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Abstract

Levin introduced an average-case complexity measure, based on a notion of “polynomial on p-
average,” and defined “average-case polynomial-time many-one reducibility” among randomized
decision problems. We generalize his notions of average-case complexity classes, Random-NP
and Average-P. Ben-David et al. use the notation of (C, F) to denote the set of randomized de-
cision problems (L, yt) such that L is a set in C and  is a probability density function in F. This
paper introduces Aver(C,F) as the class of randomized decision problems (L, ) such that L is
computed by a type-C machine on p-average and p is a density function in F. These notations
capture all known average-case complexity classes as, for example, Random-NP = (NP, P-comp)
and Average-P = Aver(P, #), where P-comp denotes the set of density functions whose distribu-
tions are computable in polynomial time, and * denotes the set of all density functions. Mainly
studied are polynomial-time reductions between randomized decision problems: many-one, de-
terministic Turing and nondeterministic Turing reductions and the average-case versions of
them. Based on these reducibilities, structural properties of average-case complexity classes are
discussed. We give average-case analogues of concepts in worst-case complexity theory; in par-
ticular, the polynomial-time hierarchy and Turing self-reducibility, and we show that all known
complete sets for Random-NP are Turing self-reducible. A new notion of “real polynomial-time
computations” is introduced based on average polynomial-time computations for arbitrary dis-
tributions from a fixed set, and it is used to characterize the worst-case complexity classes A}
and ¥ of the polynomial-time hierarchy.

1 Introduction

The classical complexity theory of NP-completeness is based on the worst-case analysis of algo-
rithms. A probabilistic analysis has been applied so far only to specific algorithms typically with
respect to the uniform distribution for each length of inputs. Levin [22] gave a general framework
to perform average-case analysis in a way that allows us to discuss many questions of worst-case
complexity theory in a more general setting. The average-case analysis considers randomized pro-
blems, namely, pairs of a decision problem and a probability density (or distribution) function which
assigns probabilities to instances.

*A preliminary version of this paper appeared in the Proceedings of the 12th Conference on Foundations of
Software Technology and Theoretical Computer Science, New Delhi, December 1992, Lecture Notes in Computer
Science, Vol.652 (1992), pp. 128-139.
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In [22] Levin implicitly defined the average-case complexity classes “Average-P” and “Random-
NP” as analogues of the worst-case complexity classes P and NP, respectively. Roughly speaking,
Average-P (called AP in [17, 36]) is the class of randomized problems which are, on the average,
solvable in polynomial time for a given distribution on the input, and Random-NP (called DistNP
n [14,5, 30], RNP in [17] and DNP in [36]) is the class of problems in NP together with polynomial-
time computable distribution on the inputs. A stimulating question of whether Average-P contains
the class Random-NP or not, was raised by Levin in his very terse papers [22, 23]. Up to now, this
question has not been solved.

In recent literature [22, 23, 14, 17, 35], many randomized decision problems have been shown
to be polynomial-time complete for Random-NP with respect to several different reducibilities.
Average-case analysis is very sensitive to the choice of distributions on the instances, since, for
example, if a density function p decreases faster than 271l with the length of the instances z,
then all NP-complete problems are solvable in time polynomial on p-average. Even if we stick
to “reasonable” distributions, “fast on average” algorithms have been found even for natural NP-
complete problems. For example, the satisfiability problem, SAT with a natural distribution [10], the
graph 3-colorability problem with a natural distribution [39], and the Hamiltonian circuit problem
with a natural distribution and edge probability 1/2 [8] are all in Average-P. In the decade since
Levin’s fundamental papers, several results have revealed the significant role of distributions on
the average-case complexity (see, e.g., [36]). However, it is still open whether every NP-complete
problem is complete for Random-NP for some reasonable distribution. In this paper, our main
interest lies in the analysis of structural properties of average-case complexity classes. We extend
well-known notions of worst-case complexity theory such as time- and space-bounded computation,
nondeterministic Turing reducibility, self-reducibility and relativization to average-case analysis.
Furthermore, we consider sets of distribution functions and discuss the (maximal) average-case
complexity of problems under every distribution chosen from the given set.

Ben-David et al. [5] introduced the notation (C,F) to discuss the average case complexity of
decision problems in a general setting. The class (C,F) contains all randomized problems (L, p1)
(recall that a randomized problem here is always a pair of a decision problem and a density function
on the instances) such that L is in the complexity class C and p is in a class of density functions
F. Random-NP can simply be denoted as (NP, pcomp), where pcomp (polynomial-time computa-
ble) denotes the set of density functions whose distribution functions can be approximated by a
deterministic Turing machine in polynomial time.

Schapire [30] has given a different characterization of Levin’s notion of “polynomial on pu-
average”, which will be used in this paper. He has shown that a function ¢ from strings to non-
negative real numbers is polynomial on p-average, in Levin’s sense, if and only if there exists a
polynomial p such that Prob,[{z|g(2) > p(|z|-7)}] < 1/r for any positive real number r. Schapire’s
characterization is intuitive and can be easily generalized to the notion of “f on p-average” by
replacing the polynomial p by a function f which is defined on non-negative real numbers.

This paper introduces the notation Aver(C,F) to denote the set of all problems (L, u) such
that p is in F, and L is recognized by a “type-C on p-average” machine. Here, C denotes a time-
or space-bounded complexity class, and a type-C on p-average machine is a Turing machine which
respects, on p-average, the time- or space-bound, respectively. By using this notation, for example,
Average-P, the set of problems solvable in average polynomial time, can be denoted as Aver(P, %),
where * is the set of all density functions. Levin’s most intriguing open question is rephrased as
whether (NP, P-comp) C Aver(P, *) holds or not.

A central concept in this paper are different types of polynomial-time reductions which are all
generalizations of the polynomial time many-one reducibility used by Levin. Roughly speaking,



a reduction function between two randomized problems reduces a set of strings to another set
of strings and also satisfies the so-called domination condition between density functions, which
ensures that likely instances are mapped to likely instances. Since Levin’s work, random many-one
reducibility [5] and polynomial-time deterministic Turing reducibility [5, 19] have been defined and
studied. All those reducibilities can be extended by allowing their many-one reduction functions
or oracle reduction machines to be polynomial-time bounded on p-average. We redefine many-
one reduction, deterministic Turing reduction and their average-case extensions and study their
properties.

In this paper, a polynomial-time nondeterministic Turing reduction between randomized de-
cision problems is defined in a way that captures both deterministic Turing reducibility and ran-
dom many-one reducibility. Let M be a nondeterministic oracle Turing machine, £ a set and p a
polynomial. By Q(M, E,z,y), we denote the set of strings which are queried by M with oracle £
on input # on computation path y, and Acc(M, E,z) (resp. Rej(M, I, x)) denotes the set of (codes
of ) accepting (resp. rejecting) computation paths given by M with F on input 2. We introduce the
density function g that is induced from p, M and F as: p/(z,y) = p(a)/|Ace(M, E,z)| if y is an
accepting path of M¥ on input z; p/(z,y) = u(z)/|Rej(M, E, z)| if there is no accepting paths and
y is a rejecting path; otherwise, p/(2,y) = 0. The machine M polynomial-time nondeterministic
(on p-average) Turing reduces (D, u) to (E,v)if D = L(M¥), M¥ is polynomial (on u-average)
time bounded, and there exists a density function v, which polynomially (on u-average) dominates
w', such that v(z) > Prob,[{(z,y)|z € Q(M, E,z,y)}] for all strings z.

A randomized decision problem (L, p) is said to be (C,F)-complete if (L, ) is in (C,F), and
every problem in (C,F) is polynomial-time many-one reducible to (L,u). Levin has first proven
that the randomized tiling problem is (NP, P-comp)-complete [22]. Another typical (NP, P-comp)-
complete problem is the randomized bounded halting problem [17]. Both problems are NP-complete
problems together with some natural distribution. However, if (L, p) is (NP, P-comp)-complete,
then I must be NP-complete. As we noted before, it is not known whether every NP-complete set
L has an appropriate density function p which forces (L, i) to be (NP, P-comp)-complete.

This paper extends the notion of average-case complexity further to discuss questions raised in
structural complexity theory. A significant property of sets is the (Turing) self-reducibility [25]. In
worst-case complexity theory, many known NP-complete sets are self-reducible. Analogously, we
define a self-reducibility in average-case analysis. A randomized decision problem is self-reducible
if it is polynomial-time Turing reducible to itself, while querying only strings of length smaller
than the input. We prove the existence of (¥}, P-comp)-complete sets which are self-reducible
by demonstrating that the k-th level of the randomized bounded halting problem (RHk,,uRH) is
(X%, P-comp)-complete and also self-reducible. From the fact that most of the known (NP, P-comp)-
complete problems are p-isomorphic [3], they turn out to be self-reducible.

Similar to the Meyer-Stockmeyer polynomial-time hierarchy [26] in worst-case complexity theory,
we give a precise definition of its average-case analogue, the average polynomial-time hierarchy,
founded on a relativization of Aver(P,F) and Aver(NP,F) which is done in a similar fashion as
we obtain relativized classes PP and NPP from P and NP, respectively. To be more precise, recall
that PP (resp. NPB) is equivalent to the collection of sets which are polynomial-time determini-
stic (resp. nondeterministic) Turing reducible to B. Analogously, we define a class Aver(P, F)(F»)
(resp. Aver(NP, F)E)) as a collection of randomized decision problems (D, u), with € F, which
are deterministic (resp. nondeterministic) polynomial-time on p-average Turing reducible to (F,v).

We show that (NP, F) C Aver(P,F) and (NP, F) ¢ Aver(P,F) in some relativized worlds,
using the technique of Baker et al. [1]. This implies that any proof technique which can be relati-
vized will not solve Levin’s question.



Let Aver(A}, F) denote the k-th level of the average polynomial-time hierarchy. We consider the
general question of whether or not (X}, P-comp) C Aver(A}, *). This paper shows that this is not
the case unless every tally set in X} is in A}. Hence, we believe that (X}, P-comp) ¢ Aver(A}, ),
since it seems very likely that there exist tally sets in X7 — A}.

Finally we discuss a tie between worst-case and average-case complexity classes. Note that
every polynomial-time computation is polynomial on p-average even if u is chosen by some (power-
ful) adversary, that is, every set in P is computable by a deterministic Turing machine which is
polynomial-time bounded on p-average for every density function p. In other words, if A is in P
then (A, u) € Aver(P,x) for every p. On the other hand, P can be expected to be the largest
class which satisfies this property. This is indeed true [24]. This observation can be generalized as
follows. For a class C, we define the real C over F, denoted by Cr, to be the class of all sets A
such that (A, p) € Aver(C, x) for every density function p in F. Clearly P C Pp_comp, and Levin’s
question of whether (NP, P-comp) C Aver(P, *) can now be stated as whether NP C Pp_comp. We
show that A} = AYREC-comp and X} = YPREC-comp for all levels k& > 0, where REC-comp denotes
the collection of all recursive density functions. As a particular case, we can show that P = Pg-comp.

We show that, relative to random oracle, NPp_comp, is different from Pp_comp with probability 1.

2 Preliminaries

In this paper, we follow the standard definitions and notations of complexity theory; see, e.g., [11,
2]. Here we briefly present only necessary notations and notions.

Let ¥ = {0, 1} be fixed. By ¥* we denote the set of all strings over X, and %" denotes the set of
all strings of length n. The set X* admits the standard lexicographic order: e < 0 < 1 < 00 < 01 <
..., where ¢ denotes the empty string. The successor and predecessor of z in this order are denoted
by 2T and 27, respectively. A subset A of ¥* is often identified with its characteristic function,
ie, A(z) =1if 2 € A, and A(z) = 0 otherwise. The cardinality of a set A and the length of a
string © € ¥* are respectively denoted by |A| and |z|. The complement of a set A is denoted by A.
For two sets A and B, let A A B denote the symmetric difference of A and B and let A@® B be the
disjoint union of A and B.

