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Abstract

We consider primitive recursive program schemes with parameters together with the call-
by-value computation rule. The schemes are finite systems of functions which are defined
by primitive (or: structural) recursion; simultaneous recursion and nesting of function calls
is allowed. We present a transformation strategy which replaces primitive recursion by
iteration. The transformation strategy which is fully automatic, takes as input a primitive
recursive program scheme M with parameters and it computes a program scheme M’ as
output. We prove that, for every argument tuple, M' is at least as (time) efficient as M.
We also prove that there are infinitely many nontrivial primitive recursive program schemes
M with parameters for which the transformation yields a program scheme M’ such that
there are infinitely many argument tuples for which M’ is more efficient than M. Moreover,
we provide an algorithm which decides for an arbitrary given primitive recursive program
scheme M with parameters whether M’ is more efficient than M.

1 Introduction

Algorithms can be often elegantly described in a recursive way and consequently, recursion is of-
fered by every modern procedural programming language. Usually, such programming languages
are implemented on runtime stack machines which create for every function call an activation
block; in such blocks, the return address, static and dynamic links, and the variables of the
procedure are stored (see e.g. [Dij60], [McC60]). However, the creation and administration of
activation blocks cause a great amount of runtime overhead and hence, great efforts have been
made to transform the programs such that recursion is replaced by iteration. Such transforma-
tions are quoted as recursion elimination (see, e.g., [Knu74], [Ric65], [Bir77al, [Bir77b], [AS78]).

In functional programming languages, recursion is even the most important way of defining
objects. And in fact, during the investigation of functional programming languages, new facettes
with respect to recursion elimination appeared [BD77, Bir80, Boi92]. One of the most well-known
techniques is the unfold/fold technique of [BD77] which has been refined in many ways [PP93].
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In the context of functional programming languages, the main goal of recursion elimination is
to avoid multiple computations of function calls and multiple traversals of subcomponents of
function arguments.

Also in the field of program transformation as a discipline to compose programs from an
abstract specification by stepwise refinement, the question of producing efficient programs at-
tracted attention [Fea82, BW82, PP86, Par90]. In particular, recursion elimination is addressed.
According to [Boi92], the strategies of the cited papers can be divided into the following cate-
gories: accumulation, finite differencing (cf., e.g., [PK82]), algorithm theories, and inverting the
order of evaluation.

In [K1a88], an alternative way of getting rid of structural recursion in functional programming
languages is suggested. Roughly speaking, there the recursion elimination is integrated into
the compiler and the resulting iteration is supported by a few new machine components and
instructions (also cf. [IK87a, IK87b, IKV90, Thi9la, Thi9lb]).

Many of the techniques (e.g., the Unfold/Fold technique [BD77]) are interactive in the sense
that they need the help of the user. Often the transformation techniques exploit additional
assumptions either about the form of the function definitions or about the domain and the
range of the functions (cf., e.g., [Bir80]). Also in some of the proposed solutions the resulting
formalism is of completely different nature than the original formalism (cf., e.g., the intelligent
compilers or the method to find procedural solutions for recursive function definition).

For a long time, the necessity of proving the correctness of transformation strategies was
neglected. Recently, this topic has been dicussed in [San95a, San95b]. There, he presents a
tool for proving the correctness of existing transformation methods for higher-order functional
programs and a simple syntactic method for guiding and constraining the unfold/fold method.

In this paper we present a transformation strategy which eliminates primitive recursion.
The transformation strategy is fully automatic, it does not require any additional assumptions
about the domain or the range of the defined functions, it is presented in a formal way, and
its correctness is proved. As input the transformation strategy considers primitive recursive
program schemes (with parameters) [CF82] equipped with the call-by-value computation rule.
Given a primitive recursive program scheme M, the transformation strategy transforms M into
a program scheme M’; the transformation is performed by means of a well-defined sequence of
transformation relations called splitting, sharing, and tupling denoted by tgpir a7, Fshare,nr, and
tuple,nr> Tespectively. In fact, the transformation eliminates some of the recursive computations
of function values by turning them into iterative computations.

