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Abstract. We present a strategy+to develop, in a functional setting, cor- 
rect, efficient and portable Divide-and-Conquer (DC) programs for mas- 
sively parallel architectures. Starting from an operational DC program, 
mapping sequences to sequences, we apply a set of semantics preserving 
transformation rules, which transform the parallel control structurp of 
DC into a sequential control flow, thereby making the implicit data par- 
allelism in a DC scheme explicit. In the next phase of our strategy, the 
parallel architecture is fully expressed, where 'architecture dependent' 
higher-order functions are introduced. Then - due to the rising commu- 
nication complexities on particular architectures - topology dependent 
communication patterns are optimized in order to reduce the overall 
communication costs. The advantages of this approach are manifold and 
are demonstrated with a set of non-trivial examples. 

1 Introduction 

I t  is well-known that the main problems in exploiting the power of modern 
parallel systems are the developnlent of correct, efficient and portable programs 
[Pep93, Fox891. The most promising way to treat these problems in common 
seems to be a systematic, formal, top-down development of parallel software. 

In this paper we choose transformatzonal progmmmzng to develop parallel 
programs where transformational programming summarizes a methodology for 
constructing correct and efficient programs from formal specifications by app- 
lying meaning-preserving rules [Pargo]. Starting with a functional specification, 
we derive programs for the masszvely data parallel mode l ,  which assumes a large 
data collection that needs to be processed and that there is a single processor 
element (PE) for each member in the collection. The same set of instructions 
is concurrently applied to all data elements, i.e., there is a single control flow 
which guides the computation on all PEs. li 

The main characteristics of our strategy, using transformationd program- 
ming to  develop data parallel software, are the following ones: as , ,a  problem 



adequate structure we restrict ourselves to sequences, which are fully satisfac- 
tory in the vast majority of situations. The.usual data parallel operations, like 
apply-to-all or reduce, are provided. In addition, certain high level operations 
are introdu'ced, which can be interpreted as communication operations on the 
machine level (cf. Sect. 2). 

As the starting point of our strategy, we choose a very popular tactic for 
designing parallel algorithms: Divide-and-Conquer (DC). Batcher's bitonic sort 
is a well-known example. DC algorithms are particularly suited for parallel im- 
plementation because the sub-problems can be solved independently and thus 
in parallel. Obviously DC algorithms have explicit control parallelism, i.e., there 
are separate independent parts that can be processed simultaneously by distinct 
CPUs. However, our model of computation does not allow several control flows. 
Therefore we aim at exploiting the inherent data parallelism. Hence, we present 
a set of semantic preserving transformation rules, which make the implicit data 
parallelism in a DC scheme on sequences explicit, thereby introducing architec- 
ture indep&ndent communication operations on sequences (cf. Sect. 3). 

The arlchitecture is fully expressed in the next step of our strategy, where 
1 skeletons are introduced. Skeletons are higher-order functions to  express data 
Y parallel operations on specific architectures. The aforementioned sequence ope- 
4 

rations each have a straightforward implementation in terms of skeletons. In par- 
ticular it turns out that even the communication oriented sequence operations 
can be implemented on arrays, meshes and hypercubes equally well. Due to the 
rising communication complexity on particular architectures, topology dependent 
optimzzations become more and more important. We calculate two architecture 
dependent optimizations (for arrays and meshes) using only the skeleton de- 
finitions, where correspondent communications followed by broadcasts can be 
realized using less communication operations (cf. Sect. 4) 

However, aside from answering theoretical questions concerning the correctness 
of our approach, we want to stress the advantages of our work from a practical 
and methodological point of view: 

1 

- The identification of a transformation rule to exploit the implicit data par- 
allelisnl of DC and its necessary applicability condition makes the transfor- 
mation process target directed. 

- The developed DC algorithms are efficient and can be ported across several 
architectures. If, in addition, topology dependent optimizations are applied 
very efficient algorithms can be derived. 

- The presented transformations can be automated using an extended compi- 
lation approach, where the user may give hints in the form of laws to  the 
comp,iler [Fea87]. 

- Architecture independent data parallelism is distinguished from architecture 
depekdent one. Correspondingly we operate on different levels of abstraction 
(seq4ences vs. skeletons) and supply different transformation rules (data 
paralfelization vs. communication transformation). 

I These aspects are demonstrated with three examples: the parallel prefix com- 
// 



putation, Batcher's bitonic sort, and computing the convex hull of a set of points 
in the plane. i j 

The rest of this paper is organized as follows. Section 2 briefly presents our 
sequence model, and its relation to the massively data parallel model. 

The new DC transformation rules are introduced in Sect. 3. Section 4 defines 
skeletons, their use and optimizations. We follow in Sect. 5 with two examp- 
les, demonstrating the applicability of our approach. Section 6 compares our 
approach with others. Finally, Sect. 7 draws conclusions and raises issues for 
further research. 

Notation. In notation we follow the standard of lazy functional programming 
languages, like Haskell or Miranda. For example, we write function ,application 
in curried form, as in f x y which is equivalent to  (f x) y, and define functions 
- whenever possible - using pattern matching. If, in addition, assertions on 
parameters are used, they are given in the surrounding text. 

Addendum. The differences of this technical report wrt. [AS951 are marked as 
being addenda (lilie this one). Additionally proofs and an implementation of the 
running e x h p l e  in a real parallel language are presented in the appendices. 4 

2 The Balanced Sequence Model . ,  
'! 

Sequences in general can be used to express data parallelism in An abstract 
way, where parallelism is achieved exclusively through operations on sequences 
[Ble92]. In this section we explore this approach, present the traditional operati- 
ons on sequences and its data parallel view (Sect. 2.1), introduce communication 
oriented operations (Sect. 2.2), and define some properties (Sect. 2.3) that will 
be of value in the following exposition. 

2.1 Basic Sequence Opera t ions  

Our so called balanced sequence model is motivated by the underlying parallel 
program development strategy, viz. divide-and-conquer (see Sect. 3),:and by the 
need to  perform the same computation on all data elements of the sequence in 
parallel. The term "balanced sequence" stems from the fact that our DC scheme 
always results in balanced computation trees. 

The constructors of our balanced sequence model are the following ones: is 
the empty sequence, [el is the sequence which contains the single element e, and 
x it y is the sequence formed by concatenating sequences x and y, but only if 
both have equal length. This always results in sequences of lengths powers of 2, 
which is appropriate, since all known massively parallel machines work with 2n 
PEs. 

Addendum. An. alternative constructor set replaces concatenation, ;also called 
left-right composition by the shuffle operator W, also named odd-even composi- 
tion. In a shuffled sequence x W y the elements with even indices come from x 

3 



and the odd ones from y. We will later pick up this constructor set and show - 
that - in a DC scheme - it can be transformed into the former. 

I 
a 

The foliowing auxiliary functions are used to specify programs. They will be 
! removed dpring program development: the operator (#) returns the length of a 

sequence. The first-order functions first and last extract the f i s t  or last element 
I! from a nonempty sequence, respectively. The function copy creates a sequence 

of n copies of identical elements. 
It is perfectly well to assume every sequence element corresponds to a data 

element resting on a particular processor element. Two sequences can be seen as 
two different storage levels on the parallel machine. 

We now start to introduce the set of balanced sequence functions, most of 
them are commonly used functions [BW88, AJ931: 

- map. Applies a function to  every element of a sequence independently, and 
therefore reflects the massively data parallel programming paradigm in the 
most obvious way. 

- zip Withltip With3. Takes a pair/triple of sequences, having equal length, into 
,111 

a ne\y sequence in which corresponding elements are combined using any 
given I;binary/ternary operator. The family of zipwith functions correspond 
to the map functional working on two or more storage levels. 

- reduce. Reduces a nonempty sequence using any binary operator. This func- 
tion can be implemented on a parallel machine in logarithmic time using a 
'tree' ,[Ski93]. 

In a data parallel environment conditionals are somewhat different to their 
sequential counterparts. The action of a parallel if can be summarized this way: 
on every PE the condition is evaluated; in components where the condition is 
true, the then-branch is executed, otherwise the else-branch. 

A specialization of a parallel condztzonal is the operation jozn. It  takes a pair 
of seque4ces 2, y, having equal length, into a new sequence, which consists of 
alternatplslices of z and y each of length n, n > 0 (see Fig. l (a)) .  
We can define jozn by: 

I 
)om n (x1 +I- x2) (y l  -I+ y2) = x1 ii- y2, if n = #XI 
jozn n (x1 St- 22) (yl  it y2) =join n x l  yl  ~ t -  (1) 

join n 22 y2, if n < #xl  

Like the functions defined in the next subsection, join is a partial operation. 
Since these functions are introduced during program development, definedness 
of the resulting programs must be guaranteed by the appropriate transformation 
rules (cf. Sect. 3). 

2.2 Communication Oriented Sequence Operat ions 
Il 
1 A very wide range of scientific problems can be computed under the DC scheme 

using a/regular communication pattern. Naturally, some communication pat- 
terns are better than others for developing parallel algorithms. Essentially, they 



join 2 con 2 distL.2 

X o  - 0 yo - 0 YI 

X2  0 - y2  

X3  0 - y, 

X4 - 0 y4 

x, - 0 y, 

X6 0 - Y6 

X7  0 M Y7 

. '  
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.I 

Fig. 1. Sequence operations: (a) join 2 z y, (b) cow 2'2, (c) dist!, 2 z 

I.. 

have structural properties that make it easier to describe the data movement 
operations necessary for parallel computations. In the case of our particular DC 
scheme (see Sect. 3), the following communication operations seem to be the 
most suitable ones: 

Correspondent communication - modeled by function corr n x - exhibits a 
butterfly-like communication pattern: for a particular value of n, each P E  com- 
municates with each PE  whose index differs in the nth bit from the left. An 
example is depicted in Fig. l (b) .  Its definition is straightforward: 

corr n (x it y) = (y it x), i f n = # x  
c o r r n ( x i t y ) = c o r r n x i t c o r r n y ,  i f n < # x  (2) 

First or last communication can be realized using a correspondent commu- 
nication followed by a directed broadcast. A directed broadcast operates from 
right to left, where the value of the rightmost element is distributed to the left 
(distL), e.g., distL n x copies the value of the last element of each sliye of length 
n to its left neighbors (see Fig. l(c)). The function distR operates from left to 
right. Directed broadcast is related to copy by the following definitiyn: 

distL n x = copy n (last x),  i f n = # x  
distL n (x it y )  = distL n x it distL n y, if n 5 #x (3) 

The introduced sequence operations cow, distLldistR and join, mirror the 
necessity of our DC scheme to exchange data between PEs and to select different 
data elements on each PE, respectively. 