Let N be the set of all non-negative integers and let Rt be the set of all non-negative real
numbers. A non-negative integer can be identified with its binary representation, and we often refer
to strings as non-negative integers. Especially, ¥* is identified with the set D = {m /2" | m,n € N}
of non-negative dyadic rational numbers, i.e., astring dyds...d, in X" is identified with the number
di27V 4+ dy272 4+ ...+ d, 27" in D.

A set is tally if it is a subset of {0}*, and a set A is (polynomially) sparse if there is a polynomial
p such that [A N X" < p(n) for all n € N. Denote by TALLY the class of all tally sets and by
SPARSE the class of all sparse sets.

A formal definition of Turing machines with semi-infinite tapes are given in, for example,
[12, 11, 18, 2], and we assume the reader’s familiarity of it. In this paper, we are interested in only
resource bounded algorithms and assume that all Turing machines are designed in such a way that
all computation paths have the same length. Therefore, for every oracle Turing machine M and a
set A, the running time of the machine M with oracle A on input z, denoted by Timeﬁ(x), is simply
defined to be the length of some possible computation, and the space complexity, Spaceﬁ(x), is
defined to be the maximum, over all configurations of M with oracle A on input z, of the number
of tape-squares in use.

A (non-)deterministic oracle Turing machine accepts an input =z, if there is an accepting com-
putation of M with oracle A on input x; otherwise, M rejects x. If M is probabilistic, then M



%; otherwise, M rejects x, where

accepts x if Probys[M on input z halts in an accepting state | >
Proba[Q(M)] denotes the probability that Q (M) holds.

Let Acc(M, A, z) denote the set of (codes of ) accepting computations of M on input z with oracle
A, and similarly Rej(M, A, z) denotes that of rejecting computation paths. Let Q(M, A, z,y) be
the set of strings queried by M with A on input 2 on computation path y. If M is deterministic,
then we simply denote by Q(M, A, x) the set of all strings queried by M on input  with oracle A.

As usual, L(M, A) denotes the set of strings accepted by M with oracle A, and we simply say
that M4 computes a set B if B = L(M,A). For a machine M, M4 (z) denotes the output of a
computation of M on input z. For a deterministic Turing machine M (also called a transducer),
M computes a function f if f(z) = MA(z) for all € ¥*.

For any function ¢ on N, a Turing machine M with oracle A is t-time bounded (resp. t-space
bounded) if Timed;(z) < t(|z|) (resp. Spaceq;(z) < t(|z|)) for all #. Let DTIME(t), NTIME(t),
and DSPACE(t) denote the class of all sets computable by deterministic ¢-time bounded, non-
deterministic {-time bounded, and deterministic ¢-space bounded Turing machines, respectively.
Finally, let BPTIME(#) denote the class of sets B computable by ¢-time bounded probabilistic
Turing machines with bounded error probability, i.e., there is a constant ¢, 0 < € < %, such that
Proba[M(x) = B(x)] < 1 — ¢ holds for all 2.

We assume that the reader is familiar with standard notations of complexity classes, such as
P, NP, A}, X7, PH (the polynomial-time hierarchy), BPP, PSPACE, E (liner exponential time),
NE, EXP (exponential time), NEXP and FP (polynomial-time computable functions). Moreover,
we let ESPACE = J;5 DSPACE(2""+%) and BPE = J,, BPTIME(2¢"+F).

A function f on ¥* is p-honest if there exists a polynomial p such that p(|f(«)|) > |z| for any
string x, and f is p-invertible if there is a function ¢ in FP such that go f(z) = « for all z. A
function f from N to RT is called unbounded if limj_., sup,,~, f(n) = occ.

A set D is polynomial-time many-one reducible to a set E if there exists a function f (in FP)
such that, for all z, z € D if and only if f(z) € F. A set D is polynomial-time many-one complete
for a class C if D € C and every set in C is polynomial-time many-one reducible to D. We simply
say that D is C-complete for a class C if it is polynomial-time many-one complete for C.

In the following, we use the following pairing function (, ) [28], from ¥* x ¥* onto ¥*, which
is defined as follows: (z,y) = d(x)y if |y| < 1; otherwise (z,y) = d(z)iz[(y~)~], where d(€) = ¢,
d(0z) = 00d(z), d(1z) = 11d(z), i2[0z] = 0lz, and ¢3[1z] = 10 for all . This pairing function
is monotone, ie., z < 2z’ and y < ¢y’ imply (z,y) < (2/,¥), and it is computable in linear-time
in the lengths of # and y. Moreover, it holds that 2|z| + |y| < [(z,y)| < 2|z| 4 |y| + 1 for all
z and y. This paring function is generalized recursively to a bijection from (X*)* onto ¥* as
(1,29, -, xk) = (x1, (@2, -+, Tp)).

A function g : ¥* — [0,1] is a density function if 3~ v+ p(2) = 1, and its corresponding
distribution p* is given by p*(x) = 3, #(2). To avoid confusion, we remark here that density
functions are also called “probability distributions” in [7, 3, 36] or “probability functions” in [17],
and distributions are called “probability distributions” in [14, 17]. Let u, denote the conditional
density function for strings of length n, i.e., w,(2) = p(x)/ 3.1y j=n #(y) whenever 3= .\ pu(y) #
0; otherwise 0. We use the notation pu(z,y) and p(z,y,2) to denote pu((z,y)) and pu((z,y,z)),
respectively.

For a finite domain D, the uniform density function on D is defined as 1/| D] for every z in D.
The standard density function vy on X~ is defined as vy (z) = (|| +1)~2.27Fl for all z. Although
the standard distribution is called “uniform” in, e.g., [5], actually only its conditional distribution
is uniform for all lengths n. We note that there are other ways to define a “standard” density
function. See Gurevich [17] for a discussion. A density function y is called flat if u(z) < 2-1#1° for



some constant ¢ > 0 [17]. A density function p is positive if p(z) > 0 for all .

For a density function p, we use the notation Prob,[{z | @(z)}] to denote the probability that
property @(z) holds, where x is chosen randomly according to p. For set A, let u(A) denote
ZxEA ILL(x)

In his papers [22, 23], Levin considers “polynomial-time computable” distributions as reaso-
nable to discuss the average time-complexity of NP problems. Later a more generalized notion,
i.e., “polynomial-time samplable” distributions, has been proposed [5]. This paper follows Gurevich
[17] to define the notion of “polynomial-time computability” of distributions.

Definition 2.1 ([21, 17]) Let g be a distribution from ¥* to [0, 1] and f be a function on N.

1. gis f-time computable (resp. f-space computable), if there exists a deterministic f-time (resp.
f-space) bounded transducer T' such that, for all € ¥* and all k¥ > 0,

lg(z) — T(z01%)] < 27%.

2. g is F-time computable (resp. F-space computable) for a class F, if there exists a function
f € F such that ¢ is f-time (resp. f-space) computable.

3. Let L-comp, P-comp, PSPACE-comp and EXP-comp denote the class of density functions
whose distribution functions are logarithmic-space, polynomial-time, polynomial-space and
exponential-time computable, respectively. Let REC-comp denote the set of all recursive
density functions.

We remark that if a distribution is F-time computable, then the density function is also F-
time computable. The converse may not always hold since it is shown, for example, in [17] that
if P # NP, then there is a polynomial-time computable density function such that its associated
distribution can not be computed in polynomial time.

Note also that Ben-David et al. [5] use a stronger definition of polynomial-time computability,
i.e., for all z, the value of u*(2) is exactly computed by some polynomial-time bounded transducer.
Let SP-comp denote the class of these density functions. Naturally, if ¢ € SP-comp, then g(z) is
either 0 or greater than 272U for some polynomial p. However, for every p € P-comp, there exists
a positive v € SP-comp such that v(z) has at most 4 + 2|z| binary digits and 4v(z) > p(z) for all x
[17]. Also, if p(z) > 2Pz for some polynomial p, then there exists a total, one-one, p-invertible
function f € FP such that, for all o, 4- 2=V < y(z) <20 2=V &1[3, 37].

A central concept in average-case complexity is “a computation being time (space) bounded on
the average for some distribution.” For a discussion on the definition of “polynomial on p-average,”
see [14, 17]. This paper uses a characterization of polynomial on p-average given by Schapire [30],
since it can easily be extended to define the notion of “f on p-average” for an arbitrary function f.

Definition 2.2 (cf. [30]) Let f be a function on R* and let u be a density function. A function
g:X* — Rt is f on p-average if Prob,[{z | g(x) > f(|z|-r)}] < 1/r for any real number r > 0.
For a class C of functions, g is F on p-average if there exists a function f € F, and ¢ is f on
p-average.

It follows immediately from this definition that increasing the value of r also increases the
probability weight of the set of strings = with the property that g(z) < f(|z|-r). It will be 1 —1/r.
One significant consequence of this fact is that if g is f on p-average, then g(z) < f(|z|/p(z)) for
all @ with p(2) > 0. This fact can be seen as follows. Suppose that there exists an zg such that



g(zo) > f(|zo|/p(20)) and p(zg) > 0. Choose r = 1/u(zg). Then p(zg) < Prob,[{z | g(z) >
f(lz|-7)}] < 1/r = p(@o), a contradiction.

Definition 2.2 allows us to consider different sets of functions which are bounded on average.
For instance, if 7 = {Az.(z¥ + k) | k > 0} (the set of polynomials), then we obtain the notion
of polynomial on p-average as defined in [22, 23] and used in [14, 30, 17, 5, 36]. Similarly, if
F ={Az.(clogz +d) | c,d > 0} (the set of logarithmic functions), then the above definition yields
the notion of logarithmic on p-average as defined in [5] and also used in [15]. The following lemma
gives the justification of the above definitions.

Lemma 2.3 ([30]) Let g be a function from ¥* to R*.

1. The function g is polynomial on p-average if and only if it is polynomial on p-average in the
sense of Levin, i.e., for some 6 > 0,

z:|z|>0

Proof. The proof of the claim (1) follows [30]. Without loss of generality, assume that g(¢) = 0
and that g is An.cn® on p-average for some k. By definition, for any real number » > 0, it holds
that Prob,[{z | g(z) > ¢(r|z])*}] < 1/r. This implies that Prob,[{z | g(z) > e(r|z|})*}] < 1/r.
In other words, Prob,[{z | g(2)"/?#|z|=" > ¢'/?+1/2}] < 1/r. Hence, for every integer ¢ > 0 and
r = t2/c'* it follows that Prob,[{z | g(2)"/?*|z|~" > t}] < ¢"/* /2. Then,

gla)t/**

]

gla)t/**

T,u(yc) < ;Probu[{w |[t—1<

o 1/2k
<t)]-t= Prob,[{z| % > 1}] < o0,
z:|z|>0 t=0

Conversely, assume that Zl,:|l,|>og(x)5|x|_1u(x) < N for some number N > 0 and choose a

positive integer k such that 1/k < §. Markov’s inequality shows us that Prob,[{z | g(z)"/*|z|~" >
r- N}] < 1/r for any real number 7 > 0. Hence, it yields that Prob,[{z | g(z) > (rN|z|)¥}] < 1/r.

To see the claim (2), note that a function ¢ is logarithmic on p-average if and only if Az.29(x)
is polynomial on p-average. |

The next definition follows the notion of “polynomial domination” introduced by Levin [22, 23].
The domination condition between density functions is crucial in the definition of reducibilities
among randomized problems in Section 4. Intuitively, it ensures that if an algorithm is fast (e.g., po-
lynomial) on average for a distribution g, then it is also fast on average for all distributions which
are dominated by pu.

