Architecture Independent
Massive Parallelization of"
Divide-and-Conquer Algorithms

Klaus Achatz and Wolfram Schulte

Fakultat fiir Informatik, Universitat Ulm
E-mail: {achatz,volfram}@informatik.uni-ulm.de

Note. This technical report is an extended version of the paper with
the same title in the proceedings of Mathematics of Program Con-
struction, 1995, Bad Irrsee, which will be published in the Springer
series Lecture Notes in Computer Science.

Abstract. We present a stfategy.to develop, in a functional setting, cor-
rect, efficient and portable Divide-and-Conquer (DC) programs for mas-
sively parallel architectures. Starting from an operational DC program,
mapping sequences to sequences, we apply a set of semantics preserving
transformation rules, which transform the parallel control structure of
'DC into a sequential control flow, thereby making the implicit data par-
allelism in a DC scheme explicit. In the next phase of our strategy, the
parallel architecture is fully expressed, where ‘architecture dependént’
higher-order functions are introduced. Then - due to the rising commu-
nication complexities on particular architectures - topology dependent
communication patterns are optimized in order to reduce the overall
communication costs. The advantages of this approach are manifold and
are demonstrated with a set of non-trivial examples.

1 Introduction

It is well-known that the main problems in exploiting the power of modern
parallel systems are the development of correct, efficient and portable programs
[Pep93, Fox89]. The most promising way to treat these problems in common
seems to be a systematic, formal, top-down development of parallel software.

In this paper we choose transformational programming to develop parallel
programs where transformational programming summarizes a methodology for
constructing correct and efficient programs from formal specifications by app-
lying meaning-preserving rules [Par90]. Starting with a functional specification,
we derive programs for the massively data parallel model, which assumes a large
data collection that needs to-be processed and that there is a single processor
element (PE) for each member in the collection. The same set of instructions
is concurrently applied to all data elements, i.e., there is a smgle contro] flow
which guides the computation on all PEs. '

The main characteristics of our strategy, using transformatlona.l program-
ming to develop data para.llel software, are the following ones: as a problem

adequate structure we restrict ourselves to sequences, which are fully satisfac-
tory in the ‘vast majority of situations. The, usual data parallel operations, like
apply-to-all; or reduce, are provided. In a.ddmon, certain high level operations
are mtroduced which can be mterpreted as communication operations on the
machine level (cf. Sect. 2).

As the starting point of our strategy, we choose a very popular tactic for
designing parallel algorithms: Divide-and-Conguer (DC). Batcher’s bitonic sort
is a well-known example. DC algorithms are particularly suited for parallel im-
plementation because the sub-problems’ can be solved independently and thus
in parallel. Obviously DC algorithms have explicit control parallelism, i.e., there
* are separate independent parts that can be processed simultaneously by distinct
CPUs. However, our model of computation does not allow several control flows.
Therefore iwe aim at exploiting the inherent data parallelism. Hence, we present
a set of semantlc preserving transformation rules, which make the implicit data
pa.rallehsm" in a DC scheme on sequences explicit, thereby introducing architec-
ture mdependent communication operations on sequences (cf. Sect. 3).

The ar}:hxtecture is fully expressed in the next step of our strategy, where
skeletons are introduced. Skeletons are higher-order functions to express data
parallel operations on specific architectures. The aforementioned sequence ope-
rations ea%h have a straightforward implementation in terms of skeletons. In par-
ticular it turns out that even the communication oriented sequence operations
can be implemented on arrays, meshes and hypercubes equally well. Due to the
rising communication complexity on particular architectures, topology dependent
optimizations become more and more important. We calculate two architecture
dependent optimizations (for arrays and meshes) using only the skeleton de-
finitions, where correspondent communications followed by broadcasts can be
realized using less communication operations (cf. Sect. 4)

However, aside from answering theoretical questions concerning the correctness
of our approach, we want to stress the advantages of our work from a practical
and methodological point of view:

— The identification of a transformation rule to exploit the implicit data par-
allelism of DC and its necessary applicability condition makes the transfor-
mation process target directed.

— The developed DC algorithms are efficient and can be ported across several
architectures. If, in addition, topology dependent optimizations are applied
very efficient algorithms can be derived.

— The presented transformations can be automated using an extended compi-
lation approach, where the user may give hints in the form of laws to the
compiler [Fea87].

- Arclntecture independent data parallelism is distinguished from architecture
dependent one. Correspondingly we operate on different levels of abstraction
(sequences vs. skeletons) and supply different transformation rules (data
para%}ellzatlon vs. communication transformation). '

These aspects are demonstrated with three examples: the parallel prefix com-
3

putation, Batcher’s bitonic sort, and computing the convex hull of a set of pomts
in the plane. |

The rest of this paper is orga.mzed as follows. Section 2 briefly presents our
sequence model, and its relation to the massively data parallel model.

The new DC~transfbrmation rules are introduced in Sect. 3. Section 4 defines
skeletons, their use and optimizations. We follow in Sect.. 5 with two examp-
les, demonstrating the :applicability of our approach. Section .6 compares our.
approach with others. Finally, Sect. 7 draws conclusions and raises issues for
further research

Notatzon In notation we follow the standard of lazy functlona.l programmmg
languages, like Haskell or Miranda. For example, we write function application
in curried form, as in f zy which is equivalent to (f z) y, and define functions
- whenever possible — using pattern matching. If, in addition, assertions on
parameters are used, they are given in the surrounding text.

Addendum. The differences of this technical report wrt. [AS95] are marked as
being addenda (like this one). Additionally proofs and an implementation of the
running example in a real parallel language are presented in the appendices. <

2 The Balanced Sequence Model
Sequences in general can be used to express data parallelism in an abstract
way, where parallelism is achieved exclusively through operations on sequences
[Ble92]. In this section we explore this approach, present the traditional operati-
ons on sequences and its data parallel view (Sect. 2.1), introduce communication
oriented operations (Sect. 2.2), and define some properties (Sect. 2 3) that will
be of value in the following exposition.

2.1 Basic Sequence Operations

Qur so called balanced sequence model is motlvated by the underlymg parallel
program development strategy, viz. divide-and-conquer (see Sect. 3),;and by the
need to perform the same computatlon on all data elements of the sequence in
parallel. The term “balanced sequence” stems from the fact that our DC scheme
always results in balanced computation trees.

The constructors of our balanced sequence model are the following ones: [] is
the empty sequence,:[e] is the sequence which contains the single element e, and
T + y is the sequence formed by concatenating sequences z and y, but only if
both have equal length. This always results in sequences of lengths powers of 2,
which is appropriate, since all known massively parallel machines work with 2"
PEs.

Addendum. An alternative constructor set replaces co_ncatenation,ﬁa.lso called
left-right composition by the shuffle operator M, also named odd-even composi-
tion. In a shuffled sequence z X y the elements with even indices come from z

and the odd ones from y. We will later pick up this constructor set and show -

that - in a DC scheme — it can be transformed into the former. «q

The following auxiliary functions are used to specify programs. They will be
removed d'_{mng program development: the operator (#) returns the length of a
sequence. The first-order functions first and lest extract the first or last element
from a nonempty sequence, respectively. The function copy creates a sequence
of n copies of identical elements.

It is perfectly well to assume every sequence element corresponds to a data
element re_stmg on a particular processor element. Two sequences can be seen as

two different storage levels on the parallel machine.

We now start to introduce the set of balanced sequence functions, most of .

them are commonly used functions [BW88, AJ93):

— map. Applies a function to every element of a sequence independently, and
therefore reflects the massively data parallel programming paradigm in the
most obv10us way.

— zp Wzth /zipWith3. Takes a pair/triple of sequences, having equal length, into
a new sequence in which corresponding elements are combined using any
given w,bmary/terna.ry operator. The family of zip With functions correspond
to the map functional working on two or more storage levels.

— reduce. Reduces a nonempty sequence using any binary operator. This func-
tion can be implemented on a parallel machine in logarithmic time using a
‘tree’; [Sk193]

In a data parallel environment conditionals are somewhat different to their
sequential counterparts. The action of a parallel if can be summarized this way:
on every PE the condition is evaluated; in components where the condition is
true, the .then-branch is executed, otherwise the else-branch.

A specxahzatlon of a parallel conditional is the operation join. It takes a pair
of sequences z,y, having equal length, into a new sequence, which consists of
a.lternate slices of z and y each of length n, n > 0 (see Fig. 1(a)).

We can deﬁne join by:

f]om n (21 # 22) (y1 # ¥2) = z1 # 2, if n = #z11
join n (z1 # z2) (y1 + y2) = join n z1 y1 (1)
join n 2 y2, if n < #z1

Like ’_'che functions defined in the next subsection, join is a partial operation.
Since these functions are introduced during program development, definedness
of the resulting programs must be gua.ra.nteed by the appropriate transformation
rules (cf Sect. 3).

2.2 Communication Oriented Sequence Operations

A very wide range of scientific problems can be computed under the DC scheme
using ajregular communication pattern. Naturally, some communication pat-
terns are better than others for developing parallel algorithms. Essentially, they

Yo

join2 . corr2 - disiL2

3 O—0 O vy *o X, x O X
x, O—=0 0 v, %, x, x, 048 x,
n, O O—0 v, X2 X0 x O :’g X3
3 O O—0 v; Xy X, X3 - X3
x, O——0 O v, X, Xq "%, O) X5
C Xy OoO——0O O v, Xy x, Xy 04:(0) xg
%, O Oe—0 v, Xq Xa x, O Xq
x, O C—0 v, X7 X Xy - X3
@ ® ©

- Fig. 1. Sequence operations: (a) join 2 z y, (b) corr 2z, (c) di.stlf;l 2z

have structural properties that make it easier to describe the data movement
operations necessary for parallel computations. In the case of our particular DC
scheme (see Sect. 3), the following communication operatlons seem to be the
most suitable ones:

Correspondent communication — modeled by function corr nz — exhibits a
butterfly-like communication pattern: for a particular value of n, each PE com-
municates with each PE whose index differs in the nth bit from the left. An
example is depicted in Fig. 1(b). Its definition is straightforward:

cor'rn(x-l-}-y):(y;H-x), - Cifn=H#z @)
corrn(zHy)=corrnzHcorrny, ifn<#z

First or last communication can be realized using a correspondent commu-
nication followed by a directed broadcast. A directed broadcast operates from
right to left, where the value of the rightmost element is distributed to the left
(distL), e.g., distL n z copies the value of the last element of each slice of length
n to its left neighbors (see Fig. 1(c)). The function distR operates from left to
right. Directed broadcast is related to copy by the followmg deﬁmtlon

distL n z
distL n (z # y)

copy n (last z), if n = #zx (3)
distLnz#distLny, ifn<d#r

The introduced sequence operations corr, distL/distR and join, mirror the
necessity of our DC scheme to exchange data between PEs and to select different
data elements on each PE, respectively.

2.3 Properties: Distributivity and Length Preservation

Our balanced sequence model fulfills a number of properties, where especially the
following two are needed in our transformation rules given below (cf. Sect. 3).