2.3 Properties: Distributivity and Length Preservat ion 

Our balanced sequence model fulfills a number of properties, where especially the 
following two are needed in our transformation rules given below (cf. Sect. 3). 



Let f denote a function, which maps sequences to sequences. The function is 
said to be distributzve, if it distributes through concatenation of sequences: 

I! 

f ( z l + ~ ) = f  z + f  Y 

I t  is said to be length preserving, if the length of the output sequence is equal , 
to the length of the input sequence: I 

#(f 2) = #z 

The generalization to functions taking a tuple of sequences yielding a single 
sequence is straightforward. 

Another generalization concerns the distributivity of functions like corr or 
distL, which work on slices of length n. This time, let f n denote a function, 
which maps sequences to sequences. If i t  distributes through a sequence z it y, 
where n'!< #z, then the function is said to be distributive modulo n,  or - more 

Ij - 
general spoken - slice-distributzve. 

All (Slice-)distributive functions that either map the empty sequence to  the 
empty ibquence, or are undefined for empty sequences, are uniquely defined by 

Il specifying their effect on 'elementary' sequences (having length n). 
I t  cah be shown that functions map and zip With are distributive, corr, distL 

and joid are slice-distributive, and nap ,  zip With, corr, distL and join are length . 1 preserving. 

3 ~ i v i d e  and Conquer 

First, the idea and assumption of our DC tactic is discussed (Sect. 3.1) followed 
by its formal account (Sect. 3.2) that aims a t  transforming the parallel control- 
structure of DC into a sequential control flow with a parallel data-structure. 

3.1 The DC Scheme 

DC is a well-known tactic for designing parallel algorithms. It consists of three 
steps: 

1. If tlie input isnot  primitive, partition the input. 
2. Solve recursively the subproblems, defined by each partition of the input. 
3. Coinpose the solutions of the different subproblems into a solution for the 

overall problem. 

A general DC tactic can be defined as the following higher-order function: 
$ 

~ c I q t ~ h k j =  f 
where f z = t x ,  if q = #z 1 f ( z  it y) = (k v w) it ( j  v w), otherwise , 

where (v, w) = (f (g z y),f (h z Y)) 
I, 
I1 
I 6 



In DC, when the input has length q, the problem is solved trivially by t ,  other- 
wise the input is split (by pattern matching), the subinputs are preadjusted by 
g and h, solved in a recursive manner, postadjusted by k and j and then con- 
catenated. Thus the decompose and compose operations consist of td;o steps: 
(9, h) o it-' and it o (k ,  j), respectively. This leads to  a computati&, where 
the control flow, expressed by the sequence primitives, is separated from the 
computation, expressed by the adjust functions. In addition, it is assumed that 
the trivial, the pre- and the postadjust functions are length preserving. 

This DC scheme is perfectly appropriate for data parallelization, since the 
sequence primitives are independent of the elements in the sequence and hence 
can be performed in constant time. 

The power of this scheme stems from the fact that the pre- and postadjust 
functions receive the complete input and output sequence, respectively. However, 
since the adjust functions must be length preserving only "balanced" algorithms 
can be derived. 

These assumptions rule out certain important non-balanced algorithms, as 
for instance Quicksort. But algorithms that either are not balanced or depend on 
values are not suitable for massively data parallel computation. They require -in 
contrast to  our adjust functions - irregular communication patterns to  get things 
in the right place, which normally causes high communication costs. Therefore 
such algorithms are not considered relevant for our current study. , 

dl 
Addendum. Obviously one can choose the alternative constructor set using shuf- 
fling instead of concatenation, too. All facts and assumptions that hold for con- 
catenation also hold for shuffling. a 

3.2 The Rules 

The presented DC scheme exhibits cascading recursion and explicit data decom- 
position. In order to transform this scheme into a corresponding data parallel 
program, we have to introduce a sequential control flow, i.e., we must Fransform 
the cascading recursion into linear, or - even better - tail recursion, and we have 
to make the explicit data decomposition implicit. 

First, we concentrate on simplifying the recursion. The computation proceeds 
in two phases: in a decompose or 'top-down' phase the preadjust functions g and 
h are applied to the subsequences, whereas in the compose or 'bottom-up' phase 
the postadjust fuilctions k and j are applied. For a sequential flow of control, 
we have to decouple the phases o f f .  i.e., we introduce two functions one for the 
top-down computation fJ. and one for the bottom-up computation f t. 

,i 
Theorem 1 (Generalized divide-and-conquer rule). Assume g, h,  j ,  k,  t t ,  
tJ. and t are length preserving functions and t = tf o tJ. Let f be a general DC 
algon'thk of the form: 

f x = t x, if q = # x  
f ( x  it y) = ( k  v w )  U ( j  v w ) ,  otherwise 

where ( v ,  w )  = (f (9 x y),f '(h x Y)) 



Then, f ,can be decomposed into an equivalent function f .f o f 1: 

f x = ft (f1.1 
where f & x  = t l x ,  i f q = # x  

f & ( x S t y ) = f & ( g x y ) S t f & ( h x y ) ,  otherwise 11 it. = t t  x ,  i f  q = # x  
f t ( z S t  Y )  = (k v W )  St  ti v w ) ,  otherwise 

I where ( v , w )  = ( f t  x , f t  Y )  

Proof. See Appendix A.1. 

The resulting functions f f  and f J. still have cascading recursion. But now 
pre- and postadjust functions are decoupled. Additionally, we know the number 
of iterations 'beforehand', since the recursive computation only uses split and 
concatenation on balanced sequences. 

We rewrite the functions f & and f t to include an additional parameter, which 
determines the recursion depth. Thus, it is not necessary anymore to use the 
sequenck to determine the recursion depth - its length becomes constant. On 
the othdr hand, the trivial, pre- and postadjust functions have to be performed 

1 on the appropriate slices. This is possible, if they are length preserving. Then it 
is easy tb define their slice-distributive generalizations, which work on the whole 

I/ sequence and not only on the subsequences as in the case of cascading recursion. 
In ordel! to supply the appropriate slices to the pre- and postadjust functions, 
we must explicitly introduce correspondent communication followed by a join of 
the different solutions of the subproblems. 

The following two transformation rules enable us to  derive tail-recursive and 
therefore data parallel versions of f 4 and f t. 
T h e o r e m  2 (Top-down w i t h  pre-adjustment).  Assume functions g ,  h and 
t are length preserving. Let f L  be a cascading top-down algorithm of the form: 

Then. 41 is transformed into an equivalent function f l ) ,  which is a tail-recursive 
top-down computation with pre-adjustment. As an assertion on the parameters 

V of f l )  ye require # x  2 n: 

f l + = f u ( # x ) x  
where 

, f l ) n x = t l q x ,  i f q = n  
f l) n x = f l) (join f (g' f x 2') (h' f x1 x ) ) ,  otherwise 
where 

2' = C O W  ; x 
t' n x = t x ,  i f n = # x  

11 t' n ( z i t  y) = (t' n x )  +t (t' n y), i f n < # x  
S ' ~ Z Y  = ~ Z Y ,  i f n = # z  
g' n (21 it x2)(yl  it y2) = (9' n x1 y l )  it (9' n 22 y2), i f  n 5 #x1 ii h ' n x y  = h z y ,  i f  n = # x  
h ' n  (21 i t x 2 ) ( y l  it y2) = ( h ' n x l  y 1 ) i t  ( h ' n x 2  y2) , i f  n s  # x l  





t x  = x  
k x y = x  
j x y = map ((+)(last 2 ) )  y 

We immediately obtain an iterative data parallel version of p s u q .  The new 
functions i', k' and j', however, are still recursive. Although they can be imple- 
mented using DC too, it is much better to circumvent the recursion. Therefore, 

11 we carry out some precomputations to determine their closed forms: 
/I 

~era'vation. Let n = ( # X I )  and x = x1 it 22 and x' = 22 it 21: 

ki n x x' 
= [ def. of x and x', slice-distrib. of k', unfold k'] 

. ( k  x1 22) it ( k  22 x l )  
I/ 
= [ unfold k] 

= [ assumption: x = x1 it 22 ] 

j' n x x' 

= [ def. x and x', slice-distrib. j ' ,  unfold j' ] 
0' 21 22) it 0' 22 21) 

[ unfold j] 

I 
(map ((+) (last 21))  22) it (map ((+) (last 22))  X I )  

= [ property of map wrt. zip With ] 
(zip With (+) (copy n (last x l ) )  22) it 

(zip With (+) (copy n (last 22))  x l )  

'= [ fold distL ] 
zip With (+) (distL n $ 1 )  22 it zip With (+) (distL n 22) x l  

= [ distrib. of zip With ] 

i 
zip With (+) ((dzstL n X I )  it (distL n x2))  (22 it x l )  

= [ slice-distrib. of distL, assumption on x and x'] 

zip With (+) (distL n x )  x' 
I 

~ u e ( t o  the slice-distributivity of k' and j', definitions of k' and j' hold for 
all n <_ # x l .  In a similar way, ti  can be shown to  be equivalent to the identity 
function. 

By means of these definitions, we apply Theorem 3 to p s u q  and result in: 



p s u m  x = psuml #x 1 x 
whe re  

psuml m n x = x ,  i f n = m  I, 

psuml m n (21 it 22) = p, otherwise , :I! 
where  x' = corr n x 'li 

p = psuml m (2n) (join n x (zip With (+) (distL n x') x))  

In the following section, we will pick up psuml, and will systematically derive 
architecture specific array, mesh and hypercube algorithms, respectively. 

Addendum. On closer inspection of the different constructor sets and their use 
in the DC scheme, we can observe that - under certain conditions - a topdown 
computation based on split and concatenation is equivalent to a lbottom up 
computation based on unshuffle and shuffle, where the post-adjust 1,function of 
the latter is the preadjust function of the former. However this only holds, if on 
termination of DC the input has length 1 (q = 1) and is then trivially solved by 
the identity f~inction (t = id). This fact was already observed by [CM91]. 

Theorem 4 (Odd-even vs. left-kight). Let f3. be a top-down algorithm with 
pre-adjustment of the form: 

Then f J  is transformed into an equivalent function f t ,  which is a bottom-up 
computation with post-adjustment. 

f t  x 
. 