Definition 2.4 Let py, g2 and v be density functions.

1. Let ¢t and 7 be a function and a set of functions from ¥* to RT, respectively. The density
function pg t-dominates pq if pa(z) - t(z) > pa(z) for all @ € ¥, and pg 7 -dominates py if
there exists a function ¢’ € 7 such that ps t'-dominates p.



2. Let ¢ and 7 be a function and a set of functions on RT, respectively. The density function
py t on v-average dominates pq if there exists a function ¢/, from ¥* to R*, such that ' is ¢
on v-average and puy t'-dominates uq, and ps 7 on v-average dominates pq if there exists a
function t in 7 such that ps t on v-average dominates .

This definition enables us to consider logarithmic, polynomial and exponential domination and
domination on p-average. For example, if 7 is the set of polynomials, then uy polynomially domina-
tes uy, denoted by py <P uo, and ug polynomial on v-average dominates i1, denoted by pq <P g,
respectively. In [17], polynomial domination and polynomial on p-average domination are called
“domination” and “weakly domination”, respectively.

We will now give a general definition of “time- and space-bounded on average” for Turing
machines.

Definition 2.5 Let M be an oracle Turing machine, A a set, p a density function, and let ¢ and
7 be a function and a set of functions on R*, respectively. The machine M4 is t-time bounded
on p-average if the function Time?, is ¢ on p-average, and M* is T -time bounded on p-average if
there exists a function ¢ € 7 such that M# is t-time bounded on p-average. The notions of t-space
bounded on p-average and T -space bounded on p-average are defined similarly using Spaceﬁ instead

: A
of Timeyy;.

For instance, if 7 is the set of polynomials, then we say that M“ is polynomial-time (or
polynomial-space) bounded on p-average as in [22, 23]. If a function f is computed by a deterministic
transducer which is polynomial-time bounded on p-average, we say that f is computable in time
polynomial on p-average.

We observe that the quantifier characterization of nondeterministic and probabilistic Turing
machines holds in average-case setting. Recall that all sets in NP can be characterized by an

existential quantifier and deterministic Turing machines as follows: a set D is in NP if and only
if there exist a polynomial p and a polynomial-time deterministic Turing machine M such that

D= {z | 3yllyl = plJ2l) A (2.y) € L(M)]} [40].

Proposition 2.6 For every set D and every density function i, the following statements are equi-
valent.

1. There exists a nondeterministic Turing machine M such that D = L(M) and M is polynomial-
time bounded on p-average.

2. There exists a function p from X* to N and a polynomial-time bounded deterministic Turing
machine M such that p is computable in time polynomial on p-average and D = {z | y[|ly| =

p(x) Az, y) € LM}

Proposition 2.7 For every set D, every density function u, the following statements are equiva-
lent.

1. There exists a bounded-error probabilistic Turing machine M such that D = L(M) and M is
polynomial-time bounded on p-average.

2. For every function ¢ that is computable in time polynomial on p-average, there exists a proba-
bilistic Turing machine M such that M is polynomial-time bounded on p-average, D = L(M)
and Probys[M(z) = D(z)] > 1 — 279 for all x.



3. For every function q that is computable in time polynomial on p-average, there exists a func-
tion f from X* to N and a polynomial-time bounded deterministic Turing machine M such
that f is computable in time polynomial on p-average, D = L(M), and Prob,[{y | = €
D iff (z,y) € L(M)}] > 1 - 279 for all x, where v is the uniform density function on
ACIE

Proof. The proof of Proposition 2.6 is straightforward and follows from the standard technique of
encoding nondeterministic computation paths into strings and the fact that Timey; is computable
by a deterministic transducer that is polynomial-time bounded on p-average.

The same argument shows that (3) implies (2) in Proposition 2.7. Clearly (2) implies (1). Thus,
it remains to show that (1) implies (3). Assume that (1) holds. Then, Timeps is polynomial on
p-average. Now we perform the usual probability amplification (see, e.g., [2], p. 139). We simulate
the machine M p(n) (= O(g(n))) times and accept z as soon as more that p(n)/2 simulations
accept z, and reject x as soon as more that p(n)/2 simulations reject z. Hence, if we choose

f(z) = p(|z]) - k - Timeps(2), then (1) implies (3). 1

3 Randomized Decision Problems

The basic objects of average-case complexity theory are (decision or search) problems together
with distributions on instances i.e., a density function assigns probabilities to instances of those
problems. Then the time and space complexity of an algorithm for that problem is measured under
the assumption that the inputs occur according to the given distribution. The hope is to show that
even for (some) intractable problems, hard instances occur only with small probability. Hence,
some algorithm should run efficiently on average.

Some NP-complete problems, such as the satisfiability problem, the graph 3-colorability problem
and the Hamiltonian circuit problem, can be solved by deterministic algorithms in time polynomial
on average with respect to reasonably chosen density functions [10, 8, 39].

This paper will focus only on decision problems (readers interested in search problems are referred
to [5, 7]). For a decision problem D and a density function p, the pair (D, u) is called a randomized
(decision) problem. Here, (D, i) means that instances of the decision problem D are given randomly
according to p; in other words, a string s occurs as input to some algorithm deciding D with
probability u(s). Average-case complexity classes are sets of randomized problems. We note that,
in [22, 23], Levin has considered pairs of a decision problem and a distribution function (also called
distribution problems). See [5] for more details.

We will consider two different types of average-case complexity classes. The first type is defined
by a worst-case complexity class and a class of density functions. In the second type of classes, the
resource bounds of the complexity class are taken with respect to the given density functions.

Definition 3.1 ([5]) Let C be a complexity class and F be a class of density functions. The
randomized class (C, F) is the set {(D,p) | p € F and D € C}.

Definition 3.2 Let ¢ be a function on N and F be a class of density functions. Time- and space-
bounded average classes are defined as follows.

1. Aver(DTIME(t), F) = {(D,p) | p € F and D = L(M) for a deterministic Turing machine
M which is t-time bounded on p-average}.

2. Aver(NTIME(¢), F) = {(D,p) | p € F and D = L(M ) for a nondeterministic Turing machine
M which is t-time bounded on p-average}.



3. Aver(DSPACE(t),F) = {(D,pu) | p € F and D = L(M) for a deterministic Turing machine
M which is t-space bounded on p-average}.

4. Aver(NSPACE(t),F) = {(D,p) | p € F and D = L(M) for a nondeterministic Turing ma-
chine M which is ¢-space bounded on p-average}.

5. Aver(BPTIME(t),F) = {(D,p) | p € Fand D = L(M) for a bounded-error probabilistic

Turing machine M which is ¢-time bounded on p-average}.

Using the above definitions, one can consider average-case analogues of many known time- or
space-bounded complexity classes. For example, NP with polynomial-time computable distributions
on the inputs, as defined in [5], is expressed as (NP, SP-comp). The set of randomized problems
solvable in polynomial-time on average (AverageP or AP in [17, 36]) is denoted by Aver(P,x).
Here, * denotes the set of all density functions. Aver(P,P-comp) and Aver(NP, P-comp) (denoted
by APp and ANPp in [36]) is the set of problems (D, u1) such that p € P-comp, and D is respectively
solvable deterministically and nondeterministically in polynomial-time on p-average. The class of
randomized problems which are solvable in logarithmic-space on average (Average-logspace [5] and
averagel in [15]) is denoted by Aver(L, *).

Note that Ben-David et al. [5] use the notation AverDTime(¢(n)) to denote Aver(DTIME(?), %)
(also denoted by AvDTime(#(n)) in [29]). Several important randomized decision problems which
belong to (NP, P-comp) can be found in [17].

The next propositions follow immediately from the definitions of the average-case complexity
classes.

Proposition 3.3 LetC € {DTIME(¢), NTIME(¢), DSPACE(t), NSPACE(t), BPTIME(t)} for some
function t on N, and let F be a class of density functions. Then, (C,F) C Aver(C, F).

Proposition 3.4 Let F be a class of density functions and let t be a function on N.
1. Aver(DTIME(t), F) C Aver(NTIME(t), F) C Aver(NSPACE(t), F).
2. Aver(DTIME(t), F) C Aver(DSPACE(t), F) C Aver(DTIME(2™), F).

It is natural to ask whether (D, v) € Aver(DTIME(t), F) implies that (D, u) € Aver(DTIME(to
h),F)if p € F and v h-dominates p for some function h. An affirmative answer for a special case
is given by the following lemma. A class 7 of functions is said to be closed under composition with
polynomials if, for any function ¢ and any polynomial p, ¢t € 7 implies Az.t(p(z)) € 7.

Lemma 3.5 Let p1 and v be density functions, T a class of functions on R which is closed under
composition with polynomials, and let h be a function from ¥* to RY. Ifv polynomially on u-average
dominates p and h is T on v-average, then h is also T on p-average.

Proof. Assume that p <P# p, and h is t on v-average for some function ¢t € 7. Choose
a function ¢ which is polynomial on p-average such that, for all « € ¥*, v(z) - q¢(z) > p(z).
By assumption, Prob,[{z | h(z) > t(|z|-7)}] < 1/r for all » > 0. Since 7 is closed under
composition with polynomials, without loss of generality, we assume that h(€) < t(0) and therefore
Prob,[{z|h(€) > t(0)}] = 0. Since ¢ is polynomial on p-average, there exists a polynomial p such
that Prob,[{z | ¢(z) > p(|z|-r)}] < 1/r for all » > 0.

Let p, and v, denote the conditional probability of strings of length n of i and v, respectively.
Note that, if g(x) < p(|z| - r) for strings @ of length n, then p(X") - p(2) < v(X™) -p(n-r)-vy(z)
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and that v(X") - Prob,, [{z | h(z) > t(Jz|-r)}] < 1/r for all n € N and r > 0. Now define g as
g(z) = t(42® - p(22)). Since the class 7 is closed under composition with polynomials, ¢ is in 7.
Then, for all » € N and all r € RT, it follows that g(n -7) > t(n -7 -4n? - p(n - 27)). It remains to
show that h is g on p-average. For every real number r > 0,

Prob,[{z | h(z) > g(|z|- r)}]
< Probylle [a(n) > el 20+ Probude [on) < ple]-20) A hia) > (o]}

< —|— Z p(2nr) - Prob,, [{z | ¢(2) < p(2nr) A h(z) > g(nr)}]

< —|— Z p(2nr) - Prob,, [{z | h(z) > t(|z| - 4n*r® - p(2nr))}]
1 & p(2nr) 1 6 1

<5 2 TS ) = o TaeEs < p

Theorem 3.6 Let C € {L,P,NP,PSPACE, NPSPACE, EXP}, and assume (D,v) € Aver(C,F),
for some class of density functions F. For all u € F, if v polynomially on p-average dominates p,

then (D, pu) € Aver(C,F).
Proof. Since the class of polynomials, logarithms, and exponentials are closed under composition
with polynomials, the theorem immediately follows from Lemma 3.5. |

From the definition, it is obvious that if Cy is a proper subset of Cz, then (Cy, F) is also a proper
subset of (C2,F). A similar hierarchy result can be shown for the second type of average-case
complexity classes. See also [15, 13].

Theorem 3.7 Let s and t be space- and time-constructible functions, respectively, and s'(n) €
w(s(n- f(n))) and t'(n) € w(t(n- f(n))) for some nondecreasing unbounded function f from N to
RT. Assume that F contains a density function ps of the form

i(e) = m 27l f(lx) = 1) < k2 < f(|z]) for some integer k > 2,
0 otherwise,

where ¢ is a constant with + > ¢ > 0.
1. Aver(DSPACE(s(n)), F) & Aver(DSPACE(s'(n)), F).
2. Aver(DTIME(¢(n)), F) S Aver(DTIME(logt(n) - t'(n)), F).