We prove that every call-by-value computation of M’ is at least as efficient as the correspon-
ding call-by-value computation of M. Also we prove that there are infinitely many primitive
recursive program schemes and infinitely many arguments for such schemes such that the trans-
formation strategy yields more efficient (i.e., shorter) call-by-value computations. Moreover, we
present an algorithm which decides for a given primitive recursive program scheme M whether
there is an argument for which the call-by-value computation of M’ is more efficient than the
call-by-value computation of M. We note that the strategy called “safe tupling” which is propo-
sed in [Chi93] and extended in [CK93, CH95]|, yields similar results. However, there the authors
do not show a decision algorithm with the mentioned behaviour.

Since the recursion elimination deals with the concept of computations, it is reasonable to
formalize our transformation strategy on formal models for the reduction semantics of primitive
recursive program schemes. An appropriate formal model is the macro tree transducer [Eng80]



(also cf. [EV85]). Macro tree transducers are particular convergent (i.e., confluent and termi-
nating), left-linear, non-overlapping, constructor based term rewriting systems (cf. [K1092] for a
survey on term rewriting systems). Macro tree transducers also fit into our requirement not to
use additional assumptions about the domain and range of the defined functions: the semantic
domain of macro tree transducers is the free term algebra.

Now let us explain in more detail how the transformation strategy is defined on tree transdu-
cers (cf. Figure 1). In fact, the transformation strategy takes a macro tree transducer M as input

macro tree transducer with register functions

macro
tree transducer

M rec-it(M)
[ L L | . [ L L ]

'_split M }_share,Moo }_tuple,Moo }_split,M '_share,Moo Ftuple,Moo

Figure 1: Transformation of a macro tree transducer.

and it considers M as a macro tree transducer with register functions. In such transducers a new
type of function may occur which is called register function. Intuitively, the arguments of such
functions can serve as registers in which the values of the original functions can be computed
iteratively (in the same spirit as, e.g., in the register programs of [AE79] values are accumula-
ted in registers). In fact, all the three mentioned transformation relations which constitute the
transformation strategy, i.e., Fspiit v, Fshare,ar, and Fyypie a7, are defined as binary relations over
the class of macro tree transducers with register functions. We prove that by ar, Fshare, s
and Fyypie, v are semantic preserving, confluent, and noetherian. Then, roughly speaking, our
transformation strategy is defined as computing normalforms of a macro tree transducer with
respect to the composed relation

00 00
I_split,M ° I_share,M ° l_tuple,Ma

where, e.g., F5;,,.. »s denotes the relation with all pairs (N, N') such that N' is the normalform
of N with respect to bFgspere, s (and similarly for Fype 7). Then M is transformed into the
macro tree transducer rec-it(M) with register functions which is called the recursive-iterative
tree transducer of M. This name is due to the fact that some of the function values are still
computed recursively while others are computed iteratively.

In the rest of this introduction we will 1) show an example M; of a macro tree transducer
and the corresponding recursive-iterative tree transducer rec-it(M;), 2) discuss the origins of
our transformation strategy, and 3) outline the structure of this paper.

On first glance, the example might seem a bit too complicated to show the nature of macro
tree transducers. However, it is composed such that we can discuss smoothly the origins of the
transformation strategy also on the basis of this example.



fs(po(z1)) —  falzi,€,¢)
falpi(zi,@2),y1,92)  —  #(falz1,1(y1), b(y2)), fo(za, e(fa(z1, 1(y1),b(y2)))))
falp2,y1,92)  —  #(y1,92)
felps,y1)  — clyr)

Figure 2: Rules of the macro tree transducer M;.

The macro tree transducer M; has three functions fg, fa, and fc with arlty 1, 3, and 2,
respectively. It takes input trees over the ranked alphabet {p ),p } The output
trees are built up over the ranked alphabet {#®) ¢ 1D (1) ¢ } Flgure 2 shows the rules

of My. A call-by-value computation of M; on the input tree po (p1 (p2,p3)) looks as follows:

fs(po(pi(p2,p3))) = fa(pi(p2,p3),€,¢)
= #(falp2, 1(e),b(e)), fo(ps, c(fa(p2, 1(e),b(e)))))
=2 #(F#(1(e),b(e)), fo (ps, c(F#(1(e );b(E)) )
= F#(#(1(e),b(e)), clc(#(1(g), b(e)))))

Note that five derivation steps are necessary to compute the result and note that the function
call fa(p2,1(€),b(e)) has to be evaluated twice. Also note that the result is computed recursively
in a demand driven way (or: top-down manner).