= x, . if #x = 1 
f t  Y )  = ( 9  V w ) i t ( h v  w), otherwise 

where  (v,w) = ( f t  x , f t  Y) 
I; 

Proof. By coil~putational induction. 

Theorem 4 holds even if the computation ordering is changed that is, if the 
roles of the pre-and postadjust functions are inverted. 

This result justifies our approach, to  present the former rules for only one 
constructor set - whether it  is the one which is based on concatenation, the one 
we have chosen, or the other one, does not really matter. <I 

4 Skeletons and Skeleton Transformations 

In this section, the basis for the derivation of architecture specific programs is 
given, i.e., topology independent skeletons are introduced (Sect. 4.1), followed 
by topology dependent ones (Sect. 4.2), then the derived sequence skeletons are 
calculated (Sect. 4.3), and finally communication transformations are presented 
(Sect. 4.4). 



1 4.1 Basic Skeletons 
/I 

The skeleton idea is fairly simple. The data components on all processors are 
modeled as a data field wC921, i.e., as a function over some index domain D, 
which describes the PE's indices, into some codomain V of problem related 
values. Then, data parallel operations can be defined as higher-order functions 
(called skeletons), which are either abstractions of 

- elementary communication-independent computations on all PEs or 
- comhunication operations, which pass values along the network connections. 

'Il! 
For instance, the most typical elementary operation on data parallel archi- 

t tectures is a single function operating on multiple PEs. This computation is 
expressed by the MAP skeleton: 

MAP f a = A i . f ( a  i )  (4) 

Thehigher-order function MAP takes an operator f and a data field a ,  and 
returns 'a data field in which each element is the result of operation f applied to 
the cordesponding element of a. 

~helskeleton ZIPWITH generalizes the MAP skeleton in the sense that 
ZIPWITH takes a pair of data fields a and b, and combines them using a dyadic 
operator @. 

ZIPWITH @ a b = A i .(a i )  @ ( b  i )  (5) 

The introduced skeletons can be applied to every data parallel architecture, 
because no data exchange between two processors takes place. All data parallel 
architectures share these topology independent skeletons. 

~ndikidual types of architectures differ in their topology and thus, in their 
possible patterns of communication. Communication patterns for linear arrays, 
meshes ;and hypercubes will be given in the next subs'ection. 

4.2 Coinmunication Skeletons 

This section formally defines three important static processor organizations: li- 
near arrays, meshes and hypercubes. 

Linear,,arrays. I Linear arrays have a very simple interconnection network. Every 
P E  is linked to  its left and right neighbor, if they exist. An abstraction of a li- 
near ariay with N PEs, where N in general is a power of 2, will be written as a 
parameterized type: 

array(cr) = index -+ cr 
where  index = { i I 0 5 i < N )  



Arrays can have wrap-around connections (then called rings), i.e:, P E  0 is 
connected to  P E  N - 1. Here, we only consider arrays without wrip-around 
connections. * I 

We identify two basic data parallel exchange operations: shifting all elements 
one position to the left or to the right. The next two skeletons allow comrnuni- 
cation of k steps at a time, although only one step a t  a time is an elementary 
computation on these architectures: 

SHLA k a = X i .  a ( N - I ) ,  if  i 2  N - k  
a(i  + k), . otherwise 

SHRaka=Xi . . a (O) ,  . i f i < k  
a(i - k), otherwise 

Note. The above communication skeletons are modeled in such a way that PEs, 
which do not receive a valid data element, yield the appropriate value of a 
boundary PE. Other patterns could be chosen too. 

Meshes. In a mesh network, the nodes are arranged in a q-dimensional lattice. 
Communication is allowed only between neighboring nodes. Two-dimensional 
meshes, for instance, have N x N identical PEs, which are positioned according 
to an N x N matrix. Each P E  P ( i , j )  is connected to  its neighbor BEs P ( i  + 
1, j ) ,  P ( i  - I ,  j ) ,  P( i ,  j + I ) ,  and P( i ,  j - I ) ,  if they exist. The abstraction of 
two-dimensional meshes reads: 

mesh(cr) = index -t cr 
where  zndex = { (z, j) I 0 5 z , j  < N )  

Meshes also can have wrap-around connections, where each column and each 
row of the mesh is connected like a ring. Again, we only consider meshes without 
wrap-around connections. 

According to these interconnections, we distinguish four different exchange 
operations: data is sent to its left(SHL), to its right (SHR) to its upIjer (SHU) 
or lower neighbors (SHD). The skeletons have the form: 

SHLM k m = X(i, j ) .  m(i, N - I),  ' if j 2 N - k : 
m(i, j + k), otherwise 

SHRM k m = X(i, j ) .  m(i,O); ' if j < k 
m ( j - k )  otherwise 

SHUM k m = X(i, j). m(N - 1, j), if i 2 N - k (6) 

m(i + k, j ) ,  otherwise 

SHDM k m = A(i,j).  m(0, j ) ,  i f i < k  
m i  - k j )  otherwise :I: 

I, 

* Wrap-around connections do not add further functionality to the system, but make 
communication patterns more efficiently implementable. 



Hypercubes. In an n-dimensional hypercube, which has 2" nodes, each P E  
has n neighbors, which it can reach in one time step. Its abstraction looks like 
the one for arrays, i.e., we have: 

Ih hyper(cr) = index -+ cr 
4 where index = { i 1 0 < i < 2")  
I/! 

A P E  in an n-dimensional hypercube can communicate with n of its neigh- 
bors, where nodes are adjacent to each other when their indices differ in exactly 
one bit position. This bit can be set on or off - correspondingly, we can communi- 
cate 'up' or 'down'. Once again we generalize this communication, by specifying 
communication in dimension d, which has to be a power of 2: 

COMMU d h = X i .  h(i - d), if i 2 (i div (2d)) .2d  + d 
h(i), otherwise 

COMMD d h = X i. h(i + d), if i < (i div (2d)) 2d + d (7) 

h(i), otherwise 
11 
I 

Note. $lie integer parameter for shifting elements on the array or mesh describes 
the nudber of elementary communication steps, whereas the first parameter of 
COMMU and COMMD specifies the dimension in which a communication takes 
place - khus the elementary hypercube communication isperformed in a single 
step. ~ 
4.3 Derived Skeletons 

Now tliat on the one side, we have derived data parallel functions on sequences, 
and on the other have specified architecture specific skeletons, it remains to close 
the gap, i.e., to implement the sequence primitives in terms of skeletons. 

We state without proof the correspondence of map with MAP and zip With 
with ZIPWITH. This can easily be seen, if we recognize that each operation 
(by mesis of map or MAP and zipwith or ZIPWITH, respectively) is applied 
indepen!bently to each data element. Therefore, it makes no difference whether 

I the data component is an element of a sequence or an element of a data field. 
The coinlnunication oriented sequence operations, however, have to be defined 
in the context of the architecture the algorithm is aimed at. 

Arrays. Sequences of length N and linear arrays defined as data fields have a 
one-to-one correspondence: 

where x, is the selection of the ith element of the sequence. The inverse of g is: 
I! 



I1 
We derive tlie skeleton functions, operating on a linear array from the com- 

munication oriented sequence operations. We start with the followini! definition: 

After eliminating the bijection g, we get the following direct definitidns: 
!I 

Corollary 5. 
I, 

(I 
JOINA n a b = A i. a i ,  i f 'even(i div n )  

$1 
b i ,  otherwise 

CORRA n a = JOINA n (SHLA n a )  (SHRA n a )  
1 

DISTRA n a = A i. a(l n )  where l = i div n 
(9) 

I 

DISTLA n a = A i. a((l + 1) . n - 1 )  where l = i div n 

Proof. See Appendix A.3. 
II 

In order to obtain an array specific program, we replace the sequence opera- 
tions by operations on data fields. 

Example Parallel prefix cont'd. Unfolding the skeleton operations fo; arrays in 
I psuml, results in the following architecture specific psum program: ;; 
I 

psum x = psum2 # x  1 x 
where . . 

psum2 m n x = x ,  i f m = n  
psum2 m n x = psumn m (2n)  (JOINA n x x ' ) ,  otherwise 4i 
where x' = (ZIPWITH(+) (DISTLA n (CORRA n x ) )  x )  

I1 
11 

Note that the resulting program suffers from a lot of redundant communica- 
tion operations. Due to our architecture independent transformation iules 2 and 
3, we always iiitroduce a correspondent communication. .But in the: particular 
case of the above example, we only have to distribute data in one direction, 
which leads to many superfluous shifts. Below, we will present communication 
transformations to remove redundant communication operations. ! 

:j 
I 

Index Thnslat ions.  In order to define the derived skeletons'for e h e s  and 
hypercubes, we could proceed as already done for arrays. However, 11having de- 
fined arrays as data fields, it is much simpler to map only the indexl'domain of 
the array to the hypercube or mesh domain instead of mapping the ahole data 
structure. I 

Let D and E be two index domains. A bijective mapping g : D 9 E ,  with 
inverse g-' : E + D is called an zndex translatton. 1 

In fact, the application of an index translation results in a change of the 
underlying coordinate system, given by the source index domain D. Ij 

'I 



Meshes. Linear arrays of length N 2  are mapped onto a mesh with N columns 
and N row's, using the following index translation: 

g :  ((0 ,..., N 2 - l ) + { O  ,..., N - l } x { O  ,..., N - 1 )  
k I+ (kdiv N ,  kmodN)  

where it is assumed that the indices are in row-major-order. The inverse mapping 
reads: : 

The mesh oriented skeletons JOINM, CORRM,  DISTRu and DISTLM can 
be de r i~eds t a r t i n~  from the corresponding array skeletons, this time using index 
translations: 

JOINM n x y = (JOINA n ( x  o g ) ( y  o g ) )  o g-' 
CORRM n x = (CORRA n ( x  o g ) )  o 9-l 
DISTLM n x = (DISTLA n ( x  o 9 ) )  o g-' (10) 

DISTRM n x = (DISTRA n ( x  o g ) )  o g-' 

~l imi l l a t i *~  the index mapping, we obtain the following direct definitions: 

Corollary 6. 

