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Abstract. It is shown that the decision problem for formulas in Presburger arithmetic
with quantifier prefix [3,Vs...3,,¥%] (for m odd) and [3;V5...V,,3*] (for m even) is
complete for the class X2 of the polynomial-time hierarchy. Furthermore, the prefix
type [3V33] is complete for ¥F and the prefix type [3V] is complete for NP. This
improves results (and solves a problem left open) by Gridel [7].

1 Introduction

We assume familiarity with the standard classes in complexity theory, like P and NP, the
classes ¥ of polynomial-time hierarchy, and the notion of polynomial-time reduction
(see [6, 9]).

Let 3-CNF (3-DNF) denote the set of propositional formulas in conjunctive (dis-
junctive) normal form where each clause consists of 3 literals. A literal is a Boolean
variable or a negated Boolean variable.

The decision problem B,, consists of Boolean formulas of the form F(X!, ... X™)
where each X' is a separate sequence of Boolean variables, X* = (z%,..., ! ), such
that

IX'VYX2 QXM F(XY X2 X™)
is true. It is known that for each m > 1, B,, is complete for 2 (cf. [12, 13]).

Presburger arithmetic is the first-order theory of the natural numbers with addition.
Let PA denote the set of formulas which are true in this interpretation. It is known
that P A has double-exponential complexity on alternating Turing machines (cf. [4, 3, 1])
whereas the complexity of PA,,, the set of true Presburger formulas with m quantifier
alternations, is roughly one exponential step lower than the general case (cf. [10, 5, 7]).

Formulas with fixed dimension are obtained by fixing the quantifier prefix (and
therefore also the number of alternations) to a certain type which we will denote by



[Q1Q2...Qn], Q; € {3,V}. Gradel has obtained in his dissertation [7] several ©P -
completeness results for decision problems of the form [Q:Qs...Qx] N PA, k > m.
More precisely, he shows that

[31Vs ... 3,3V N PA is complete for X7 (if m is odd),

[31Vs ...V, V?*F] N PA is complete for X7 (if m is even).

For the case m = 1 he can obtain a stronger result:
[3WV] N PA is complete for NP.

By swapping universal and existential quantifiers one can, of course, obtain a dual IT! -
completeness result. Furthermore, the same complexity status as listed above have all
such prefix classes which extend the above ones by finitely many quantifiers and do not
increase the number of alternations. Therefore, the complexity status of all but finitely
many prefix types is resolved in terms of a completeness result in the polynomial-time
hierarchy. Some prefix types remain open, especially Gradel poses the open problem
what the status of [3V] N PA is.

In this paper we will stengthen the above completeness results by including more
prefix types, and we resolve thereby the complexity status of [IV] N PA; it is NP-
complete.

2 Main Result

Theorem. For each m > 1, the language [V...3,,V¥] N PA (for m odd) and
[3V...V,,F] N PA (for m even) is ©F -complete.

Proof: Membership in ¥ is shown in [7] (relying on results in [8, 11, 10]).

For the following we assume that m is odd. In this case the problem B, N 3-CNF
is complete for X0 (see [12, 13]). (For the case of m even, we need to consider the
problem B,, N 3-DNF instead. The proof in this case is virtually the same.)

Let F = F(X!, X2 ..., X™) be a formula in 3-CNF where the X are sequences of
Boolean variables, X* = (z},...,z%). We assume without loss of generality that each
variable sequence X' consists of the same number of variables, namely k.

Let
P1,D2,- .., Pk

be the sequence of the first & primes. It is important to notice that this sequence can
be constructed in polynomial-time, relative to the size of F.

For the intended reduction, we want to map the formula

AXTYXZ. X F(XYL X2 X™)



to a formula in Presburger arithmetic of the following form
Az V2o .o 2 G(21, 20, -+ oy 2m)

where the z; are variables that represent natural numbers (and encode the assignments
X% and G is a Presburger formula intended to check whether these assignments make
F true. A Boolean assignment (zy,...,7;) € {0,1}* will be represented by a number
z that satisfies the set of modular equations

z =z (mod py)

2 = x5 (mod py)

z =z, (mod py)
The existence of such a z < Hle p; is guaranteed by the Chinese remainder theorem.

We need to construct a Presburger formula A(z) that evaluates to true if and only if
the number z correctly represents a Boolean assignment, in the sense above. We need
to express that for j = 1,...,k it holds that (2 mod p;) € {0,1}. Therefore A(z) has
the following, tentative form

/\ [(z mod p;) € {0,1}]

Equivalently,

The expression in brackets can b rewritten as a formula in Presburger arithmetic:
Vu (pj-u+k # z)

where the notation p; - u is an abbreviation for u4+wu+---4u (p; times). The universal
quantifier can be pulled in front, so that the formula for A(z) gets the final form

k pi—1

Vu [\ N\ (pj-u+k#z)

j=1 k=2
The intended formula
A V2o Qumizm G(21, 22, -+, 2m)

is indeed equivalent to the following form

dz1 (A(z) A
V2o (A(z22) —



We have seen that A(z;) can be expressed by one universal quantifier. This enables us
in this case to merge quantifiers of the same type into one quantifier. In particular,
the universal quantifier in A(z;) can be melted together with “Vz,” since they are
connected conjunctively. Similarly, the existential quantifier that we need to express
“A(z9) — ...” can be melted together with “Jz3”, and so on. Altogether, we get a
quantifier prefix (before the beginning of the formula H) of the form [3,V5...3,,V].

The Presburger formula H is intended to express the fact that F' is satisfied by the
assignments (X!,...  X™). This formula consists of a conjunction of formulas,

H=\C
i=1

where C; expresses in Presburger arithmetic that the ¢th clause in F' is satisfied. As a
concrete example, let the literals of this clause be x}, =%, 2. We can then, tentatively,
express C; as

~[(z1= 0 (mod pa)) A (2= 1 (mod pr)) A (22 =0 (mod py))]

Furthermore, we can combine subformulas which start with the same z;. By the Chinese
remainder theorem, there is a number a < p; - po (which can be efficiently computed,
see [2] page 824) such that the above formula is equivalent to

[ (21 =0 (mod p1)) A (22 = a (mod py - p2))]
This can be expressed in Presburger arithmetic as

= [Fu(py - u=21) AJu(pips - v+ a = 25)]
= VuVo[(pi-u#21)V(pip2-v+a# 2)]

Like in this specific example we can, in general, express C; by a formula with one, two
or three universal quantifiers, depending on the number of different X*’s (respectively
z;’s) in that clause.

These up the 3 universal quantifiers per clause can be moved in front of the whole
conjunction such that H gets the following form

n

vuvovw [ A\ (...)]

i=1
Now the whole resulting formula has the following structure:
A21V2e ... Tz (A(2) AVuVoVYw]. . .])

Again we can melt together two quantifiers, namely the universal quantifier in A(z,,)
and “Vu”. So the final form of the Presburger formula has the quantifier prefix
[31V5...3,V3]. Finally, we remark that the reduction can be carried out in polyno-
mial time. O

Inspecting the proof, by the fact that the number of different X*’s determines the
last block of universal quantifiers, we get the following corollary.

4



Corollary. The decision problem [3Y33] N PA is ¥7-complete.
The decision problem [3V] N PA is NP-complete.

Remark: The NP-completeness of [3V] N PA could also be obtained by a reduction
from some other NP-complete problem; for this, Gradel (personal communication) has
proposed problem [AN2] from [6].
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