
HALEF: an open-source standard-compliant
telephony-based modular spoken dialog system –
A review and an outlook

David Suendermann-Oeft†, Vikram Ramanarayanan†, Moritz Teckenbrock‡, Felix
Neutatz‡ and Dennis Schmidt‡

Abstract We describe completed and ongoing research on HALEF, a telephony-
based open-source spoken dialog system that can be used with different plug-and-
play back-end modules. We present two examples of such a module, one which
classifies whether the person calling into the system is intoxicated or not, and the
other a question answering application. The system is compliant with World Wide
Web Consortium and related industry standards while maintaining an open codebase
to encourage progressive development and a common standard testbed for spoken
dialog system development and benchmarking. The system can be deployed toward
a versatile range of potential applications, including intelligent tutoring, language
learning and assessment.

1 Introduction

Spoken dialog systems (SDSs) have witnessed a steep increase in usage over the last
five years thanks to improvements in speech recognition performance, the availabil-
ity of smart devices, ubiquitous high-speed internet and cloud computing, progress
in developing standards, and the emergence of crowdsourcing for speech applica-
tions, among other factors [26]. While commercially deployed industrial vendors
(such as Cisco, Nuance, Avaya, Genesys, Microsoft, Voxeo, etc.) tend to concen-
trate on dialog managers with finite-state call flows, rule-based grammars for speech
recognition, large volumes of call data and more or less standardized interfaces and
protocols, academic research (see for example [3, 17, 28, 2, 30, 1]) has adopted a
more long-term approach, focusing on statistically-trained dialog managers and spo-
ken language understanding modules, smaller-sized datasets and proprietary inter-
faces [15, 25]. Academia has also been more open to publishing codebases, software
and research results as compared to industry. Having said that, a large percentage
of practical, deployed solutions are industry-based and are, as such, proprietary. Al-
though there are standard protocols in place to develop SDS solutions which many
industrial systems adhere to, their system implementations and software compo-
nents are often different, which makes benchmarking of systems relative to each

† Educational Testing Service (ETS) Research, San Francisco, CA
Email: <suendermann-oeft,vramanarayanan>@ets.org

‡ DHBW, Stuttgart, Germany

Part of the work described here was completed when the first author was at DHBW Stuttgart.

1

2 Suendermann-Oeft et al.

other a difficult task. An open-source implementation that is compliant with W3C
standards would be a positive step towards a working solution to this issue.

It is further important to note the utility of having a telephony-based, modular
SDS architecture. Although there exist many open-source SDS implementations in
the academic world, most of these are not telephony-based. This means that most of
these systems typically require installation of a software interface on a local work-
station or computer. A telephony-based SDS setup would allow people to call into
and access the SDS without any software installation overhead. Furthermore, by
making such a system modular, we can individually optimize the different com-
ponents of the system – telephony server, speech server, voice browser and web
server. However, there are currently almost no systems that offer all of the above
advantages [25] to our knowledge (the CMU Olympus [2] and the ALEX dialog
frameworks [11] are two systems that come close to being exceptions, but that they
are standard-compliant is not clear).

To address these shortcomings, we developed HALEF – a telephony-based, mod-
ular, open-source, standard-compliant spoken dialog system. The primary objective
of this paper is to describe the current state of the HALEF system and discuss how
various back-end applications can be integrated within the SDS framework. HALEF
is written primarily in Java and leverages a number of open-source tools in a dis-
tributed framework for scalability.

SDS frameworks can be deployed to suit a wide range of applications such
as directory services [7], technical troubleshooting [20], intelligent tutoring [8] or
computer-assisted language learning [24, 29]. In this paper, we present a couple of
such applications, including that of a plug-and-play module for alcoholic state clas-
sification and a question answering service. Note however that the purpose of this
paper is not to further the state of the art in alcohol classification or question an-
swering applications, but to demonstate how a working classifier/application can be
incorporated into the HALEF framework as an independent plug-and-play module.

The rest of the paper is organized as follows: Section 2 describes the basic ar-
chitecture and components of the HALEF spoken dialog system. We then describe
example applications of the HALEF SDS to alcoholic state classification and ques-
tion answering in Section 3. Finally we conclude with a discussion of ongoing and
future research into the system in Section 4.

