a single next turn or
based on entire paths over the automaton. Experimental evaluation was carried out
to test the model and the strategies over the Let’s Go Bus Information system. The
results obtained show good system performances. They also show that local deci-
sions can lead to better system performances than best path-based decisions due to
the unpredictability of the user behaviors.
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1 Introduction

Spoken Dialog Systems (SDS) enable human-machine interaction using natural spo-
ken language [8, 9]. The process of interaction between the machine and a real user
pass through several steps. One of the crucial steps in this process is the election of
a next system action, a task performed by the Dialog Manager (DM). The DM is the
module responsible of pursue the dialog goal by choosing a coherent action in re-
sponse to a user input [2]. Due to its complexity the design of DM has been tradition-
ally based on hand-crafted rules [1,7]. However, over the last few years, approaches
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that use statistical frameworks to deal with decision strategies and task models have
been providing compelling results on modeling interaction. These include Bayesian
networks [10], Stochastic Finite-State models [5, 11] and the state-of-the-art Par-
tially Observable Markov Decision Process [6, 14]. The interactive pattern recogni-
tion framework [13] has also be proposed to represent SDS [12]. This formulation
needs to estimate the joint probability distribution over the semantic language pro-
vided by the speech understanding system and the language of actions provided by
the DM. In a previous work [11] we have proposed to model this joint probabil-
ity distribution by stochastic regular bi-languages. To this end a deterministic and
Probabilistic Finite State Bi-Automata (PFSBA) was defined in that work. Our goal
now in this paper is to propose and evaluate DM strategies over this PFSBA-based
dialog model. We are aimed at providing the DM with the best decision at each sys-
tem turn. This decision will be selected according with some heuristic search on the
model graph at running time. In Section 2 we summarize the deterministic PFSBA
defined in [11]. In Section 3 we propose four decision strategies to be implemented
by the DM at each system turn. The experiments and the results obtained are de-
scribed in Section 4. Then Section 5 reports some final remarks and the future work
planned.

2 Model definition

Let us consider an SDS as an interactive pattern recognition system [12, 13]. Let
now h be an hypothesis or output that the dialog manager of a SDS proposes. Then
the user provides some feedback signals, f , which iteratively help the dialog man-
ager to refine or to improve its hypothesis until it is finally accepted by the user. A
basic simplification is to ignore the user feedback except for the last interaction an
hypothesis h′. Assuming the classical minimum-error criterion the Bayes’ decision
rule is simplified to maximize the posterior Pr(h|h′, f ), and a best hypothesis ĥ is
obtained as follows:

ĥ = argmax
h∈H

P(h|h′, f ) (1)

This maximization procedure defines the way the dialog manager of a SDS
choose the best hypothesis, i.e. the best action at each interaction step, given the
previous hypothesis h′ and the user feedback f . However, alternative criteria could
also be considered as shown in Section 3. In a SDS, the interpretation of the user
feedback f can not be considered a deterministic process. In fact the space of de-
coded feedback D is the output of an ASR system. Thus a best hypothesis can be
obtained as follows [4, 12, 13]:

ĥ = argmax
h∈H

∑
d∈D

P(h,d|h′, f ) (2)

where f is the user turn, d is the decoding of the user turn, h is the hypothesis or
output produced by the system and h′ is the history of the dialog.
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The user feedback f depends on its previous feedback f ′ according to some
unknown distribution P( f | f ′,h), which represents the user response to the history of
system hypotheses and user feedbacks. This distribution considers the user behavior
and stands for a user model MU . However, feedback f ′ produced by the user in
the previous interaction is not corrupted by any noisy channel, such as an ASR
system, before arriving to the user again. Thus, a deterministic decoding d : F →D
maps each user turn signal into its corresponding unique decoding d′ = d( f ′) before
arriving to the user. Consequently the best user feedback f̂ is the one that maximizes
the posterior PMU

( f |d′,h)

f̂ = argmax
f∈F

P( f |d′,h)≈ argmax
f∈F

PMU
( f |d′,h) (3)

where f̂ is estimated using only the hypothesis produced by the system and the
feedback produced by the user in the previous interaction step according to its user
model. Figure 1 shows some user-manager interaction steps.