In this paper we will transform the macro tree transducer M; into the recursive-iterative
tree transducer rec-it(M) shown in Figure 3 (the function (f4,p1,1) is a register function).

fs(po(z1)) —  falzi,e,¢)
fapi(z1,22),y1,52) = (fasp1, 1) (21, 22,91, y2, fa(z1,1(y1),b(y2)))
(fa,p1, (21, 22,91, 92, 21)  —  #(21, fo(wa, c(21)))
falp2,y1,92) —  #(y1,92)
feps,y1) —  c(y)

Figure 3: Rules of the recursive-iterative tree transducer rec-it(Mj).
Let us consider the computation of fg(po(p1(p2,ps))) performed by rec-it(M;):

Fa(p1(p2,p3),€,¢)
(fa,p1, >(p2,p3,6 e, fa(pa, 1(e
(fa,p1,1)(p2,p3,6,6, #(1(e)

#(#(1(e), b(e)), fc(p:s, c(#(
#(#(1(e),b(e)), c(c(#(1(e),

fs(po(p1(p2,p3)))

SRR}

1(e)
b))



Note that rec-it(My), as Mj, computes the result in five steps. Also note that the re-
sult is computed sometimes demand driven and sometimes value driven. The function call
fa(p2,1(g),b(e)) is only evaluted once.

In fact, for every input tree the evaluation of rec-it(M;) is at least as efficient as the evaluation
of M. To illustrate this, let us consider input trees t,, of the form po(p1(...p1 (p1(p2, P3), P3)---, P3))
in which, for some n > 1, n p; labeled nodes and n ps labeled nodes occur. Figure 4 shows a
comparison of the lengths of call-by-value computations of M; and rec-it(Mi). In general, the
lengths of computations of M; on input trees of the form %, can be described by the function a
which is defined recursively as follows:

a(l)y =5

aln+1)=14+2xa(n—1)
which is clearly an exponential function. In contrast, the lengths of computations of rec-it(M)

on input trees of the form ¢, can be described by the function b which is defined linearly as

follows:
b(n)=2+3xn

n | My | rec-it(My)
1| 5 5
2] 11 8
3] 23 11

Figure 4: Comparison of efficiency of M; and rec-it(M).

Now we will describe the origins of our approach. The idea of the underlying transformation
strategy goes back to the fact that macro tree transducers are closely related to attribute gram-
mars [Eng80, CF82] and to a technique [DPSST77] of computing output objects of an attribute
grammar by means of IO macro grammars. Let us explain this chain of connections by applying
the two involved transformations to M;, and then compare the resulting I0 macro grammar
with rec-it(My).

In the first step we apply the construction of [CF82] which takes a well-presented macro
tree transducer and transforms it into an equivalent attribute grammar. In fact, M; is well-
presented. The input symbols p; of the macro tree transducer M; have to be considered as
productions of some context-free grammar. Here we choose the interpretation pg : § — A,
p1:A—aACa, py: A— b, and p3 : C — c. (Note that there is no reason why we have chosen
this particular interpretation.) Figure 5 shows the resulting attribute grammar G (with slight
variations due to a better fitting in our context). For an easier understanding, the involved
attribute dependencies are shown in Figures 6 and 7; there we have omitted the superscripts of
the attributes, because the correspondence between attributes and nonterminals is clear.

Actually, the resulting attribute grammar can be considered as an instance of a particular
type of attribute grammar: it is a simple-L-attributed grammar. A simple-L-attributed grammar
is an attribute grammar [Knu68] for which the following additional conditions hold.



po: S — A s9S) = s'(4)
iH(A) = e
is(A) = e

p1: A — aACa s9A) = sYA)#s%(0)
ii(4) = 1i(4)
iy(A) = biy(A)
it(C) = es'(A)

pr: A — s9(A) = 9(A)#i5(A)

p3: C — $9C) = &%)

i 0
: \ A
T‘L”.—éo ///A °
1122A|8—' a 1122,4'8_' t C’IS_I c

Figure 6: Dependency graphs of the productions S — A and A — aACa, respectively.

e Every nonterminal has exactly one synthesized attribute (and an arbitrary number of
inherited attributes; the startsymbol S has zero inherited attributes).

e It is an L-attributed grammar [Boc76], i.e., the attribute evaluation can be performed in
a depth-first left-to-right tree traversal.

e The semantic domain is the set of words over some output terminal alphabet on which
word functions operate; a word function is a function of the form

AU AU ... AW

such that w is a word over the output terminal symbols and the variables wuq,uo, ..., u,;
the variables range over output terminal words.