2 HALEF System Description

The HALEF (Help Assistant–Language-Enabled and Free) framework leverages
different open-source components to form an SDS framework that is modular
and industry-standard-compliant: Asterisk, a SIP- (Session Initiation Protocol) and
PSTN- (Public Switched Telephone Network) compatible telephony server [13];
JVoiceXML, an open-source voice browser that can process SIP traffic [21] via a
voice browser interface called Zanzibar [16]; Cairo, an MRCP (Media Resource
Control Protocol) speech server, which allows the voice browser to initiate SIP or
RTP (Real-time Transport Protocol) connections from/to the telephony server [16];
the Sphinx automatic speech recognizer [12]; Festival [27] and Mary [22] – text-
to-speech synthesis engines; and an Apache Tomcat-based web server that can host

HALEF: an open-source standard-compliant telephony-based modular SDS 3

TELEPHONY
SERVER
(ASTERISK)

JVoiceXML

Zanzibar

CAIRO
(MRCP server)

SPHINX (ASR)

APACHE

VXML, JSGF, ARPA,
SRGS, WAV

SPEECH SERVER WEB SERVER

VOICE BROWSER

FESTIVAL
(TTS)

MARY (TTS)

HTTP
MRCP

SIP

SIP SIP

SIP

PSTN

RTP

(audio)

ALCOHOLIC STATE
CLASSIFICATION

(OpenSMILE, WEKA, LibSVM)

BACK-END SERVICES (plug-and-play modules)

QUESTION
ANSWERING

(Open Ephyra)

INTELLIGENT
TUTORING SYSTEMS

HTTP

SFTP

HTTP

HTTP

Fig. 1 System architecture of the HALEF spoken dialog system depicting the various modular
open-source components.

dynamic VoiceXML (VXML) pages and serve media files such as grammars2 and
audio files to the voice browser. Figure 1 schematically depicts the main compo-
nents of the HALEF system. Note that unlike a typical SDS, which consists of
sequentially-connected modules for speech recognition, language understanding,
dialog management, language generation and speech synthesis, in HALEF some
of these are grouped together forming independent blocks which are hosted on dif-
ferent virtual machines in a distributed architecture. For further details on the indi-
vidual blocks as well as design choices, please refer to [14]. In this framework, one
can serve different back-end applications as standalone web services on a separate
server. Incorporating the appropriate start URL (Universal Resource Locator) of the
web service in the VXML input code that the voice browser interprets will then al-
low the voice browser to trigger the web application at the appropriate point in the
callflow. The web services in our case typically take as input any valid HTTP-based

2 Popular grammar formats include JSGF (Java Speech Grammar Format), SRGS (speech recog-
nition grammar specification) and ARPA (Advanced Research Projects Agency) formats.

4 Suendermann-Oeft et al.

Mary/Festival

Fig. 2 Flow diagram of an example HALEF call flow for the question answering application.

GET or POST request and output a VXML page that the voice browser can process
next.

In order to understand how HALEF works in a better manner, let us consider an
example. Figure 2 illustrates the step-by-step flow of operations that are executed
in the case of a question answering (QA) back-end application. Once the Asterisk
server receives a call, it sends a notification to the voice browser to fetch the VXML
code from the web server. The voice browser in turn identifies the resources that the
speech server will need to prepare for this application. It then notifies the MRCP
server and starts sessions and channels for all required resources including the pro-
visioning of speech recognition grammars. Finally, the speech server sends a SIP
response back to the voice browser and Asterisk to confirm session initiation. Com-
pletion of this process successfully establishes a communication channel between
the user and Halef’s components.

HALEF: an open-source standard-compliant telephony-based modular SDS 5

Now that the session is established, Asterisk streams audio via RTP to the speech
server. When the caller starts speaking, the Sphinx engine’s voice activity detector
fires and identifies voiced portions of the speech, and starts decoding these portions.
When the voice activity detector finds that the caller has finished speaking, Sphinx
sends the recognition result back to the voice browser, which passes it on to the
standalone QA web application (which is served on another server) via HTTP and
waits for an answer. It then sends this answer to the dialog manager which evaluates
and generates VXML code with the final response to be spoken out by the speech
synthesizer (either Festival or Mary). The voice browser then interprets this VXML
code and sends a synthesis request to the speech server with the response. Festi-
val/Mary synthesizes the response and passes the result back via RTP to Asterisk,
which forwards the audio signal to the user. At the same time, Cairo sends a con-
firmation signal to the voice browser. After receiving this signal, the voice browser
sends a cleanup request to close all open channels and resources. This ends the SIP
session with Asterisk, which finally triggers Asterisk to send an end-of-call signal
to the user.