Let f denote a function, which maps sequences to sequences. The function is
said to be distributive, if it distributes through concatenation of sequences:

I

flawty)=fzHfy

Itis saJd to be length preserving, if the length of the output sequence is equal.

to the length of the input sequence:

#(fz)=#

The generalization to functions taking a tuple of sequences yielding a single

sequence is straightforward.

Another generalization concerns the distributivity of functions like corr or
distL, which work on slices of length n. This time, let f n denote a function,
which m'aps sequences to sequences. If it distributes through a sequence z + y,
where n '< #z, then the function is said to be distributive modulo n, or — more
general spoken — slice-distributive.

All (shce-)dlstrlbutwe functions that either map the empty sequence to the
empty sequence, or are undefined for empty sequences, are uniquely defined by
specifyi 1ng their effect on ‘elementary’ sequences (having length n).

It cah be shown that functions map and zip With are distributive, corr, distL
and Jom' are slice-distributive, and map, zip With, corr, distL and join are length
preservmg

3 Divide and Conquer

First, the idea and assumption of our DC tactic is discussed (Sect. 3.1) followed
by its formal account (Sect. 3.2) that aims at transforming the parallel control-
structure of DC into a sequential control flow with a parallel data-structure.

3.1 Tile DC Scheme

DC is a well-known tactic for designing paralle] algorithms. It consists of three
steps:

1. If the input is not primitive, partition the input.

2. Solve recursively the subproblems, defined by each partition of the input.

3. Comipose the solutions of the different subproblems into a solution for the
overall problem.

A general DC tactic can be defined as the following higher-order function:

Dcﬁtghky—f

where f z = tz, if ¢=+#z
. f@Hy)=(kvw)H(Gouw), otherwise ,
| where (v,w) = (f(g z), f(h T ¥))

In DC, when the input has length g, the problem is solved trivially by ¢, other-
wise the input is split (by pattern matching), the subinputs are preadjusted by

- g and h, solved in a recursive manner, postadjusted by k and j and then con-
-catenated. Thus the decompose and compose operations consist of two steps:

(g,k) o +#~! and 4 -0 (k,j), respectively. This leads to a computatlon where
the control flow, expressed by the sequence primitives, is separated from the
computation, expressed by the adjust functions. In addition, it is assumed that
the trivial, the pre- and the postadjust functions are length preserving.

This DC scheme is perfectly appropriate for data parallelization, since the
sequence primitives are independent of the elements in the sequence and hence
can be performed in constant time.

The power of this scheme stems from the fact that the pre- and postadjust
functions receive the complete input and output sequence, respectively. However,
since the adjust functions must be length preserving only “balanced” algorithms
can be derived.

These assumptions rule out certain important non-ba.la.nced algorithms, as
for instance Quicksort. But algorithms that either are not balanced or depend on
values are not suitable for massively data parallel computation. They require — in
contrast to our adjust functions - irregular communication patterns to get things
in the right place, which normally causes high communication costs. Therefore
such algorithms are not considered relevant for our current study.

. ' . i,
Addendum. Obviously one can choose the alternative constructor set using shuf-
fling instead of concatenation, too. All facts and assumptions that hold for con-
catenation also hold for shuffling. _ . : <4

3.2 The Rules

The presented DC scheme exhibits cascading recursion and explicit data decom-
position. In order to transform this scheme into a corresponding data parallel
program, we have to-introduce a sequential control flow, i.e., we must tra.nsform
the cascading recursion into linear, or - even better - teul recursion, and we have
to make the explicit data decomposition implicit.

First, we concentrate on simplifying the recursion. The computation proceeds
in two phases: in a decompose or ‘top-down’ phase the preadjust functions g and
b are applied to the subsequences, whereas in the compose or ‘bottom-up’ phase
the postadjust functions k and j are applied. For a sequential flow of control,
we have to decouple the phases of f, i.e., we introduce two functions one for the
top-down computation f{ and one for the bottom-up computation lei

Theorem 1 (Generalized divide-and-conquer rule). Assume g,ﬁ, 5.k, tt,
t} and t are length preserving functions and t = tt o ty. Let f be a general DC
algorithm of the form:

fz =tz : if g =42
fzH#y=>(vw)H+({vw), otherwise
where (v,w) = (f (9 ¢ 9).f (h T 9))

Then, f ;can be decomposed into an eguivelent function fto fl:

fz=ft(flz)
where flz =tl z, if g =#=z
| fllz#y)=fllgzy)#fUrzy), otherwise
ftz =ttz, ' if g=+#z
[[z y)=(kvw)# (vw), otherwise
*' " where (v,w) = (f1 2,/1 y)
Proof. See Appendix A.1. : s

The - resultmg functions f1 and f| still have cascading recursion. But now
pre- and postadjust functions are decoupled. Additionally, we know the number
of iterations ‘beforehand’, since the recursive computation only uses split and
concatenation on balanced sequences. 7

We rewrite the functions fl and f1 to include an additional parameter, which
determmes the recursion depth. Thus, it is not necessary anymore to use the
sequence to determine the recursion depth - its length becomes constant. On
the other hand, the trivial, pre- and postadjust functions have to be performed
on the 5'ppr0pnate slices. This is possible, if they are length preserving. Then it
is easy to define their slice-distributive generalizations, which work on the whole
sequence and not only on the subsequences as in the case of cascading recursion.
In order to supply the appropriate slices to the pre- and postadjust functions,
we musﬁ explicitly introduce correspondent communication followed by a join of
the different solutions of the subproblems.

The'following two transformation rules enable us to denve tail-recursive and -
therefore data parallel versions of f| and f1.'

Theorem 2 (Top-down with pre-adjustment). Assume functions g,k and
t are length preserving. Let fl be a cascading top-down algorithm of the form:
flz =tuz, if ¢ = #z
fUe 4 4) =Lz)+ fihzy), otherwise
Then, _fI l is transformed into an equivalent function f|l, which is a tail-recursive
top- doun computation with pre-adjustment. As an assertion on the parameters
of fi we require #z > n:

flz=f0(#2)z

where
i flnz=1t gz, ifg=n
i flnz=f) % (join 3 (¢' 3 z2') (k' § 2’ 1)), otherwise
- where

z’ =corr 3z

t'nc =tz if n=#z
bt'n(z+y) =(t'nz)H (t' ny), if n < #z
. g nzy =9gzTy, . if n=+#z
! g n(zlH z2)(yl # y2) = (9’ n 1 y1) # (¢’ n 22 y2), if n < #z1
” Mnzy =hzy, if n=#z

B n (21 # 22)(y1 + y2) = (B’ n 21 y1) + (b n 22 2),if n < #z21

S

Proof. See Appendix A.2. : | o

Theorem 3 (Bottom-up with post-adjustment). Assume functions k,j and
t are length preserving. Let f1 be a cascading bottom-up algorithm ?f the form:
fto =tz - ifg=#c
fTzHy)= (k v w) + (v w), otherwise
where (v, w) = (ft z, f1 y)

Then f1 is transformed into an equivalent functwn i, which is a tazl-r’ecurswe
bottom-up computation with post-adjustment. As an assertwn on the parameters
of ft we require #z > n:

ftz=f1(#z)q(t' qz)

where '3
fifmnz= z : - ifn=m
ftmnz=frm(2n)(Goinn (k' nzz') (G nz z)), otherwise
where

' =corrnz

t' as defined in Theorem 2
k',j' are renamings of ¢’ and h’ of Theorem 2

Proof. Analogous to A.2. _ : 0

Ezample Parallel prefir. One of the simplest and most useful building blocks for
parallel algorithms is the parallel prefiz function [Ble93, Bir89], which takes a
binary operator &, a sequence of 2* elements

[ex, €2, 9]
and returns

[e1,(e1 @ €2),.. ., (a1 D e&y... D ey)]

If @ denotes addition, then a possible initial specification for this function
(shortly coined psum) is:

psumg =1z, : if#zr=1
psumg (¢ + y) = v + (map ((+) (last v)) w), otherwise
where (v, w) = (psumg z, psumg y)

This specification immediately leads to a DC computation; which can be
done in O(log n) time on n PEs - ignoring the communication costs — since each
addition can be computed in one timestep, and the depth of the computation is
O(log n).:

Applying our strategy, first, we derive a data paraliel version for psum. Ob-
viously, psumg matches the input pattern of the bottom-up computation rule.
An appropriate instantiation is:

tr =1
kzy=z
jzy =map ((+)(lest 7)) y

We immediately obtain an iterative data parallel version of psumg. The new
functions é’, k' and j', however, are still recursive. Although they can be imple-
. mented using DC too, it is much better to circumvent the recursion. Therefore,
we carry dut some precomputations to determine their closed forms:
[

Derivation. Let n = (#z1)and z =21 # z2 and z' = 22 # rl:

kK'nzz
= [def. of z and 7', slice-distrib. of k', unfold k’]
. (kz122) # (k22 21)
= [unfold k]
7l H 12
= [assumption: z = 1 4 72]
z :

i'nzz ,
= [def. z and 7', slice-distrib. j', unfold j']
(G 1 z2) # (§ 22 z1)
= [unfold j]
)) (map ((+) (last £1)) £2) + (map ((+) (last 22)) z1)
= | property of map wrt. zipWith |
 (2ipWith (+) (copy n (last £1)) 22) +
(zipWith (+) (copy n (last z2)) z1)
= [fold distL] '
zipWith (+) (distL n z1) 22 # zipWith (+) (distL n z2) z1
= | distrib. of zipWith]
zipWith (+) ((distL n 1) # (distL n z2)) (22 + 1)
= [slice-distrib. of distL, assumption on z and z’]
zipWith (+) (distL n z) z'

!
|
Dueito the slice-distributivity of k' and j/, definitions of k' and ;' hold for

all n < #zl. In a similar way, ' can be shown to be equivalent to the identity
function.

By means of these definitions, we apply Theorem 3 to psumg and result in:

d 10

-

psumg T = psum) #z 1z
‘where
psum; mn z =z, ifn=m
psumy; m n (z1 # z2) = p, otherwise , . i
where ' = corr nz [
p = psum m (2n) (join n z (zipWith (+) (distL n z') 1))

In the following section, we will pick up psum,, and will systematically derive
architecture specific array, mesh and hypercube algorithms, respectively. o

Addendum. On closer inspection of the different constructor sets and their use
in the DC scheme, we can observe that — under certain conditions — a top-down
computation based on split and concatenation is equivalent to a |bottom up
computation based on unshuffle and shuffle, where the post-adjust function of
the latter is the pre-adjust function of the former. However this only holds, if on
termination of DC the input has length 1 (¢ = 1) and is then trivially solved by
the identity function (¢ = id). This fact was already observed by [CM91].

Theorem 4 (Odd-even vs. left-right). Let f{ be a top-down algorithm with
pre-adjustment of the form: .

fl:p =1z, _ _ if#z=1
flzXy)=fl(gzy)Xfl(hzy), otherwise

Then fl is transformed into an equivalent functzon f1, whzch is a bottom-up
computation with post-adjustment.

ftz =z, o if #i =1
ftzHy)=(gvw)H(hvw), otherwise
where (v, w) = (f1 z,/1 v)

Proof. By computational induction. ;:- O

Theorem 4 holds even if the computation ordering is changed that is, if the
roles of the pre-and postadjust functions are inverted.