Dialog
Manager

fi+1

ASR

MACHINE TURN USER TURN

Dialog
Manager

ASR

fi+2

di+2

hi+1hi hi+2

d(fi)
d(fi+1) d(fi+2)

MACHINE TURN USER TURN

di di+1

hi+1 hi+2

Fig. 1 User-Manager interaction steps. h is the hypothesis produced by the system that depends
on the previous hypothesis h′ and the decoded user feedback d. f is the user turn that depends h
and on the previous user feedback f ′.

We are now summarizing the probabilistic Dialog Model defined in [11] to
deal with both the dialog manager hypothesis probability distribution P(h|d,h′)
and the user feedback probability distribution P( f |h,d′). Let Σ be the finite al-
phabet of semantic symbols provided by some speech understanding system. Thus,
d̃i = d1 . . .d|d̃i| ∈Σ≤m represents the decoding of a user feedback f . Let now ∆ be the
finite alphabet of dialog acts that compose each of the hypotheses h̃i = h1 . . .h|h̃i| ∈
∆≤n provided by the dialog manager. Let z be a bi-string over the extended alphabet
Γ ⊆ Σ≤m×∆≤n such as z : z = z1 . . .z|z|, zi = (d̃i : h̃i) where d̃i = d1 . . .d|d̃i| ∈ Σ≤m

and h̃i = h1 . . .h|h̃i| ∈ ∆≤n. A Dialog Model DM is defined as a deterministic and
probabilistic finite-state bi-automaton DM = (Σ ,∆ ,Γ ,Q,δ ,q0,Pf ,P) where

• Σ and ∆ are two finite alphabets representing semantic symbols provided by
the user and dialog acts provided by the dialog manager respectively, Γ is an
extended alphabet such that Γ ⊆ (Σ≤m×∆≤n), m,n≥ 0. ε represents the empty
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symbol for both alphabets, i.e., ε ∈ Σ , ε ∈ ∆ and (ε̃ : ε̃) ∈ Γ . To simplify let ε̃

be ε .
• Q = QM

⋃
QU is a finite set of states labelled by bi-strings (d̃i : h̃i) ∈ Γ . The set

QM includes machine states before a machine turn providing an hypothesis and
the set QU includes user states before providing a feedback.

• δ ⊆ Q×Γ ×Q is the union of two sets of transitions δ = δM
⋃

δU as follows:

– δM ⊆ QM ×Γ ×QU is a set of transitions of the form (q,(ε : h̃i),q′) where
q ∈ QM , q′ ∈ QU and (ε : h̃i) ∈ Γ

– δU ⊆ QU ×Γ ×QM is a set of transitions of the form (q,(d̃i : ε),q′) where
q ∈ QU , q′ ∈ QM and (d̃i : ε) ∈ Γ

• q0 ∈ QM is the unique initial state and it is labelled as (ε : ε).
• Pf : Q→ [0,1] is the final-state probability distribution
• P : δ → [0,1] defines transition probability distributions (P(q,b,q′)≡ Pr(q′,b|q)

for b ∈ Γ and q,q′ ∈ Q) such that:

Pf (q)+ ∑
b∈Γ ,q′∈Q

P(q,b,q′) = 1 ∀q ∈ Q (4)

where a transition (q,b,q′) is completely defined by q and b. Thus, ∀q ∈Q, ∀b ∈
Γ |{q′ : (q,b,q′)}| ≤ 1

Let z be a bi-string over the extended alphabet Γ ⊆ Σ≤m×∆≤n such as z : z =
z1 . . .z|z|, zi = (d̃i : h̃i) . Let now θ = (q0,z1,q′1,z2,q2, . . . ,q′|z|−1,z|z|,q|z|), qi ∈ QM ,
q′i ∈ QU , be a path for z in DM . The probability of generating θ is:

PrDM (θ) =

(
|z|

∏
j=1

P(q j−1,z j,q′j)

)
·Pf (q|z|) (5)

