
An Ontology-Based Dialogue Management
System for Virtual Personal Assistants

Michael Wessel, Girish Acharya, James Carpenter, and Min Yin

Abstract Dialogue management (DM) is a difficult problem. We present OntoVPA,
an Ontology-Based Dialogue Management System (DMS) for Virtual Personal As-
sistants (VPA’s). The features of OntoVPA are offered as potential solutions to core
DM problems. We illustrate OntoVPA’s solutions to these problems by means of a
running VPA example domain. To the best of our knowledge, OntoVPA is the first
commercially available, fully implemented DMS that employs ontologies, reason-
ing, and ontology-based rules for a) domain model representation and reasoning, b)
dialogue representation and state tracking, and c) response generation. OntoVPA is
a declarative, knowledge-based system which, consequently, can be customized to
a new VPA domain by swapping in and out ontologies and rule bases, with very
little to no conventional programming required. OntoVPA relies on its domain-
independent (generic), but dialogue-specific upper-level ontologies and DM rules,
which are implementing typical, re-occurring (and usually expensive to address)
dialogue system core capabilities, such as anaphora (coreference) resolution, slot-
filling, inquiring about missing slot values, and so on. We argue that ontologies
and ontology-based rules provide a flexible and expressive framework for realizing
DMS’s for VPA’s, with a potential to significantly reduce development time.

1 Introduction, Motivation, and Related Work

Motivation for OntoVPA Dialogue management (DM), the core functionality of a
Dialogue Management System (DMS), is notoriously difficult, if not AI-complete;
see [20] for a recent overview. Even in more restricted dialogue systems, difficult
problems such as anaphora (coreference) resolution and dialogue state tracking
may have to be handled by a non-trivial DMS. The importance and difficulty of the
dialogue state tracking problem is also testified by the recently established series of
Dialog State Tracking Challenges [19], aimed at catalyzing progress in this area.

To the best of our knowledge, state tracking and DM are still in its infancy in
contemporary commercial VPA frameworks / platforms, with very little to no sup-
port offered by the frameworks. Commercial platforms usually offer some form of

Corresponding author: Michael Wessel
SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA, e-mail: first-
name.lastname@sri.com

1



2 Michael Wessel, Girish Acharya, James Carpenter, and Min Yin

current user intent-triggered action-reaction (≈ production) rules (e.g., in order to
invoke a RESTful service in the Internet of Things). However, these rules are usu-
ally constrained to accessing the parameters (≈ slot values) of the current user intent
only, and hence cannot access (nor assess) the dialogue history or state of a rich do-
main model – their context is often limited to current intent and previous state. In
contrast, our ontology-based DMS has access to the full dialogue history and do-
main model.

Consequently, in these simpler commercial systems, the bookkeeping required
in order to support more sophisticated DM has to be done programmatically by the
VPA application developer, and dialogue history and state have to be encoded in
proprietary data structures, with little to no reuse across domains. This model-less,
programmatic approach to DM is acceptable for simple one-shot request-response
VPA’s that do not need to sustain complex conversations (possibly involving multi-
ple dialogue steps) for fulfilling a user request, but becomes tedious with increased
development times and hence costs in the long run in more complex VPA domains
that require elaborate workflows for solving domain-specific problems (e.g., book-
ing a business trip includes booking a flight, a hotel, a rental car, and so on).

A system with deep domain knowledge which is capable to solve complex prob-
lems in cooperation with the user, such as Kasisto [9], is also called a Virtual Per-
sonal Specialist (VPS) [12]. Due to the complexity of the domain problems to be
solved (e.g., bank transfers), dialogues will require multiple steps for workflow /
intent completion, and both the user and the VPA should be able to steer and drive
the dialogue in order to solve the problem cooperatively. Such systems will likely be
mixed initiative dialogue systems [6], and frame-based, information state-based and
agent-based DMS are a better fit than the less flexible finite state machine-based
DMS. The challenges presented by conversational VPS’s have shaped OntoVPA,
our ontology-based DMS for VPA’s.

Introducing OntoVPA OntoVPA is offered as a generic, reusable VPA platform for
implementing conversational VPA’s and VPS’s that require deep domain knowledge,
complex workflows, and flexible (not hard-coded) DM strategies. It promises to
significantly reduce development times, due to its reusable and generic features (see
Section 2).

OntoVPA employs ontologies for dialogue and domain representation, as well as
ontology-based rules for dialogue management, state tracking, and response com-
putation. OntoVPA’s dialogue representation can be compared to the blackboard in
information state space-based DMS’s [20].