This result justifies our approach, to present the former rules for only one
constructor set — whether it is the one which is based on concatenation, the one
we have chosen, or the other one, does not really matter. <

4 Skeletons and Skeleton Transformations

In this section, the basis for the derivation of architecture specific programs is
given, i.e., topology independent skeletons are introduced (Sect. 4.1), followed
by topology dependent ones (Sect. 4.2), then the derived sequence skeletons are
calculated (Sect. 4.3), and finally communication transformations are presented
(Sect. 4.4). ' .

11

4.1 B%tsic Skeletons
|

The skeieton idea is fairly simple. The data components on all processors are
modeled) as a data field [YC92], i.e., as a function over some index domain D,
which describes the PE’s indices, into some codomain V of problem related
values. Then, data parallel operations can be defined as higher-order functions
(called skeletons), which are either abstractions of

- elementary communication-independent computations on all PEs or
- comumumcatlon operations, which pass values along the network connections.
|
For instance, the most typical elementary operation on data parallel archi-
tectures is a single function operating on multiple PEs. This computation is
expressed by the MAP skeleton:

MAP f a=Xif(ai) : (4)

The hlgher-order function MAP takes an operator f and a data ﬁeld a, and
returns ‘a data field in which each element is the result of operation f applied to
the corr'espondmg element of a.

The|skeleton ZIPWITH generalizes the MAP skeleton in the sense that
ZIPWITH takes a pair of data fields a and b, and combines them using a dyadic
operator &.

ZIPWITH ® ab=Ai.(ai)®(b1) (5)

The introduced skeletons can be applied to every data parallel architecture,
because no data exchange between two processors takes place. All data parallel
arclntectures share these topology independent skeletons.

Individual types of architectures differ in their topology and thus, in their
possﬂ)lel patterns of communication. Communication patterns for linear arrays,
meshes and hypercubes will be given in the next subsection.

4.2 Communication Skeletons

This section formally defines three important static processor organizations: li-
near arrays, meshes and hypercubes.

Linear, jarrays. Linear arrays have a very simple interconnection network. Every
PE is lmked to its left and right neighbor, if they exist. An abstraction of a li-
near array with N PEs, where N in general is a power of 2, will be written as a
parametenzed type:

array(a) = indez = a
where indez = {i|0< i< N}

i’ 12

Arrays can have wrap-around connections (then called rings), i.e!, PE 0 is
connected to PE N — 1. Here, we only consider arrays without wrg.p—a.round
connections.” _ !

We identify two basic data parallel exchange operations: shifting all elements
one position to the left or to the right. The next.two skeletons allow communi-
cation of k steps at a time, although only one step at a time is an elementary
computation on these architectures: '

SHLga ka=2Xi. a(N-1), ifi>N-k

a(i + k), - otherwise
SHRA k a = Ai. a(0), Cifi<k
a(i —k), otherwise

Note. The above communication skeletons are modeled in such a way 'Ithat PEs,
which do not receive a valid data element, yield the appropriate value of a
boundary PE. Other patterns could be chosen too.

Meshes. In a mesh network, the nodes are arranged in a g-dimensional lattice.
Communication is allowed only between neighboring nodes. Two-dimensional
meshes, for instance, have N x N identical PEs, which are positioned according
to an N x N matrix. Each PE P(i,;) is connected to its neighbor PEs P(i +
1,7), P(i — 1,7), P(¢,j + 1), and P(¢,j — 1), if they exist. The abstraction of
two-dimensional meshes reads: '

-mesh(a) = index = _
where inder = { (i,5) | 0<i,j < N}

Meshes also can have wrap-around connections, where each column and each
row of the mesh is connected like a ring. Again, we only consider meshes without
wrap-around connections.

According to these interconnections, we distinguish four different exchange
operations: data is sent to its left(SHL), to its right (SHR) to its upper (SHU)
or lower neighbors (SHD). The skeletons have the form: f

SHLy km = A(4.5). m(s, N 1), ifj>N—k
m(i,j + k), otherwise
SHRy k m = A(4,5). m(4,0), Cifj<k
m(i,j ~ k), otherwise
SHUy km = X(i,5). m(N =1,7), ifi>N—k
m(i+ k,j), otherwise
SHDy k m = A(4,). m(0,), ifi<k
' m(i —k,j), otherwise s

* Wrap-around connections do not add further functionality to the system, but make
communication patterns more efficiently implementable.

13

Hypercubes. In an n-dimensional hypercube, which has 2" nodes, each PE
has n neighbors, which it can reach in one time step. Its abstraction looks like
the one for arrays, i.e., we have:

hyper(a) indez = a
whelre indez ={i]0<i<2"}

A PE in an n-dimensional hypercube can communicate with n of its nelgh-
bors, where nodes are adjacent to each other when their indices differ in exactly
one bit position. This bit can be set on or off - correspondingly, we can communi-
cate ‘up’ or ‘down’. Once again we generalize this communication, by specifying
communication in dimension d, which has to be a power of 2:

COMMU d h = Xi. h(i — d),if i > (i div (2d)) - 2d + d

h(3), otherwise Ko
COMMD d h = Xi. h(i + d),if i < (idiv (2d))-2d +d
h(s), otherwise

Note. The integer parameter for shifting elements on the array or mesh describes
the number of elementary communication steps, whereas the first parameter of
COMM U and COMMD specifies the dimension in which a communication takes
place - thus the elementary hypercube communication is performed in a single
step.

4.3 Derived Skeletons

Now that on the one side, we have derived data parallel functions on sequences,
and on the other have specified architecture specific skeletons, it remains to close
the gap, i.e., to implement the sequence primitives in terms of skeletons.

We state without proof the correspondence of map with MAP and zip With
with ZIPWITH. This can easily be seen, if we recognize that each operation
(by mezlms of map or MAP and zip With or ZIPWITH, respectively) is applied
zndepen!dently to each data element. Therefore, it makes no difference whether
the data component is an element of a sequence or an element of a data field.
The communication oriented sequence operations, however, have to be defined
in the context of the architecture the algorithm is aimed at.

Arrays. Sequences of length N and linear arrays defined as data fields have a
one-to-one correspondence:

R ntvi

where i,- is the selection of the ith element of the sequence. The inverse of g is:
1. [array(a) = [o]
g i z+ [2(0), ..., (N = 1)]

14

(-

We derive the skeleton functlons, operating on a linear array from the com-
munication oriented sequence Operatlons We start with the followmg? definition:

g(join 'z y) = JOINA n (g 2) (g y)
g(corr nz) = CORR4 n (g 1)

o(distL n z) =DISTLan(gz) . . (8)

g(distR n z) = DISTR4 n-{g z) ;
After eliminating the bijection g, we get the following direct deﬁnitiéns:

Corollary 5. ‘ !
C : - i
JOINsnab=2Xiaiif even(idivn) - . j
’ b i, otherwise)

CORRsna = JOINs n (SHLa n o) (SHR4 1 a) . (9)
DISTRsna=2Ai a(l-n) where [=idivn ;;
DISTLsna =X i a({(l+1)-n—1) where [=idivn

Proof. See Appendix A.3. .~ . ') 0O

In order to obtain an array specific program, we replace the sequence opera-

tions by operations on data fields.

Ezample Parallel preﬁx cont’d. Unfolding the skeleton operations for arrays in
psumy, results in the following architecture specific psum, program: |:

psump T = psumo #z 1z

where - _
psum; mn I =z, : fm=n
psumy m n T = psumg m (2n) (JOIN4 n 'z '), otherwise ; 1I
where 7’ = (ZIPWITH(+) (DISTL4 n (CORR4 n 1)) :c)

Note that the resulting program suffers from a lot of redundant commumca-
tion operations. Due to our architecture independent transformation rules 2 and
3, we always iutroduce a correspondent communication. But in the particular
case of the above example, we only have to distribute data in one direction,
which leads to many superfluous shifts. Below, we will present communication
transformations to remove redundant communication operations. f D

1
Index Translations. In order to define the denved skeletons for meshes and
hypercubes, we could proceed as already done for arrays. However, whavmg de-
fined arrays as data fields, it is much simpler to map only the mdex domain of
the array to the hypercube or mesh domain instead of mapping the. whole data
structure. :

Let D and E be two index doma.ms A buectlve mapping g : D —+ E, with
inverse g~! : E — D is called an indez translation. 'i

In fact, the application of an index translation results in a change of the
underlymg coordinate system, given by the source index domain D. ||

15

Meshes. Lmear arrays of length N2 are mapped onto a mesh with N columns '

and N rows using the following index translation:

, {o,..., 2_1}-{0,...,N=1}x{0,...,N -1}
’ k> (kdiv N,k mod N)
where it is assumed that the indices are in row-major-order The inverse mapping

reads:

o [0\ N=1}x{0,...,N -1} {0,...,N? -1}
T () - i-N+j

The mesh oriented skeletons JOINy, CORRps, DISTRy and DISTL)ys can
be derived starting from the corresponding array skeletons, this time using index
translations:
JOINy nz y= (JOINs n(zog)(yog))og™?-

CORRy nz = (CORR4 n(zog))og™! 10)
DISTLy nz = (DISTL4 n(z o g)) o g~ (
DISTRp nz = (DISTR4 n(zo0g))og™?

Eliminatir;;g the index mapping, we obtain the following direct definitions:

- Corollary 6.
JOINy n z y = A(4,5)-2(4,5), if even((i N +j)divn)
y(1,7), otherwise

CORRy n z = A(i,5).JOINy n z1 22 |
where z1 = SHLpy (nmod N) (SHUym (ndiv N) 1)

z2 = SHR)s (n mod N) (SHDp (ndiv N) 1)
DISTLM nr =X475).z((l +1)n—-1)div N,((I 4+ 1)n — 1) mod N)
where | = (i- N+ j)divN v
DISTRM nz = Xi,j).z((l - n)div N, (I - n) mod N)
where [= (- N+ j)divn

Proof. Séé Appendix A4 O

Hypercubes. Derived skeletons for the hypercube architecture are defined by -

choosing the identity function as an index translation (g = id). From (10) by
replacing the subscript M with H, we obtain:

Corollai;;y 7.

JOINy nz y=Xi.ziif even(idivn)
: y 1, otherwise :
CORRy nz =X i .JOINy n (COMMDy n 1) (COMMUy n 1)

DISTLynz =X i .2{(l+1)-n—1) where I=idivn
DISTRy nz =X i .z(l-n) where l=idivn :

Proof. See Appendix A.5.