Proof. (1) Choose a nondecreasing, unbounded function f such that gy € F and s'(n) €
w(s(n- f(n))). It is shown in [38, 27] that there exists a set A in DSPACE(s(n)) which are random
for DSPACE(s(n- f(n))), i.e., for any set B € DSPACE(s(n- f(n))) and for any ¢ > 0, there exists

an integer ng such that, for all n > ng,

A" A BT 1
2n 2

11



Clearly (A, ps) € (DSPACE(s'(n)), F) C Aver(DSPACE(s'(n)), F).

We show that (A, ps) ¢ Aver(DSPACE(S(n)),F). Assume on the contrary that (A,p) €
Aver(DSPACE(s(n)), F) and let M be a deterministic Turing machine which accepts A and is s-
space bounded on yy-average, i.e., Prob, [{z | Spacey(x) > s(|z[-7)}] < 1/r for any real number
r > 0. Then, a set D = {x | Spacey;(z) < s(n- f(n)) A M(z) =1} is in DSPACE(s(n - f(n))), and
therefore A is random for {D}. Choose € = 1/8. The randomness of A yields that there exists an
integer ng > 0 such that, for all n > ng,

A A1
2n 2 '

Note that, for all n, ur(3") = 1/(c- f(n))if f(n—1) < k* < f(n) some constant k. It follows that,
for some n > ng,

Prob,,[{z € X" | Spacey (z) > s(n - f(n))}] < ﬁ e f(n) <

Therefore, D is identical to A on at least 3/4 of all strings of length n. This contradicts the
randomness of A.

(2) The proof for the time-bounded classes is similar to (1) and follows from the fact that, for

every time-constructible function ¢{(n) > n and ¢/(n) € w(t(n)), there exists a set in DTIME(log ¢(n)-

t'(n)) which is random for DTIME(#(n)) [38, 27]. |

Corollary 3.8 Let p and p’ be polynomials such that p'(n) € w(p(n)).
1. Aver(DTIME(p(n)), P-comp) & Aver(DTIME(log p(n) - p'(n) + n), P-comp).

2. Aver(DSPACE(p(n)), P-comp) & Aver(DSPACE(p'(n) + logn), P-comp).

We show a basic relationship between worst-case complexity and average-case complexity on
strings with high probability. To show this, we first introduce a property of an average-case com-
plexity class Aver(C,F).

Definition 3.9 For a sparse set S and a polynomial ¢, let ;15 , denote a density function such that
psq(x) > 1/q(|z]) for all z € 5. A class Aver(C, F) has the sparse interpolation property if, for any
set A, any infinite sparse set S and any polynomial ¢ such that (A, ps,) € Aver(C, F), there exists
a set B € C such that AN S’ C B C A. The set B is called an interpolant of A and 5.

Lemma 3.10 For a class C € {P,NP,BPP,PSPACE}, Aver(C,*) has the sparse interpolation
property.

Proof. We show the case C = NP. Take any sparse set S and a polynomial ¢ and assume that
(A, psy) € Aver(NP,*). There exists a Turing machine M which computes A such that Timeps
is p on pg,-average for some polynomial p. Note that Timens(2) < p(|z|/psq(z)) for all 2 with
psq(x) > 0. Let N simulate M on input « in p(|z| - ¢(|z])) steps. If the simulation of M does
not terminate within p(|z| - ¢(|z|)) steps, then N rejects . Let B = L(N). Clearly B C A.
Since ¢(|z|) > 1/psq(2) for all z € 5, N completely simulates M on all inputs z in S, and thus,
ANS =BnS. Clearly N is polynomial-time bounded. Therefore, B € NP. |
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In Section 6, we will extend Lemma 3.10 to the k-th level of an “average polynomial-time
hierarchy” which is an average-case version of the Meyer-Stockmeyer polynomial-time hierarchy.

One of the most interesting open questions is whether NP sets can be solved in average poly-
nomial time for every polynomial time computable distribution function, i.e., if (NP, P-comp) C
Aver(P, %) holds or not. Clearly if P = NP, then (NP, F) is included in Aver(P,F). Ben-David
et al. [5] first gave a partial answer to this question by showing that (NP, P-comp) € Aver(P, ) if
E # NE. Under the same assumption, it also holds that (NP, L-comp) Z Aver(P, ) [5]. Ben-David
et al. actually show that (NP N TALLY, L-comp) C Aver(P, ) if and only if NP N TALLY C P.

Here we consider the bounded-error probabilistic class Aver(BPP, ) and extend the above result
by Ben-David et al. to Aver(BPP, ).

Theorem 3.11 (NP N TALLY, L-comp) C Aver(BPP, «) if and only if NP N TALLY C BPP.

Proof. From the assumption that NP N TALLY C BPP, it immediately follows that (NP N
TALLY, L-comp) C Aver(BPP, x). Assume conversely that (NPNTALLY, L-comp) C Aver(BPP, x).
Choose a density function u satisfying p(z) o« (Jz| + 1) if @ € {0}*, and 0 otherwise. Note that
g € L-comp. By our assumption, for every set A € NP N TALLY, (A, u) € Aver(BPP,*). That
is, there is a probabilistic Turing machine M with exponential small error probability compu-
ting A which runs in time ¢ on p-average for some polynomial ¢. This yields that Timeys(z) <

q(|z|/u(z)) < q(3)z|(|x] + 1)?) for all z € {0}*. Therefore, A is in BPP. |

A standard padding argument shows that NP N TALLY C BPP if and only if NE C BPE.
Hence, we have the following conclusion.

Corollary 3.12 NE € BPE implies (NP, P-comp) Z Aver(BPP, ).

4 Many-One and Turing Reductions

A theory of average NP-completeness was initiated by Levin in his terse papers [22, 23]. Levin has
introduced a polynomial-time many-one reducibility between randomized decision problems and
has shown that the randomized tiling problem, the “tiling problem” with a natural distribution, is
complete for Random-NP or, in our notation, complete for (NP, P-comp). Intuitively, a reduction
from (Dy,p1) to (Dg, p2) should reduce a set Dy to a set Dy and ensure a domination condition
between 1 and po that guarantees that instances in Dy that occur with high probability are reduced
to instances in Dy that occur with high probability. The notions o deterministic Turing reducibility
and random many-one reducibility have been introduced in [22, 5]. The latter is especially suitable
for randomized algorithms (see [5, 19, 7]). Also considered so far were logspace many-one reductions
[5] and logspace many-one reductions that are polynomially honest [15].

We first recall from [22, 5] the definition of polynomial time many-one and Turing reducibility.

Definition 4.1 ([22]) Let (D1, 1) and (Dg, pu2) be randomized decision problems.

1. (D1, p1) is polynomial-time many-one reducible to (D3, ji3), denoted by (Dy, p1) <B (Dg, p2),
if there exists a density function v and a function f such that

i. felPp;
ii. for all 2, 2 € Dy if and only if f(2) € Djy; and
fii. gy <P v, and py(y) > Prob,[{x | f(z) = y}] for all y.
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2. (Dy,p1) is average polynomial-time many-one reducible to ( Dz, pz), denoted by (Dy, pp) <B:&¥
(D3, pz2), if f is polynomial on pq-average and py <P#1 p.

The condition (iii) on the density functions in the above definition is simply called the domina-
tion condition for the reduction. There are several weaker definitions of the domination conditions;
however, the one used here simplifies the reductions and guarantees that the reducibilities are
reflexive and transitive. See [17] for a discussion.

Definition 4.2 ([5]) Let (D1, 1) and (D3, p2) be randomized decision problems.

1. (D1, 1) is polynomial-time Turing reducible to (Dg, p3), denoted by (Dq,p1) <% (Da, p12), if
there exists a density function v and an oracle Turing machine M such that

i. MP2 is polynomial-time bounded:
ii. Dy = L(M,D3); and
iii. py <P v, and pz(y) > Prob,[{z | y € Q(M, D2, 2)}] for all y.

Here Q(M, D3, ) is the set of strings queried by M with oracle Dy on input z.

2. (D1, 1) is average polynomial-time Turing reducible to (Ds, pi2), denoted by (Dy, pq) <5
(D3, pz2), if M is polynomial-time bounded on p-average and pq <P v,

Let a be a reducibility. For a class C, a problem (D, p) is a-hard for C if every problem (E,v)
in C is a-reducible to (D, ), and (D, p) is a-complete for C if it is in C and is a-hard for C. If C is
of the form (C’, F) (vesp. Aver(C’, F)), then let C-complete abbreviate “many-one complete” (resp.
“many-one complete on average”).

It is shown in [17] that if (D, p) is <P -hard for (NP, P-comp) for a density function D in EXP
and a flat density function p, then EXP = NEXP. Recall that the standard density function is
flat. Hence, under the condition of EXP # NEXP, no decision problem with the standard density
function is (NP, P-comp)-complete. By the result of Wang and Belanger [36], every (NP, P-comp)-
complete problem is also Aver(NP, P-comp)-complete, i.e., <P:*-complete for Aver(NP, P-comp).

Now we introduce an average-case version of the nondeterministic Turing reducibility. This
will be used for the definition of an “average polynomial-time hierarchy” in Section 6. Recall that
Ace(M, D, z) (resp. Rej(M, D, x))is the set of (codes of) all accepting (resp. rejecting) computation
paths of M with oracle D on input z, and Q(M, D, z,y) is the set of strings queried by M with
oracle D on input # on computation path .

Definition 4.3 Let (D1, 1) and (D3, pu2) be randomized decision problems.

1. (D1, p1) is polynomial-time nondeterministic Turing reducible to ( Dz, pi2), denoted by (D1, p1)
<7’ (Dg, p2), if there exist a density function v and a nondeterministic Turing machine M
such that

i. MP2 is polynomial-time bounded;
ii. Dy = L(M,D3); and
iii. p) =P v, and pz(z) > Prob,[{(z,y) | z € Q(M, Ds,z,y)}] for all z,
where pf is the density function induced from p, M and Dj as follows:

pr(z)/|Acc(M, Dy, )| if y € Acc(M, Dy, ),
wi(z,y) =1 pi(z)/|Rej(M, Dy, )| if Acc(M, Dy, z) = @ and y € Rej(M, Dy, z),

0 otherwise.
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2. (Dy, 1) is average polynomial-time nondeterministic Turing reducible to (Ds, pi2), denoted by
(D1, 1) <P (Da, pg), if MP2 is polynomial-time bounded on p;-average and i} <P:H p,

We note that, in the case that the reduction machine always has one computation path, the
nondeterministic Turing reduction coincides with deterministic one in Definition 4.2.
In the following, we state basic properties of the reducibilities (cf. [17, 5]).

Proposition 4.4 Let A; = (D;, p;), i = 1,2, 3, be randomized decision problems.

1. Polynomial-time reducibility implies average polynomial-time reducibility, i.e., for every a €

{m, T} and 3 € {p,np}, if Ay <P Ay then Ay <P A,

2. Many-one reducibility implies deterministic Turing reducibility, i.e., if Ay <P, Ay then A; <},
AQ, and Zf Al S%av A2 then Al S%av AQ.

3. Deterministic Turing reducibility implies nondeterministic Turing reducibility, i.e., if Ay <}

Ay then Ay <P Ay, and if Ay <™ Ay then Ay <™ A,.
4. Nondeterministic Turing reducibility is reflexive, i.e., Ay <7© Ay and Ay <P Ay,

5. Many-one reducibility and deterministic Turing reducibility are reflexive and transitive, i.e., for
every Sae {S?nv S%avv Sg“v S%&V}’ Al Soz Al; and ZfAl Soz A? and AZ Soz AS then Al Soz AB'

Proof. The claims (1)-(4) follow immediately from the definitions. The claim for reflexivity in (5)
is obvious. Here we show that <%*V is transitive. The other proofs for transitivity are analogous.
Assume that (Dy, 1) <3 (D, p2) via a deterministic Turing machine M; and a density function
vy and assume that (D, o) <5 (D3, ps) via a deterministic machine M3 and a density function
vy. We show that (Dq,pq) <3™ (D3, pi3).