Ontology-Based Domain Model and Dialogue Representation For illustration,
let us consider a Restaurant Recommendation VPA (see Section 2) that has suggested
a specific restaurant of type ItalianPizzaRestaurant to the user in response to a
FindRestaurantIntent(type : Restaurant). In subsequent dialogue steps, the user
might refer to this previously discussed Restaurant with a phrase such as . . . the
pizza place . . . or . . . the Italian restaurant . . . (e.g., “What is the rating of the
pizza place?”). OntoVPA uses its domain knowledge to realize that the previously
presented ItalianPizzaRestaurant is an ItalianRestaurant as well as a PizzaPlace –



An Ontology-Based Dialogue Management System for Virtual Personal Assistants 3

consequently, these anaphora can be resolved with the help of a generic anaphora
resolution rule. The rule considers the taxonomy of the ontology and is hence aware
of hypernyms, hyponyms, and synonyms [7].

Such a system obviously requires some form of dialog representation in order to
have a working memory of the dialogue, and it needs to be “reflexive” – in addition
to what the user said, it also needs to remember its own utterances; here, the pre-
sented restaurant. The runtime, dynamic dialogue representation is instantiating the
classes and relation types defined in the static dialogue ontology; this vocabulary is
inspired by speech act theory [14]. Ontology-based rules over these representations
implement the dynamics of the dialog.

Use of Ontologies in OntoVPA We are using the W3C standards OWL 2 for the on-
tology language, and have implemented a custom ontology-based rule engine based
on the SPARQL 1.1 RDF query language. Mature implementations for OWL 2 and
SPARQL exists [16], and modeling workbenches (Protégé 5) are available. The use
of standards facilitates customer acceptance, and “off the shelf” ontologies are only
readily available in standard formats. Ontologies facilitate the following:
• Domain Model Representation: The classes (types), relationship types, and

instances and relations of the VPA domain. Often, we wish to reuse, extend, and
specialize well-known upper level ontologies such as Schema.org [18]. Following
standard OWL 2 Description Logic (DL) terminology [17], the classes (≈ con-
cepts, types, . . . ) and object and datatype properties (≈ properties, slots, attributes,
relations, parameters, . . . ) constitute the TBox (terminological box) of the ontology,
representing the vocabulary of the domain, whereas the actual instances of these
classes and relationships between them are kept in the ABox (assertional box).
• Dialogue Ontology: A TBox – its classes and properties are speech act theory-

inspired [14]. This vocabulary is instantiated in the dialogue ABox, which is the
actual dialogue representation. The TBox contains dialogue step classes, such as
UserIntents, which are special UserRequests, which are special DialogUserSteps,
and so on, see Section 3. As the domain classes, many dialogue steps have parame-
ters (slots), which are defined in terms of object and datatype properties.

Ontology reasoning is applicable in a number of areas and offers great potentials:
• Domain-Specific Reasoning: A VPA with deep expertise in a domain (a VPS)

requires extensive domain knowledge, and workflows and reasoning procedures
are becoming more complex. Automatic reasoning and highly expressive ontology-
based rule languages can solve complex application problems in a declarative way.
• Reasoning to Compute VPA’s Responses: Ontology-based rules can be used

to compute the actual utterances of the VPA.
• Reasoning to Handle Polysemy & Ambiguity of Natural Language and

Dialogue: Ontologies provide a means to deal with the polysemy of natural lan-
guage (NL). An ontology can structure the domain-specific vocabulary (“lexicon”)
in terms of semantic relations between them, such as hypernym / hyponym, syn-



4 Michael Wessel, Girish Acharya, James Carpenter, and Min Yin

Fig. 1 OntoVPA’s processing pipeline. Automatic Speech Recognition (ASR) turn the audio signal
into text. The text is then classified as a subclass of the DialogueUserStep ontology class, i.e.,
a specific UserIntent such as FindPointIntent. The ontology also specifies parameters / slots for
classes, and the slot filler “fills in” their parameters from a parse tree. The instantiated intent class
(the logical form) refers to individuals, classes, and relations from the ontology. The classifier and
slot filler act as a semantic parser. The instantiated intent is asserted into the dialogue ABox, and
the rule engine is invoked to compute OntoVPA’s response. The ontology is used by the classifier,
slot-filler and rule engine. Only the rule engine uses the ontology-based SPARQL rules.

onym / antonyms, and so on. This knowledge can be exploited for a variety of
context-specific NL interpretation and understanding tasks [7].