16

4.4 Communication Transformations for Array and Mesh

The result of our derivation leads to communication patterns, which probably are
not the most efficient ones on a particular architecture. This is caused by the fact
that for reasons of architecture independence, we always introduce correspon-
dent communication. Sometimes first or last communication would be perfectly
sufficient. Whereas correspondent communication is cheap on the hypercube - it
can be performed in one step — it is more expensive on the mesh and rather ex-
pensive on the array. Thus it is obvious to specialize first or last communications
on these architectures by eliminating correspondent communication. This can be

“achieved by partial evaluation of the communication pattern. As an example, we

give two lemmas for arrays and meshes:

Lemma 8 (Communication transformation for linear arrays). Let the fol-
lowing compound communication pattern for linear arrays be given:

JOINg n z (ZIPWITH @ (DISTLs n (CORR4 n 1)) T)
This pattern is partially evaluated into: |
JOIN, n z (ZIPWITH & (DISTRs n (SHR4 1 1)) 1)
Proof. See Appendix A.6. ' ' 0

3

Note. The expression DISTLs n (CORR 4 n) is slice-distributive, whereas the
substituted expression DISTR4 n (SHR 4 1 z) is not. However both expressmns
are at least equal on every second slice of length n. Therefore the _expression
must be embedded as the second parameter in a JOIN4 n. The use of ZIPWITH
generalizes the commumcatlon transformation. F '

While the communication pattern with the correspondent communication
needs 3n — 1 elementary shifts, the improved pattern can do with n shifts.

In a similar way, we can derive a communication improvement for mesh

connected computers.

Lemma9 (Communication transformation for meshes). Let the following
compound communication pattern for meshes be given:

JOINy n z (ZIPWITH & (DISTLp n (CORRp 1 7)) T)
This pattern is partially evaluated into:
JOINy n z (ZIPWITH & z 1) -
where z' = DISTRy n (SHRp 1z), if n< N
DISTLy n (SHDpy % z), otherwise

Proof. Analogous to the proof of Lemma 8. co- 0

17

In the worst case (n > N), the improved pattern requires N + & — 1 ele-
mentary shifts on meshes, while the original communication with correspondent
shifts n?eds N + 3% — 2. Since communication costs are crucial for the efficiency
of real parallel programs, a reduction of elementa,ry shifts by a factor of about 3
seems worth the work. :

J i

Ezample Parallel prefiz cont’d. Applying the communication transformation for
arrays to psums results in:

psumy T = psumg #z 1z
where
"psumgmnz =1, ifm=n
psumg m n z = psumg m (2n) (JOINs n z 1'), otherwise
' where z' = ZIPWITH (+) (DISTR4 n (SHRA 1 1) z)

An implementation of psumg in a real data parallel language is now straight-
forward and presented in Appendix B. _ m]

5 Applications

In order to demonstrate the usefulness of the presented approach, we work out
two somewhat more complex examples. In Sect. 5.1, we treat one of the most
popular sorting algorithms for data parallel computers viz. Batcher’s bitonic
sort. Section 5.2 deals with a problem in computational geometry, namely the
construction of a convex hull.

5.1 Bitonic Sort

The well-known bitonic sort algorithm was proposed by K. E. Batcher in 1968
for so called sorting networks [Bat68] and later adapted to parallel computers
[NS79]..

Preliminaries and Operational Specifications

The bitonic sort algorithm is based on the central notion of the bitonic sequence.
A sequence s is said to be bitonic if it either monotonically increases and then
monotonically decreases, or else monotonically decreases and then monotonically
increases. For example, the sequences [1,4,6,8,3,2] and [9,8, 3,2,4, 6] are both
bltomc

The fundamental idea behind the bitonic sort algorithm rests on the following
observation: let s = z + y be a bitonic sequence and let d = zip With min z y
and e = zipWith maz z y, where min computes the minimum and maz the
maximum of two ordered values. Then we have:

(i) d a!nd e are each bitonic and
(ii) reduce maz d < reduce min e.

The proof of this proposition can be found in [Bat68].

i 18

I

Bitonic Sorter. This fact; merging two bitonic sequences gives an asi};ending se-
quence, immediately gives us an operational specification according to the DC
paradigm. As a precondition, we require the input sequence to be nonempty and
bitonic.

bimerge [e] = [e]
bimerge(z + y) = bimerge(zipWith min z y) + bimerge(zip With maz z y)

Arbitrary Sorter. A sorter for arbitrary sequences (implemented by function
bisort) can be constructed from bitonic sorters using a sorting-by-merging scheme:
decompose a sequence of length n into separate intervals of length 2. Trivially,

" these intervals are bitonic so that we can use the algorithm for bltomc sequences.

In this way, we obtain 3 pairs of sorted elements.

Unfortunately, two adjacent subsequences in ascending order cannot be put
together to form a single bitonic sequence. To achieve this, the intervals have to
be sorted alternately in ascending and descending order, or every second interval
has to be reversed. Doing so, we get 7 intervals of length 4, all of them are
bitonic so that again the above algorlthm for bitonic sequences can. be applied.
This process is repeated until we get a single bitonic interval, which ‘eventually

. will be sorted by function bimerge.

Again, we can summarize this informal description into an operafional spe-
cification using the DC strategy:

sort § = bimerge(bisort s)
where
bisort [e] = [e] .
bisort(z + y) = bimerge (bisort) -H- reverse (bimerge (bzsort ¥))

Note. Algorithm bisort explicitly reverses every second interval, putting an ascen-
ding sequence into a descending one by means of the auxiliary function reverse.
The same effect can be achieved by inverting the comparisons, i.e., instead
of min in function bimerge we use mar and vice versa. Function bimerge’ =
reverse o bimerge uses inverted comparisons in order to return sequences in de-
scending order. : N

We redefine function sort by explicitly using function bimerge’: |
sort s = bimerge(bisort’ s) i
where
bisort’ [e] = [¢]
bisort'(z # y) = bimerge (bisort’ z) + bimerge’ (bisort’ y)-
Parallelization
A closer inspection of the operational specifications shows that they both fit the

patterns provided by the transformation rules given in Sect. 3.

19

Transformation of function bimerge. In order to apply the rule Top-down
with pre-@adjustment to function bimerge, we have to instantiate the input scheme
given byiTheorem 2:

tz==z

gz y=zipWith minz y

hzy=zipWithmazz y

o -

In th"e next step, we want to rewrite the cascading recursive definitions of
t', ¢ and &' given in Theorem 2. Remember that we aim at a data-parallel
_ computa}tion scheme, where we can apply a single instruction to multiple data
elements.

Den‘vatibn. Let n=#zland 1 =z1 # z2 and £’ =22 # zl:
] .
g nirz _
= [definition of z and z’, slice-distributivity of ¢’, unfold ¢’, unfold g] :
(zip With min z1 £2) # (zipWith min 12 z1) i
‘= [distributivity of zipWith, assumption: z = z1 +# 12 and =’ = 72 4 z1]
zipWith min z z' ‘

In a similar way, we derive simplified definitions for functions t’ and A":

tnz ==z
k' nzz' = zipWith maz z z'

Duelilto the slice-distributivity of t’, ¢’ and k', their definitions hold for all
n < #x‘_lA D

Unde!zr the assumption #z > 1, application of the transformation rule (see
Theoren:n 2) results in:

bimerge ¢ = bimergel (#z) T
whéire _
bimergel n z = z, : ifn=1
. bimergel n T = bimergel 3 (join } v w), otherwise
~where z'=corr 3 z
(v, w) = (2ipWith min z z', zipWith maz z' z)

Analogously, we can develop a top-down version of function bimerge':
" bimerge'l nz =z, if n=1
. bimerge'| n z = bimerge’| % (join § v w), otherwise

"where 1’ =corr 3.z
(v, w) = (zipWith maz z z', zipWith min z’ 1)

20

Transformation of function bisort’. We start with an instantiation of the
transformation rule Bottom-up with post-adjustment (see Theorem 3):
tz=1 v

k z y= bimerge z ‘
j zy= bimerge' z) _ » §

: 1

Again, we replace the (recursive) definitions of ¢, k' and j' by a.pprdlpriate data
parallel (non-recursive) versions:

Derivation. Let n = #zl and £ = z1 # z2 and y = yl +# y2:

Knzy

= [definition of z and y, slice-distributivity of &', unfold k', unfold k]
(bimerge z1) 4 (bimerge z2) ‘

= [property of bimergel, assumption: n = #z1 and 7 = z1 # z2]
bimergel n z

In exactly the same way, we compute instantiations for ¢’ and j':

t'nr =z
3’ nzy=bimerge'lnz

Due to the slice-distributivity of ¢',k’ and j', their definitions hold for all
n < #zl. » o]

Under the assumption #z > 1, the application of the transformation rule

Bottom-up with post-adjustment yields:

bisort’ = bisort(y (#z) 1z
where
bisortf m n ¢ =z, ' if m=n
bisort(t m n z = bisortfy m (2n) (join n v w), otherwise
where z' = corrnz
(v, w) = (bimergel n «, bimerge'] n z)

An obvious simplification (since z' does not occur in the body 'of bisort1})
results in: B
. i
bisort' x = bisortfy (#z) 1z
where
bisortt mnz =z, ' if m=n
bisortft m n T = bisortft m (2n) (join n v w), otherwise
‘where (v, w) = (bimergel n z, bimerge'| n)

The final result of our transformational derivation of bitonic sort is summa-
rized in the following program: :

21

X ;Il. X i
Xz = X2
X3 X3 l
X x4
": Xs 1
X6 X6
X7 X7 —d
(a) . ®)

Fig. 2. Sorting a bitonic sequence of 8 elements using: (a) bimergey (b) bimergex

sort s = bimergel (#z) (bisortf (#.i) 1z)

where
bisortt mn ¢ =z, if m=n
bisortr m n z = bisortft m (2n) (join n v w), otherwise
where
(v, w) = (bimergel n z, bimerge’} n z)
g =corriz
bimergel n z = z, ' ifn=1

bimergel n = = bimergel % (join 3 v w), otherwise
where (v, w) = (zipWith min z &', zipWith maz 7' 7)

bimerge'l nz = z, if n=1

bimerge'|l n x = bimerge'l § (join 5 v w), otherwise:
where (v, w) = (zipWith maz = 7', zipWith min z' z)

It can be efficiently executed on massively parallel computers with such diverse

topologies as linear array, mesh connected computer or hypercube.

Addend}mm. The bitonic merge algorithm is often presented with the alternative
constructor set based on odd-even division.
Thejdifference can nicely be illustrated using a comparison network, which

s comp'rised solely of wires and comparators. We draw wires as horizontal lines,
L

its inpu‘rts appear on the left, its outputs on the right and draw the comparator,
which receives two inputs z and y and generates the two outputs 2’ =min z y
and y’' = maz z y as vertical lines.

We immediately observe that in the derived bimerge function, henceforth
called bimerge,, , the connections between comparators varies from stage to stage
(see Fig. 2(a)), whereas the connections between comparators is constant using a
shuffle network. This was already realized by Stone [Sto72]. His bimerge variant,
here called bimergew (see Fig. 2(b)), is a bottom-up computation with an odd-
even division instead of the left-right one:

22

bimergex [€] = (€]
bimergewn(z X y) = zipWith min v w X 2ipWith maz v w
where (v, w) = (bimergexz, bimergesy)

Obviously, bimergen matches the input pattern of the odd-even to left-right
division rule. We apply theorem 4 to bimergen and result in bimergey.. Thus
both versions are equivalent; the data parallelization of bimergess needs only one
initial transformation step. - - q

. T
5.2 Convex Hull '
This section considers the problem of constructing the convex hull from a finite
set S of points in the two-dimensional real space R x R. The algorithm given
here is mainly an adaptation of a sequential one presented in [PH77] with major
changes to fit the massively parallel paradigm.