By definition, there exist two functions f; and f; which are polynomial on pq-average and on
pz-average, respectively, such that fi(z)-v1(z) > pa(2) and fo(z)-va(x) > pg(2) for all . Assume
that fi(z) > 0 and fy(2) > 0 for all strings x.

We define a new machine M as follows: on input x, M deterministically simulates M; on z,
and whenever My queries a string y, M deterministically simulates My on input y. Especially,
in the case that x is the empty string ¢, M is designed not to query any strings, even if M,
queries some strings to oracle Ds, but their oracle answers are encoded in a program of M. Clearly
Dy = L(M, D3). Note that

Time]\Dj’(x) <ec- (Tlme]\%"( )+ Z Tlme]\Dj’ (3/))
yEQ(My,D2 )

for some constant ¢ > 0.

Let f(z) = fi(2) - (X eq(i,psye) [2(y) + 1) and choose a density function v such that v(e) =
1= p(z)/f(z)and f(x)- v(z)= pi(z) for all strings x different from e. For each string z, we
define a set A, such that that (z,y) € A, if and only if 2 € Q(M3, D3,y), y € Q(My, Dy, z) and
(z',y) € A, for any string 2’ < z. Then, for all z € U, Q(M, D3, ),

pa(z) > Prob,[{y |z € Q(Mz, D3, y)}] > 3 12(y)
¥:2€Q(Ma,D3,y) fa(y)
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1 1 qu(e)
> pa(y) > .
>y pulr) > Prob,[{x | = € Q(M, Ds, )}

x:2€Q (M, D3 x) fl(w) ’ ZyEQ(M1,D2,x) f2(y)

since 3214 al > 1/ ai.
It remains to show that M and f are polynomial on pq-average. Let p; and py be polynomials
such that, for any real number r > 0,
Prob,, [{z | Time}7 (z) > pi(|2] - 7)}] < 1/r, and
Prob,, [{y | Timeyz (y) > pa(lyl-1)}] < 1/r.

Now we define a polynomial s as s(z) = ¢-p1(22)- (14 pa(22 - p1(22))) + co, where ¢g = Timel? (e).
Note that |Q(My, Dy, z)| < Time]\%"l(x) for all z. Then, for all z and r > 0,

Prob,, [{z | Time}?(z) > s(|z| - r)}]
< Prob,, [{z | Time}7 (v) > pi(|z| - 2r)}] + Proby, [{z | Time}7 (z) < pi(|2] - 2r)

A > Timef;;(y)>p2(p1(|x|-zr)-zr)-p1(|x|-2r)}]
yeQ(M1,D2,x)

1/2r 4+ Prob,, [{z | Jy € Q(Ml,Dg,x)[Time]%;(y) > pa(|y| - 2r)]}]
< 1/2r 4 Prob,,[{y | Time]\Dé(y) > poly| - 2r)}] < 1/r.

A

The proof that f is polynomial on pq-average is similar, and thus, the claim is established. 1

The following lemma shows how the domination condition for Turing reducibilities works.

Lemma 4.5 Assume that (F,v) is computable by a nondeterministic Turing machine N in time
polynomial on v-average.

1. Assume that (D,p) <P (E,v) vie a machine M and let h(x) = 3 .com,p,) Timen(z).
Then, h is polynomial on p-average.

2. Assume that (D, ) <3 (E,v) via a machine M and let h(z) = minye ace(M,D,2) 22-€Q(M,D..9)
Timen(z) if © € D; otherwise, h(x) = minyeRrej(M, D) 2o-cQ(M,D,z,y) Limen(z). Then, h is
polynomial on p-average.

Proof.  We prove the claim (2). Since (D, p) <;7*" (E,v) via nondeterministic oracle Turing
machine M, there exist a density function v and a polynomial pp such that D = L(M, E), i/ <P’
v, TimeY; is pp on p-average, and v(2) > Prob,[{(z,y) | z € Q(M, E,z,y)] for all z, where ' is
the density function induced from g, M and E as in Definition 4.3. Assume that Time¥,(z) > |z|
for all z.

Choose a nondeterministic Turing machine N and a polynomial pg such that £ = L(N) and
Timep is pp on v-average. Furthermore, let p be a polynomial and ¢ a function such that ¢ is p
on p-average and ¢(z) - v(z) > p'(z) for all .

Now define a polynomial s as

s(z) = pp(62) - pE (pD(GZ) 622 (pp(62) + 2)2 -p(62 -pD(GZ))) + co,
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where ¢o = Time%(e).

We show that h is s on p-average. For simplicity, let A, denote Acc(M, E,z) and let @,
denote Q(M, E,z,y). Note that |Q, |, |2| < Time¥;(z) and |(z,y)| < 2|z|(Timek(z) + 2) if # # «.
First we show that Prob,[{z € D | h(z) > s(r-|z|)}] < 1/2r. For any real number r > 0,

Prob,[{z € D | h(z) > s(r-|z|)}]
< Prob,[{z € D| Time]\%(w) > pp(67 - |2])}]

+ Prob,[{z € D| Time§;(z) < pp(6r-|z|) AVy € A, Z Timen(z) > s(r - |z|)]}]
ZeQ.ry

< 6%‘ + Prob,[{z € D |Vy € A3z € @y y[Timen(z) > pgr(|z]- 67 - |2, )% - p(67 - [(z, ) )]}

The latter term can be calculated as follows:

< Probu[{(z,y) |2 € D A3z € Quy[Timen(2) > pr(|z] - 6 - [(z, y)|* - p(67 - (2, 9)])]}]
= Z_: /(") - Prob,y [{(z,y) | « € D A3z € Quy[Timen(2) > pr(|2| - 6rn® - p(6rn))]}]
< Proby[{(z,y) | a((z,y)) > p(6r - [(z,y)[)}] +

+ Z p(6rn) - Prob,, [{(z,y)| 32 € Qu,y[Timen(2) > pr(]|2] - 6rn? -p(67n))]}]
< 6%‘ + Z_: p(6rn) - Prob,[{z | Timen(2) > p(|2| - 6rn® - p(6rn))}]

1 s 1 1 1 1
< 674';])(67‘71)-W26—T+m<3—r.

A similar argument shows that Prob,[{z € D | h(x) > s(r - |z|)}] < 1/2r. Thus, h is s on
[-average. |

Lemma 4.6 Let F be a class of density functions.
1. Aver(NP,x) is closed under <P:*-reductions [17].

2. Aver(P, ) is closed under <J*-reductions [5]. Moreover, Aver(P,F) = {(D,u) | p € F,
(D, p) <3 (E,v) and (E,v) € Aver(P,*)}.

3. Aver(NP, F) = {(D,p) | p € F, (D, p) <P* (E,v) and (E,v) € (P,#)}.

Proof. The claims (1) and (2) follow from Lemma 4.5. Here we show the claim (3). Clearly
if (D, p) € Aver(NP,F), then (D,p) <3P (0, vs). To see the other direction, we assume that
peF, (D,p) <P (E,v)and (E,v) € < ,*). We will show that (D, p) belongs to Aver(NP, F).
Since (D ,u) <P (E,v), there exist a polynomial pp and a nondeterministic oracle Turing
machine Mp such that D= L(Mp,F)and Time]\E4D is pp on p-average. Let Mg be a deterministic
Turing machine and pg a polynomial such that £ = L(Mg) and Timeys, is pg-time bounded.
Note that Timeps,(z) < pr(Timeps, (z)) for all y and z in Q(Mp, E,z,y). Now we consider a
machine M which nondeterministically simulates the computation of Mp, and whenever Mp makes
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a query z, M deterministically simulates Mg on input z. By definition, D is computed by M, and
on each computation path y of M on z, the number of steps that M actually takes is bounded by

< c- (Time]\}%D (z)+ Z TimeME(z))
2€Q(Mp,E,zy)

< c¢- | Time}, Time}; (z)- Ti

< ¢ ( imey; () + Timey; () zeQ(]\I??,)jE,x,y) 1meME(Z))

< c- Time]\E4D(x) (14 pE(Time]\%D(x))).

Hence, we can redefine M such that all computation paths of M have the same length. The
function Timeys is polynomial on p-average, since Time]\E4D is polynomial on p-average, and the
class of functions which are polynomial on p-average is closed under composition with polynomials

[17]. Therefore, (D, 1) € Aver(NP, F). 1

Although Aver(P,*) is closed under polynomial-time many-one reducibility, it is shown in
[36] that there exist two problems (A,u) and (B,v) such that (A,u) <P (B,v), and (B,v) €
Aver(P, P-comp), but (A, ) & Aver(P,P-comp).

The following theorem shows that the domination condition is necessary in the definition of
reducibilities.

Theorem 4.7 For every recursive decision problem D not in P, there exist density functions pq
and py in P-comp such that (D, p1) and (D, us) are incomparable, i.e., (D,p1) £ (D, p2) and
(D, p2) L7 (D, py).-

Proof. The proof proceeds by a slow diagonalization technique. Let My, My, ... denote a
standard enumeration of all the deterministic polynomial-time oracle Turing machines. We identify
every non-negative integer ¢ with the (¢ + 1)-th string on the lexicographic order: ¢ < 0 <1 < 00 <
01 < ... We recursively define density functions pq, o and an auxiliary function r on N.

At step 0, let 7(0) = 0, p1(0) x 1, and p9(0) o 1.

At step n, n > 0, the values 7(n), p1(n) and pg(n) are defined as follows. On input n, an initial
segment of the sequence

(r(0), D(0), p1(0), p2(0)), (r(1), D(1), pa(1), (1)), - .-
o (r(n=1), D(n=1), pa(n=1), po(n—1)),

is computed by repeating the same construction procedure for |n| steps. Let m be the largest
integer, if any, for which (r(m), D(m), p1(m), u2(m)) is completely computed. If none exists, then
let 7(n) =1, py(n) < 1, and pe(n) x 1. Otherwise, each step depends on whether r(n) is even or
odd.

First suppose that r(m) is even and let i = r(m)/2. The sequence MP(0), MP(1),...is com-
puted by simulating M; until either more than |n| steps are done, or on some input y, M (y)

K3
queries a string larger than m to oracle D. Let k be the last integer for which the simulation of

MP (k) can be completed. If there exists a y < k such that either (i) M (y) # D(y), or (ii) MP
on input y queries some w satisfying that pq(y) > po(w) = 0, then let r(n) = r(m)+ 1, p1(n) = 0,
and pg(n) oc 27UPHD - Clearly (D, 1) is not Turing reducible to (D, ug) via M;. Otherwise, let
r(n) = r(m), pi(n) oc 270D "and py(n) = 0.

If r(m) is odd, then let ¢ = (r(m) — 1)/2 and change the roles of iy and po. It is not hard to
see that py, g € P-comp since, in each step, we quit the simulations after |n| steps are done.
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Claim 1 range(r) = N, where range(r) = {r(z)|z € N}.

Proof of Claim. Assume range(r) # N. Take a minimal integer ng such that r(ng) is the
maximum in range(r).