DM is unambiguous. Then, a given bi-string z can only be generated by DM
through a unique valid path θ(z). Thus, the probability of generating z with DM
is PrDM (z) = PrDM (θ(z)). Additionally, each machine and/or user state need to
be labelled with the values of all relevant internal variables, which can be updated
after each user turn. Thus, an additional alphabet appears to represent valued at-
tributes of these internal variables, thus leading to an attributed model [11]. These
internal variables are a subset of the semantic decoding set, i.e. the subset of Σ set
that consists of task dependent symbols. These internal variables can lead to simple
known,unknown attributes that can just be represented by the presence or absence of
the attribute at each state. Thus, the new alphabet represents just the knowledge of
the value. Alternatively confidence measures can also been considered. The model
DM was then extended to add another finite alphabet Ω . Each state q ∈ Q is now
labelled by bi-strings [(d̃i : h̃i), w̃i]∈Γ ×Ω where the valued attributes are also con-
sidered. The knowledge of the attributes leads to different strategies for the dialog
manager since the transition function δ ⊆ Q×Γ ×Q and the transition probability
distribution P : δ → [0,1] have a strong dependency of internal attributed attached
to the states.
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Example. Let us take a dialog from Let’s Go [8] task that was used in this work
for experiments.

U: I’m leaving from CMU
PlaceInformation[DeparturePlace]

S: Leaving from <query.departureplace CMU>. Is this correct?
Explicit confirm

U: Yes.
Generic[Yes]

S: Right. What is your destination?
Inform:confirm okay Request:query arrival

Σ = {PlaceIn f ormation.DeparturePlace,Generic.Yes} is the set of user symbols,
∆ = {Explicit.con f irm, In f orm.con f irm okay,Request.query arrival} is the al-
phabet of system dialog acts and Ω = {query.departureplace} is the alphabet of
the task attributes. Figure 2 shows a DM where bold lines define path θ matching
some bi-string.

MACHINE TURN USER TURN
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di, hi, wi

(✏ : h0
i+2)

MACHINE TURN

Fig. 2 Bold lines show a path θ matching some bi-string in a probabilistic bi-automaton DM

3 Heuristic functions to achieve user goals

In this section we define four heuristic functions that represent different strategies to
deal with user goals while minimizing the involved cost. Thus the next action to be
selected by the DM at each system turn is the one that maximizes the corresponding
heuristic function. The first two strategies (MP and MPA) deal with local decisions,
i.e., they only evaluate next turn nodes and edges. Two more proposals (BP and
BPA) evaluate entire paths from the actual state to a closing state in the graph. On the
other hand strategies MP and BP only take into account the transitions probabilities
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in the model whereas strategies MPA and BPA also base the decision in the amount
of attributes potentially be filled.

Maximum Probability (MP) strategy

This strategy just deals with Equation 1. The best DM hypothesis to be selected by
the DM is the one that maximizes the posterior Pr(h|h′, f ) according with Equation
2. A suboptimal approach can be considered through a two step decoding: find first
an optimal user feedback d̂ and then, use d̂ to decode system hypothesis ĥ as follows:

d̂ = argmax
d∈D

P( f |d)P(d|h′) (6)

ĥ ≈ argmax
h∈H

P(h|d̂,h′) (7)

The dialog manager hypothesis probability distribution P(h|d,h′) and the user
feedback probability distribution P( f |h,d′) have been modeled in this work by the
PFSBA presented in previous section. As a consequence the search for the most
likely hypothesis ĥ in Equation 7 is equivalent to choose the edge of highest transi-
tion probability at each system turn. i.e.

ĥ = argmax
hi j∈H (qi)

P(qi,(ε : hi j),q′j) (8)

where qi ∈ QM is a system state labelled as ((d̃i : h̃i) : w̃i) and q j ∈ QU is a user
turn labelled as ((d̃ j : h̃ j) : w̃ j) such that P(qi,(ε : hi j),q j) > 0, being hi j ∈H (qi)
the associated system hypotheses. This strategy has been evaluated in [4] in a dialog
generation task showing good task completion rates and good model behaviors.

