
Interface Design - Generic Component

•OnMessage – Handler of all incoming

messages

•FireEvent – Interface to fire an event by a

particular component

•SendMessage – Interface to send a

message to remote agents

•Print – Show message in main console

Component Pluggable Dialogue Framework

And Its Application to Social Robots

Abstract
This paper is concerned with the design and

development of a component pluggable event

driven dialogue framework for service robots. We

abstract standard dialogue functions and

encapsulate them into different types of

components or plug-ins. A component can be a

hardware device, a software module, an

algorithm or a database connection. The

framework is empowered by a multi-purpose

XML-based dialogue engine which is capable for

pipeline information flow construction, event

mediation, multi-topic dialogue modelling and

different types of knowledge representation. The

framework is domain independent, cross-platform

and multilingual.

Dialogue Modelling in XML

1.Finite State Machine

2.Frame-based Representation

3.Rule-based Knowledge Representation

4.Hybrid Task Representation

5.XML Procedural Programming

 Variables

 Expression

 Function

 Control statement: if/else, for loop, etc.

 Timer

 Network: send message thru TCP/IP

 File IO & string handling

 Built-in Support of Array

 Built-in Support of List

Ridong Jiang, Yeow Kee Tan, Dilip Kumar Limbu, Tran Anh Dung & Haizhou Li

Institute for Infocomm Research, Singapore 138632

Aim

Provide a configurable, scalable, extensible

and component reusable spoken dialogue

framework to ultimately reduce the efforts for

building up a new spoken dialogue

applications.

System Architecture

In order to make the dialogue framework

reusable, we employ object oriented

approach, loose component coupling, event

driven paradigm and plug-and-play strategy

to design and develop the proposed

dialogue framework. The overall system

architecture is shown in Fig. 1.

Conclusion

•Light weight component pluggable spoken

dialogue framework

•Configurable architecture

•Component reusable

•Extensible through plug-ins

•Fully driven by XML script in both dialogue

logic and low level flow control

•Full-fledge rule engine and MySql database

support

•Deployed on a number of Robots & dialogue

applications

References

1. MICHAEL F. MCTEAR, “Spoken Dialogue Technology: Enabling the

Conversational User Interface”, ACM Computing Surveys, Vol. 34, No. 1, March 2002,

pp. 90–169.

2. R. Pieraccini, and J. Huerta, “Where do we go from here? Research and commercial

spoken dialog systems.” 6th SIGdial Workshop on Discourse and Dialogue, Lisbon,

Portugal, September 2-3, 2005.

3. Galaxy Communicator Documentation:

http://communicator.sourceforge.net/sites/MITRE/distributions/GalaxyCommunicator/d

ocs/manual/index.html.

4. Seneff, S., Hurley, E., Lau, R., Pao, C., Schmid, P. and Zue, V, “Galaxy-II: A

Reference Architecture for Conversational System Development,” Proceedings of the

5th International Conference on Spoken Language Processing (ICSLP ’98), pp. 931-

934, Sydney, Australia, December, 1998.

5. Dan Bohus, Antoine Raux, Thomas K. Harris, Maxine Eskenazi, Alexander I.

Rudnicky, “Olympus: an open-source framework for conversational spoken language

interface research.” Proceedings of HLT-NAACL 2007 workshop on Bridging the Gap:

Academic and Industrial Research in Dialog Technology (2007).

6. Levin, E., Narayanan, S., Pieraccini, R., Biatov, K., Bocchieri, E., Di Fabbrizio, G.,

Eckert, W., Lee, S., Pokrovsky, A., Rahim, M., Ruscitti, P., and Walker, M The AT&T-

DARPA “Communicator mixed-initiative spoken dialog system”, Proceedings of the

Sixth International Conference on Spoken Language Processing (ICSLP’2000), Beijing,

China, pp. 122-125, 2000.

7. Staffan Larsson, David R Traum, “Information state and dialogue management in the

TRINDI dialogue move engine toolkit”, Natural Language Engineering, Volum 6, Issue

3-4, 323 – 340, 2000.