Basic Architecture of OntoVPA SRI’s standard VPA processing pipeline is shown
and explained in Fig. 1, also compare [6]. The focus of this paper is on the OntoVPA
module. We will briefly discuss the role of the classifier and slot filler, too.

Related Work Since the days of the LUNAR system, ontologies have been used
successfully in NL Question Answering systems, recently in HALO/AURA [10].
One of the few dialogue systems that uses ontologies at runtime for response gen-
eration is [1], but neither standard reasoning nor ontology-based queries / rules are
used. Dynamic use of ontologies is considered in [2] and led to the OntoChef sys-
tem [15], which is equipped with a sophisticated cooking ontology, but uses a non-
ontology based DMS (Olympus/RavenClaw). Other case studies have focused on
ontology modeling [11] and dialogue design based on task structures in OWL [3].
Frequently, ontologies are used for domain models. OWLSpeak [4, 5] is similar to
our dialogue ontology in that it is capable to represent (speech act influenced) dia-
logue models as well as the state of the dialogue, but no ontology-based rules nor
queries are used to compute the system’s responses (it generates Voice-XML). A
sophisticated Semantic Dialogue System for Radiologists is presented in [8], and
it also relies on ontologies and SPARQL, but does not use these techniques for the
implementation of the DM shell.

Outline of the Paper First, we illustrate OntoVPA and its DM core capabilities in
a Point Of Interest (POI) Finder VPA domain by means of a typical dialogue. We
then discuss the ontology in more detail, before we elaborate on how OntoVPA’s
DMS uses ontologies and ontology-based rules for realizing these core capabilities.
We finish with a conclusion and outlook for future work.



An Ontology-Based Dialogue Management System for Virtual Personal Assistants 5

No. User Utterance (DialogueUserStep) OntoVPA Response (DialogueSystemStep)
1 (none, OntoVPA initiates the dialogue by greeting the

user upon sign in)
Hello, how can I help?

2 Is there a Chinese Restaurant in Menlo Park? Sorry, I can’t find any. Do you want me to find some-
thing similar?

3 Okay! I found Gombei Japanese Restaurant in Menlo Park, at
0.34 miles.

4 Can you show it on the map? I am assuming with ‘it’ you are referring to Gombei
Japanese Restaurant. Now showing it on the map.

5 Is there a library close to the asian restaurant? Yes, the Menlo Park library is close to Gombei Japanese
Restaurant, at 0.3 miles.

6 How about a Pizzeria in Menlo Park? I found Applewood Pizzeria in Menlo Park, at 0.2 miles.
7 In Palo Alto I found Olive Garden in Palo Alto, at 1.4 miles.
8 Is there parking close to the pizza place? Do you mean Olive Garden?
9 No Apple Wood Pizzeria has a parking lot.

Fig. 2 An Example Dialogue with the OntoVPA-based “Point Of Interest Finder” VPA

2 Ontology-Based Dialogue Management Illustrated

Dialogue Management Core Capabilities What are the core capabilities required
for conversational VPA’s (also see [21, 7, 6])? In our experience, in addition to
anaphora (coreference) resolution as already discussed, conversational VPA’s typi-
cally require the following: realizing when a user request (also: intent) is fully spec-
ified and ready for execution (i.e., all required parameters are fully specified); in-
quiring about missing required parameters; interpreting arbitrary user input in the
context of the current dialogue (what does “In Palo Alto?” mean in the current con-
text?); canceling a currently open, but not yet fully executed sub-dialogue or sub-
workflow; support for refining, generalizing, deleting or overwriting slot values of
previously executed requests (intents), and re-executing them; and recognizing and
disambiguating ambiguous input (does “Stanford” refer to the city, or the college?).

We will now illustrate some of these core capabilities by means of the example
dialogue from Fig. 2 with a “Point of Interest Finder” VPA, and discuss how these
are handled on a generic level in OntoVPA, cross-domain and “once and for all”.

After an initial greeting from the system in Step 1, the user initiates the dialogue
in Step 2 by asking for a Chinese Restaurant in Menlo Park. The domain ontology
contains a taxonomy of POI classes, such as ChineseRestaurant, which is a subclass
(= kind) of AsianRestaurant, which is a kind of Restaurant, which is a kind of
POI, and so on. In addition, there are classes such as City. The system also has a
domain data source, which is an OWL (RDF) ABox of instances of POI classes
(POI database for short). These POI’s have their typical attributes (properties), i.e.,
name, address, geographic coordinates, and so on. Cities, such as MenloPark, are
instances as well; a POI instance refers to the city in which it is located via the
inCity object property (slot).