Maximum Probability strategy with Attributes (MPA)

We want to know the number of attributes filled as a consequence of DM decisions.
Let us consider now two states of the model qi and q j labelled as ((d̃i : h̃i) : w̃i) and
((d̃ j : h̃ j) : w̃ j). According to the model definition in Section 2 w̃i and w̃ j are two
sequences of symbols w ∈ Ω representing filled attributes in the model states i and
j. We want now to define a transformation distance between w̃i and w̃ j aimed at
representing the number of new attributes filled in state q j relative to the state qi. To
this end let now consider the number ndel(w̃i j) of single-symbol deletions and the
number nins(w̃i j) required to transform sequence w̃i to w̃ j. Let now dw(qi,q j) be the
attribute distance between nodes qi and q j defined as follows

dw(qi,q j) = nins(w̃i j)−ndel(w̃i j) (9)
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Notice that we are now focussing on the number of filled attributes regardless of
their associated value. Thus symbol substitutions are not considered here.

The DM has to take into account that the DM fruitful actions, like the ones aimed
at consulting a database to provide the user information requirements, need the re-
lated task attributes to be previously filled. Thus this strategy is aimed at selecting
an hypothesis with a high probability according with the training corpus but also at
filling a high number of task attributes according with the history of the current run-
ning dialog. Notice that only user actions can change the number of filled attributes.
Let qi ∈QM be a system state and q j ∈QU be a destination state q j ∈QU such that
P(qi,(ε : hi j),q j)> 0 being hi j ∈H (qi) the associated system hypothesis. The user
being at state q j can provide |F (q j)| feedbacks f jk ∈F (q j) leading to |F (q j)| sys-
tems states q jk. Thus the attribute distance dw(qi,q jk) k = 1, . . . , |F (q j)| between
node qi and each of node q jk has to be computed. Then we define a heuristic function
F(qi,(ε : hi j),q j) associated to each potential transition as follows:

F(qi,hi j,q j) = logP(qi,(ε : hi j),q′j)+ max
k∈|F (q j)|

dw(qi,q jk) (10)

Then the action to be taken by the system is the one that maximizes the heuristic
function as follows

ĥ = argmax
hi j∈H (qi)

F(qi,hi j,q j) (11)

Best Path Probability (BP) strategy

This strategy is aimed at exploring all the paths in the graph that begin in the current
dialog state q0. However only paths that lead to a closing state in the model are
considered.

Let z be a bi-string over the extended alphabet Γ ⊆ Σ≤m×∆≤n such as z : z =
z1 . . .z|z|, zi =(d̃i : h̃i) such that the associate path θz =(q0,z1,q′1,z2,q2, . . . ,q′|z|−1,z|z|,
q|z|), qi ∈ QM , q′i ∈ QU begins in the current state of the system q0 ∈ QM . The
probability PrDM (θz) of generating z is calculated according to Equation 5. Let
now Θ f (q0) be the set of paths θz ∈Θ f (q0) beginning at state q0 and ending in a
final state, i.e. Pf (q|z|) = 1. The best path θ̂z ∈Θ f (q0) is the one that maximizes the
normalized probability, i.e.

θ̂z = argmax
θz∈Θ f (q0)

1
|z|

PrDM (θz) (12)

Thus the DM selects the first hypothesis h̃1 defining the first element z1 of the
bi-string z associated to θ̂z, such that z1 = (ε : h̃1)
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Best Path Probability strategy with Attributes (BPA)

In the same way as in MPA we want now to include in the score the number of
attributes filled as a consequence of DM decisions. To this end we define a heuristic
function F(θz) associated to each θz ∈Θ f (q0) beginning at state q0 and ending in a
final state as follows:

F(θz) =
|z|

∑
i=1

logP(qi−1,zi,qi)+ logPf q|z|+
|z|

∑
i=1

( max
k∈|F (q j)|

dw(qi,q jk)) (13)

The best path θ̂z ∈Θ f (q0) is now the one that maximizes the normalized heuristic
function F(θz), i.e.

θ̂z = argmax
θz∈Θ f (q0)

1
|z|

F(θz) (14)

This strategy is similar to BP, but it also takes into account the number of at-
tributes filled at each step. Thus the DM also selects now the first hypothesis h̃1
defining the first element z1 of the bi-string z associated to θ̂z, such that z1 = (ε : h̃1)

4 Experiments

The four strategies described in Section 3 were evaluated over a dialog generation
task from a corpus of transcribed dialogs between real users and an automatic infor-
mation system.