JOINA4 n x y = X ( i ,  j ) .  x ( i ,  j ) ,  i f  even((i . N + j )  div n )  
y( i ,  j ) ,  otherwise 

CORRM n x = X(i, j).JOINM n x1 22 
where x1 = SHLM ( n  mod N )  (SHUM ( n  div N )  x)  

x2 = SHRM ( n  mod N )  (SHDM ( n  div N )  x )  
DISTLM n x = X(i, j ) .x((( l  + l ) n  - 1) div N ,  ( ( 1  + 1 )n  - 1)  mod N )  

where 1 = ( i  . N + j )  div N 
DISTRM n x = X(i, j) .x((l  n )  div N ,  ( 1 .  n )  mod N )  

where 1 = ( i  . N + j )  div n 

Proof. Sde Appendix A.4. 

~ ~ ~ e r c & b e s .  Derived skeletons for the hypercube architecture are defined by 
choosiilg the identity function as an index translation ( g  = id).  From (10) by 
replacing the subscript M with H, we obtain: 

~ 0 1 4 ~  n x y = X i . x i ,  i f  even(i div n )  
y 2, otherwise 

CORRH n x = X i .JOINH n (COMMDH n x )  (COMMUH n x )  
UISTLH n x = X a .x((l + 1)  . n - 1)- where 1 = i div n 

DISTRH n x = X i .x(1 n )  where 1 = i div n 

Proof. See Appendix A.5. 



4.4 Communication Transformations for Array and Mesh 

The result of our derivation leads to communication patterns, which probably are 
not the most efficient ones on a particular architecture. This is caused by the fact 
that for reasons of architecture independence, we always introduce correspon- 
dent communication. Sometimes first or last communication would be perfectly 
sufficient. Whereas correspondent communication is cheap on the hypercube - it 
can be performed in one step - it is more expensive on the mesh and rather ex- 
pensive on the array. Thus it is obvious to specialize first or last communications 
on these architectures by eliminating correspondent communication. This can be 
achieved by partial evaluation of the cornrnunicqtion pattern. As an example, we 
give two lemmas for arrays and meshes: 

Lemma 8 (Communication transformation for linear arrays). Let the fol- 
lowing compound communication pattern for linear armys be given: 

JOINA n x (ZIPWITH @ (DISTLA n (CORRA n 2)) x) 

This pattern is partially evaluated into: 

JOINA n x (ZIPWITH @ (DISTRA n (SHRA 1 2)) x) 

Proof. See Appendix A.6. 
I 

Note. The expression DISTLA n (CORRA n x) is slice-distributive, whereas the 
substituted expression DISTRA n (SHRA 1 x) is not. However both yxpressions 
are a t  least equal on every second slice of length n. Therefore thef expression 
must be embedded as the second parameter in a JOINA n. The use of ZIP WITH 
generalizes the comnlunication transformation. 

t 

While the colllmunication pattern with the correspondent communication 
needs 3n - 1 elementary shifts, the improved pattern can do with n shifts. 

In a similar way, we can derive a communication improvement for mesh 
connected computers. 

Lemma9 (Communication transformation for meshes). Let the following 
compound communication pattern for meshes be given: 

JOINM n x (ZIPWITH @ (DISTLM n (CORRM n x))  x) 

This pattern is partially evaluated into: 

JOINM n x (ZIP WITH @ x 2') . 

where x' = DISTRM n (SHRM 1 x), i f  n < N 
DISTLM n (SHDM $. x), otherwise 

Proof. Analogous to the proof of Lemma 8. , . .  



In the worst case ( n  > N ) ,  the improved pattern requires N + 8 - 1 ele- 
mentar; shifts on meshes, while the original communication with correspondent 
shifts needs N + 3% - 2. Since communication costs are crucial for the efficiency 
of real daralle~ programs, a reduction of elementary shifts by a factor of about 3 
seems worth the work. 

I 
Ezample Parallel p ~ f ;  cont 'd. Applying the communication transformation for 
arrays to p s u n ~  results in: 

psum z = psum3 # z  1 z 
where 

I psum3 m n z = x, i f m = n  
psum3 m n x = psum3 m (2n) (JOINA n z z ' ) ,  otherwise 
where x' = ZIPWITH (+) (DISTRA n (SHRA 1 z )  x) 

An implementation of psum3 in a real data parallel language is now straight- 
forward and presented in Appendix B. 0 :  

5 Applications , I 

I 

In order to demonstrate the usefulness of the presented approach, we work out 
two somewhat more complex examples. In Sect. 5.1, we treat one of the most 
popular sorting algorithms for data parallel computers viz. Batcher's bitonic 
sort. Section 5.2 deals with a problem in computational geometry, namely the 
construction of a convex hull. 

5.1 Bi to~l ic  Sort  

The well-known bitonic sort algorithm was proposed by K. E. Batcher in 1968 
for so called sorting networks [Bat681 and later adapted to parallel computers 
[NS79]. 

Preliniinaries and Operational Specifications 

The bitonic sort algorithm is based on the central notion of the bitonic sequence. 
A sequence s is said to be bitonic if it either monotonically increases and then 
monotonically decreases, or else monotonically decreases and then monotonically 
increases. For example, the sequences [I, 4,6,8,3,2] and [9,8,3,2,4,6] are both 
bitonic f 

The fundamental idea behind the bitonic sort algorithm rests on the following 
observAtion: let s = x it y be a bitonic sequence and let d = zip With min z y 

11 and e = zip With maz x y ,  where min computes the minimum and max the 
II maximum of two ordered values. Then we have: 
li (i) d and e are each bitonic and 

(ii) redlce m u  d 5 reduce min e. 
I) 

The pigof of this proposition can be found in [Bat68]. 1 



Bitonic Sorter. This fact; merging two bitonic sequences gives an ascending se- 
quence, immediately gives us an operational specification according t o  the DC 
paradigm. As a precondition, we require the input sequence to  be nonempty and 
bitonic. 

bimerge [el = [el 
bimerge(x it y )  = bimerge(zip With min x y )  it bimerge(zip With m a  x y )  

Arbitmy Sorter. A sorter for arbitrary sequences (implemented by function 
bisort) can be constructed from bitonic sorters using a sorting-by-merging scheme: 
decompose a sequence of length n into separate intervals of length 2. llivially, 
these intervals are bitonic so that we can use the algorithm for bitonic sequences. 
In this way, we obtain pairs of sorted elements. 

Unfortunately, two adjacent subsequences in ascending order cannot be put 
together to form a single bitonic sequence. To achieve this, the intervals have to  
be sorted alternately in ascending and descending order, or every second interval 
has to  be reversed. Doing so, we get a intervals of length 4, all of them are 
bitonic so that again the above algorithm for bitonic sequences can.'t;e applied. 
This process is repeated until we get a single bitonic interval, which eventually 
will be sorted by function bzmerge. 

Again, we can summarize this informal description into an operational spe- 
cification using the DC strategy: 

sort s = bzmerge(bisort s)  
where  

bisort [el = [el 
bisort(x it y )  = bzmerge (bzsort x )  it reverse (bimerge (bisort y ) )  

Note. Algorithm lrisort explicitly reverses every second interval, putting an ascen- 
ding sequence into a descending one by means of the auxiliary function reverse. 
The same effect can be achieved by inverting the comparisons, i.e., instead 
of min in function bimerge we use max and vice versa. Function bimerge' = 
reverse o bimepge uses inverted comparisons in order to  return sequences in de- 
scending order. 

We redefine function sort by explicitly using function bimerge' : I: 

sort s = bimerge(bisortl s )  
where  

bisort' [el = [el 
bisortl(x it y )  = bimerge (bisort' x )  it bimerge' (bisort' y) 

Parallelizat ion 

A closer inspection of the operational specifications shows that they both fit the 
patterns provided by the transformation rules given in Sect. 3. 



Transformation o f  function bimerge. In order to  apply the rule Top-down 
with pre!'adjustment to function bimerge, we have to instantiate the input scheme 
given byi   he or em 2: 

I t x = x  
I g x y = zipwith min x y 

h x 4 =zipwith m a x x  y 

il 
In tge next step, we want to rewrite the cascading recursive definitions of 

t ' ,  g' add h' given in Theorem 2. Remember that we aim at a data-parallel 
I computation scheme, where we can apply a single instruction to multiple data 

elements. 

~erivat ibn.  Let n = # x l  and x = x1 it 22 and z' = 22 it x l :  

g' n , x  x' 

= [d'efinition of x and x',  slice-distributivity of g' ,  unfold g' ,  unfold g ]  

(zzp With min x1 x2) it (zip With min x2 x l )  

= [di~tr ibut ivi t~ of zip With, assumption: x = XI it 22 and x' = 22 i+ X I ]  

zip With min x x' 

In a similar way, we derive simplified definitions for functions t' and h': 

t ' n x  = x  
h' n x x' = zip With mas x x' 

<I 
Due +to the slice-distributivity of t ' ,  g' and h', their definitions hold for all 

n 5 # x l .  13 
II 
Il' Under the assumption # x  3 1, application of the transformation rule (see 
II Theorein 2) results in: 
.I, 
1 bimerge x = bimergel ( # x )  x 

where  
bimergel n x = x ,  i f n = 1  
bimergel n x = bimergel (join 4 v w ) ,  otherwise 
where x' = corr 5 x 

( v ,  w )  = (zip With min x x', zip With max x' x )  

Analogously, we can develop a topdown version of function bimerge': 

bimergelJ n x = x ,  if n = l  
bimerge'l n x = bimerge'l 5 (join 5 v w) ,  otherwise 

' where x' = corr 5 x 
( v ,  w )  = (zip With max x x', zip With min z' x )  



Transformation of function bisort'. We start with an instantiation of the 
transformation rule Bottom-up with post-adjustment (see Theorem 3): . - 

t x =  x 
k x y = bimerge x 
j x y = bimerge' x 

I 
1 

Again, we replace the (recursive) definitions of t', k' and j' by appropriate data 
parallel (non-recursive) versions: 

Derivation. Let n = #xl  and x = x l  -tt x2 and y = yl it y2: 

k ' n x y  

= [definition of x and y, slice-distributivity of kt, unfold kt,  unfold k] 

(bimerge $1) it (bimerge 22) 

= [property of bimergeJ, assumption: n = #xl  and x = x l  it x2] 

bzmergel n x 

In exactly the same way, we compute instantiations for t' and j': 

t ' n x  = x  
j' n x y = bimergefJ n x 

Due to  the slice-distributivity of t', k' and j ' ,  their definitions hold for all 
n 5 #XI.  