8. J. Bos, E. Klein, O. Lemon, T. Oka, “DIPPER: Description and Formalisation of an

Information-State Update Dialogue System Architecture”, Proceedings of the Fourth

SIGdial Workshop of Discourse and Dialogue, 2003.

9. Peter Ljunglöf, “Trindikit.py: An open-source Python library for developing ISU-

based dialogue systems.” In Proceedings IWSDS'09, 1st International Workshop on

Spoken Dialogue Systems Technology Workshop, Kloster Irsee, Germany, 2009.

10. S.W. Hamerich, Y.H. Wang, V. Schubert, V. Schless and S. Igel, “XML-Based

Dialogue Descriptions in the GEMINI Project”. Proceedings of the “Berliner XML-Tage

2003, Germany, pp.404-412.

11. T. Heinroth and D. Denich, “Spoken Interaction within the Computed World:

Evaluation of a Multitasking Adaptive Spoken Dialogue System”, 35th Annual IEEE

International Computer Software and Applications Conference (COMPSAC 2011),

IEEE, 2011

API & Interface Hierarchy
The framework provides C++ application

programming interface (API) for both Generic

Component and Standard Dialogue

Component development. With the API

provided, new algorithms and dialogue

components can be quickly integrated into

the framework. Fig.2 illustrates the generic

interface and standard dialogue interface as

well as their inheritance hierarchy with some

of the developed plug-ins.

Fig. 2 Object-oriented interface and its hierarchical

 relationship with plug-ins

Fig. 1 System architecture of component-based spoken dialogue framework

Middleware

Interface

R
e

c
o

rd
in

g

R
u

le
E

n
g

in
e

R
e

c
o

g
n

iz
e

r

T
T

S

N
L

U

N
L

G

D
a

ta
b

a
s

e

Script

File (XML)

Dialogue Manager

API

GUI

XML

Script

Engine

Message Centre

Setting

File (XML)

Dialogue

Engine

Finite State Machine

Frame Manager

Topic Engine

Database, Knowledge base & Web

IPlugin

ITTS IVAD IRecord IRecognizer INLU

W
in

T
T

S

V
A

D
_

8
K

L
o

q
u

e
n

d
o

T
T

S

V
A

D
_
1

6
K

W
in

R
e

c
o

rd

F
a

rT
a

lk
R

e
c

o
rd

A
b

a
c

u
s

D
ra

g
o

n

K
e

y
w

d
S

p
o

tt
in

g

R
u

le
B

a
s

e
d

N
L

U

P
u

s
h

T
o

T
a

lk

S
IP

S
tr

e
a

m
in

g

G
o

o
g

le
V

o
ic

e

S
ta

ti
s

ti
c

B
a

s
e

N
L

U

R
u

le
E

n
g

in
e

M
y

S
q

l-
D

a
ta

b
a

s
e

C
h

a
tE

n
g

in
e

T
e

x
t-

In
p

u
t-

G
U

I

S
o

c
k

e
tS

e
rv

e
r

A
IM

L
-E

n
g

in
e

N
e

u
ra

lN
e

tw
o

k

Standard Plug-ins

Generic Plug-ins

Component Management &

Communication

1.Component Reuse and Configuration
<Plugins>

 <Plugin>SR_WinTTS</Plugin>

 <Plugin>SR_SpeechEnhancement</Plugin>

 <Plugin>SR_Dragon</Plugin>

 <Plugin>SR_StatisticNLU</Plugin>

 <Plugin>SR_NLG</Plugin>

 <Plugin>MySQLDatabase</Plugin>

</Plugins>

2.Dynamic loading/unloading
 <post module=“system” command=“load”

param=“SR_WinTTS”/>

3.Multiple-Engine Management

Fig. 3 Diagram of multiple engines (the same type) work in

parallel for improved results

Fig. 4 Diagram of multiple engines (the same type) –

dynamically switch based on scenarios

Engine 1

Engine 2

Engine 3

System Fusion

Engine 1

Engine 2

Engine 3

System

http://communicator.sourceforge.net/sites/MITRE/distributions/GalaxyCommunicator/docs/manual/index.html
http://communicator.sourceforge.net/sites/MITRE/distributions/GalaxyCommunicator/docs/manual/index.html