Learning and using models to generate dialogs

For these experiments a DM model and a user model were estimated from Let’s Go
corpus [8]. Let’s Go is a set of spoken dialogues in English in the bus information
domain. Let’s Go system has been developed by Carnegie Mellon University over
the Olympus-Ravenclaw framework [1]. It provides schedules and route information
about the city of Pittsburgh’s bus service to the general public. In this work we
use a set of dialogues collected by the Let’s Go Bus Information system in about
two months, from March 2005 to April 2005. This set consists in 1840 dialogs
between Ravenclaw DM and 1840 real users that include 28141 system turns and
28071 user turns. In order to have the Let’s Go corpus labelled in terms of Dialogue
Acts, we have collected the information associated to each system turn from the log
files of the Ravenclaw DM, whereas the information associated to the user turn was
collected from the output of the Phoenix semantic decoder. Thus we got a Σ alphabet
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consisting of 138 semantic symbols provided by the use and a ∆ alphabet consisting
of 49 dialog acts provided by the dialog manager. Additionally the attribute alphabet
Ω consists of 14 attributes. A dialog example including Σ , ∆ and Ω symbols can be
found at the end of Section 2.

Let split the corpus into two subsets to train two models, one acts as a dialog
manager and provides hypotheses according to the strategies defined in Section 3.
The other one acts as simulated user that proposes a random user feedback in order
to generate a wider variety of dialogs [4,12]. Both models have to deal with unseen
events, i.e. unknown situations at training corpus. The dialog manager can provide
an hypothesis h̃i that does not lead to any of the existing states created when trained
from the dialog corpus. In the same way the simulated user can provide a user feed-
back f̃i not appearing in the training corpus, so not in the model. The generalization
issue is tackled by adopting the back-off smoothing strategy proposed in [4] for un-
seen events. Then a set of new dialogs were obtained from the interaction between
the DM and the simulated user, as showed in Figure 1. For those experiments an
error model simulated the ASR recognition errors. This model was trained from the
dialog corpus where both the transcription of the user utterance and the output of
the ASR can be found.

Metrics

In order to evaluate the system we have decided to use 3 different metrics, Task
Completion (TC), Appropriate Utterance (AU) and Average Dialog Length (ADL).
The metrics used to evaluate the system are:

Task Completion (TC). Measures the success of the system in providing the user
with the information requested [3]. This is an automated metric and we compute it
by checking if in the dialog we arrive to the point of making a query to the backend,
to retrieve the information about a schedule asked by the user.

Appropriate Utterance (AU). An utterance is considered appropriate when it
provides the user the required information, when it asks for additional information
which is essential to respond to the user’s request or when it is dealing with a repair
strategy. AU evaluates whether the DM provides a coherent response at each turn
according to its input (output of the ASR). We measured this metric manually, thus
for each turn we check if the system answer to an user turn was appropriate.

Average Dialogue Length (ADL). The average number of turns in a dialog.
A dialog that achieve the goal but has a really long length could be indication of
repeated ASR errors, so the user and the system collaborate with recovering tech-
niques in orders to recover the error and the dialog gets longer.

Task Completion will give us a feedback on the global success of a single dialog.
Appropriate Utterance can give us a look into the specific answer of the system.
Average Dialog Length can give us a feedback about the quality of a dialog.
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Experimental results

We carried out four sets of experiments to evaluate strategies defined in Section 3,
MP, MPA, BP and BPA, to get the best hypothesis to be provided by the DM at
each interaction step. A set of 100 dialogs was generated for each strategy. TC , AU
and ADL were computed for each of the set of generated dialogs. For comparisons
purposes these metrics were also computed for a random set of 100 dialogs extracted
from the corpus, which was conducted by Ravenclaw DM. Table 1 shows the results
of this evaluation. This Table shows higher TC values for dialogs generated by all
the proposed models than the one computed over the reference set that was managed
by Ravenclaw. However the ADL value is higher in all the sets generated by the
proposed models than in the reference set. Thus, the proposed formulation seems to
achieve well the user goals measured in terms of TC but needs a higher number of
turns to finish a dialog.