In Step 2 of Fig. 2, the user’s request can be classified as a FindPOIIntent,
a subclass of UserIntent. DialogUserStep classes are defined in the dialogue on-
tology; the dialogue ontology defines the vocabulary for the dialogue ABox, see
Fig. 3. The user’s utterances (often, instances of UserRequest or UserIntent) are
normally created by the semantic parser, whereas OntoVPA’s utterances (usually
SystemResponses) are created by OntoVPA’s ontology-based rule engine. OntoVPA



6 Michael Wessel, Girish Acharya, James Carpenter, and Min Yin

keeps track of the current dialogue user step and current dialogue system step by
annotating the corresponding instances in the dialogue ABox with so-called control
marker classes, i.e. CurrentDialogUserStep and CurrentDialogSystemStep.

The FindPOIIntent is asserted into the dialogue ABox by the semantic parser,
along with an instance of a ChineseRestaurant as filler for its dialogueEntity slot
(object property). In addition, the parser realizes that “Menlo Park” is a name for
the MenloPark City individual from the POI ABox, and fills it in for the inCity slot
of the freshly created ChineseRestaurant instance, given that the range of the inCity
property is City, and MenloPark is an instance of City. The freshly constructed
ChineseRestaurant POI instance can be considered as a “query-by-example POI”
for the FindPOIIntent query. We will discuss in Section 4 how a generic, query-by-
example semantic search can be implemented with ontology-based rules.

OntoVPA now realizes that the FindPOIIntent is completely specified (i.e., all
required parameters are specified), and hence is ready for execution – the seman-
tic search over the POI database is performed. In this example, OntoVPA does
not find a matching ChineseRestaurants in MenloPark, and it takes the initiative
by pro-actively asking the user whether the query should be generalized. Now, a
YesOrNoAnswer is expected from the user. For both possible answers, OntoVPA
has set up positive and negative continuation requests; the negative continuation is
a GreetingIntent, whereas the positive continuation is a FindPOIGeneralizedIntent.
The parameters required for the latter intent are copied over from the previous
FindPOIIntent. Hence, depending on whether a YesUserResponse or NoUserRes−
ponse is received, the corresponding continuation is triggered automatically by On-
toVPA. In Step 3, the FindPOIGeneralizedIntent intent is triggered based on the
user’s “Okay!” response, which is classified as a YesUserResponse.

For the FindPOIGeneralizedIntent, a relaxed semantic matching condition is im-
plemented, where the structure of the taxonomy is exploited to compute a seman-
tic similarity measure between the query-by-example POI, and the actual candi-
date source POI. A JapaneseRestaurant is more similar to a ChineseRestaurant
than a SteakHouse, given that the former two have a common direct superclass
AsianRestaurant, whereas ChineseRestaurant and SteakHouse do not.

In Step 4, “Can you show it on the map?”, OntoVPA realizes that it refers to
the most recently discussed POI. Like the already discussed FindPOIIntent, the
MapPOIIntent has a dialogueEntity slot of range POI. The parser has created a
“blank” POI instance that also instantiates the ItDeterminerMixin class – in OWL,
individuals can instantiate multiple classes. The ItDeterminerMixin anaphora res-
olution rule now identifies the most recently discussed instance from the dialogue
ABox that satisfies the given types, here: POI, and the most recent POI instance slot
filler of any UserIntent or SystemResponse is identified as referent for it. Hence,
the sourceEntity filler of the previous FindGeneralizedPOISystemResponse in the
dialogue ABox is identified as the referent of the it anaphora. OntoVPA contains
anaphora resolution rules for it, the, a, his, her, and so on.

Anaphora resolution involving the TheDeterminerMixin is illustrated in Step 5
(“... the asian restaurant”). Realizing that the presented JapaneseRestaurant is also
an instance of AsianRestaurant (a superclass), the anaphora can be resolved.



An Ontology-Based Dialogue Management System for Virtual Personal Assistants 7

Fig. 3 Illustration of the Dialogue ABox. UserDialogueSteps are below the line, and
SystemDialogueSteps above. The dialogue ABox after Step 4 is shown. Grey circles visualize On-
toVPA’s dialogue steps, mostly instances of response classes. Blue circles visualize user utterances,
instances of UserDialogueStep. Blue shapes are created by the semantic parser; blue rectangles are
instances of domain classes (e.g., ChineseRestaurant). Yellow triangle visualize ontology individ-
uals from some data source (MenloPark). White circles are created programmatically via “follow
up request processing” rules, and by the dialogue rule engine.