Under the assumption #x 2 1, the application of the transformation rule 
Bottom-up with post-adjustment yields: 

bisort' x = bisortfi (#x) 1 x 
where 

bisortfi m, n x = x, if m = n  
bisortfi m n x = bisortfi m (2n) (join n v w), otherwise 
where x' = corr n x 

(v ,  w) = (bimergeJ n x ,  bimergefJ n x)  

An obvious sinlplification (since x' does not occur in the body of bisortfi) 
results in: I~ 

jj 

bisort' x = bisortfi (#x) 1 x 
where 

bisortfi m n x = x, if m = n  
bisortfi m n x = bisortfi m (2n) (join n u w),  otherwise 
where (u, w) = (bimergeJ n x, bimergefJ n x)  

The final result of our transformational derivation of bitonic sort is summa- 
rized in the following program: 



(a) (b) 

Fig. 2. Sorting a bitonic sequence of 8 elements using: (a)  bimerge+ (b) bimergew 

sort s = bimergel (#x) (bisortfi (#x) 1 x) 
where 

bisortfi m n x = x, if m = n  
'bisortfi m n x = bisortfi m (2n) (join n v w), otherwise 

I where 
(v, w) = (bimergel n x, bimerge'l n x) 

'I = corr 5 x 

bimergeJ, n x = x, i f n = 1  
bimergel n x = bimergel 4 (join 5 v w), otherwise 
where*(v, w )  = (zzp With min x x', zip With mas x' x) 

bimerge'l n x = x, if n = l  
bimerge'l n x = bimerge'l $ (join $ v w ) ,  otherwise, 
where (v, w) = (zip With m a  x x', zipwith min x' x) 

It can be efficiently executed on massively parallel computers with such diverse 
topologi'es as linear array, mesh connected computer or hypercube. 

Addendum. The bitonic merge algorithm is often presented with the alternative 
U constructor set based on odd-even division. 

The difference can nicely be illustrated using a comparison network, which I is comp,:ised solely of wires and comparators. We draw wires as horizontal lines, 
its inputs appear on the left, its outputs on the right and draw the comparator, 
which receives two inputs x and y and generates the two outputs x' = min x y 
and y' A max x y as vertical lines. 

We immediately observe that in the derived bimerge function, henceforth 
called bzmerge+, the connections between comparators varies from stage to stage 
(see Fig. 2(a)), whereas the connections between comparators is constant using a 
shuffle network. This was already realized by Stone [Sto72]. His bimerge variant, 
here called bimerge~ (see Fig. 2(b)), is a bottom-up computation with an odd- 
even division instead of the left-right one: f 



bimerge~ [el = [el 
" 

bimergew(x W y )  = zip With min u w W zip With max u w 
where (u, w) = (bimergewx, bimergew y) 

Obviously, bimergew matches the input pattern of the odd-even to left-right 
division rule. Vie apply theorem 4 to bimergew and result in bimerge+. Thus 
both versions are equivalent; the data parallelization of bimergew needs only one 
initial transformation step. 4 

4 

5.2 Convex Hul l  
I. 

This section considers the problem of constructing the convex hull from a finite 
set S of points in tlie two-dimensional real space IR x IR. The algorithm given 
here is mainly an adaptation of a sequential one presented in [pH771 with major 
changes to fit the massively parallel paradigm. 

Preliminaries and Operational Specifications 

Given a set S = i s l ,  s2, . . . , szn) of points in the plane, the convex hull of S 
is the smallest convex polygon P ,  for which each point in S is either on the 
boundary of P or in its interior. The following analogy given in [AH891 might 
be useful: Assume that the points of S are nails driven halfway into a wooden 
board. A rubber band is now stretched around the set of nails and then released. 
When the band settles, i t  has the shape of a polygon. Those nails touching the 
band a t  the coriiers of that polygon are the vertices of the convex hull. 

I t  simplifies the exposition, if we divide the problem into two sub-problems. 
First, we calculate tlie upper hull UH(S) of set S. This is that part of its boun- 
dary traced by a clocl<wise path from the leftmost to rightmost points in S. In a 
second phase, we compute the according lower hull LH(S). Since the computa- 
tion of UH(S) is ,analogous to  the computation of LH(S), we omit the latter. In 
a preprocessing step, a sequence is created containing the elements of S sorted 
by x-coordinate (e.g., by applying the bitonic sort algorithm given above). 

To start with, we consider an algebraic type that defines the points in the 
plane in addition with suitable operations on it. Suppose Point denotes a pair 
of real numbers on which the following operations are defined: 

ex, .Y :: Point -t Real 
- . - .  :: Point -t Point -t Boo1 

max, , max,, min, , min, :: Point -t Point -t Point 

The interpretation of these operations is as follows: 

(a,  b).x = a (a, b).y = b 
m a ,  p q = q, if p.x < q.x m u g  p q = q, if P.Y < q . ~  

p, otherwise p, otherwise 
min, p q = p, if p.x < q.x mi% P q = P, if P-Y < q;Y 

q, otherwise q, otherwise 
(P = q) = (P.Z = q.z) (P.Y = q.y) 



The DC method of constructing UH(S) given in [pH771 is as follows: Let 
S be a sequence of 2n points in the plane such that s1.x 5 s2.x 5 . . . 5 s2,.x 
where n is a power of 2. If n 5 1, then S itself is an upper hull of S (primitive 
case). Otherwise, we subdivide S into two subsequences Sl = [sl, s2,. . . , s,] 
and S2 = [s,+~, . . . , s2,]. Then, we recursively compute UH(Sl) and UH(S2) 
in parallel. As the final step, we must find the upper common tangent between 
UH(Sl) and UH(S2), and deduce the upper hull of S. 

The informal description given above can immediately be formulated as an 
operational specification on non-empty sequences of points: 

UH' :: [Point] -t [Point] 
UH s = S, i f # s 5 2  
UH(s l+ t s2 )=  U C T ( U H s l ) ( U H s 2 ) ,  otherwise 

F'unctioi1 UCT combines two nonintersecting upper hulls UH (Sl) and UH (S2) 
Il 

by meaps of the upper common tangent, which is the unique line touching both 
UH (Sl) = [pl , . . . , p ~ ]  and UH(S2) = [ql, . . . , QN] a t  unique corners p and q 
(see ~ i $ .  3(11)). 

Fig. 3. Upper common tangent of U H ( S 1 )  and U H ( S 2 )  

The upper common tangent can be computed by first determining those 
points p, and q, of UH(S1) and UH(S2), respectively, with the maximal y- 
coordinates. To compute a point s, with the maximal y-coordinate in a sequence 
of points s ,  we use the reduce operation: s, =dl! reduce ma,  s. 

11 
Then, p is defined as the rightmost point in UH(S1) with the minimal slope 

wrt. gd! Its formal definition is: p =de, p , ,  i E (1,. . . , M) such that 

I 



where g determines the slope of the line passing through the points a &d b: - . I, 
it 

g :: Point + Point + Real 
g a b = I ,  if (a = I )  v (b = I )  I 

(b.y - a.y)/(b.x - a x ) ,  otherwise 
11 

Henceforth, I denotes an undefined value, which remains unchanged during 
computation. (I 

The second corner q in UH(S2) is specified in a similar way, where only the 
'I signs of the slopes are inverted. . L 

Figure 3(a) depicts two upper hulls U H ( 4 )  and UH(S2). The dkhed li- 
nes are the tangents passing through p,. The tangent with the minimal slope 
(modulo sign) determines the right corner q. Figure 3(b) pictures the result 

1 of computing the upper common tangent. The new upper hull now consists of 
points [pl p1ql QNI. il 

An operational specification of the above description reads as follows: 
'I 

UCT :: [Point] + [Point] + [Point] 
UCT s l  s2 = s l '  + s2' 4 .  
where (p, , q, ) = (reduce mazy s l  , reduce max, s2) 

(gl,g2) = (map (9 4,) sl,,map (neg 0 (g P,)) s2) '/ 

'( ( m l ,  m2) = (reduce min g l ,  reduce min 92) 
( f l , f2 )  = (find m l  g l  s1,find m2 92 s2) 
(p, q) = (reduce maxz f 1, reduce -min, f 2) 
(sl ' ,  s2') = (map (upd (<) p) s l ,  map (upd (>) q) s2) ! 

I! 
In UCT, first the maximal points in's1 and s2 wrt. the y-coordinate are 

determined, resulting in the pair (p,, q,):Then, in every subsequence s l  and s2, 
respectively, the slopes are computed by means of the auxiliary function g. In 
s2, function neg additionally negates the slopes, where 

,!I 

n e g x = I ,  i f x = I  4 
-2, otherwise 

Bi 
The pair (ml ,  m2) denotes the minimal slope in each subsequence s l  and 92. 
Points, whose tangents wrt. p ,  and q, have a slope equal to m l  anb m2 are 
assembled in the pair of sequences (f 1, f 2) by means of function find:!/ 

11 
find :: Real + [Real] + [Point] + [Point] 
find m gs s = zzp Wzth (ZS, m) gs s ri 
where zs, m m' x = x. if m = m' I 

I, otherwise ) '1 

Then, the unique corners p and q of s l  and s2 are the rightmost and leftmost 
points in the according subsequences. Finally those elements in s l  andLs2, resp., 
which do not belong to the upper hull, are replaced by dummy elements, accor- 
ding to the definition of function upd: 

1 
upd :: (Point + Point + Bool) + Point + Point + Point ? 
upd @ a b = I, if a.x @ b .x  !I 

b, otherwise 11 



~ n f d l d i n ~  function UCT in the body of UH leads to a version, which fits the 
input s6heme of transformation rule Bottom-up with post-adjustment: 

UH s = s ,  i f # s L 2  
UH ( s l  it s2) = k v w it j v w ,  o t h e r w i s e  
w h e r e  

( v ,  w )  = ( U H  s l ,  UH s2) 
k v w = map (upd (<) ( p  v w ) )  v j v w = map (upd (>) ( q  v w ) )  w 
p v w  = r e d u c e m a x Z ( f l v w )  q v w  = r e d u c e m i n , ( f 2 v w )  
f l v w  = f i n d ( m l v w ) ( g l v w ) v  f 2 v w  = f i n d ( m 2 v w ) ( g 2 v w ) w  
ml v w = reduce man ( g l  v w )  m 2  v w = reduce man (g2 v w )  
* 1 
gll v w = map (g (9y  V W ) )  v 92 v W = map (neg 0 ( 9  ( P ,  v w ) ) )  w 
p,, v w = reducemax, v q, v w = reducemax, w 

Note. In order to ease the following parallelization we lifted the object declara- 
tions of UCT to functions in UH. 