Preliminaries and Operatlonal Specifications

Given a set S = {s1, s, ...,sz,,} of points in the plane, the convex hull of §
is the smallest convex polygon P, for which each point in S is either on the
boundary of P or in its interior. The following analogy given in [AkI89] might
be useful: Assume that the points of S are nails driven halfway into a wooden
board. A rubber band is now stretched around the set of nails and then released.
When the band settles, it has the shape of a polygon. Those nails touching the
band at the corners of that polygon are the vertices of the convex hull.

It simplifies the exposition, if we divide the problem into two sub-problems.
First, we calculate the upper hull UH(S) of set S. This is that part of its boun-
dary traced by a clockwise path from the leftmost to rightmost points in S.In a
second phase, we compute the according lower hull LH(S). Since the computa-
tion of UH(S) is analogous to the computation of LH(S), we omit the latter. In
a preprocessing step, a sequence is created containing the elements of S sorted
by z-coordinate (e.g., by applying the bitonic sort algorithm given above).

To start with, we consider an algebraic type that defines the points in the
plane in addition with suitable operations on it. Suppose Point denotes a pair
of real numbers on which the following operations are defined:

T,y - :: Point —+ Real
.= :: Potnt = Point — Bool
maz;, maz,, ming, mmy Point = Point — Point

The interpretation of these operations is as follows:

(6,)z =20 | (a,b).y=5b

mar, pq= q,if p.r < q.z maz, pg=gq,ifpy <qy
p, otherwise : p, otherwise
ming pq=p ifpr<gqz mznypq—p,lfpy<qy
g, otherwise q, otherwise

(p=¢q)=(pz=1¢z) A (py=gy)

23

The DC method of constructing UH(S) given in [PH77] is as follows: Let
S be a sequence of 2n points in the plane such that 5.2 < 2.2 < ... < 8,2
where n is a power of 2. If n < 1, then S itself is an upper hull of S (primitive
case). Otherwise, we subdivide S into two subsequences S, = [51,82,...,5n]
and Sy = [Snt1,.-.,52n). Then, we recursively compute UH(S;) and UH (32)
in parallel As the final step, we must find the upper common tangent between
_ UH (S,) and UH(S,), and deduce the upper hull of S.

The informal description given above can immediately be formulated as an
operational specification on non-empty sequences of points:

UHI it [Point] — [Point]
UH s = s, if#s<2
UH (sl ++ s2) = UCT (UH s1) (UH s2), otherwise

Functlon UCT combines two nonintersecting upper hulls UH (S1) and UH(S;)
by mea 1s of the upper common tangent, which is the unique line touching both
UH(Sl) [p1,-..,pm) and UH(S) = [q1,-..,qn] at unique corners p and ¢
(see Flg 3(b)).

S-o- BkEER G

p-p, uwummmgulmng

! through p
L iy ‘q /
. o,
e, q
A &
" 4 UH(Sy

m LN

() . (I?)

Fig. 3. Upper common tangent of UH(S:1) and UH (S2)

The upper common tangent can be computed by first determining those
points p, and ¢, of UH(S1) and UH(S;), respectively, with the maximal y-
coordinates. To compute a point s, with the maximal y-coordinate in a sequence
of polnts s, we use the reduce operation: s, =4s reduce maz, s

Then p is defined as the rightmost point in UH (Sl) with the minimal slope
wrt. qy Its formal definition is: p =45 pi, ¢ € {1,..., M} such that

1. gqyp,<gqyp,,fora.llje{z+1 ., M} and
2. gqyp1<yqyp1 for all j € {1,. z—1}

,él :
‘ 24

where g determines the slope of the line passing throtgh the points a and b:
: - SR

g :: Point = Point — Real :

gab=1, if(a=1)v (b=1) i

(b.y — a.y)/(b.z — a.z), otherwise : !

oo
Henceforth, L denotes an undefined value, whnch remains unchanged during

computation.]
The second corner g in UH (87) is specxﬁed in a similar way, where |cmly the

signs of the slopes are inverted. . J

Figure 3(a) depicts two upper hulls UH($) and UH (Sz) The dashed li-
nes are the tangents passing through p,. The tangent with the mnmma.l slope
(modulo sign) determines the right corner g. Figure 3(b) pictures the result
of computing the upper common ta.ngent The new upper hull now con51sts of

points [p1, p, ¢, qv]- :
An operational specification of the above descr1pt1on reads as follows:

UCT :: [Point] — [Point] — [Point]

UCT s1 52 = s1' # 52 B

where (py,qy,) = (reduce maz, 51, reduce maz, s2) o
(91,92) = (map (g ¢,) 51, map (neg o (9 py)) 52) !
(m1, m2) = (reduce min gl, reduce min g2) !

(f1,f2) = (find ml gl sl, find m2 g2 s2)
(p,q) (reduce maz; f1, reduce min; f2) .
(s1'.52") = (map (upd (<)) s1,map (upd (>) q) s2) '}

In UCT, first the max1mal points in's1 and s2 wrt. the y—coordmate are
determined, resulting in the pair (p,, ¢,).* Then, in every subsequence sl and s2,
respectively, the slopes are computed by means of the auxiliary functlon g. In

52, function neg additionally negates the slopes, where ,]
negr=.1, ifz=.1 . . f:

—~z, otherwise

I

; ;i
The pair (m1, m2) denotes the minimal slope in each subsequence sl and s2.

Points, whose tangents wrt. p, and ¢, have a slope equal to ml and m2 are

assembled in the pair of sequences (f1, f2) by means of function find: V
find :: Real — [Real] — [Point] — [Point] :L ,

find m gs s = zipWith (is,, m) gs s :

where is, mm' z =z, fm=m o ' "

1, . otherwise - , "
Then, the unique corners p and ¢ of s1 and s2 are the- rtightmost a.nd leftmost
points in the according subsequences. Finally those elements in s1° a.ndr,s2 resp.,
which do not belong to the upper hull, are replaced by dummy elements accor-
ding to the definition of function upd: .) ;

upd :: (Point — Point — Bool) — Point — Point — Point i
upd ® ab=1, ifaz @ bz I
b, otherwise

25

_ Unfc!)lding function UCT in the body of UH leads to a version, which fits the
input scheme of transformation rule Bottom-up with post-adjustment:

UH s = s, if#s<2
UH (s1# s2)=kvwHjvw, otherwise
where

(v,w) = (UH s1, UH s2) _ _
kvw =map(upd(<)(pvw))v jovw = map(upd(>)(quvw))w

pvw = reduce maz; (f1vw) quw reduce min, (f2 v w)
flvw = find(mlvw)(glvw)v f2vw = find(m2vw)(g2vw)w
m1 v w = reduce min (gl v w) m2 v w = reduce min (g2 v w)
glvw =map(g(gyvw)v g2vw = map(nego (g (py vuw))w
p,, vw = reducemasy v gy vw = reducemaz, w

Note. In order to ease the following parallelization we lifted the ob ject declara-
tions of: UCT to functions in UH.

Parallelization

As in the previous subsection, we carry out some precomputations in order to
derive instantiations of ¢', k' and j' without using recursion:

| Derwatzon Let n = #s1 and s = s1 + s2 and s’ = s2 H— sl.

k'nss'
= [.deﬁnmon of s a.nd s, sllce-dlstrlbutmty of k' unfold k', unfold &]
“ map (upd (<) (p s1 s2)) s1 + map (upd (<) (p s2 s1)) s2
= [‘iproperty of map wrt. zip With, distributivity of zip With
. zipWith (upd (<)) (copy n (p s1 s2) + copy n (p s2 s1)) (s1 + s2)
=[s=s1+H2,p nss =q4e copy n(p sl s2) +H copy n (p 52 s1)]
zipWith (upd (<)) (p' nss') s

p' nss =gef copy n (p s1 s2) + copy n (p 52 s1)
= [-unfold p]
copy n (reduce mazy (f1 s1 52)) + copy n (reduce maz, (f1 52 s1))
= [reduce? & s =aes copy (F#s)(reduce & s)]
- reducet maz; (f1 s1 s2) + reducet maz; (f1 52 s1)
= [reducef™ @ (#s1) 1 (s1 + 52) = reducet & sl + reducet & s2)
' reduceft maz, n 1 (f1 s1 82 +# f1 52 s1) ' '
=[fl'nss =g f15182+H f1s2s1]
reducefy maz; n1{f1' nss’)

** The function reducef} is a parallel version of reducet. Its derivation is analogous to
the given ones.

26

In an analogous way, we can find generalizations for f1,m1, g1 and g,:

fl'nss = zipWith3 is, (m1' nss') (g1’ nss')s
ml’' ns s’ = reducet min n1{gl' nss')

gl'nss' =zipWith g (g, nss')s

g,nss = reduceft maz, nls'

Due to the slice-distributivity of k', definition of k' holds for a.ll n < #sl.
Analogously, we can derive:

t'ns=s
j'nss' = zipWith (upd (>)) (¢’ nss')s'
where '

- ¢'nss = reduceft min, n1(f2' nss')

f2'nss’ =zipWith3 is,, (m2' nss’) (92 nss')s'
m2' n s s’ = reduceft minnl (g2’ nss')

92" nss' = map neg (zipWith g (p), n s s') s’)
pynss =reduceft mazy nls

The application of Theorem 3 results in:

UH s = UH' (#s)2s

where)
UH' m ns=s, ' ifrm=n
"m2n) joinn (k' nss’) (i ns s)), otherwise
where

s =corrns
k' and j' as defined above

which, after several unfolding steps and consistent renaming, leads to a data
parallel version of UH":

UH' ' mns=s, ifm=n
"m (2n) (join nk7), otherwise
where
s'=corrns

k = zipWith (upd (<))Ds j = zipWith (upd (>)) G s

7 = reduceft maz; n 1 f1 G = reduceft min, n 1 f2

f1 = zipWith3 isym m1 Tgls 12 = zipWith3 is, m2 g2 s
m1 = reduceft min n 1 gl m2 = reduceft minn 1 g2

91 = zipWith g By s —g§ = map neg (zipWith g G,)
@y = reduceft mazy, n1s’ Py = reduceft mazy, nls’

A closer inspection of this version of UH’ shows that due to the generality
of our transformation rules we wasted a lot of parallelism. Since]omgonly takes
half of the elements of its argument sequences, we compute some data values
sequentially instead of parallel. Thus, we continue our derivation by applying an

27

adapted horxzontal fusion strategy [Par90}, which amounts to “merging” different
computatlons into a single one. .