In order to demonstrate disambiguation, we are adding some more dialogue ob-
jects to the discourse, by requesting a Pizzeria in MenloPark in Step 6. In Step 7
it is demonstrated how arbitrary input can be interpreted in the current context of
the dialogue – based on the dialogue history, OntoVPA understands that the most
likely user intent behind the ambiguous “In Palo Alto!” utterance is to modify and
re-execute the previous intent, i.e., to look for a Pizzeria in PaloAlto instead of
MenloPark. This introduces yet another Pizzeria instance.

Given that it is not self-evident what “In Palo Alto!” means without the con-
text of the full dialogue, the semantic parser cannot instantiate a very specific
DialogueUserStep or UserIntent class here (it does not have access to the dialogue
representation). Instead, a generic high-level ArbitraryUserInput dialogue step with
a PaloAlto City individual filler of the inCity slot is created, given that the propo-
sition “in” maps to the inCity slot. A context-specific dialogue rule then processes
the ArbitaryUserInput dialogue step – by looking at the previousDialogueUserStep
FindPOIIntent, OntoVPA now suspects that the inCity slot value of the previous
FindPOIIntent shall be overwritten with the given one (i.e., MenloPark be replaced
with PaloAlto), and the so-modified FindPOIIntent be re-executed.

At Step 8, there are now two pizzerias in the dialogue ABox – since the
PizzaPlace class is a synonym (= equivalent) class of the Pizzeria class, “the Pizza
Place” is now ambiguous. One disambiguation strategy (out of several available)
is to ask for clarification, as illustrated. OntoVPA also uses inference in Step 9
in order to realize when the anaphora has been disambiguated, and the original



8 Michael Wessel, Girish Acharya, James Carpenter, and Min Yin

FindPOIIntent from Step 8 can be executed (notice that the exemplar POI instances
also have an optional nearBy attribute, to which “close to” maps).

It should be noticed that none of these DM strategies are hard coded – things can
be changed flexibly in terms of enabling, disabling, modifying or adding generic
DM rules to OntoVPA’s upper rule layer.

3 OntoVPA’s Upper Ontology & Modeling in OWL

Upper Ontology Class Hierarchy OntoVPA’s upper level ontology plays a key
role for organizing and categorizing the different vocabularies into domain- and
dialogue-specific parts, depending on role, categorizing DialogueUnits into certain
speech acts, etc. The upper level ontology contains two main branches, the upper-
level dialogue ontology branch and the upper-level domain ontology branch; the
most important root classes are:
• DialogueStep: Root class of the dialogue ontology. Children of DialogueStep

are: DialogueUserStep, DialogueSystemStep, Request, Response. Further down:
DialogueUserRequest, DialogueUserResponse, DialogueSystemRequest, and
DialogueSystemResponse. An important DialogueUserRequest subclass is
UserIntent; all domain-specific intents such as FindPOIIntent specialize it. Arbi-
trary (highly dialogue context-dependent input) can be represented with
ArbitraryUserInput, and special Yes and No response classes. Most intents have a
corresponding SystemResponse class, e.g., FindPOIResponse.
• DomainNotion: Root class of the domain ontology. Only a few high-level

notions such as Entity, Event, TemporalThing, and SpatialThing, are present. We
also include Schema.org [18]. For example, the AsianRestaurant class will subclass
Schema.org/Restaurant, and ChineseRestaurant will extend AsianRestaurant.
• DialogueControlMarkers: are used to control DM of the rule engine. We al-

ready mentioned CurrentDialogueUserStep and CurrentDialogSystemStep.

Upper Ontology Property Hierarchies In addition to the class hierarchy, the up-
per ontology also contains an object property hierarchy and a datatype property
hierarchy. Like classes, OWL properties allows for multi-inheritance. The prop-
erty hierarchies mirror the class hierarchy closely: there are root properties cor-
responding to the three main class-branches. Corresponding to the DialogueStep
class, we have a dialogueStepAttribute object and dialogueStepDatatypeAttribute
datatype property, with DialogueStep as corresponding domains. Next, we have
dialogueUserStepAttribute, dialogueSystemStepAttribute, as well as the correspond-
ing datatype properties. Important dialogStepAttributes are nextStep and previousStep,
finalSystemResponse; these relation types are used at runtime in the dialogue ABox;
they can been seen as edges in Fig. 3. The domain ontology property hierarchy has
root properties domainAttribute and domainDatatypeAttribute – for example, the
inCity is subproperty of entityAttribute, which is a subproperty of domainAttribute.
The third branch in the property hierarchies is given by the controlAttribute and



An Ontology-Based Dialogue Management System for Virtual Personal Assistants 9

Fig. 4 The POI Domain Class and FindPOIIntent Dialogue Class in OWL 2 Functional Syntax

controlDatatypeAttribute properties. They are used to control the rule engine, and
are often used in combination with control markers.