Parallel ization 

As in the previous subsection, we carry out some precomputations in order to 
derive instantiations of t ' ,  kt  &d j' without using recursion: 

Derivation. Let n = # s l  and s = s l  it s2 and s' = s2 it s l .  

kt n s st 

= [,definition of s and s t ,  slice-distributivity of kt  unfold k t ,  unfold k ] 
'8 map (upd (<) ( p  s1 $ 2 ) )  s1 it map (upd (<) ( p  s2 s l ) )  s2 

= [ property of map wrt. zip With ,  distributivity of zap With ,]  

zzp With  (upd (<)) (copy n ( p  s l  s2)  it copy n ( p  s2 s l ) )  ( s l  it s2)  
= [ s = s l  it s2,  p' n s st =def copy n ( p  s l  s2 )  it copy n ( p  s2 s l )  ] 

zip With  (upd (<)) (p' n s s t )  s 

p' n s st =def copy n ( p  s l  s2) it copy n ( p  s2 s l )  
= [,unfold p ] 

copy n (reduce maxZ ( f  1 s l  s 2 ) )  it copy n (reduce maxz ( f  1 s2 s l ) )  

= [ reducef $ s =def copy (#s)(reduce $ 3 )  ] 
reduce? maxZ ( f  1 s l  s2)  it reducer mwz ( f  1 s2 s l )  

= [reducer* $ ( # s l )  1 ( s l  it s2)  = reduce? $ s l  it reduce? $ s2] 
I' reduceR m a Z  n 1 ( f l  s l  32 it f l  s2 s l )  

= [ f l t n s s ' = d e f  f l  s1 3 2 i t  f l  s 2 s l ]  
reducefr maxZ n 1 ( f  1' n s 3 ' )  

** The function reduce* is a parallel version of reducet .  Its derivation is analogous to 
the given ones. 



In an analogous way, we can find generalizations for f 1, m l ,  g 1 and q, : 

f 1' n s s' = zip With3 is, (ml' n s s f )  (91' n s s ' )  s 
ml' n s s' = reducefi m i n  n 1 (91' n s s f )  
g l ' n s s '  = z a p W i t h g ( q l n s s l ) . s  
ql n s S' = reducefi maxu n 1 S' 

Due to  the slice-distributivity of k', definition of k' holds for all , n  5 # s l .  
Analogously, we can derive: 

I!, 
t l n s = s  i! 
j' n s S' = zip With (upd (>)) (q' n s s ')  s' 
where 

q' n s S' = reducefi min,  n 1 ( f2'  n s s ' )  
f2' n s s' = zip With3 is, (m2' n s s ' )  (92' n s s ' )  s' 
m2' n s s' = reducefi m i n  n 1 (92' n s s ' )  
92' n s s' = map neg (zip With  g (p& n s s f )  s t )  
pb n s s' = reducefi maxu n 1 s 

The application of Theorem 3 results in: 

UH s = UH' ( # s )  2 s 
where ! 

U H ' m  n s = s ,  i f  ,m = n 
UH' m ( 2 n )  (join n (k' n s s') ( j '  n s' s ) ) ,  otherwise 

where 
81 = corr n s 
k' and j' as defined above . 

which, after several unfolding steps and consistent renaming, leads to  a data 
parallel version of UH': 

U H ' m  n s = s, i f m = n  
UH' m ( 2 n )  ( join n I ) ,  otherwise 

where 
S' = COTI. n s - 
k = zip With (upd (<)) jj s 7 = zip With (upd (>)) 7 s 
jj = reducefi mazx n 1 fl = reducefi minx n 1 fl - -- -- 
f 1 = zip With3 is, ml gl  s fi = zap With3 is, m 2  92 s - - 
ml = reduce0 m i n  n 1 3 m 2  = reducefi m i n  n 1 3 - - 
gl  = zip With g s 92 = map neg (zap With  g s )  - 
q, = reducefi m u y  n 1 s' = reducefi max,, n 1 s' 

A closer inspection of this version of UH' shows that due to the: generality 
of our transforination rules we wasted a lot of parallelism. Since joinlonly takes 
half of the elements of its argument sequences, we compute some data values 
sequentially instead of parallel. Thus, we continue our derivation by applying an 



adapted liorizontal fusion strategy [Pargo], which amounts to "merging" different 
computations into a single one. 

Denvatzon. Without loss of generality, we assume n = F .  The auxiliary func- 
tions left and right take the first and the second half of a sequence, respectively: 
left ( s l  it s2) = sl and tight (sl  it s2) = s2. 

jozn n X 1 
= [ unfold and j ] 

join n (zip With (upd (<)) jj s )  (zip With (upd (>)) s )  
= [ distributivity of zip Wtth, unfold jorn ] 

zzp With (upd (<)) (left F) sl it zipwith (upd (>)) (right 7) s2 

= [ =de,  left 5 it nght 7j  ] 
;oin n (zip Wzth (upd (<)) W s)  (zipwith (upd (>)) s)  

I left B it right i j  
I = [ unfold $ and i j  ] 
[eft (reduce0 max, n 1 Ti) St nght (reducefi min, n 1 fl) 

= [ property of reducefi under the assumption n = #fi = #Dl 
;reduce0 max, n 1 ((left Ti)  St reduce0 min, n 1 (right n) 

= [ f  = d e j  l e f t f l i t  rzght f l]  

30zn n (reduce0 max, n 1 f) (reducefi min, n 1 f )  

Similar derivations lead to appropriate equations for f ,  X, 5, ?i and pq, (see be- 
low). I 

Our final version of the convex hull algorithm is summarized in the following ', 

program: 't 
UH s = UH' (#s)  2 s 
where 

UH' m n s = s, i f m = n  
UH' m (2n) (jozn n 13, otherwise 

where  s' = corr n s - 
k = zzpWath (upd (<)) jiij s - 
j = zip With (upd (>)) s 

11 - pq =join n (reduce0 m a z  n 17) (reduce0 min, n 1 f )  

1 f = zip With3 is, Ei 3 s - m = reduce* min n 1 ij 
g = jozn n B (map neg a) 
a = zipWzth g pq, s - pq, = reduce* m a y  n 1 s' 



This  algorithm uses all those higher order functions on sequences, which 
can immediately be rewritten as skeletons for-a massively parallel 
architecture. 

The algorithm we have derived here differs from those in the parallel litera- 
ture (cf. [J8J92, Ak1891). Especially, it does not need unrealistic assuniptions like 
a concurrent read access to shared memory variables as e.g. given by the PRAM 
model, but is well suited for massively parallel computation on distributed me- 
mory architectures by making efficiently use of the underlying interconnection 
network to exchange data. 

6 Related Work 

I 
Much attention has been paid to the formal parallelization of DC algorithms. 
Smith develops a DC theory [Smi85, Smi931, e.g., DC can be treated as a mor- 
phism from a decolnposition algebra on the input domain to a composition alge- 
bra on its output domain. His emphasis is on the development of a ~ ~ ' a l ~ o r i t h m ,  

'1 whereas we are interested in its data parallelization on a particular architecture. 
Thus, our work can be seen as a completion of Smith's work towards d i t a  parallel 
execution. I 

Mou and Houdali describe DC in a algebraic model called Divacon [MH88]. 
They recognize that the original DC model is too restrictive withi'respect to 
decomposition and communication. For the latter, they introduce so called pre- 
and postmorpl~ims, which correspond with our 'adjustment' functions'g, h, k and 
j. They illustrate the expressive power of this generalized DC, with a broad range 
of examples. However, they only sketch the mapping of the model on parallel 
computers. 

This algebraic model was later picked up by Carpentiery and Mou, who study 
communication issues in the model [CM91]. They present hypercube specific 
rules to opti~nize coinmunication by introducing new storage levels. These rules 
are expressed in Divacon, whereas our approach takes the architecture explicitly 
into account. Ho~vever, their approach is neither calculated nor transparent. 

Axford and Joy [Axf92, AJ93] have proposed to use DC as a fundamental 
design principle. and have either proposed arrays or sequences as suitable data 
structures. In fact. the balanced sequence primitives that we use, were proposed 
by Axford and Joy. Aside from this, no calculation nor interesting distributed 
implementation is presented. 

Among the first, who used the skeleton approach in a functional setting, 
initiated by Cole [Co189], was a group a t  Imperial College [DFH+93]. Their ske- 
letons are rather highlevel, e.g., they distinguish farming, pipelining, DC and 
other high level skeletons, but do not tackle massive parallelism, as it is under- 
stood by us. 

Still more abstract is the work on investigating parallelism within the Bird- 
Meertens formalism, which recently has gained much attention (cf. e.g. [C0193]). 
However, all these different approaches have in common that they stop on the 



level of DC algorithms or homomorphisms, whereas our approach proceeds down 
to an architecture specific target program. 

An exception to these works is presented by Gorlatch and Lengauer [GL93]. 
They develop a DC function, using mainly the control parallelism. In particular, 
they do ,not require that there is a single P E  for each member in the sequence, 
but assume that there is a single P E  for a group of members in the sequence. 
As before, the step to a working imperative implementation is still left open. 

Work that is closely related to ours is done a t  the University of Nijmegen 
[Gee92, Gee93, Par93, BGP93, Gee941. In fact, the skeletons which we propose 
were adapted from their work. Opposite to our goals, their research aims a t  
introducing data parallelism out of a parallel control structure, which can be 
achieved by means of partial inversion. Recently, Geerling also considers data 
type trailsformations in order to adapt algorithms to different hardware. We 
start, however, with a problem dependent data structure, which enables right 
from the start implicit data parallelism. 

In coiltrast to  our approach, a group in Yale introduces data fields right from 
the beginning of the derivation process [CC90, YC921. They make extensive use 
of so called domain morphisms in order to specify parallel-program optimiza- 
tions. Their approach seems to work well for numerical problems, where the 
problem domain is given by matrices. The main problems lie in the absence of 
a strategy for deriving programs and in difficulties to  find appropriate index 
domain ;norphisms, which lead to optimizations. 

The important problem of how to cope with the usual situation that the 
number of processors is smaller than the size of the input domain is ignored in 
our work. We believe that this is perfectly reasonable, since either the hardware 
of massibely parallel computers (e.g. Connection Machine CM-2), or the software 
(e.g. Fortran on the MASPAR) abstracts from the number of real processors. 
However, not all massively parallel machines support virtual processors. The- 
refore, data distribution is still a major problem, which is tackled by a group 
around Pepper [PES93]. 

