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@ Natural language interfaces for human-computer interaction

@ Speech is a frequently used mode of interaction

o Involves: speech recognition /synthesis, language understanding/generation
o Often designed to perform specific tasks

@ Examples for goal-oriented dialogue systems:

o Flight ticket booking
o Town-information
o Language tutoring
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o Navigates the dialogue system

@ Essentially a decision making problem

@ What to ask some information?

@ When to say some thing to the user?

@ More than one possible action

@ Choose best action given dialogue context

@ Sequential decision making problem

@ Dialogue management is a sequential decision making problem
@ Dialogue management problem is cast as a MDP |[2]

@ Transition probabilities i.e., model of the system is not available
@ Reinforcement learning is used for dialogue optimization [5]

@ System designer specifies the reward function to be maximized

@ However, RL needs large amount of dialogue corpora for policy optimization
@ Dialogue corpora generation is expensive and time taking process

@ User simulators [6] are built from corpora

@ Simulators aims at generating synthetic dialogue corpus

@ Simulators are used to estimate/evaluate dialogue policies

o Is it optimal to adapt dialogue manager to a fixed user or corpus?

@ In real world users not only adapt but also change goal/behavior

@ It is important to build dynamic and adaptive user simulators

@ Dialogue system end users tend to behave in goal oriented manner

@ User behavior can be perceived as sequence of decisions

@ Sequential decision making users can be modelled as an MDP

@ Reward function required for RL optimization must be learned from corpus
o Relative Entropy IRL was employed to learn the reward function |3]

@ User model is casted as an MDP and behavior is imitated using IRL and RL

@ Solve sequential decision making problems
@ Markov Decision Process: {S,A,R,P,7v} [2]

@ Rewarded state transitions {s,a,r,;s'}

@ Solution of an MDP is an optimal policy

@ Schemes to solve MDPs:
o Dynamic programming [1] (model based) D
o Reinforcement learning [7] (model free) | J
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Beha\nor Dlalogue Manager ... Yet another ....
Optimization
example for a chicken & egg problem:
Which one to optimize first?
Will the RL agent be the usermodel or dialogue manager?
Umm ... how about -the environment?
. Alright ... lets co-adapt !!!
RL - Agent being optimized EnvirFonment
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R Bell Relative entropy inverse reinforcement learning.
. bellman.

Dynamic Programming.
M. Gasic, F. Jurcicek, B. Thomson, K. Yu, and S. Young.
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@ Naturalness observed in human-human communication is result of

(1) Dialogue initiation stage (focal point of current dialogue research)
(2) Dialogue evolution or co-alignment stage

@ Online dialogue optimization may seem to facilitate co-alignment, however

(1) Users can better adapt to SDS than vice-versa
(2) Introduces some degree of over-confidence during adaptation [4]
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@ Dialogue and user policies evolve and improve over time
@ Similar to human-human dialogue, co-adaptation is subjective to ASR errors
@ Co-adaptation is a step towards building self evolving dialogue systems
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Using markov decision process for learning dialogue strategies.