Derivation. Without loss of genetality; we assume 1 = #— A The aﬁxiliary func-
tions left and right take the first and the second half of a sequence, respectlvely
left (s1 +|- 82) = s1 and right (s1 + s2) = s2

join n k j
= [unfold ¥ and 7)
join n (zipWith (upd (<)) 7 s) (zipWith (upd (>)) § s)
= [distributivity of zip With, unfold join]
zipWith (upd (<)) (leﬂ p) sl + zszzth (upd (>)) (right q) s2
—[p,q =des left B+ right T] _
Tom n (zipWith (upd (<)) 77 s) (zipWith (upd (>)) 59 s)
P =it left B 4+ right T
= [unfold pand 7]
Feft (reduceft maz; n 1 f1) 4 right (red.uceﬂ mm, n1 12)
= [property of reduceft under the assumption n = # f1=#f2]
ireduceft maz, n 1 (left f f1) + reduceft min, n 1 (right £2)
= [f =aer left f1 + right f2]
join n (reduceft maz, n 1 f) (reducett min. n 1 f)

Similar derivations lead to appropriate equatlons for f,7,9,@ and Pg, (see be-
low). v _ o

Our final version of the convex hull algorithm is summarized in the following
programn:

UH s = UH' (#s)2s

where
UH' ' mns=s, . fm=n
' UH' m (2n) (join n &]), otherwise
where s' =corrns o
k= zipWith (upd (<)) 7g s
= j = zipWith (upd (>))Pgs _
i PG = join n (reduceft maz, n 1f) (reduceft min, n 1f)
¥ f = zipWith3 is,, MG s
d, m =reducef minnlyg
7 = join n @ (map neg) '
@ = zipWith ¢ Bgy s h
| Pgy = reduceft maz, n1s'

28

ki

'This algorithm uses all those higher order functions on sequences, which
can immediately be rewritten as skeletons for-a particular massively parallel
architecture.

The algorithm we have derived here differs from those in the parallel litera-
ture (cf. [J4J92, AkI89]). Especially, it does not need unrealistic assumptions like
a concurrent read access to shared memory variables as e.g. given by the PRAM
model, but is well suited for massively parallel] computation on distributed me-
mory architectures by making efficiently use of the underlying mterconnectlon
network to exchange data.

6 Related Work

r
. |
Much attention has been paid to the formal parallelization of DC algorithms.
Smith develops a DC theory [Smi85, Smi93], e.g., DC can be treated as a mor-
phism from a decomposition algebra on the input domain to a composmon alge-
bra on its output domain. His emphasis is on the development of a DC’ a.lgorlthm,
whereas we are interested in its data parallelization on a particular archltecture
Thus, our work can be seen as a completion of Smith’s work towards data. parallel
execution.

Mou and Houdak describe DC in a algebralc model called vaacon [MHS88].
They recognize that the original DC model is too restrictive withirespect to
decomposition and communication. For the latter, they introduce so called pre-
and postmorphims, which correspond with our ‘adjustment’ functions!g, h, k and
j. They illustrate the expressive power of this generalized DC, with a broad range
of examples. However, they only sketch the mapping of the model on parallel
computers.

This algebraic inodel was later picked up by Carpentiery and Mou, who study
communication issues in the model [CM91]. They present hypercube specific
rules to optimize communication by introducing new storage levels. These rules
are expressed in Divacon, whereas our approach takes the architecture explicitly
into account. However, their approach is neither calculated nor transparent.

Axford and Joy [Axf92, AJ93] have proposed to use DC as a fundamental
design principle, and have either proposed arrays or sequences as suitable data
structures. In fact, the balanced sequence primitives that we use, were proposed
by Axford and Joy Aside from this, no ca.lcula.tlon nor interesting distributed
implementation is presented.

Among the first, who used the skeleton approach in a functional setting,
initiated by Cole [Col89], was a group at Imperial College [DFH*93]. Their ske-
letons are rather highlevel, e.g., they distinguish farming, pipelining, DC and
other high level skeletons, but do not tackle massive parallelism, as it is under-
stood by us.

Still more abstract is the work on investigating parallelism within the Bird-
Meertens formalism, which recently has gained much attention (cf. e.g. [Col93]).
However, all these different approaches have in common that they stop on the

29

level of DC algorithms or homomorphisms, whereas our approach proceeds down
to an architecture specific target program. _

An exception to these works is presented by Gorlatch and Lengauer [GL93].
They develop a DC function, using mainly the control paralielism. In particular,
they do not require that there is a single PE for each member in the sequence,

but assume that there is a single PE for a group of members in the sequence.-

As before the step to a working imperative implementation is still left open.

Work that is closely related to ours is done at the University of Nijmegen
[Gee92, Gee93, Par93, BGP93, Gee94]. In fact, the skeletons which we propose
were adapted from their work. Opposite to our goals, their research aims at
introducing data parallelism out of a parallel control structure, which can be
achieved by means of partial inversion. Recently, Geerling also considers data
type transformations in order to adapt algorithms to different hardware. We
start, however, with a problem dependent data structure, which enables right
from the start implicit data parallelism.

In contrast to our approach, a group in Yale introduces data ﬁelds right from
the beginning of the derivation process [CC90, YC92]. They make extensive use
of so called domain morphisms in order to specify parallel-program optimiza-
tions. Their approach seems to work well for numerical problems, where the
problen: domain is given by matrices. The main problems lie in the absence of

a strategy for deriving programs and in difficulties to find appropriate index:

domain morphisms, which lead to optimizations.

Therimportant problem of how to cope with the usual situation that the
number :of processors is smaller than the size of the input domain is ignored in
our work. We believe that this is perfectly reasonable, since either the hardware
of massiﬁvely parallel computers (e.g. Connection Machine CM-2), or the software
(e.g. Fortran on the MASPAR) abstracts from the number of real processors.
However, not all massively parallel machines support virtual processors. The-
refore, data distribution is still a major problem, which is tackled by a group
around Pepper [PES93].

7 Conclusion and Future Research

In this paper, we have presented a transformation strategy to develop correct,
efﬁcient; data parallel DC algorithms, and showed how such derivation is guided.
The main advantage of making the strategy explicit lies in its reuseability. A
similar problem can be solved in a similar fashion, which is demonstrated by the
examples.

We distinguish data parallelism in the problem domain (here: sequences)
from data parallelism on the level of the architecture (here: skeletons). This
distinction gives rise to develop portable parallel programs, since data parallelism
on the problem domain must be mapped differently on existing hardware, if the
d1versrty in architectures is exploited in full.

In addition, we claim that the transformational approach taken here is rather
crucial to the presented development: The calculational properties of functlona.l

30

(23

programs, in' particular skeletons, give a basis for a solid understanding and a
formal treatment for the derivation of massive parallel algorithms from a high-
level specification down to the low-level hardware.

More research is necessary for the development of further strategies. In this
context, our ultimate goal is the development of a methodology for transforma-
tional data paraliel program development.

Acknowledgements. ,We would like to thank Helmuth A. Partsch and Ton Vul-
linghs for their helpful comments.

References ’ 5;
[AJ93] T. Axford and M. Joy. List processing primitives for parallel computation.
Computer Languages, 19(1):1-12, 1993. i
[AkI89] S. G. Akl The Design and Analysis of Parallel Algorithms. Prentice-Hall,

1989. '

[AS95] K. Achatz and W. Schulte. Architecture independent massive paralleliza-
tion of devide-and-conquer algorithms. In B. Méller, editor, Proceedings of
Mathematics of Program Construction, Bad Irsee, 1995, volume forthcoming

. of Lecture Notes in Compuler Science, 1995. '
[Axf92] T. Axford. Crystal: The divide-and conquer paradigm as a basis for parallel
’ language design. In L. Kronsjo and D. Shumsheruddin, editors, Advances
in Parallel Algorithms, chapter 2. Blackwell, 1992.

[Bat68] K. E. Batcher. Sorting networks and their applications. AFIPS Spring Joint

Computer Conference, pages 307-314, 1968.

(BBES92] 1. Barth, T. Braunl, S. Engelhardt, and F. Sembach. Parallaxis version 2

user manual. Technical Report 2/92, Fakultit Informatik, Universitat Stutt-
gart, September 1992.

[BGP93] E. A. Boiten, A. M. Geerling, and H. A. Partsch. Transformational deriva-
tion of (parallel) programs using skeletons. Technical Report 93-20, Katho-
lieke Universiteit Nijmegen, September 1993. Also: Proceedings of Compu-
ter Science in the Netherlands 1993, Utrecht.

[Bir89] R. Bird. Lectures on constructive functional programming. In M Broy, edi-
tor, Constructive methods in computing science. NATO ASI Senes Sertes
F: Computer and systems sciences 55, pages 151-216, Berlin, 1989 Springer-
Verlag.

[Ble92] G. E. Blelloch. NESL: A nested data-parallel language (version 2.0). Tech-
nical Report CMU-CS-93-129, School of Computer Science, Carnegie Mellon
University, April 1992.

[Ble93] G. E. Blelloch. Prefix sums and their applications. In-J Reif, editor, Syn-
thesis of Parallel Algorithms, chapter 1, pages 35-60. Morgan Kaufmann
Publishers, 1993. .

{BW88] R.Bird and Ph. Wadler. An Introduction to Functional Programming.
Prentice-Hall, 1988. . :

[CC90] M. Chen and Y. Choo. Domain morphisms: A new construct for paral-

' lel programming and formalizing program optimization. Technical Report
DCS/TR-817, Department of Computer Science, Yale University, August
1990.

31

[CM91]

B. Carpentieri and G. Mou. Compile-time transformations and optimiza-

! tions of parallel divide-and conquer algorithms. ACM SIGPLAN Notices,
‘20(10):19-28, 1991.

[Col89] |

[Co193)

[DFH*9

[Fea87]

|
[Gee92] i

[Fox89]

[Gee93] ‘

[Gee94] ’

[GL93] |
[J4J92] ‘i
[MH88)
[NS79] .
[Par90]

[Par93]
}

[Pep93])

[PESQ3]E'|

M. Cole. Algorithmic Skeletons: Structured Management of Parallel Com-

| putation. MIT Press, 1989,

M. Cole. List homomorphic parallel algorithms for bracket matching. Tech-
nical Report CSR-29-93, Department of Computer Science, University of
Edinburgh, August 1993.

3] J. Darlington, A. Field, P. Harrison, P. Kelly, D. Sharp, Q Wu, -and

. R. White. Parallel programming using skeleton functions. In A. Bode,

M. Reeve, and G. Wolf, editors, PARLE’93 Parallel Architectures and Lan-
guages Europe, volume 694 of Lecture Notes in Compuler Science, pages
146-160, 1993.

- M. S. Feather. A survey and classification of some program transformation

approaches and techniques. In L.G.L.T. Meertens, editor, Program Specifi-
cation and Transformation. North-Holland, 1987,

G.C. Fox. Parallel computing comes of age: Supercomputer level parallel
computations at caltech. Concurrency: Practice and Ezperience, 1(1):63—
103, 1989.

A. M. Geerling. Two examples of parallel-program derivation: Parallel-
. prefix and matrix multiplication. Technical Report DoC 92/33, Impenal
. College London, November 1992.

A. M. Geerling. Formal derivation of SIMD parallehsm from non-linear re-
cursive specifications. Technical Report CSI-R9324, Kathoheke Universiteit
Nijmegen, September 1993.

A.M. Geerling. Formal derivation of SIMD parallelistn from non-linear
recursive specifications. In B. Buchberger and J. Volkert, editors, CON-
PAR’94 VAPP VI International Conference on Parallel and Vector Proces-
sing, pages 136-147. Springer-Verlag, 1994.