Note that HALEF makes no assumptions on the specifics of the dialog manage-
ment system used. One could choose to use a specific rule-based call flow manage-
ment routine (in which case one would have to generate VXML pages correspond-
ing to actions for each rule branch of the routine) or a more statistical system, such
as one based on Partially Observable Markov Decision Processes (which one could
implement as a separate web service that returns an appropriate VXML page detail-
ing the next action to be taken by the SDS). There is similar flexibility in design-
ing aspects of the spoken language understanding and language models for speech
recognition (or grammars). In case of the latter, one could imagine wanting to use
different grammars depending on the language or the domain in question. Currently
HALEF supports the use of either JSGF (Java Speech Grammar Format) and ARPA
(Advanced Research Projects Agency) formats to specify grammars. This modular-
ity in design is intended to allow users more flexibility and ease of use in adapting
HALEF to different use cases and environments.

3 Specific back-end use case examples

3.1 Case study I: a question answering application

The flow diagram in Figure 2 depicts the sequence of operations executed in the
case of a back-end interface that allows HALEF to interact with a question answer-
ing (QA) web application called OpenEphyra [31], which was developed by re-
searchers working on the IBM Watson DeepQA initiative [6]. We shall only briefly
mention the key features here – for further details please see [14]. The application
is a combination of several components including question analysis, query genera-
tion, pattern matching, answer extraction and answer selection. As this system has
already been elucidated in the publications cited above, we only provide a brief de-
scription of the steps involved in answering a question here. First, the spoken input
question is normalized for punctuation, abbreviations, etc. and then stemmed for
nouns and verbs. Next, keywords, question type and named entities are extracted to

6 Suendermann-Oeft et al.

form queries that are subsequently used to search the available knowledge base. Af-
ter matching possible candidates in the database, an n-best list is returned, following
which the answer with the highest confidence is chosen as the output.

3.2 Case study II: alcoholic state classification

In this section we present an example of a plug-and-play alcoholic state classifica-
tion module that can be used with HALEF. The problem of alcoholic state classifi-
cation has recently gained popularity in the pattern recognition community, leading
to the proposal of competitions at academic conferences such as the Interspeech
2011 Speaker State Challenge [23]. That being said, recall that the main goal of the
paper is not to present state-of-the-art classification results, but to present a working
classification module (which can be optimized for performance independent of the
HALEF system).

Similar to the previously described case of the question answering application,
we served the alcohol language classifier as a standalone web service – or more
specifically, a Java servlet that is served by Apache Tomcat. The speech server
ships the incoming audio file to this web service, which then performs three op-
erations. First, it preprocesses the incoming audio file and extracts features using
OpenSMILE. Then it uses Weka to perform the classification using a previously-
trained model. Finally, it extracts the result and generates a corresponding VXML
page that contains information to be processed by the voice browser regarding how
it should proceed further.

3.2.1 Data

We used the Alcohol Language Corpus (ALC) collected at the Ludwig Maximilians
University of Munich to train the classifier. The dataset contains audio recordings
of people in sober and alcohol-intoxicated state [19, 18], comprising 39 hours of
speech from 77 female and 85 male speakers. Out of this, we performed experiments
on a reduced data set3 that was introduced by the Interspeech 2011 Speaker State
challenge [23]. We further converted all audio instances of the ALC from 44.1 kHz
to 8 kHz sample rate, to ensure compatibility with HALEF.

Classification tasks that leverage speech collected using a spoken dialog system
are bound to certain constraints. For example, speaker turns cannot be arbitrarily
long in duration in a practical setting. This is even more so when one is testing for
alcohol intoxication. Therefore we only considered experimental trials during which
speakers spoke prompts that were short in duration. We chose five speech prompts
from the ALC that met these requirements – see Table 1 for a list of these prompts.

3 Since the data collected during different ALC experiments are not balanced in terms of class and
gender, we removed all speakers that were recorded in only one of the classication states. We then
discarded as many male speakers (selected at random) as necessary to achieve gender balance.

HALEF: an open-source standard-compliant telephony-based modular SDS 7
Table 1 List of speech prompts used from the Alcohol Language Corpus [19, 18] and their corre-
sponding test classification performance (represented as unweighted average recall, UAR).