OWL Modeling of Domain Classes and Dialogue Steps Modeling properties of
domain classes and intents in OWL seems to be straightforward – distinguishing
between required and optional properties turns out to be challenging though, mainly
due to the Open World Assumption (OWA) in OWL (and First-Order Logic). We
argue that an epistemic semantics is needed in order to realize that an instance of a
UserIntent class is fully specified and ready to be executed, i.e., all of its required
properties need to be explicitly specified (either given by the user, or computed
and filled-in based on context, by a rule). For example, the FindPOIIntent cannot
be executed if the required dialogueEntity property is absent. Due to the OWA,
declaring a property on a class by using an existential restriction of the form ∀x :
FindPOIIntent(x)⇒ dialogueEntity(x,y) is not sufficient, as this is equivalent to
∀x : FindPOIIntent(x)⇒∃y : dialogueEntity(x,y). Given an “incomplete” dialogue
ABox {FindPOIIntent(userIntent1)}, the OWL reasoner will just assume that some
dialogueEntity exists – this entity does not have to be explicitly known. Moreover,
POI mentions the inCity property, but this should be an optional slot value on a
FindPOIIntent.

So, how do we model required and optional properties in OWL, if these no-
tions are problematic in terms of OWL semantics? From a logical point of view,
every property is optional on an OWL class or instance, as long as it doesn’t pro-
duce a logical inconsistency. For required properties (on DialogueSteps), we have
adopted the convention of using the standard existentially quantified axioms, as just
discussed: FindPOIIntent(x)⇒ . . .dialogueEntity(x,y) . . . ≡ FindPOIIntent(x)⇒
. . .(∃y : dialogueEntity(x,y)) . . .. Such properties will always be interpreted un-
der the stricter, “must be explicitly given” epistemic semantics on DialogueSteps,
whereas properties which are declared using universal quantifiers such as ∀x :
POI(x)⇒ . . .∧ (∀y : inCity(x,y)⇒City(y)) . . . are interpreted as optional.

4 Ontology-Based Rules for Dialogue Management & Workflows

Ontology-based rules are used to compute system responses, to implement DM
strategies, domain workflows, and the majority of the domain-specific “applica-
tion logic” in a declarative way. We adopted, adapted and extended the SPARQL
1.1 RDFs query language. SPARQL blends well with OWL – the employed Jena
SPARQL engine [16] is aware of inferred triples in the OWL ABox caused by the



10 Michael Wessel, Girish Acharya, James Carpenter, and Min Yin

background axioms of the OWL TBox (ontology). SPARQL construct queries
are used to dynamically augment the dialogue ABox (and potentially other ABox
data sources) with conclusions. Since SPARQL is not a dialogue-specific rule lan-
guage, we have created a custom rule engine for OntoVPA on top of a standard
SPARQL query engine [16] which implements a discourse-specific rule interpreter
and reasoner, including special rule application and conflict-resolution strategies in
case more than one rule is applicable. The briefly mentioned DialogueControlMarkers
play a crucial role in controlling and “advising” this rule engine. The rule engine is
aware of the special semantics of the vocabulary in the dialogue ontology and im-
plements a discourse-specific semantics for them.

A simple rule that responds to a GreetingIntent looks as follows in OntoVPA – it
plays back the fixed GreetingSystemResponse defined in the ontology:

@
Hello-Toplevel
Reply to a greeting intent. Answer strings are defined in ontology.
1
CONSTRUCT { ?o vpa:assertedType vpa:CurrentDialogueSystemStepMarker }
WHERE
{ ?i vpa:assertedType vpa:CurrentUserIntentMarker .

?i vpa:assertedType vpa:GreetingIntent .
?i vpa:finalExpectedSystemResponse ?o }

A set of rules separated by @ is specified in a .sparql file. Each rule has a name;
rules with a -Toplevel suffix act like “daemons” and are automatically checked
for applicability and fired by the DMS. Non-daemon rules can be triggered by other
rules, as follow-up rules or continuations. The third line provides control informa-
tion, such as rule priorities and precedence information for defeasibility reasoning.