S. Gorlatch and C. Lengauer. Parallelization of divide-and conquer in the
Bird- Meertens formalism. Technical Report 12/93, Fakultat fiir Mathema-
tik und Informatik, Universitat Passau, Dezember 1993.

J. J4J4. An introduction to parallel algorithms. Addison-Wesley, 1992.
Z.G. Mou and M. Hudak. An algebraic model for divide-and-conquer algo-
rithms and its parallelism. Journal of Supercomputing, 2(3):257-278, 1988.
D. Nassimi and S. Sahni. Bitonic sort on a mesh-connected parallel compu-
ter. IEEE Transactions on Computers, 27(1):2-7, 1979.

H. A. Partsch. Specification and Transformation of Programs. Springer-
Verlag, 1990.

H. Partsch. Some experiments in transforming towards parallel executabi-
lity. In R. Paige, J. Reif, and R. Wachter, editors, Parallel Algorithm Deri-
vation and Program Transformation. Kluwer Academic Publisher, 1993.

P. Pepper. Deductive derivation of parallel programs. In R. Paige, J. Reif,

I and R. Wachter, editors, Parallel Algorithm Derivation and Program Trans-

Jormation. Kluwer Academic Publishers, 1993. Also: Technical Report 92-
23, Technische Universitdt Berlin, July 1992.

P. Pepper, J. Exner, and M. Siidholt. Functional development of massi-
vely parallel programs. In D. Bjorner, M. Broy, and 1.V. Pottosin, editors,
Formal Methods in Programming and Their Applications. Proceedings In-

32

h

[PHT7]

[Ski93]

. [Smi85]

[Smi93]

[Sto72]

[YC92]

ternational Conference Novosibirsk, June/July 1995., volume 735 of Lecture
Notes tn Computer Science, pages 217-238, Berlin, 1993. Springer-Verlag.
F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two
and three dimensions. Communications of The ACM, 20:88-93, 1977.

D.B. Skillicorn. A cost calculus for parallel functional programming. Tech-
nical Report ISSN-0836-0227-93-348, Department of Computing and Infor-
mation Science, Queen’s University, March 1993.

D.R. Smith. The design of divide-and-conquer algorithms. Science of Com-
puter Programming, 5:37-58, 1985. '
D. R. Smith. Derivation of paralel sorting algorithms. In R. Paige, J Reif,
and R. Wachter, editors, Pargllel Algorithm Derivation and Program Trans- -
formatmn Kluwer Academic Publisher, 1993.

H. S. Stone. Parallel processing with perfect-shuffle. JEEE Computer pages

153-161, February 1972.

J. A. Yang and Y. Choo. Data fields as parallel programs. Technical Report
CT 06520-2158, Department of Computer Science, Ya.le University, March
1992.

33

A Proofs

Al Proof of the Generahzed Dwxde-and-Conquer Rule
We sho“ I ; o) o o ‘
fe=11(fia) e o) |
by induction on the length of.th'e; ‘a;':gnmerit:' B ' : ;
Induction Basis: #z = q
iz .
= [unfold ftandfl under a.ssumptlon #r=4¢]
ot (tle) :
["apphcablhty condition: ¢ = tT o t.L]
tz ' e
= [jfold £]
Induction Step: #(z + y) > ¢
0L @ 4)
= [‘unfold f1 and f| under assumption #(z + y) > ¢]
kvwtjow where (v, w)=(T(l{gzy)fT(L(hz ¥)))
= [induction hypothesis]
fzHy)
(8]

A.2 Proof of Transformation Rule: Top-down with Pre-adjustment

The proof consists of two steps and makes substantial use of a lemma, which
also will be given during this subsection.

Step 1: Embedding. We start our proof by an appropriate embedding of func-
tion fJin order to introduce a termination parameter n, which denotes the length
of the input sequence of fl:

flz=fl(#z)2
| where f|' n 2 =4¢ fl z provided #z=n
= [iunfold f]]
L fi'nz =tz, if#z=4q
" finE@Hy)=Fflgzy) #fl(hzy), otherwise
[P#:c = ¢ = n = ¢, g and h length preserving, fold with assertion |
' flnz =tr, ifn=g¢q

:!' An@wy)=f"2@zy)+fl' 2 (hzy), otherwise
i!
| 34

Step 2: Computational Induction. In order to proof the equahty of f|' and
fU, we define two functionals:

T[fl]nz —tz, ifn=q
filnzHy)=Ff2@zy) + I3 (hzy), otherwise"

for which we assume, that the parameter n denotes the length of the input
sequence z and z # y, respectively, and

olfy]nz=1tz, ifn=gq
olfl]nz =fy 5 (join 3 vw), otherwise
where z' =corr § z
7 (vyw)=(¢' 3 zz'\h § 7' 2)
for which we require that #z > n.
Now we have to show:

7[f1] (#2) z = o[f¥] (#z) =
As an abbreviation we define: s =z + y and s’ = y # 1 = corr #z s.
Tif]nz
= [unfold 7[f{]]
tz, ifn=q
2 gzy)+ fJ, (hzy), otherwise
= mductlon hypothesis |

tz, : ifn=g
fU2(gzy)#fU3(hzy), otherwise
= [Lemma A.2]
' tz, ifn=gq

fl3(gzy#hzy), otherwise
= [fold ¢’ and &', since #z = #y = 2, property of join] i
ta, | ifn=g

fU % Goin 3 (' §58) (W §s's)), otherwise
tl gz, Cifn=g
fU 2 (join 2 (¢ 2ss')(h %5 s)), otherwise
=[fold o [f§] with assertion]
offdlnz '

In the above proof, we have used the slice-distributivity of function fU:

Lemma (Slice-distributivity of f{). Let #z = #y > n. Then functzon fu
(see Theorem 2) fulfills the following property:

fln(zH#y) =flncHfiny

35

i
f
i

' The‘\iproof is made by induction on the length of the argument.

Induction Basis: n = q.

fin(zHy)=tq(z+y)
. = [unfold f{]

t' g (z +y)
= [unfold ¢']

tgrHtaqgy
= [fold /4]

flagzHflagy

Induction Step: #z > 2n. As an abbreviation, we define: '(z’, y'} = (corr n z,
corr n y).

fU(2n) (z +9) :
= ['unfold f{] !
fUn(Goinn (g nss') b ns's)) |
“where (s,s') = (z +# y,corr ns) 3
= [property of corr]
fUn(oinn(g' n(z+y) (' #yNAE n(z"#) (z+y)
= [unfold ¢’ and A']
flnoinn(gdnezs' #g nyy)Y W nz'zH#hnyy)
= [property of join] _
fin(oinn(g nza')y (K nz'z)+joinn(g' nyy) (M ny'y))
= [induction hypothesis | '
fUnGoinn((¢nza’) (W na'z)) #fln(Goinn(d nyy) (A ny'y)
= [fold f| with assertion]
fU@2n)z 44 (2n)y

A3 i’roof of Corollary 4

We onlfy pick out the proposition
g (corr nz) = CORR4 n (g z)

the remaining propositions can be treated similarly.

Induction Basis: n = #z

36

CORRn(g9(z +#+ y))
= [unfold CORR, and g]
SHLA n (X i.{z # y)), if even(idivn)
SHR4 n (XA i.{(z +# y):), if —even(idivn)
= [even(i div n) = i < n, unfold SHL4 and SHR,4]
Ai. (zH y)itn), fi<n
(z 4 y)i-n), fi>n
= [property of +]
Aoy, fi<n
Timn, fi2n
= [property of list concatenation]
A (y +- .'C),'
= [fold g and corr]
g (corr n (z + y))

Induction Step: n < #z. Let 1 € {0,...,N - 1}.

(CORR n (g (z + y)))(i)
= [unfold CORR4]

(SHL 4 n g(z + ¥))(Z), if even(idiv n)

(SHR 4 n g(z + y))}{(z), 1if —even(idiv n)
= [unfold SHL4, SHR4 and g]

(z + yI)n-1, fi>N-—n A even(idivn)

(z # ¥)ign, ifi<N-—n A even(idivn)

(z # y)o, ifi <n A —even(i div n)

(z # y)i—n, 1fi2> n A -even(idivn)

=[even(idivn) =>i <N —n, —even(idivn) = i>n]
(z # ¥)itn, ifi<N—n A even(idivn)
(£ ¥)i—n, ifi2>n A —even(idivn)

Case 1: 1 < #z.

Tipn, f0<i<#z-—n A even(idivn)
_ Timn, ifn<i<#z A —even(idivn)
= [fold g and CORR, |

(CORR4 n g(2))(3)
= [induction hypdt};esis]

(g (corr n g(2)))(¢)
=[i<#z]

(9 (corr n g(z + ¥))) (%)

37

Case 2: i > #r.
' Yicgzen, I F#z<i<N-—n A even(idivn)
 Yimggz—n, 2> n+#z A -even(idivn)
= [index translation]
“ Yien, HO<i<#z—-n A even(idivn)
 Yi—n, ifi2n A —even(idivn)
= [analogto case 1]

(g (corr n g(z +)0

Ad Pl‘bof of Corollary 5

As a rei)resentative of the four propositions, we only proof
CORR4s n(zog))og' = CORRy n z.

Let 7,7 € {0,...,N —1}.

(CORRM n z)(4,5)
= ['unfold CORRy |
(JOINy n s1 s2)(3,)

where $1 = SHLp;(nmod N)(SHUy(n div N)z)
s2 = SHR)(nmod N)(SHDp(n div N)z)

Case 1: n < N. This implies: ndivN =0 A nmodN = n. Then by simplifying
the above expression, we yield:

(JOINy n sl s2)(1,§)
where (s1 = SHLy n 2,52 = SHR) n 1)
= [unfold JOIN,]
(SHLy n 2)(i,7), if even((:- N + j)div n)
_ (SHR)s n z)(i,j), otherwise
= [unfold SHLp an SHRy |
L z(i,N=1), ifj>N-nA even((i-N +j)divn)
, z(6,j+mn), fj<N-nA even((i-N+j)divn)
i z(i,0), ifj <n A -even((i- N +j)div n)
" z(i,j—n), ifj>n A -even((i-N +j)divn)
=[n< N =(even((i - N +j)divn)=even(jdivn)=>j <N -n) A
(—even(j divn) = j > n)]
z(i,j+n), fj<N-nA even((i-N +j)divn)
z(i,j—n), ifj>n A -even((i-N+j)divn)

38

=[g(i-N+j+n)=(i,j+n)and g(i-N+j—n)=(i,j - n)]
(zog)(i-N+j+n), ifj<N-nA even((i-N+j)divn)
(zog)i-N+j—-n), ifj>n A -even((i-N +j)divn)

=[even(jdivn) =>i-N+j < NZ-n, i

—even(jdivn)=i-N+j2n, j2n=>i-N+j2>n] 4
(zog)(N?2-1), if(i-N+j)>N2i-nA ;

_ ' even((i- N + j) div n) .
(zog)(i-N+j+n), ifj<N-—nA even((i-N+j)divn)
(z o ¢)(0), ifi-N+j<nA-even((i-N +j)div n)