First assume r(ng) is even. Let ¢ = r(ng)/2 and n be large enough such that (r(ng), D(ng),
p1(no), p2(ng)) is constructed. Note that for every y > n pi(y) > 0 and pg(y) = 0. For any y > n,
we have MP(y) = D(y), and MP(y) does not query any string w, where pui(y) > pao(w) = 0.
Hence, MZ»D computes D on all inputs and it queries only strings shorter than ng. This implies that
D is in P and this contradicts our assumption. The same argument holds if 7(ng) is odd. |

Therefore, p11 and py are well-defined. and thus, we complete the proof. |

5 Complete Problems and Self-Reducibility

The randomized tiling problem is the first problem that was shown to be (NP, P-comp)-complete
[22, 23]. In the past decade, several other randomized decision problems have been proven to
be (NP, P-comp)-complete [3, 16, 17, 14, 30]. One of the most useful randomized problem is the
randomized bounded halting problem (RH, pry) that is defined as follows: RH = {(i,z,1") | M;
accepts x within n steps } and pru((i,z,1™) o (Ji| + 1)72(|z| + 1)72(n + 1)722-i+D | where
Mo, My, .. .is a fixed enumeration of all nondeterministic Turing machines. A proof that (RH, urp)
is (NP, P-comp)-complete can be found in [14, 17, 5]. We note that each of the complete problems
is a pair of an NP-complete set and a natural density function. However, a randomized satisfia-
bility problem and a randomized graph 3-colorability problem are not (NP, P-comp)-complete for
reasonable natural density functions [10, 39]. In [36], Wang and Belanger show that for every set
D, if D is <P -hard for NP, then there exists a density function p such that (D, p)is <P -hard for
(NP, P-comp). However, it is not known whether every NP-complete set D has a density function
p such that (D, p) is (NP, P-comp)-complete.

The (Turing) self-reducibility has been introduced into worst-case complexity theory by Meyer
and Paterson [25]. All known NP-complete problems are self-reducible and every self-reducible set
belongs to PSPACE. It is natural to ask whether the notion of self-reducibility is applicable to
randomized decision problems.

Definition 5.1 A polynomial-time computable partial order < is OK if there exists a polynomial
p such that

1. every strictly descending chain is finite and is polynomial in the length of its maximum
element, i.e., if 2 < k-1 < -+ < 22 < x1 I8 a descending chain starting from x, then
k < p(|z1]), and

2. for every z and y, @ < y implies |z| < p(|y]).

Definition 5.2 A randomized decision problem (D, ) is (Turing) self-reducible if there exists an
OK partial order and a deterministic oracle Turing machine M such that (D, p) <% (D, p) via M,
and for every input z, all query strings in the computation of M on input z are smaller than z
with respect to the partial order.

Clearly every randomized problem in (P, ) is self-reducible, and every self-reducible randomi-
zed problem is in (PSPACE, ). Moreover, the set of all self-reducible problems is closed under
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polynomial isomorphism, i.e., if (D,u) =P (F,v) and (£,v) is self-reducible, then (D, p) is self-
reducible.

One of the classical self-reducible NP-complete problems is the satisfiability problem, SAT.
However, we do not know a simple density function p such that (SAT, i) is (NP, P-comp)-complete.
Franco and Paull [10] show that SAT with a natural probability distribution on formulas is in
Aver(P,*). So, we consider, as a canonical example, the randomized bounded halting problem
again. More precisely, we consider the k-th level of the randomized bounded halting problem
(RHk,uRH) that is defined as follows. Assume that Mg, My, ... is an effective enumeration of all
nondeterministic oracle Turing machines, and define RH(A) = {(i,2,1") | M accepts = in less
than n steps }. Let RH! = RH(Q) and RH**! = RH(RH*) for k£ > 1. We note that RH" is

YP-complete.
Lemma 5.3 For any k > 0, (RH*, ury) is (X7, P-comp)-complete.

Proof.  The case k = 1 is shown in [14, 17, 5]. Now let £ > 1. The proof follows [36]. For
any set D € ¥} and any density function p € P-comp, we will show that (D, u) <P, (RH®, ugy).
Without loss of generality, we assume that |pu(z)| < 2|z|+ 4 (see Lemma 1.6 in [17]). Since RH*~1
is P _,-complete, there exists a polynomial-time nondeterministic oracle Turing machine M such
that D = L(M, RHk_l). Let a function ¢ be defined as follows: on input z, g deterministically
computes a minimal string y such that p*(27) < 0.y1 < p*(x). Now consider a machine N: on
input y, N first computes a string = that y = g(«), by a binary search in time polynomial in |z|,
and if z exists, then NV nondeterministically simulates M on input z; otherwise, N simply rejects x.
Note that |g(z)| < ¢(]z|) for some absolute polynomial ¢, and that u(z) < 2719 Now let i be an
index such that L(M;) = L(N). Let p be a polynomial time bound of M;. The desired reduction f
is now defined as f(z) = (i, g(z),17?(#D). Note that f is one-one and reduces D to RH". Tt suffices
to check that f satisfies the domination condition. Since ¢ is a constant in the reduction, it follows
that

¢ o) >

i T p(l=)) - -
NRH(< 79( )71 >) (|i|—I—1)2(|g($)|+1)2(]?(71)4‘1)2'2'2'2 - 8(|$|

) : ,u(ac),

where s is a polynomial such that ¢-s(n) > (|i| + 1)*(¢(n) + 1)%(p(n) + 1)? - 211, Hence, (D, p) <P,
(RH®, ugy). |

Theorem 5.4 For each k > 0, (RHk,uRH) is self-reducible.

Proof. Without loss of generality, we assume that nondeterministic Turing machines have
transition functions with exactly two nondeterministic choices. Consider the following encoding of
nondeterministic oracle Turing machines M: let (M) be the code of a set of finite states (each state
¢; is simply encoded by (0,7)), the initial state, the final states and the transition function, where
the transition function is given by a table in which each row consists of 4 quintuples; (¢, 0, qjl«, th, shy,
(qi,O,q]Z,tQ,sz), (¢, 1,q§’,t3,53) and (¢, 1,q;1,t4,54).

Let g(M,z,t) be 0 if t ¢ {0,1}; otherwise, let g(M,z,t) be a code of a nondeterministic
Turing machine M’ that simulates M on input x, but the first nondeterministic step of M is done
(deterministically) depending on the value of {. The code of M’ is obtained from the code of M
with a new initial state and one additional row in the transition table, which describes the first step.
We assume that ¢ is one-one, computable in polynomial time, and |g(M,z,t)| < | M|+ clog| M|+ ¢
for some constant c.
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We define < as O K partial order on strings of the form (M, (z, s), 1™) as follows: (M’, (', s),1™) <
(M, {(x,s),1") if 2’ = x, & = st, where t € {0,1}, M' = g(M,z,t), and |s'| + m = |s| + n,
i.e., m = n — 1. Every string of the form (M, (x,€),1") is the largest string in the order <. Fach
chain starting from (M, (z,¢€),1") has at most length n.

Now let N be an oracle Turing machine which, on input ' = (M, (z,s),1") works as fol-
lows: if n = 0, then N accepts F exactly when M is in an accepting configuration after |s]
deterministic steps; otherwise, N computes two strings F° = (g(M,s,0), (x,s0),1"71) and F! =
(g(M,s,1),(x,s1),1"71) and accepts exactly when either F or F! (or both) appears to be in the
oracle.

Clearly N reduces RH* to RH* by querying only strings which are smaller than input with
respect to <. It remains to show that, for some polynomial ¢, urp(F’) > > p pru(F)/q(|F|),
where F' ranges over all strings which are reduced to F’ by N. From the construction of the strings
F° and F', it follows immediately that they are only asked on input F. Therefore, it suffices to
show that jri(F®) > prat(F)/a(|F¥)). Let p((M, {2, ),1%) = (1M] + 12(|(, )| + 12(n + 1)
Thus,

NRH(FO) = NRH(<9(M7570)7<$750>71n_1>)

> ¢ 9—(lg(M,s,0)|+|(z,50}])
~ p({9(M.,s,0),(z,s0),1771))
> ¢ 9~ (|M|+clog [M|+|(z,s)[+c+1)
~ p({9(M,s,0),(z,s0),1771))
> ¢ 9= (M| +](z,5)])
To20t 'p(<g(M7570)7<$750>71n_1>)'|M|C
S pru((M, (z,),1")  _ pra(F)
~ q((9(M,5,0), (2, 50),1771))  q(|F°])
for some polynomial g. |

Belanger and Wang [3] show that the following (NP, P-comp)-complete problems are polynomi-
ally isomorphic to each other: the randomized bounded halting problem [14, 17, 5], the randomized
tiling problem [22, 23, 17], the randomized Post correspondence problem [17], and the randomized
word problem for Thue systems [3]. From Theorem 5.4, we immediately conclude:

Corollary 5.5 The following randomized decision problems are all self-reducible: the randomized
tiling problem, the randomized Post correspondence problem, and the randomized word problem for
Thue systems.

We note that if every pair of (NP, P-comp)-complete problems is polynomially isomorphic, then
every (NP, P-comp)-complete problem is self-reducible.

6 Average Polynomial Time Hierarchy

The Meyer-Stockmeyer polynomial-time hierarchy is introduced in [26] based on polynomial-time
deterministic and nondeterministic Turing reducibilities and is a central concept in worst-case
complexity theory. Here, Turing reductions are used to define new classes over P and NP in an
analogous way to the Kleene arithmetical hierarchy.

The theory of average NP-completeness can be similarly generalized to an arbitrary level of
the Meyer-Stockmeyer polynomial-time hierarchy by using Turing reducibilities among randomized
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decision problems. We have already seen in Section 5 that all the classes (X}, P-comp), k > 0, have
<P -complete sets. It is natural to ask whether, e.g., (X7, P-comp) is contained in an average-case
version of A} or not. To answer this question, we introduce a notion of an average polynomial-time
hierarchy, which is based on average polynomial-time Turing reducibilities discussed in Section 4,
in analogy with the Meyer-Stockmeyer polynomial-time hierarchy.

First we define a relativization of the average-case complexity classes, Aver(P, F)and Aver(NP, F),
to an oracle (F,v).

Definition 6.1 Let (¥, r)be arandomized decision problem and let F be a set of density functions.
L (P, F)ED) = {(D,p) | € Fo(D,p) <5 (E,v)}
2. (NP, F)P) = {(D,p) | p € Fo (D, p) <7 (E,v)}
3. Aver(P, F)F") = {(D,p) | p € F,(D,p) <5™ (E,v)}.
4. Aver(NP, F)E) = {(D, ) | p € F, (D, p) <37 (E,v)}.

From the definitions of Turing reducibilities, it immediately follows that, for any randomized
problem (F,v), Aver(P,F) C Aver<P,f>(E’”), Aver(NP,F) C Aver<NP,]:>(E’”), <NP,]:>(E’”) C
AVGI’<NP7f>(E’”)7 and <NP7f>(E’y) Q AVeI’<NP,f>(E7”)‘

Definition 6.2 Let C be a set of randomized decision problems and let F be a set of density
functions.

L (P, F) = {(D,pu) | I(E,v) €C[(D,p) € (P, F)E].

2. (NP, F)¢ = {(D,n) | 3(E,v) € C[(D,p) € (NP, F)(EH]}.

3. Aver(P, F)° = {(D.p) | I(E,v) € C[(D, ) € Aver(P, F)F ¥},

4. Aver(NP, F)¢ = {(D,u) | I(E,v) € C[(D,p) € Aver(NP, F)(E1},
Lemma 4.6 immediately yields the following closure properties.

Lemma 6.3 Let F be a class of density functions.
1. Aver(P, F)AvertPr) — Aver(P, F)P*) = Aver(P, F).
2. Aver(NP, F)P*) = Aver(NP, F).

Up to now, it is unknown whether “in the unrelativized world” (NP, P-comp) C Aver(P, P-comp)
or not. Ben-David et al. [5] show that if (NP, P-comp) C Aver(P,P-comp), then E = NE. Here
we give two, contradicting relativized results, an inclusion and a separation.