We like two mention three features of SPARQL 1.1 that are essential for On-
toVPA. The first essential feature is the ability to construct new nodes and
structure in the dialogue ABox by using “ :blank” nodes” in construct. These
are “fresh” Skolems – for example we can construct a new FinalResponse instance
:o in the GreetingIntent rule as follows, instead of referring to the pre-constructed

finalExpectedSystemResponse ?o:
CONSTRUCT {
_:o vpa:assertedType vpa:CurrentDialogueSystemStepMarker .
_:o vpa:assertedType vpa:FinalResponse .
_:o vpa:assertedType vpa:TextOutputModalityMixin .
_:o vpa:message "Hi! How are you?" }

Frequently, fixed utterances are insufficient, and templates are used for answer gen-
eration. These can refer to bindings of query variable, and rdfs:labels from
the ontology. The xfn:concat string concatenation SPARQL function is used
to construct the answer strings. Hence, the second essential feature are SPARQL
functions, similar to procedural attachments, which can also be defined by the user –
arbitrary Java code can be executed if necessary, to interface with the outside world
(e.g., SQL Database access).

Finally, the third essential feature of SPARQL is the ability to perform (a lim-
ited form of) existential and universal second order quantification. Consider the
FindPOIIntent rule. This rule has to make sure that a candidate sourcePOI from the
POI ABox fulfills all the requirements expressed in the exemplar queryPOI, i.e., it



An Ontology-Based Dialogue Management System for Virtual Personal Assistants 11

must have (at least) all the properties of the by-example POI. This can be expressed
as a second-order quantification over properties P: ∀P : ∀z : P(queryPOI,z) ⇒
P(sourcePOI,z). Notice that sourcePOI can have more properties than required by
the queryPOI. With some further refinements (we can restrict the quantification to
entityAttribute subproperties), we can express this in SPARQL as follows:

?qentity vpa:assertedType ?qtype .
?sentity rdf:type ?qtype .
?sentity rdf:type vpa:SourceEntity .
FILTER NOT EXISTS {

?qentity ?par ?parVal .
?par rdfs:subPropertyOf vpa:entityAttribute .
FILTER NOT EXISTS {

?sentity ?par ?parVal } }

This implements (a simplified) generic semantic search procedure, for all kinds of
vpa:SourceEntities. Many of OntoVPA’s generic DM capabilities (anaphora
resolution etc.) are implemented succinctly and declaratively like this.

5 Conclusion & Outlook

We have presented the ontology-based DMS OntoVPA, and illustrated its underly-
ing techniques. During the last 3 years, OntoVPA has been successfully deployed to
4 different SRI customers, ranging from domains as different as Beauty Consultant,
Shopping Assistant, Car Conversational System, to an Augmented Reality Tutor-
ing & Mentoring System. One of these VPA’s uses Japanese language (internally,
English is being used). OntoVPA supports multi-modal input and output – different
input channels are represented using dedicated inputModality slots on the asserted
DialogUserSteps, and likewise, dedicated output modality properties are used on
the computed SystemResponse instances – construct is able to create arbitrarily
complex (nested, cyclical, . . . ) output structures.

In the above projects, we have observed a significant reduction in development
time and costs, compared to previous VPA projects @ SRI that did not use On-
toVPA. The exact numbers and evaluation are subject to future research.

Basing OntoVPA and its dialogue representation on formal, explicit, standard-
ized symbolic representations has the benefit of transparency and reusability – the
dialogue history can be introspected, inspected and visualized (for example, using
OWL visualizers); shared, persisted, resumed, etc.

OntoVPA is very flexible and expressive – the DM strategies employed by the
system are easy to change if necessary. The system is highly expressive and can
also “emulate” different DMS paradigms. For example, it is straightforward to im-
plement a finite state machine-based DMS in OntoVPA. Moreover, the system is
reflexive and can also be used on the meta level – instead of encoding the DM strate-
gies as high-order rules as discussed previously, it is possible to encode these strate-
gies on an instance level in the ABox and create higher-order meta interpreter DM
rules that interpret the instance-level encoded DM strategies. We hence suspect that
OntoVPA subsumes most of the existing DMS architectures on the market.

In order to evaluate OntoVPA’s performance, we are musing about participating
in a future Dialog State Tracking Challenge [19]. To conclude, we like to mention
that OntoVPA can be licensed from SRI International.