7 ~dnclusion and Future Research 

In this paper, we have presented a transformation strategy to develop correct, 
efficient, data parallel DC algorithms, and showed how such derivation is guided. 
The main advantage of making the strategy explicit lies in its reuseability. A 
similar problem can be solved in a similar fashion, which is demonstrated by the 
examples. 

We distinguish data parallelism in the problem domain (here: sequences) 
from data parallelism on the level of the architecture (here: skeletons). This 
distinctioil gives rise to develop portable parallel programs, since data parallelism 
on the problem domain must be mapped differently on existing hardware, if the 
diversity in architectures is exploited in full. 

In addition, we claim that the transformational approach taken here is rather 
crucial to  the presented development: The calculational properties of functional 



programs, i n  particular skeletons, give a basis for a solid understanding and a 
formal treatment for the derivation of massive parallel algorithms from a high- 
level specificatioil down to the low-level hardware. 

More research is necessary for the development of further strategies. In this 
context, our ultimate goal is the development of a methodology for transforma- 
tional data parallel program development. 

Acknowledgements. .We would like to thank Helmuth A. Partsch and' Ton Vul- 
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A Proofs 
I 

A.1' Proof of t h e  Generalized ~ivide-and-conquer  Rule 

We shoiv 
l 1  

f x l = f t  (fix) 

by induction on the length of the argument: 

Induction Basis: # x  = q 

ft ( f l  x )  
= [ unfold f f and f 1 under assumption #x = q ] 

I t f  ( t l . 2 )  
-' . 

condition: t  = tf a tS. ] 

Inductjon Step: # ( x  St y )  > q 
/I 
I f f ( f l ( x  Y ) )  

= [liuilfold f f  and f J  under assumption # ( x  + y )  > q ] 
, k v w  it j v ,w where ( v ,  w) = ( f f  (fib x  y ) ) , f t  ( f l  ( h  x  Y ) ) )  

= [ induction hypothesis ] 

f ( x  Y )  

El 

A.2 Proof of Transformation Rule: Top-down with Pre-adjustment 

The proof consists of two steps and makes substantial use of a lemma, which 
also will be given during this subsection. 

Step  1: Embedding. We start our proof by an appropriate embedding of func- 
tion f 1 in order to introduce a termination parameter n, which denotes the length 
of the input sequence off 1: 

f l  z  = f l l  (#.) z  
where f 1' n x  = d e f  f 1 x  provided # z  = n 

= [b#z = q * n = q, g  and h  length preserving, fold with assertion ] 

( 11' n z  = t x ,  i f n = q  
f1' n ( z  St Y )  = f l l  ( g  x  y )  St fl' f ( h  x  y ) ,  otherwise 

!I 



Step 2: Computa t iona l  Induction. In order to proof the equality off  J' and 
f 4, we define two functionals: 

TFJ'] n 2: = t x, i f n = q  
~V.1'1 n (X -it Y )  = fJ' : (9 x p )  -it fJ',f (h x y), otherwise' 

!: 
for which we assume, that the parameter n denotes the length of the input 
sequence x and x -it y, respectively, and 

uVU] n x = t. x, i f n = q  
oVU] n x = fU 5 (join 4 v w), otherwise 

where  x' = corr 4 x 
( v ,  W) = (g' : x x', h' : x' x) 

for which we require that #x 2 n. 
Now we have to show: 

As an abbreviation we define: s = x -it y and s' = y -it x = corr #x s.  

.VJ11 n x 
= [ unfold T VJ'] ] 

t 2, i f n = q  
fJ' : (g x y) -it f J' : (h x y), otherwise 

= [ induction hypothesis ] 
t X, i f n = q  
fU ; (9 x y) -it fU : (h x y), otherwise 

= [ Lemma -4.2 ] 
t X, i f n = q  
fU 5 ( g x  y -it h x  y), otherwise 

= [ fold g' and h', since #x = #y = 5 ,  property of join ] , 
t X ,  i f n = q  :, 

fU 5 ( join 5 (9' 5 s s') (h' : S' s)), otherwise 

= [fold tJ.1 

t l  2, i f n = q  
f u  5 (join : (g' $ s s') (h' $ s' s)) ,  otherwise 

= [ fold o VU] with assertion ] 

In the above proof, we have used the slice-distributivity of function f 4:  

L e m m a  (Slice-distributivity of fu ) .  Let #x = #y 2 n. Then function fU 
(see Theorem 2) fulfills the following property: 



~ h A ~ r o o f  is made by induction on the length of the argument. 

~ n d u c t i o n  Basis: n = q. 

fU n (x-tt y)= t'q (x-tty) 
= [ unfold f ] 

t' 9 (x -H Y) 
= [ unfold t' ] 

t'qxut'qy 
= [ fold f U ] 

f.uqx+fUq~ 

Induct ion Step: #x 3 2n. As an abbreviation, we define: (XI, y') = (cow n x, 
cow n y). 

f U (2n) (x -H Y) 
= [ unfold f 4 ] 

f .U n (join n (9' n s s')(hl n s' s)) 
where (s, s') = (x -tt y, corr n s) 

= [ property of corr ] 
fU n (join n (9' n (x -tt y) (x' -tt yl))(h' n (2' -tt y') (x -tt y))) 

= [ unfold g' and h' ] 
f 4 n (join n (9' n x 2' -tt g' n y yl)(h' n x' x it h' n Y' y)) 

= [ property of join ] 
fU n (join n (9' n x x') (h' n x' x) it join n (9' n y y') (h' n y' y)) 

= [ induction hypothesis ] 
f 4 n (join n ((9' n x x') (h' n x' x)) -tt f 4 n (join n (9' n y y') (h' n y' y)) 

= [ fold f 8 with assertion 1' 
f U (2n) x -tt f 4 (2n) Y 

A.3  roof of Corollary 4 
I 

We only picli out the proposition 

I g (corr n x) = CORRa n ( g  x) 
I( 
11, the renlaining propositions can be treated similarly. 
11' 

Inductioil  Basis: n = #x 

I! 



C O R R A ~ ( ~ ( X  St Y ) )  

= [ unfold CORRA and g ] 
SHLA n ( A  i . ( x  it y ) , ) ,  if even(i div n )  
SHRA n ( A  i . ( x  it Y ) ~ ) ,  if -even(i div n )  

= [ even(i div n )  = i < n ,  unfold SHLA and SHRA .I  

= [ property of it ] 
A 2 .  y i f i < n  

x i f  i 2 n 
= [ property of list concatenation ] 

A i . ( y  it 2) ;  

= [ fold g and corr ] 

Induction Step: n < # x .  Let i E (0,. . . ,N - 1 ) .  

(CORRA n (9 ( X  it y))) ( i )  
= [ unfold CORRA ] 

(SHLA n g(x it y ))(i), i f  euen(i div n )  
(SHRA n g(x it y))( i ) ,  i f  ieven(i div n )  

= [ unfold SHLA, SHRA and g ] 
( z i t ~ ) ~ - ~ ,  i f i >  N - n  A even(idivn) 
( x  it y),+,, i f  i < N - n A even(i div n )  
( x  it Y ) ~ ,  i f  i < n A -even(i div n )  
( x  it i f  i > n A -even(i div n )  

= [ even(idi\ n )  a i < N - n ,  -even(idivn) a i 2 n ]  

( x  it y)i+,, i f  i < N - n A even(i div n )  
( z i t  y) ,- , , ,  i f i  > n A -even(idivn) 

Case 1: i < #2.  

x,+,, i f 0 5  i < # x - n  A even(zdivn) 
x,-,, i f  n s i  < # x  A -euen(idivn) 

= [ fold g and CORRA ] 

(CORRA n g (x ) ) ( i )  
= [ induction liypothesis ] 

(9 (corr n g (x ) ) ) ( i )  
= [ i  < # X I  

(9 (corr n g(x y ) ) ) ( i )  



Case  21: i > # x .  

I Y ~ - # z + ~ ,  i f  # X  5 i < N - n A even(i div n )  
Y ~ - # Z - ~ ,  i f  i 2 n + # X  A -even(i div n )  

= [ index translation ] 

y;,,, i f  0 5 a < # x  - n even(i div n)  
, y,-,, i f i t n  A -even( id ivn)  

= [ analog t o  case 1 ] 

A.4 P r o o f  o f  Corollary 5 

As a representative o f  the four propositions, we only proof 

Let i ,  j E (0,. . . , N - 1) .  

( CORRM n x ) ( i ,  j )  

= ['unfold CORRM ] 
(JOINnn n s l  s2 ) ( i ,  j )  
w h e r e  s l  = SHLM(n mod N)(SHUM(n div N ) x )  

s2 = SHRM ( n  mod N)(SHDM(n div N ) x )  

C a s e  1: n < N .  This implies: ndiv  N = 0 A nmod N = n. Then by simplifying 
the above expression, we yield: 

(JOINM n s l  s2 ) ( i ,  j )  

w h e r e  ( s l  = SHLM n x ,  s2 = SHRM n x )  

= [ unfold JOINM ] 

(SHLM n x ) ( i ,  j ) ,  i f  even((i  . N + j )  div n )  
(SHRM n x ) ( i ,  j ) ,  o therwise  

= [ unfold SHLM an SHRM ] 

, x i  N - 1 ,  i f  j > N - n A even((i . N + j )  div n )  
x ( i ,  j + n ) ,  i f  j < N - n A even((i  . N + j )  div n)  

:i x(i ,O),  i f  j < n A - even((i  . N + j )  div n )  
x ( j - n ) ,  i f j t n  A - e v e n ( ( i . N + j ) d i v n )  

= [ n < N * (even((i  . N + j )  div n )  = evenG div n)  * j < N - n )  A 

(-evenb div n )  * j 2 n)] 

x ( i , j  + n ) ,  i f  j < N - n A even((i  . N  + j ) d i v n )  
x ( j - n )  i f j > n  A - e v e n ( ( i . N + j ) d i v n )  



= [ g ( i . N + j + n ) = ( i , j + n ) a n d g ( i . N + j - n ) = ( i , j - n ) ]  

( x o g ) ( z .  N +  j  + n ) ,  i f  j  < N  - n  A even(( i .  N  + j )d iv  n )  
( x o g ) ( z . N + j - n ) ,  i f j  2 n  h - e v e n ( ( i . N + j ) d i v n )  