Theorem 6.4 There exist randomized decision problems (A, p) and (B,v) such that

(NP, P-comp)**)  C  Aver(P,P-comp)**), and
<NP,P-c0mp>(B’”) ¢ Aver<P,P-comp>(B’”).
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Proof.  The desired oracle (A, u) is a special version of the randomized halting problem. Let
(N,z,1%) be in A if the nondeterministic Turing machine N with oracle A accepts z in less than ¢
steps. Note that this is a valid definition since N can make only queries smaller than 1* < (N, z, 1%).
Define p((N,z,19) o (|N|4+ 1)72(Jz| + 1)72(t + 1)=2 - 2= (INIHl=]),

Recall that the randomized halting problem is <P -hard for (NP, P-comp). By exactly the same
argument, it follows that (A, u) is <P -hard for (NP, P—comp>(‘4’“). That is, it actually holds that
(NP, P-comp)(4#) = (P, P-comp)(4#),

Let B be the oracle set used by Baker et al. [1] to separate P from NP using the tally set
L(B)={0"| 3y [lyl = n Ay € B]} in NPP — PP and let v(z) (2| + 1)72 if z € B; otherwise,
(Jz|4+1)=2-2-1l. Consider the randomized problem (L(B), 1), where n(z) o (Jz|4+1)2,if 2 € {0},
and 0 otherwise. Clearly (L(B),n)is in (NP, P-comp)B*) and thus, it is in Aver(NP, P-comp)®).
Now assume (L(B),7) is in Aver(P,P-comp)(B*). There exist a deterministic Turing machine M
witnesses that (L(B),n) <77 (B,v). Since M is polynomial-time bounded on n-average, it yields
that L(B) € PB. This is a contradiction against the fact that L(B) ¢ PP. |

We now give a definition of an average polynomial-time hierarchy, which is an average-case
analogue of the Meyer-Stockmeyer polynomial-time hierarchy in worst-case complexity theory.

Definition 6.5 Let & > 1 and let F be a class of density functions.
L. Aver(Ag, F) = Aver(X§, F) = Aver(P, F).
2. Aver(A}, F) = Aver<P,f>Aver(Ei_1v*>_
3. Aver(XP, F) = Aver<NP7]-“>Aver<Ei_1v*>‘
4. Aver(PH, F) = Uyso Aver(X}, F).

We here remark that oracle sets used in the definition are not restricted to the class Aver(X} |, F),
since the domination condition of Turing reducibility already puts a constraint on the complexity
of the density function of the oracle.

Note also that Lemma 4.6(1) can be easily extended to the class Aver(X}, F), namely, Aver(X}, F)
is closed under <P:@¥-reductions.

The following two propositions give reasonable evidence that the above defined average polynomial-
time hierarchy has a structure similar to that of the worst-case polynomial-time hierarchy.

Proposition 6.6 Let k > 1 and let F be any class of density functions.
1. Aver(AV, F) C Aver(X}, F).
2. Aver(¥7, F) C Aver(A} 4, F).

Proof. The proposition follows immediately from Definition 6.5. |

Proposition 6.7 Let F be any class of density functions, then Aver(BPP,F) C Aver(Xh, F).

Proof. Let (D, p) be an arbitrary problem in Aver(BPP, F). By Proposition 2.7, there exists a
polynomial p, a p-time bounded deterministic Turing machine M, and a function f such that f is
computable in time polynomial on p-average, and for all &, there are more than 2/ (z) =] strings w
of length f(z) such that 2 € D if and only if M accepts (z, w).
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We define a nondeterministic oracle Turing machine My with an oracle set F as follows. On
input =, My first computes the value f(x), then it guesses a non-negative integer m, and distinct
strings uy, ..., us() and w of length f(x), and queries the string (z,uy - - us(;), w) to the oracle E.
If the string is in £, then My simulates M on input (x,w); otherwise, it rejects the input.

The desired oracle F is defined by the nondeterministic machine M; that works as follows:
on input (@, uy - - Uy, w), My guesses v of length m and z1,...,2,, of length |z|, and checks if
Mz, u; ®v)) # M({x;,w)), for all ¢ < m, where v & v denotes the bitwise addition of u and v.
If this is true, then My accepts the input; otherwise, My rejects the input. Then it follows that
D = L(My, F) (for a proof, see [2], pp. 170-173).

Note that M; is polynomial-time bounded and therefore, £ € NP. Furthermore, My is
polynomial-time bounded on p-average f-time bounded, since f is computable in time polynomial
on p-average.

To show that (D, u) <77 (E,v), we define a density function v on F as follows. Take the den-
sity function g’ induced from p, My and E and define v(z) = Prob,s[{(z,y) | z € Q(Mo, E, z,y)}].
Hence, (D, ) is in Aver(NP, F)YE¥) C Aver(NP, F)AveriNP=) — Aver(xb F). |

The definition of the average polynomial-time hierarchy implies that the average-case complexity
classes of the hierarchy contain the associated worst-case complexity classes with arbitrary classes
of density functions.

Lemma 6.8 Let k > 1 and let F be any class of density functions.
1 (AR, F) € (P, F)Fier™) C Aver(P, F)Fior™) C Aver(AL, 7).
2. (S0, F) C (NP, 7)) € Aver(NP, 7)) € Aver(x, 7).

Proof. We show the claim (2) since the proof of (1) is analogous. The proof proceeds by
induction on k.

The case k = 1is obvious. Let k > 1 and assume that (A, p) € (X7, F). Thereis aset B € X} |,
a polynomial p, and a nondeterministic oracle Turing machine M, which is p-time bounded, such
that M computes A with oracle B.

Take p' induced from pu, M and B as in Definition 4.3. A density function v on the ora-
cle E is given by v(z) = Proby[{(z,y) | z € Q(M,B,z,y)}]. Therefore, (A,u) <7 (B,v),
where (B,v) € (¥} |, ). This implies (A, p) € (NP, F)Ei-*) | Clearly it holds that (A, p) €
Aver<NP,]:><Ei—1’*>. Since, by induction hypothesis, (X} |, #) is included in Aver(X? ), it
yields that (A, p) € Aver(X?, F). |

Lemma 3.10 can be extended into an arbitrary level of the average polynomial-time hierarchy.
We first see a key lemma.

Lemma 6.9 Let k > 0 and assume that (A, p) <37 (B,v) and (B,v) € Aver(X},*). For any
set S and any polynomial q, there exist sets Cy € X}, Cy € IIY and S such that AN S C Cy C A,
ANS' CCy CA and and p(5™) — u(5™) < 1/q(n) for all n € N.

Proof. The proof proceeds by induction on k. The base case k = 0 follows from Lemma 3.10.
Let k > 1 and assume that (A,u) € Aver(¥} ,,#). By definition, there is a nondeterministic

Turing machine M and a randomized decision problem (B,v) € Aver(X}, *) such that (A, u) <%

(B,v) via M. Let p be a polynomial such that Prob,[{z | Time¥;(z) > p(Jz| - m)}] < 1/m for any

positive real number m.
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Let p’ be the density function induced from pu, M and B. Furthermore, let v be a density
function, such that g/ <P* © and v(z) > Proby[{(z,y) | z € Q(M,B,z,y)}]. Since p' <P* v,
there exists a function f, which is r on p/-average, such that v(z,y)- f(z,y) > p'(z,y), where r is
a polynomial.

Claim 2 There exists a nondeterministic Turing machine M' and a randomized problem (B',v)
in Aver(XY, F) such that (A, p) <™ (B',v') via M', and all strings queried by M' with oracle B’
on input x are of length greater than |z|.

Proof. Define B’ = {201" | z € B} and

Prob,,/[{(z.y)||z|=nAz€Q(M,B,z,y)}] . "
l//(w) _ { V(Z) ) PlliObM/[{(x,y)|z€Q(M,B,x,y)}] if w = z01"™ for some Z,n,
0

otherwise.

Define a new oracle Turing machine M’ which works as follows: on input x, simulate M on input
x, and whenever M queries a string z, M’ queries 2011%| to the oracle. It is easy to see that
(A, p) <3P (B',v') via M'. We next show that (B’,v') is in Aver(X},*). Note that (B',v')
is average polynomial-time many-one reducible to (B,v). Since Aver(X}, ) is closed under <P -
reduction, (B’,v) is in Aver(X}, ). |

Therefore, without loss of generality, we assume that M queries only strings of length greater
than length of inputs. For each n € N, it yields that

Prob,[{z | TimeF (z) > p(|z| - 3¢(n))] < 1/3¢(n), and

Prob,[{(z,y) | f(z,y) > r([{z,9)] - 3¢(n))] < 1/3¢(n).

Let Flip(z) be Acc(M, B,z) if € D, or else let it be Rej(M, B, z). We define a set T, by
T, = {(z,y)] =€ 8 and Time¥; () < p(|z|-3¢(n)) and
y € Flip(z) and p/'(z,y) < r([(z,y)| - 3¢(n)) - v(z, y)},

and let T = J,vq T. It is easy to see that p(S5™) — p/(1,) < 2/3¢(n). For any pair (z,y) in T,

r({z, y)| - 3q(n)) - v(z,y)
r((2n+ p(n-3q(n) + 1)) -3¢(n)) - v(z,y)

pz,y) <
<

since |y| < p(|z|-3q(n)), and thus, it holds that p'(z,y) < s(n) - v(x,y) for some polynomial s.

Now let Z = {z | I(=z,y) € T[z € Q(M, B, x,y)]}. Recall that (B,v) is in Aver(X},*). Hence,
it follows, by induction hypothesis, that, for any polynomial I, there exist a subset Z’ of Z and sets
Ch e X and Cf € I} such that BN Z' CC{C B, BNZ' CC; C Band v(Z")—v(Z"™) < 1/l(n).
Denote by Z,, (resp. Z!) the set of strings in Z (resp. Z') whose length is between n and p(n-3¢(n)).
Now choose I(n) = 3¢(n) - s(n) - p(n-3¢(n)) for all n € N. Then, it yields that v(Z,) — v(Z]) <
1/3¢(n)s(n).

Let T" = {(x,y) € T | Q(M, B,z,y) C Z'}. Note that, for all n € N,
T, =T, C{(z,y) € T | Q(M, B,2,y) N (Z, = Z,,) # O}.
Hence, it holds that v(Z, — Z!) > v(T,, — 1)) for all n € N. Then, it follows that
1/3¢(n) = (W(Z) = v(Z})) - s(n) = (v(Tn) = o(T})) - s(n) 2 @' (To) = 1/ (T5).
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The desired set 5’ is defined as 5" = {z | Jy[(z,y) € T']}. Note that u(S}) > /(7)) holds. It
immediately follows from our definition that 5" C .5 and p(S5™) — u(S™) < 1/¢(n) for all n € N.

Let Mg be an oracle Turing machine with oracle X defined as follows. On input z, simulate M
on z in time p(|z|-3¢(|z|)), and whenever M queries a string z, My queries (0, 2) and (1, 2) to its
oracle X. If (0,2) € X and (1, 2) ¢ X, continue the simulation with the oracle answer “yes”, and
if (0,z) ¢ X and (1,z) € X, then continue the simulation with the oracle answer “no”; otherwise,
immediately reject the input z. The machine My accepts z only when M halts and accepts it.
Similarly we define a machine M; by interchanging the oracle answers and accepts the input if M
halts in time p(|z|-3¢(|z|)) and rejects it. Now let Cy = L(My,Cy @ C) and Cy = L(My,Cy P CY).

By definition of the oracle machines Mg and My, it yields that ANS’ C Cy C Aand ANS’ C C; C A.
|

Proposition 6.10 For k > 1, Aver(A},*) and Aver(X}, ) have the sparse interpolation property.