Exp. Command # Samples Test UAR

1 Sportplatzweg 27, Marktgraitz 228 68%
2 Temperatur 23◦C 268 78%
3 Nächster Titel 268 73%
4 Frequenz 92.2 MHz 268 60%
5 Autobahn meiden 268 63%

3.2.2 Classification paradigm

In order to classify as sober or alcohol intoxicated, the test person dials into the
HALEF system and is prompted to repeat one of the prompts, for example: “Tem-
peratur 23◦C” . As mentioned earlier, after the user input has been recorded, a web
service is triggered to run openSMILE [5] to generate a sequence of feature vectors.
The acoustic feature set used corresponds to the configuration of the Interspeech
2011 Speaker State Challenge – 4368 features comprising a multitude of low-level
descriptors (such as spectral features, F0, etc.) and their applied functionals; see
Schuller et al. (2011) [23] for more details.
We used support vector machine (SVM) classifiers to perform the classification. We
ran all experiments with the Weka machine learning toolkit (version 3.7) [10, 9]
in combination with LibSVM, an open-source implementation of support vector
machines [4]. For evaluation we selected 10 male/female speaker pairs as test
set. We tuned the complexity parameter of the linear kernel by using leave-one-
speaker pair-out cross-validation on the remaining speaker pairs. Table 1 lists the
unweighted average recall (UAR) for each test prompt. We observe that although
the system performs consistently better than chance, there is scope for improve-
ment. However, we deemed it to be sufficient in order to set up a working prototype
spoken dialog interface for our purposes.

4 Conclusions and Outlook

We have presented the current state of the art of the HALEF system – a fully open-
source, modular, telephony-based industry-standard-compliant spoken dialog sys-
tem that can be interfaced with a number of potential back-end applications. We il-
lustrated this capability with two example applications, that of alcoholic state classi-
fication and a question answering application. HALEF can be accessed online at the
following URL: http://halef.org. One can also call into HALEF for a demo
at the following US-based telephone number: (206) 203-5276 (Ext. 2000: QA

demo; 2001: ALC demo). Another back-end application that we are currently de-
veloping is a system for English language learning and assessment tailored to ad-
dress the conversational competency of a user.

8 Suendermann-Oeft et al.

References

1. Black, A.W., Burger, S., Conkie, A., Hastie, H., Keizer, S., Lemon, O., Merigaud, N., Parent,
G., Schubiner, G., Thomson, B., Williams, J., Yu, K., Young, S., Eskenazi, M.: Spoken Dialog
Challenge 2010: Comparison of live and control test results. In: Proceedings of the SIGDIAL
2011 Conference, pp. 2–7. Association for Computational Linguistics (2011)

2. Bohus, D., Raux, A., Harris, T., Eskenazi, M., Rudnicky, A.: Olympus: An Open-Source
Framework for Conversational Spoken Language Interface Research. In: Proc. of the HLT-
NAACL. Rochester, USA (2007)

3. Bos, J., Klein, E., Lemon, O., Oka, T.: Dipper: Description and formalisation of an
information-state update dialogue system architecture. In: 4th SIGdial Workshop on Dis-
course and Dialogue, pp. 115–124 (2003)

4. Chang, C.C., Lin, C.J.: LIBSVM: a Library for Support Vector Machines. ACM Trans. on
Intelligent Systems and Technology 2(3) (2011)

5. Eyben, F., Wöllmer, M., Schuller, B.: Opensmile: the Munich versatile and fast open-source
audio feature extractor. In: Proc. of the MM. Florence, Italy (2010)

6. Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., Lally, A., Mur-
dock, W., Nyberg, E., Prager, J., Schlaefer, N., Welty, C.: Building Watson: An Overview of
the DeepQA Project. AI Magazine 31(3) (2010)

7. Gorin, A., Riccardi, G., Wright, J.: How May I Help You? Speech Communication 23(1/2)
(1997)

8. Graesser, A.C., Chipman, P., Haynes, B.C., Olney, A.: Autotutor: An intelligent tutoring sys-
tem with mixed-initiative dialogue. Education, IEEE Transactions on 48(4), 612–618 (2005)

9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data
mining software: an update. ACM SIGKDD explorations newsletter 11(1), 10–18 (2009)

10. Holmes, G., Donkin, A., Witten, I.H.: Weka: A machine learning workbench. In: Intelligent
Information Systems, 1994. Proceedings of the 1994 Second Australian and New Zealand
Conference on, pp. 357–361. IEEE (1994)

