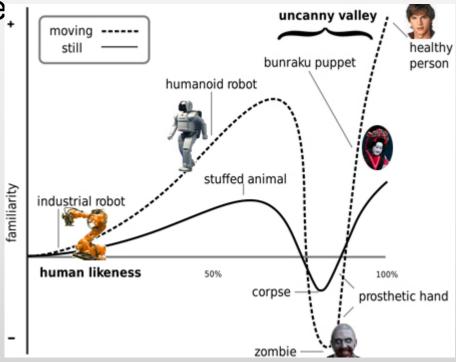
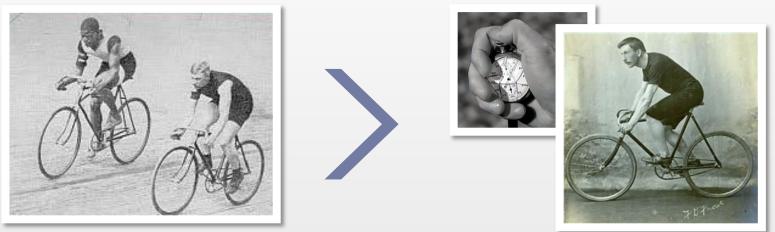

Investigating the social facilitation effect in human-robot-interaction

Ina Wechsung, Patrick Ehrenbrink, Robert Schleicher and Sebastian Möller

Quality and Usability Lab, Telekom Innovation Laboratories, TU Berlin


Introduction

- Today, most robots are not developed to socially interact with humans but to accomplish a given work task
- But: usage of so-called "social robots" is slowly increasing
- To be capable of meaning-ful social interactions, social robots need to have anthropomorphic qualities (Duffy, 2003)


The Uncanny Valley

- Very human-like robots "behaving" non-human may be perceived as strange or eerie
- On a physiological level this effects increases the level of arousal

The Social Facilitation Effect

• Early study (Triplett, 1889):

- Performance increases in presence of others
- Replicated for other tasks (e.g. winding in fishing line) and other species (e.g. cockroaches, monkeys)

The Social Facilitation Effect

- But: also opposite was observed
 - Social inhibition
 - For complex tasks (e.g. deductive reasoning) performance decreases in presence of others
- Explanation of drive theory (Zajonc et al., 1969):
 - - ✓ easy tasks
 - complex tasks
- Uncanny valley
 - Very human-like robot → eerie feeling → high arousal → strong social facilitation/inhibition effect

Aim

- Investigating the influence of differing levels of human-likeness on the social facilitation/inhibition effect
- Hypotheses:
 - Human-likeness increases arousal
 - Performance dependent on task complexity
 - ► High human-likeness → high performance in easy tasks
 - High human-likeness
- → low performance in complex tasks

Method

- 3 self-built robots served as artifical experimenter
- Lego Mindstorms NXT

Method

Head_{box} - no anthropomorphic features **Head_{human}** based on plaster mask of a real human face

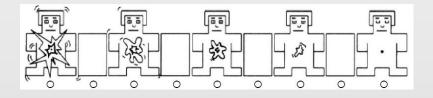
Head_{cartoon} same mask but human features were altered in accordance with DiSalvo et al. (2002)

- Head width > head length
- Distance between eyes
 > diameter of eye

Participants

- 41 participants were invited
 - 12 were excluded due to technical problems, being too old, or producing outliers
- > 29 German-speaking subjects included in analysis
- Age range: 18-35 years

Tasks


- Arithmetic tasks (subtraction and addition) in three different complexity levels
 - Easy: Pairs of one two-digit number and one single-digit number, no carry operation involved (e.g.: 13 + 5)
 - Medium: Pairs of two-digit numbers, no carry operation involved (e.g.: 13 + 44)
 - Complex: Pairs of three-digit numbers, carry operation involved (e.g.: 345 + 156)
- Parallel monitoring task
 - Monitor robot's LED and contact human experimenter if the LED starts blinking
 - Aim: Ensure constant awareness of the robot's presence

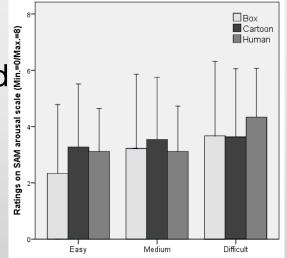
Measures

Performance: Error rate of arithmetic tasks

 Manipulation check: Human-likeness card sorting

- Arousal: Self-Assessment-Manikin questionnaire
- Mental effort: SEA scale

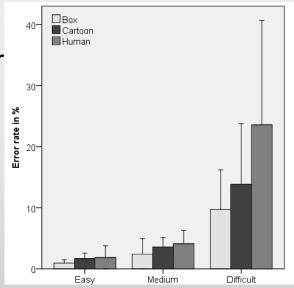
Procedure



Results

- Human-likeness ratings
 - $Head_{human} > Head_{cartoon} > Head_{box} (p < .05)$

Arousal

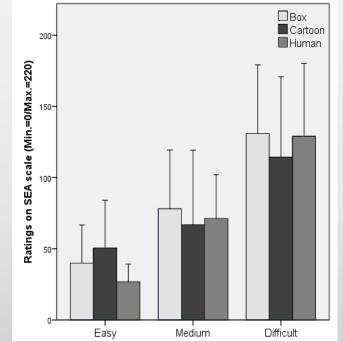

- Only main effect for task complexity
- No differences between the robot heads
- No interaction effect between robot head and task complexity

Results

Performance

- Main effect for task complexity
- Main effect for robot head
 - Head_{human} significantly different from Head_{box}
- Interaction effect between task complexity and robot head
 - As expected Head_{human} led to highest error rate in difficult condition
 - However performance was always best for Head_{box}
 - Social inhibition was observed, social facilitation was not.

Discussion & Conclusion


- A higher degree of human-likeness is more likely to trigger a social inhibition effect.
 - Such robots are "deeper" in the uncanny valley?
- Higher degree of human-likeness does not trigger social facilitation effect
 - The non-human robot always led to best results.
 - Tasks too difficult?
 - Effect of camera?
 - Test situation?
- Self-reported data is not in line with theory and performance measures
 - Induced change in somatic arousal was too subtle to be perceived consciously by the subjects

Thank you for your attention!

Questions?

Results

- Mental Workload
 - Main effect for task complexity
 - No differences between the robot heads
 - No interaction effect between robot head and task complexity