A (tog)i-N+j—-n), fi- N+j>n A -even((i-N+j)divn)

= [fold SHL4 and SHR, | _
(SHLp n(zog))(i-N+j), ifeven((i-N+j)divn)
(SHRs n (z0g))(i- N +j), otherwise
= [fold JOIN,]
(JOINA n s1 82)(i- N+ 3) :
where (s1,s2) = (SHLa n (z0g),SHR4 n (z 0 g))
= [fold CORR4 and g~]
((CORRA n (z0g))0g™) i j

Case 2: n > N. This implies: ndivN = & A nmod N = 0, since both n and
N must be a power of 2. Then by simplifying the above expression, we yield:

(JOINp n 51 52)(i,j) where (s1 = SHUy 7,52 = SHDy % 7)
= [unfold JOIN | ’
(SHUM % 'z)(4,5), if even((i- N +j)div n)
(SHDp % z)(3,5), otherwise :
= [unfold SHUp and SHDM]
(N - 1,5), ifi>N—2 A even((i- N +j)divn) !
z(i+ %.7), ifi<N-—F A even((i- N+ j)divn) !
z(0,7), ifi < A -even((i- N+ j)divn) !
z(i— %.7), ifi>% A -even((i- N+j)divn) Y
=[even((i- N+j)divn)=> (1 <N-%) A ((i-N+j)<N?-n),
—even((i- N+ j)divn) = (i 2 §) A ((1- N +j) > n)]

g(N-1,N-1), if(i-N+j)>N2—n A even((i- N +j)divn)
z(i+ &.5). if(i-N+j)<N2—n A even((i- N +j)div n)
z(0,0), ifi-N+j<n A -even((i-N+j)divn)
z(i — #,7), ifi-N+j>n A —even((i-N+j)divn)
=[g(i-N+j+n)=(i+F,j)and g(i -N+j—-n)=(i—F,5)]
(zog)(N%-1), if(i-N+3)>N2=n A even((i- N + j) div n)
(zog)i-N+j+n), if(i-N+j)<N?-n A even((i-N +j)divn)
(z 0 g)(0), ifi-N+j<n A -even((i-N+j)divn)

(zog)i-N+j—n), ifi-N+j>n A -even((i-N+3j)divn)

39

= [fold SHL4 and SHR4 |
(SHL4 n (z0¢))(i - N +7), if even((i - N + j) div n)
(SHR4 n (z0g))(i- N +j), otherwise
= [fold JOIN |
(JOIN4 n 51 82)(i- N +3j)
where (s1,52) = (SHLs n (z0g),SHR4 n (z 0 g))
= [fold CORR4 and ¢! |

((CORR4 n (z09)) 0 g71)(i,])

A5 P‘:roof of Corollary 6
Asa rep;!'resentative of the four propositions, we only proof

COIE,RA n(zog))og ! =CORRy nz
Let i e {0,...,2" -1},
I
(CORRy nz)i -

= [unfold CORRy |
(JOINy n (COMMDy n z) (COMMUy n 1)) i
= [unfold JOINy |
(COMMDpy n z), if even(idiv n)
(COMMUy n), otherwise
= [even(i div n) = i < (i div 2n) - 2n + n, unfold COMMDy, COMMUy |
z (i+n), if even(idiv n)
z (i —n), otherwise
= [fold SHR4 and SHL,4]
(SHL n z) i, if even(idivn)
(SHR n z) i, otherwise

= [fold JOINy, fold CORR4 |
{CORRgnz)i
"
| i!
A.6 Piroof of Lemma 7
Let i € ko,...,N— 1}:

I(JOINA n s (ZIPWITH (&) (DISTL4 n (CORR4 n s)) 8))(3)

= [unfold JOIN4]
t8(3), : if even(i div n)
{(ZIPWITH (®)(DISTL4 n(CORR4 n 5)) s)(i), otherwise

40

£

We concentrate on the case ~even(i div n) and start by unfolding ZIP WITH.

DISTL4 n(CORR4 1 3))(3) & s(3)
= [unfold DISTL,]
(CORR, n s))({idiva)n+n—1) & s(4)
= [unfold CORR,] - , i
(JOIN4 n (SHL4 n 3)(SHR4 n 8))((3 div n)n + n — 1) @ s(1)
= [unfold JOIN,, distributivity over conditional]
(SHL4 n s)
- ((idivr)n+n~1)® s(i), if even(((idivn)n + n~1)divn)
(SHR4 n s) '
((idivn)n+n—1)®s(i), otherwise
=[((idivn)n+n—1)divn = (idivn)]
(SHR4 n s)((i div n)n + n — 1) @ s(4)
= [unfold SHR,4] :
s(0), if (idiva)n+n—-1<n
s((idivn)n+n—1—n)®s(i), otherwise
=[(idiva)n+n-1<n=(idivn)n<l] .= .]
s(0), if (idiva)n <1 "
s{((idivnr)n+n—1—n)®s{i), otherwise

4
i

= [abstraction]
(A . s(0), ifj<l1
s(j —1), otherwise)((i divn)n)® s(i)
= [fold SHR4 1, fold DISTR 4 and fold ZIPWITH |
(ZIPWITH (®)(DISTRA n (SHR4 1 8)) 5)(1)
Now putting the two cases together and folding JOIN,4 results in:

(JOIN, n s(ZIPWITH (@) (DISTR4 n (SHR4 1 3)) s))(4)

41

)

B E)ﬂample Implementation of Prefix Sums

We give an implementation of psums (see 4.4) by means of an imperative paral-
lel language, viz. Parallaxis [BBES92]. Parallaxis is a Modula-2 like imperative
language with explicit parallel control constructs as well as communication ope-
rations. It is not dedicated to a particular architecture, but allows the user to
specify alconcrete one. Parallaxis follows the SIMD computation model, i.e. there
is one control unit, which provides a single instruction stream to hundreds or
thousands of PEs. According to that, Parallaxis distinguishes two kinds of varia-
bles: (a) scalar variables which reside on the control unit and (b) vector variables,
which denote data elements spread over all PEs. Communication primitives are
PROPA !GA TE,RECEIVE and SEND which can only be dlstmgmshed by their
behavior on inactive PEs.

SYSTEM Prefix_Sum;
CONST N = 1024; (* natural number, power of 2 #)
TYPE inat = [1..N];
(eens Architecture specification: linear array with N PEs ###s)
CONFIGURATION list[1..N];
CONNECTION left: list[i] -> list[i-1].right;
right: list[i] -> list[i+1].left;
(*+*+ Definition of extended architecture skeletons: ss=s)
(#+#» JOIN, CORR and DISTR *ens)
PROCEDURE JOIN (SCALAR n:inat; VECTOR s,t:INTEGER):VECTOR INTEGER;
VECTOR res: INTEGER;
BEGIN IF EVEN((id_no -~ 1) DIV n) THEN res := s ELSE res := t END;
RETURN res
END JOIN;
PROCEDUEE CORR (SCALAR n:inat; VECTOE s:INTEGER) : VECTOR INTEGER;
VECTOE t,u: INTEGER;
BEGIN PROPAGATE left™n (s,t); PROPAGATE.right™n (s,u);
RETURN (JOIN(n,t,u)) ‘
END CORR;
PROCEDURE DISTR (SCALAR n:inat;VECTOR s:INTEGER):VECTOR INTEGER;
‘ SCALAR i: INTEGER; 3
BEGIN FOR i := 1 TO n DO
+IF (id_no - 1) MOD n # O THEN
| RECEIVE list.left(s) FROM list.right(s)
~ END END; RETURN s
END DISTR;
(#»*x Computation of the parallel prefix sum *#%#)
PROCEDURE psum (SCALAR m,n:inat; VECTOR s:INTEGER) : VECTOR INTEGER;
VECTOR t: INTEGER;
BEGIN WHILE m # n DO PEOPAGATE right(s,t); t := DISTR(n t) + s;
;i s := JOIN(n,s,t); n := 2 *
END; RETURN s

END psum;
(snxx Main program LTI
BEGIN PARALLEL ...; s := psum(N,1,s); ... ENDPARALLEL END Prefix_Sum.

|

42

[4]

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhdltlich

Die mit * markierten Berichte sind vergriffen ¥

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de
Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schoning, O. Watanabe
Instance Complexity '

91-02* K. Gladztz, H. Fassbender, H. Vogler .
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Kébler, U. Schoning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Kébler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schoning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Kébler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Han, L. Hamachandra, J. Kébler, A. Lozano,
M. Mundhenk, A. Ogiwara, U. Schéning, R. Silvestri, T. Thzerauf
Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Kdébler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally
Sets

92-02* Thomas Noll, Heiko Vogler ' '
Top-down Parsing with Simulataneous Evaluationof Noncircular Attribute
Grammars

92-03 Fakultat fiir Informatik

17. Workshop iiber Komplexitatstheorie, effiziente Algorithmen und Datenstrukturen
. [

92-04* V. Arvind, J. Kébler, M. Mundhenk :
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Kébler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kihnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for synta.x-
dlrected semantics 4

'
i

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost
Outermost Narrowing

92-08* Uwe Schbmng i
On Random Reductxons from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stéchastic Network

92-10 Michael Schmitt
: A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent
Any Linearly Sepa.ra.ble Boolean Function .

92-11 Johannes Ké’blenllSe_inosuke Toda
On the Power of Qenera.h'zed MOD-Classes

92-12 V. Arvind, J. Ké'l:)ler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser |
On a monotonic semantic path ordering ' "

92-14* Joost Engelfriet,|Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, I{onmd Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal Communications

Manager

|
93-02 M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch
The COCOON Ob_]ect Model

93-03 Thomas Thierauf, Semosulce Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederﬂz'c Green, Thomas Thierauf

On the Correlation;of Symmetric Functions

93-05 K.Kuhn, M.Reichc”rt, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gafner
Rechnerunterstiitzung fiir die konzeptuelle Modellierung

93-07 Ullrich Kegler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94.01 Michael Schmitt |
: On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Ktihnemam“i, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

|
94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Fafbender, }:Iez'ko Vogler, Andrea Wedel
Implementation of a Deterministic

Partial E-Unification Algorithm for Macro Tree Transducers
| ’

Te

94-05
94-06
94-07
94-08

94-09

94-10
94-11
94-12
94-13
94-14
94-15
94-16

94-17

94-18
95-01
95-02
95-03
95-04

95-05

V. Arvind, J. Kobler, R. Schuler
On Helping and Interactive Proof Systems

Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

Friedrich von Henke, Harald Ruef8
Arbeitstreffen Typtheorie: Zusammenfassung der Beitrage

F.W. von Henke, A. Dold, H. Ruef, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of
Software

Azel Dold
Formalisierung schematischer Algorithmen

Johannes Kébler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

Rainer Schuler

- On Average Polynomial Time

Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

Robert Regn
Verteilte Unix-Betriebssysteme

Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars: Two Exercises
in Transformational Programmmg ’

Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

Oleg Verbitsky
On the Largest Common Subgraph Problem

Uwe Schéoning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

Harry Buhrman, Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

Klaus Achatz, Wolfram Schulte

Architecture Indepentent Massive Parallelization of Divide-And-Conguer Algorithms