12 Michael Wessel, Girish Acharya, James Carpenter, and Min Yin

References

1. E. Wantroba, R. Romero, A Method for designing Dialogue Systems by using Ontologies.
Standardized Knowledge Representation and Ontologies for Robotics and Automation, 18th
Sep. 2014, Chigago, USA.

2. J. Pardal, Dynamic Use of Ontologies in Dialogue Systems. Proceedings of the NAACL-HLT
2007 Doctoral Consortium, Association for Computational Linguistics, April 2007.

3. G. Liu, A Task Ontology Model for Domain Independent Dialogue Management. Electronic
Theses and Dissertations, University of Windsor, Paper 5412, 2012.

4. T. Heinroth, D. Denich, A. Schmitt, W. Minker, Efficient Spoken Dialogue Domain Represen-
tation and Interpretation. Proceedings of the Seventh International Conference on Language
Resources and Evaluation (LREC 2010).

5. S. Ultes, H. Dikme, W. Minker, Dialogue Management for User-Centered Adaptive Dialogue.
In “Situated Dialog in Speech-Based Human-Computer Interaction”, 2016, Springer Interna-
tional Publishing, pp 51–61.

6. C. Lee, S. Jung, K. Kim, D. Lee, and G.G. Lee, Recent Approaches to Dialog Management for
Spoken Dialog Systems. Journal of Computing Science and Engineering (JCSE), 4(1):1–22
(2010), April 2010.

7. D. Milward, M. Beveridge, Ontology-Based Dialogue Systems. Proceedings of the 3rd Work-
shop on Knowledge and Reasoning in Practical Dialogue Systems (IJCAI 2003), August
2003.

8. D. Sonntag, M. Huber, M. Möller, A. Ndiaye, S. Zillner, and A. Cavallaro, Design and Im-
plementation of a Semantic Dialogue System for Radiologists. In Semantic Web: Standards,
Tools and Ontologies, Kimberly A. Haffner (Eds), 2010 Nova Science Publishers.

9. Kasisto and KAI - http://kasisto.com, and http://kasisto.com/kai/. Accessed 2/10/2017.
10. D. Gunning, V. Chaudhri, P. Clark, K. Barker, S. Chaw, M. Greaves, B. Grosof, A. Leung,

D. McDonald, S. Mishra, J. Pacheco, B. Porter, A. Spaulding, D. Tecuci, and J. Tien, Project
Halo Update – Progress Toward Digital Aristotle. AI Magazine, October 2010, AAAI Press.

11. V. Chaudhri, A. Cheyer, R. Guili, B. Jarrold, K. Myers, and J. Niekarsz, A Case Study in
Engineering a Knowledge Base for an Intelligent Personal Assistant. In Proceedings of the
5th International Conference on Semantic Desktop and Social Semantic Collaboration, 2006.

12. W. Mark, The Rise of Virtual Specialists. https://www.sri.com/blog/deep-knowledge-and-rise-
virtual-specialists. Accessed 2/10/2017.

13. J.-F. Yeh, C.-H. Wu, M.-J. Chen, Ontology-Based Speech Act Identification in a Bilingual
Dialog System Using Partial Pattern Trees, Journal of the American Society for Information
Science and Technology, Volume 59 Number 5, Wiley Subscription Services, pp 684–694,
2008.

14. J.R. Searle, Speech Acts. An Essay in the Philosophy of Language. Cambridge University
Press, Jan 2, 1969.

15. J. Pardal, Starting to Cook a Coaching Dialogue System in the Olympus Framework. In Pro-
ceedings of the Paralinguistic Information and its Integration in Spoken Dialogue Systems
Workshop, pp 255–267, Springer, 2011.

16. Apache Jena - https://jena.apache.org/. Accessed 2/10/2017.
17. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.F. Patel-Schneider, The Description

Logic Handbook: Theory, Implementation, and Applications, Cambridge University Press,
2003.

18. Schema.org - http://schema.org/. RDFs exports http://schema.rdfs.org/. Accessed 2/10/2017.
19. J. Williams, A. Raux, D. Ramach, and A Black, The Dialog State Tracking Challenge. In

Proceedings of the 14th Annual Meeting of the Special Interest Group on Discourse and
Dialogue (SIGDIAL), 2013.

20. P. Lison, Structured Probabilistic Modelling for Dialogue Management. Diss. University of
Oslo, 2013.

21. C. Vertan, W. v. Hahn, Project “Spoken Dialogue Systems”. https://nats-www.informatik.uni-
hamburg.de/pub/DIALSYS/VeranstaltungsMaterial/DialogueManagement.pdf, Seminar
Slides. Accessed 4/13/2017.