= [ even(j div n )  i  . N  + j  < N 2  - n ,  i! 
- e v e n ( j d i v n ) * i . N + j 2  n ,  j 2 n * i . N + j > n ]  41 

( X  0 g ) (N2  - I ) ,  i f ( i . N + j )  2 N 2 - n  A 
even((i . N  + j )  div n )  

( x o g ) ( i .  N  + j  + n ) ,  i f  j  < N  - n  A even((; .  N  + j)di\; n )  
( X  0 g ) ( o ) ,  i f  i - N + j  < n  A 7 e v e n ( ( i - N + j ) d i v n )  
( x o g ) ( z . N + j - n ) ,  i f i . N + j L n A - e v e n ( ( i . N + j ) d i v n )  

= [ fold SHLA and SHRA ] 
(SHLA n ( x o g ) ) ( i . N + j ) ,  i f e v e n ( ( i . N + j ) d i v n )  
(SHRA n  ( x  o  g ) ) ( i  . N  + j ) ,  otherwise 

= [ fold JOINA ] 
(JOINA n  s l  s2)( i  . N  + j )  

where ($1,  $2) = (SHLA n  ( x  o  g ) ,  SHRA n  ( x  o  g ) )  

= [ fold CORRA and g-l ] 
( (CORRA n  ( x  o  g ) )  o  g - l )  i  j  

Case  2: n  2 N .  This implies: n  div N  = $ A n  mod N  = 0, since both n  and 
N  must be a  power o f  2. Then by simplifying the above expression, we yield: 

(JOIN*, n  s l  s2)( i ,  j )  where  ( s l  = SHUM $ x ,  s2 = SHDM 5 x )  

= [ unfold JOINM ] 

(SHUng $ x ) ( i ,  j ) ,  i f  even((i . N  + j )  div n )  
D M  ) ( ,  j )  otherwise 

= [ unfold SHUM and SHDM ] 

( N  - 1  j )  i f  i  2 N  - $ A even((i - N  + j )  div n )  
( + j )  i f i < N - $ A e v e n ( ( i . N + j ) d i v n )  i/, 
z(O,.i), i f  i  < $ A 7 even((i . N  + j )  div n )  I 

x i  - j ) ,  i f  i  2 $ A 7 even(( i .  N +  j )d i v  n )  
1 

= [ even((i . AT + j )  div n )  (i < N  - $) A ( ( i  a N  + j )  < N 2  T n ) ,  
-even((i . N + j )  div n )  * ( i  2 $) A ( ( i  . N  + j )  2 n ) ]  

( N  - 1  N - 1  i f  ( i  . N  + j )  2 N 2  - n  A even((i . N  + j )  div n )  
x(2+ $ : j ) :  i f  ( i  - N  + j )  < N 2  - n  A even((i . N  + j )  div n )  
~ ( o , o ) ,  i f  i  . N  + j  < n  A 7 even((i - N  + j )  div n )  
x ( i  - $, j ) ,  i f i . N + j > n  A - e v e n ( ( i . N + j ) d i v n )  

= [ g ( i . N + j + n ) = ( i + a , j ) a n d g ( i . N + j - n ) = ( i - $ , j ) ]  

( X  0 g ) ( N 2  - 11, i f  ( i  . N  + j )  2 N 2  - n  A even((i . N  + j )  div n )  
( x  o  g) ( i  . N  + j  + n ) ,  i f  (a  . N  + j )  < N 2  - n  A even((i N  + j )  div n )  
( z o g ) ( O ) ,  i f  i  N  + j  < n  A 7 even((i N  + j )  div n )  
( x o g ) ( i  - N +  j  - n ) ,  i f  a - N  + j  > n  A 7 even((1. N  + j ) d i v  n )  



= [ fold SHLA and SHRA ] 

(SHLA n ( x  o g ) ) ( i  N + j ) ,  . if even((i . N + j )  div n )  
(SHRA n ( x  o g ) ) ( i  N + j ) ,  otherwise 

= [ fold JOINA ] 
[JOINA n s l  s 2 ) ( i .  N + j )  
where ( s l ,  32) = (SHLA n ( x  o g ) ,  SHRA n ( x  o g ) )  

= [ fold CORRA and g-' ] 

I ( ( C O R R A  n ( z  0 9 ) )  0 g- ' ) ( i , j )  

A.5 Proof of Corollary 6 

As a re$resentative of the four propositions, we only proof 
II 

CORRA n ( x  o g ) )  o g-I = CORRH n x 
1 

Let i E {O,.. . , 2 n  - 1). 
11 
(CORRH n x )  i 
'I 

= [ ullfold CORRH ] 
(JOINH n (COMMDH n x )  (COMMUH n x ) )  i 

= [ unfold JOINH ] 
(COMMDH n x ) ,  if even(i div n )  
(COMMUH n x ) ,  otherwise 

= [ even(z div n )  3 z < ( z  div 2n)  . 2n  + n ,  unfold COMMDH, COMMUH ] 

x ( z  + n), i f  even(z div n )  
x ( z  - n ) ,  otherwise 

= [ fold SHRA and SHLA ] 
(SHL n x )  e,  if even(i div n )  
(SHR n x )  e l  otherwise 

= [ fold JOINA, fold CORRA ] 
(CORRA n x) i 

'1 
!j 

roof of Lemma 7 A.6 P: 

Let i E l o , . .  ., N - 1): 

(63) (DISTL* n (CORRA n 3 ) )  s))(i) 

i f  even(i div n )  
n(CORRA n s ) )  s ) ( i ) ,  otherwise 



We concentrate on the case -even(i div n )  and start by unfolding ZIPWITH. 

DISTLA n(CORRA n s ) ) ( i )  @ s( i )  
I, 

= [ unfold DISTLA ] 
(CORRA n s ) ) ( ( i  div n)n  + n - 1) @ s(i)  

= [ unfold CORRA ] % 

(JOINA n (SHLA n s)(SHRA n s ) ) ( ( i  div n)n  + n - 1 )  @ s( i )  

= [ unfold JOINA, distributivity over conditional ] 
r 

(SHLA n s)  
( ( 2  div n ) n  + n - 1) @ s ( i ) ,  if even(((i div n ) n  + n - 1) div n )  

(SHRA n s) 
( ( i  div n )  n + n - 1) @ s ( i ) ,  otherwise 

= [ ( ( i  div n ) n  + n - 1) div n = ( i  div n )  ] 
(SHRA r~ s)  ( ( i  div n) n + n - 1) @ s ( i )  

= [ unfold SHRA ] 

~ ( 0 ) ~  if ( i  div n ) n  + n - 1 < n 
s(( i  dill n ) n  + n - 1 - n )  @ s ( i ) ,  otherwise 

= [ ( i d i v n ) n + n - l < n = ( i d i v n ) n < l ]  . . !i 

s (o), if ( i  div n )  n < 1 
s((i  div n ) n  + n - 1 - n )  @ s( i ) ,  otherwise 

= [ abstraction ] ' . 

(A j . s(O), i f j < l  
s(:j - I ) ,  otherwise ) ( ( i  div n ) n )  @ s ( i )  

= [ fold SHR.4 1, fold DISTRA and fold ZIPWITH ] I! 

(ZIPHTITH(@)(DISTRA n (SHRA 1 s ) )  s ) ( i )  

Now putting the t.wo cases together and folding JOINA results in: 

(J0IATA 11 s(ZIPWITH (@) (DISTRA n (SHRA 1 s ) )  s ) ) ( i )  



/I B ~ x a r n ~ l e  Implementation of Prefix Sums 

We give an implementation of psum3 (see 4.4) by means of an imperative paral- 
lel langu:age, viz. Parallaxis [BBES92]. Parallaxis is a Modula-2 like imperative 
language with explicit parallel control constructs as well as communication ope- 
rations. 1t is not dedicated to a particular architecture, but allows the user to 
specify $tconcrete one. Parallax* follows the SIMD computation model, i.e. there 
is one control unit, which provides a single instruction stream to hundreds or 
thousands of PEs. According to that, Parallaxis distinguishes two kinds of varia- 
bles: (a), scalar variables which reside on the control unit and (b) vector variables, 
which deyote data elements spread over all PEs. Communication primitives are 
PROPAGATE, RECEIVE and SEND which can only be distinguished by their 
behavior on inactive PEs. 

SYSTEM Prefix-Sum; 
CONST N = 1024; (* natural number, pover of 2 *) 
TYPE inat = [I. .N] ; 
(**** Architecture specification: linear array vith N PEs ****) 
CONFIGUR~TION list [I. .N] ; 
CONNECTI~N left : list [i] -> list [i-11 .right ; 

right: listCi1 -> list [i+l] .left; 
(**** Definition of extended architecture skeletons: ****) 
(**** JOIN. CORR and DISTR *+++) 
PROCEDURE JOIN (SCALAR n:inat; VECTOR s,t:INTEGER):VECTOR INTEGER; 

VECTOR res : INTEGER; 
BEGIN IF': EVEN((id-no - 1) DIV n) THEN res := s ELSE res := t END; 

RETURN res 
END JOIN; 
PROCEDURE CORR (SCALAR n:inat; VECTOR s:INTEGER):VECTOR INTEGER; 

VECTOR t.u: INTEGER; 
BEGIN PRPPAGATE.left-n (s,t); PROPAGATE.right-n (s.u); 

RETURN (JOIN(n, t ,u) 
END CORR; 
PROCEDURE DISTR (SCALAR n:inat;VECTOR s:INTEGER):VECTOR INTEGER; 

SCALAR i: INTEGER; 
BEGIN FOR i := 1 TO n DO 

r IF (id-no - 1) HOD n # 0 THEN 

11 RECEIVE list .left (s) FROU list .right(s) 
END END; RETURN s 

END DISTR; 
(**** Computation of the parallel prefix sum ****I 
PROCEDURE psum (SCALAR m,n:inat; VECTOR s:INTEGER):VECTOR INTEGER; 

VECTOR t: INTEGER; 
BEGIN WHILE rn # n DO PROPAGATE.right(s,t) ; t := DISTR(n.t) + s; 

I1 s := JOIN(n.s,t); n := 2 n 
END; RETURN s 

END psum; 
(**** Main program ****I 
BEGIN PARALLEL ...; s := psum(N,l,s); ... ENDPARALLEL END Prefix-Sum. 
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