Proof. We show the case Aver(X}, «) here. The case k = 1 follows from Lemma 3.10. Let k > 2
and assume that (A, pug,) € Aver(X}, +) for a sparse set S and a polynomial ¢. It follows from
Lemma 6.9 that there exists a set C € Ei’ and a subset S’ of S such that AN S’ C C C A and
ps,q(S") — psqa(S™) < 1/2¢(n) for all n € N. It suffices to show that 5" = 5. Assume that there
exists a string @ € S — 5’. Let n = |z|. Since pgq(z) > 1/¢(|z]),

This is a contradiction. |

The average polynomial-time hierarchy allows to construct an average-version of the high and
low hierarchy in NP [31] to refine the structure within NP. It may be possible that some NP-
complete problems with natural distributions which are unknown to be either in Aver(P,x*) or in
(NP, P-comp)-complete fall into a “low (or high) hierarchy in Aver(NP,P-comp).”

If we return to Levin’s fundamental question of whether or not (NP, P-comp) C Aver(P, %),
we can now raise a more general question of whether (X? P-comp) C Aver(A}, ) holds or not.
However, to answer this question turns out to be very hard, since the following claim closes the
gap between average-case and worst-case.

Theorem 6.11 Forany k > 1, (YYNTALLY, L-comp) C Aver(A}, *) if and only if XY N'TALLY C
AP

Proof. It suffices to prove the “only if” part of the theorem. Let u(z) = 7T2(|1’6T1)2 if 2 € {0}%,
and 0 otherwise. Clearly p is in L-comp. Suppose that (X7 N TALLY, L-comp) C Aver(A}, ),
and A € ¥) N TALLY. Since (A,u) € Aver(A}, ), Proposition 6.10 shows the existence of a set
B € A} such that An{0}* = Bn{0}*. Now define B’ = BN {0}*. Since A C {0}*, it follows that

A=DBeAl. |

Thus it seems likely that (X7, P-comp) is not a subset of Aver(A}, «), since otherwise every
tally X7 set is in A}.

Corollary 6.12 Let k > 1. If Aver(A}, P-comp) = Aver(X}, P-comp), then X} N TALLY C A}.
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7 Real Polynomial Time Computability

This section establishes a direct link to the classical framework of worst-case complexity theory.
This link casts a light on the essential role of average-case analysis in the study of worst-case
complexity.

As we have seen, average-case analysis is very sensitive to the selection of distributions. For
example, fast decreasing density functions help average polynomial-time bounded machines to solve
hard sets; however, there exist sets in EXP that are not solvable in average polynomial-time if we
choose, e.g., a density function v defined as v(z) « (|z| + 1)72 for z € {0}*, and 0 otherwise.
This approach toward average-case analysis does not capture an important feature of average-case
analysis. To see this feature, we try to abstract a notion of “rare instances” under any “reasonable”
distribution and to make it independent from individual distributions only to rely on a general
property.

Observe that the class P is the largest class of sets which are computable in average polynomial-
time with respect to all density functions [24]. We will consider the class of sets which are determi-
nistically computable in average polynomial-time for every density function in P-comp, and refer
to it as a “real P over P-comp.” First we introduce a more general notion of “real C over F.”

Definition 7.1 Let C be a complexity class and let F be a class of density functions. The real C
over F, denoted by Cr, is the class of languages D such that (D, u) € Aver(C, *) for every u € F.

This new definition formalizes a significant property of the associated average-case complexity
classes. The next proposition indicates the importance of those new classes.

Proposition 7.2 Let (C,F) and Aver(C,F) be any randomized and average-case complexity clas-
ses, respectively. Then, C C Dr if and only if (C,F) C Aver(D,F).

Proof.  Assume that C C Dy and (A, p) is in (C,F). Since A belongs to Dr, it follows that
(A, ) € Aver(C, F). Conversely, assume that (C,F) C Aver(D,*). Let D be any a set in D. For
every pu € F,since (D, pu) € Aver(D, F), we obtain (D, u) € Aver<C F). Hence, D belongs to Dr.

]

We call {A} 7, X7 7|k > 0} the real polynomial-time hierarchy with respect to a class F of density
functions. By Proposition 7.2, Levin’s original question of whether (NP, P-comp) is contained in
Aver(P, ) is simply rephrased as whether NP C Pp_comp holds or not.

Lemma 7.3 Let F be any class of density functions which contains the standard density function.
1. PCPrCE.
2. NP C NPr CNE.
3. BPP C BPPr C BPE.

4. PSPACE C PSPACEx C ESPACE.
Proof. Here we give only the proof of (1) since the rest of the claims follow by a similar argument.

Since (P, F) C Aver(P,F), it follows that P C Pr. Now we show that P C E. Let A be any set
in Pr. Since (A, vg) € Aver(P, F), there exists a polynomial p and a deterministic Turing machine
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M which is p-time bounded on yg-average such that M computes A. It clearly yields that, for all
x?

Timeny(x) < plla|/vae(2)) = p(x?e|(|2] + 1)* - 21/6) < 2]
for some adequate constant ¢ > 0. Therefore, we have A € DTIME(2°"). |

The next result follows immediately from Lemma 6.8.

Lemma 7.4 Let k > 0 and let F be any class of density functions.
1. AP C APy

2 ¥R Cyby

Tally sets play a significant role in average-case analysis. From Lemma 3.10 and proposition
6.10, the average-case complexity of tally sets turns out to equal the worst-case complexity of them.

Proposition 7.5 For every C € {A}, X7, BPP,PSPACE}, Cp-comp N TALLY C C.

Proof. The proof is similar to Theorem 6.11. |

Recall that REC-comp denotes the set of recursive density functions, i.e., all “computable”
density functions (under Church’s Thesis). If we take REC-comp as a set of density functions F,
then the real computable classes collapse to their worst-case counterparts.

To prove this, we show that if Aver(C, REC-comp) has the sparse interpolation property, then
CREC-comp C C. In the proof of the following lemma, we use the notion of infinite, recursive, proper
hard cores [9]. A set H is called a proper hard core for A with respect to C if H C A, and for all
D eC,if D C A, then |D N H| is finite.

Lemma 7.6 Let Aver(C,REC-comp) be an average-case complexity class. If Aver(C, REC-comp)
has the sparse interpolation property, then CREC-comp C C.

Proof. Suppose that Aver(C, REC-comp) has the sparse interpolation property. We show that
CREC-comp C C by leading to a contradiction. Now assume that there exists a set A € CREC-comp—C-
By [9], there exists an infinite, recursive, proper hard core H for A with respect to C. We note
that if C = P, then H is in the class E (see, e.g., [2]). Thus, for any set B € C, if B C A then
B N H is finite. Now let S be a recursive, infinite, sparse subset of H. Let ¢(n) = |5 N X"|.
Consider the density function ps, such that usg(z) < (Jz| + 1)7% - ¢(|z|)~! for all z € 5, and
ps,q(2) = 0 otherwise. Clearly pg, € REC-comp. Since (A, pus,) € Aver(C,REC-comp), there
exists an interpolant B’ € C of A and 5. We then have B’ N H D 5, and thus B’ N H is infinite.
This contradicts the fact that H is a proper hard core for A. |

Theorem 7.7 Let k > 0.
1. APREC-comp = AY.
2. YPREC-comp = Zp-
3. BPPREC-comp = BPP.

4. PSPACEREC-comp = PSPACE.
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Proof. By Lemma 7.6, it suffices to show that, forC € {A}, X7, BPP, PSPACE}, Aver(C, REC-comp)
has the sparse interpolation property. The claim for C € {BPP,PSPACE} follows From Lemma
3.10. The claim for C € {A}, X7} follows from Proposition 6.10. |

Theorem 7.7 shows that the definition of the average polynomial-time hierarchy in Section 6 is
a reasonable generalization of the worst-case polynomial-time hierarchy.

Note that, in the proof of Lemma 7.6, the complexity of the distribution us, depends only on
the complexity of the complexity core. Since all sets not in P have complexity cores in E, we get
the following corollary.

Corollary 7.8 Pg-comp = P.

Very recently, Pp_comp is shown to be different from P and NP [32].
At the end of this section, we show that, relative to random oracle, NPp_comp is different from

Pp_comp With probability 1, i.e., Lebesgue measure of the set {X|Pf§_comp #+ NPfg_Comp} is 1.

Definition 7.9 Let X be a set of strings.

1. Let P be the collection of all sets A such that, for any density function y in F, (A, ) <5*
(X,v) for some density function v.

2. Let NP be the collection of all sets A such that, for any density function p in F, (A, u) <pP*
(X,v) for some density function v.

Proposition 7.10 With probability 1, P2 # NP%_Comp relative to a random oracle X .

-comp

Proof. For any oracle A, Pé_comp = Nf’é_comp implies NPANTALLY C P4, Bennett and Gill [4]
have proven that, relative to a random oracle X, NPX N TALLY ¢ P¥X with probability 1. Hence,
we get the desired result. |

8 Conclusions and Open Problems

We have discussed structural properties of average-case complexity classes. Especially reducibilities
have played a central role in our study of structural properties of average-case complexity classes.
This paper introduces an average-case counterpart of the Meyer-Stockmeyer polynomial-time hier-
archy based on the deterministic and nondeterministic Turing reducibilities between randomized
decision problems, and we have seen that this hierarchy has a structure similar to its counterpart
in worst-case complexity. Below, we give some problems mentioned in this paper.

1. Let D be any Y} -complete set. Does there exist a “natural” density function p such that (D, )
is <P -complete for (X7, P-comp) ? For example if A is NP-complete with p-honest reductions,
then there exists a density function p whose distribution is polynomial-time computable
relative to #P such that (A, p) is <P -hard for (NP, P-comp).

2. Are all (X}, P-comp)-complete problems Turing self-reducible ? Can we extend the notion of
polynomial-time Turing self-reducibility for randomized problems by allowing the reduction
to be polynomial-time bounded on average ?
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3. In Lemma 2.6, Aver(NP, F) is characterized in terms of both deterministic machine models
and logical formulas with the existential quantifier. Can this result be extended to characterize

the class Aver(X}, F) ?

4. Is Aver(X},F) contained in Aver(A},F) for some reasonable class F ? Recall that if
Aver(A}, P-comp) is equal to Aver(X}, P-comp), then all tally X}-sets are in A}.

5. Is Aver(X}, F) different from Aver<NP,]:><Ez—1’*>, k > 1, for a reasonable class F, such as
P-comp ?

6. In worst-case complexity theory, many important complexity classes, such as UP, C'P and
@GP, are used to classify intractable problems and to investigate their structural properties.
Is it reasonable to consider those classes in average-case complexity theory ?

7. Very recently, it is shown that Pp_comp # P [32]. Can we extend this result to show that
Xy P-comp # X, OF App-comp # A} 7

8. Is it possible to show that an NP-complete problem with a natural density function is in the
“low hierarchy in Aver(NP,F)” ?

9. What is a reasonable relativization of classes, such as Aver(BPP, F) and Aver(PSPACE, F) ?

10. Recall from [18] the definition of the time-complexity of a nondeterministic Turing machine
M. Here we define Timep; to be the minimal length of accepting computations of M on
input z if one exists; otherwise, Timeps(x) is always set to 1. Can we develop a theory
founded on this type of nondeterministic Turing machines which are polynomial-time (or
polynomial-space) bounded on p-average ? In this setting, for example, we can prove that
Aver(P,*) # Aver(NP,«) by choosing an non-recursive, recursively enumerable set A =
{M(0), M(1),...} by a deterministic machine M and defining a density function p by: pu(2)
(Jo| +1)72 - 27 Pio Timenr () if 3 € A and n = min{k | M(k) = 2}, or else 0.

EP
11. An alternative definition of real polynomial-time hierarchy is given by: AYr = P]_-k_lf and

EP
Yr = NP2#~'". TIs it possible to develop a theory based on these APy and X7 7 For
example, it is not hard to see that AYREc-comp = A} and XPREC-comp = X} also in this
setting.
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