11. Jurčı́ček, F., Dušek, O., Plátek, O., Žilka, L.: Alex: A statistical dialogue systems framework.
In: Text, Speech and Dialogue, pp. 587–594. Springer (2014)

12. Lamere, P., Kwok, P., Gouvea, E., Raj, B., Singh, R., Walker, W., Warmuth, M., Wolf, P.:
The CMU SPHINX-4 Speech Recognition System. In: Proc. of the ICASSP’03. Hong Kong,
China (2003)

13. van Meggelen, J., Smith, J., Madsen, L.: Asterisk: The Future of Telephony. O’Reilly, Se-
bastopol, USA (2009)

14. Mehrez, T., Abdelkawy, A., Heikal, Y., Lange, P., Nabil, H., Suendermann-Oeft, D.: Who
Discovered the Electron Neutrino? A Telephony-Based Distributed Open-Source Standard-
Compliant Spoken Dialog System for Question Answering. In: Proc. of the GSCL. Darmstadt,
Germany (2013)

15. Pieraccini, R., Huerta, J.: Where Do We Go from Here? Research and Commercial Spoken
Dialog Systems. In: Proc. of the SIGdial. Lisbon, Portugal (2005)

16. Prylipko, D., Schnelle-Walka, D., Lord, S., Wendemuth, A.: Zanzibar OpenIVR: An Open-
Source Framework for Development of Spoken Dialog Systems. In: Proc. of the TSD. Pilsen,
Czech Republic (2011)

17. Raux, A., Langner, B., Bohus, D., Black, A., Eskenazi, M.: Let’s Go Public! Taking a Spoken
Dialog System to the Real World. In: Proc. of the Interspeech. Lisbon, Portugal (2005)

18. Schiel, F., Heinrich, C.: Laying the Foundation for In-Car Alcohol Detection by Speech. In:
Proc. of the Interspeech. Brighton, UK (2009)

19. Schiel, F., Heinrich, C., Barfüsser, S., Gilg, T.: ALC—Alcohol Language Corpus. In: Proc. of
the LREC. Marrakesh, Morocco (2008)

20. Schmitt, A., Scholz, M., Minker, W., Liscombe, J., Suendermann, D.: Is It Possible to Predict
Task Completion in Automated Troubleshooters? In: Proc. of the Interspeech. Makuhari,
Japan (2010)

21. Schnelle-Walka, D., Radomski, S., Mühlhäuser, M.: JVoiceXML as a Modality Component in
the W3C Multimodal Architecture. Journal on Multimodal User Interfaces (2013)

HALEF: an open-source standard-compliant telephony-based modular SDS 9

22. Schröder, M., Trouvain, J.: The german text-to-speech synthesis system mary: A tool for re-
search, development and teaching. International Journal of Speech Technology 6(4), 365–377
(2003)

23. Schuller, B., Steidl, S., Batliner, A., Schiel, F., Krajewski, J.: The interspeech 2011 speaker
state challenge. In: INTERSPEECH, pp. 3201–3204 (2011)

24. Seneff, S., Wang, C., Zhang, J.: Spoken conversational interaction for language learning. In:
InSTIL/ICALL Symposium 2004 (2004)

25. Suendermann, D.: Advances in Commercial Deployment of Spoken Dialog Systems. Springer,
New York, USA (2011)

26. Suendermann-Oeft, D.: Modern conversational agents. In: Technologien für digitale Innova-
tionen, pp. 63–84. Springer (2014)

27. Taylor, P., Black, A., Caley, R.: The Architecture of the Festival Speech Synthesis System. In:
Proc. of the ESCA Workshop on Speech Synthesis. Jenolan Caves, Australia (1998)

28. Williams, J.D., Young, S.: Partially observable markov decision processes for spoken dialog
systems. Computer Speech & Language 21(2), 393–422 (2007)

29. Xu, Y., Seneff, S.: A generic framework for building dialogue games for language learning:
application in the flight domain. In: SLaTE, pp. 73–76. Citeseer (2011)

30. Young, S., Gašić, M., Keizer, S., Mairesse, F., Schatzmann, J., Thomson, B., Yu, K.: The
hidden information state model: A practical framework for pomdp-based spoken dialogue
management. Computer Speech & Language 24(2), 150–174 (2010)

31. van Zaanen, M.: Multi-lingual question answering using OpenEphyra. In: Working Notes for
the Cross Language Evaluation Forum (CLEF), pp. 1–6 (2008)