Local Decisions Path-based Decisions
Ravenclaw MP MPA BP BPA

TC(%) 51.96% 76.09% 79.59% 54.54% 68.00%
AU(%) 95.53% 97.41% 96.23% 94.58% 87.93%
ADL 20.45 26.57 34.77 30.60 31.88

Table 1 Task Completion (TC), Average Dialog Length (ADL) and Appropriate Utterance (AU)
for the experiments carried out. The four strategies defined in Section 3 (MP, MPA, BP and BPA)
for the DM based on Probabilistic bi automaton were evaluated and then compared to the Raven-
claw DM

Then we compared the results obtained for each strategy shown in Table 1. Ex-
perimental results Table 1 show that the strategies using a local decision process
(MP, MPA) present significantly higher performance in terms of Task Completion.
This is likely due to the unpredictable user behavior, modeled in the simulated user
by choosing randomly the next user action. Path-based decision strategies BP and
BPA select the next action as the first one in the best complete path from the cur-
rent system state up to a final node. User unpredictable behavior often causes the
user model to change the path in the bi-automaton, making worthless the selection
of a best path. Furthermore we notice an increase in ADL for strategies including
the attributes in the heuristic decision. This kind of heuristic tends to make the sys-
tem ask for the whole set of possible attributes, also if some of them, like the bus
line number, are not required. As a consequence the number of turns in generated
dialogs increases. AU values are higher when local decision strategies were consid-
ered. This is due to the fact that the best path may not include the first action with the
highest probability or the one with the maximum heuristic function. Table 2 and Ta-
ble 3 show the total Number of Turns (NT), the Number of Turns generated through
a Smoothed edge (NTS) and the Smoothing Rate (SR) representing the percentage
of turns obtained through smoothing techniques of both DM and user models, when
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local and path-based decision strategies were considered. These tables reveal a high
use of smoothed edges that underlines the importance of considering an appropri-
ate generalization strategy. These tables also show that strategies performing local
decisions seem to have a slighter lower smoothing rate percentage.

Local Decision Strategies
MP MPA

Total User System Total User System
NT 1891 944 947 2418 1207 1211
NTS 664 304 300 927 509 418
SR 35.11 32.20 38.01 38.33 42.17 34.51

Table 2 Total Number of Turns (NT), Number of Turns generated through a Smoothed edge
(NTS) and Smoothing Rate (SR) representing the percentage of turns obtained through smoothing
techniques for system and user turns when strategies based on local decisions were considered.

Path-based Decision Strategies
BP BPA

Total User System Total User System
NT 2028 994 1034 2203 1101 1102
NTS 889 493 396 849 458 391
SR 43.84 49.59 38.29 38.54 41.59 35.48

Table 3 Number of Turns generated through a Smoothed edge (NTS) and Smoothing Rate (SR)
representing the percentage of turns obtained through smoothing techniques for system and user
turns when strategies based on exploring sets of paths were considered.

5 Conclusions & Future Work

In conclusion we have defined several decision making strategies over deterministic
and probabilistic finite state bi-automaton for dialog management. Our goal was to
provide the dialog manager with the best decision at each system turn. The best sys-
tem hypothesis was selected at running time according with some heuristic search
aimed at achieving the user goals. Two strategies dealt with local decisions, i.e.,
they only evaluated the next turn nodes and edges, and obtained the best system per-
formance on task completion. Two more proposals evaluated entire paths from the
current system state to a closing state. Experimental results showed that path-based
strategies that implement decisions based on possible future user actions achieved
lower system performances due to unpredictability of the user behavior. Further-
more we observed a small increase in Task Completion when the heuristic function
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also consider the number of attributes potentially be filled by the user as a conse-
quence of the dialog manager decisions. Ongoing work will focuses on deploying a
complete spoken dialog system demo and testing these strategies with real users.
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dialogue models under the interactive pattern recognition framework. In INTERSPEECH,
pages 480–484, 2013.

5. Lluı́s F Hurtado, Joaquin Planells, Encarna Segarra, Emilio Sanchis, and David Griol. A
stochastic finite-state transducer approach to spoken dialog management. In INTERSPEECH,
pages 3002–3005, 2010.
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