As usual, the semantics of an input word w in the language of the underlying context-free
grammar is described as the value of the designated synthesized attribute at the root of the
derivation tree of w. For instance, abca is a word in the language of the context free grammar
underlying G;. The derivation tree of abca is the tree po(p1(p2,p3)) and the corresponding
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Figure 7: Dependency graphs of the productions A — b and C' — ¢, respectively.

dependency graph is shown in Figure 8. The semantics of abca is the output terminal word
1#b#ccl#b (recall that G interprets its function symbols in semantic rules as word functions).

N

SN

Figure 8: Dependency graph of the derivation tree.

@
@

Now we can apply the second step which is due to [DPSS77]. There, a method is described
to associate with a simple-L-attributed grammar G an equivalent I0-macro grammar io(G)
[Fis68, ES78]. The nonterminals of G are taken over as nonterminals of io(G); the output
terminal symbols of G become the terminal symbols of 70(G). The rules of io(G) are computed
from the semantic equations of the simple-L-attributed grammar by imitating the depth-first left-
to-right tree traversal locally to the current production. In fact, during this traversal attribute
values are computed iteratively in a value driven way. The rules of the IO-macro grammar



T —  Hj(A(e,e))

5 (21) - 2z

T Alyr,y2) =  Hi(y, 92, A1y, bys))
i Hi(ynye,z1) —  Hi(yi,y2,71,C(cz1))
T Hi(yi,y2,21,22) — z1#2

Ty Ay, y2) — ity

3 Cly1) — e

Figure 9: Rules of the IO-macro grammar 70(G1).

i0(G1) associated to Gy are shown in Figure 9. We note that new nonterminals appear (here:
H{, H{, and H?).

Now let us compute the semantics of the input word abca by means of i0(G1). This is done
by deriving an output terminal word by leftmost-innermost derivation relation.

S = Hy(A(e, )
=7l (H11(5 £,A(1,0)))
=l Ho(H (g,¢,1#b))
s Ho(H (e, 18b, O(cl )
=1 Ho(H?(e, e, 14tb, ccl#b))

=3 Hy(1#b#ccl#b)
=72 1#b#Hccl#b

We note that the value of A(1,b) only has to be computed once; it is stored in an argument
position of nonterminal H? for later use. Moreover, we note that the computation of the final
object, i.e., the output terminal string, is computed iteratively in a value-driven way.

If we compare rec-it(M;) and i0(G1), then we realize that rec-it(M;) can be considered as
a mixture of the rules of the original macro tree transducer M; (which still compute values in a
demand driven, i.e., recursive way) and the IO macro grammar i0(G1) (which compute values in
a value-driven, i.e., iterative way). In particular, the register function (f4,p1,1) corresponds to
the nonterminal H{. The connection between rec-it(M;) and io(G1) becomes even more clear
if we slightly optimize io(G1) without changing its semantics. The resulting IO-macro grammar
i0o(G1)" is shown in Figure 10. In fact, io(G1)" has the same structure as rec-it(M;) and the
computations of i0(G1)" and rec-it(Mp) on input tree po(p1(p2,p3)) are closely related:



s S — Alee)

m Alyr,y2)  — Hi(y1,y2, ALy, bys))
2. Hi(yi,y2,21) — z21#C(cz1)

3 Alyr,y2) = ni#ye

my ¢ Cly) — an

Figure 10: Rules of the IO-macro grammar i0(G1)'.

derivation of rec-it(M;) derivation of io(G1)’
Fs(Po(p1(p2,p3))) S
= fa(pi(p2,p3),¢e,¢) =1 Alee)
= (Fasps 1) (02, 3,52, Fa(p2, 1(6), () = Hile,e,A(1,D))
= <.fA;p1: >(P2,p3,5 € #( (5)7b(5))) :>7T% H%(E,E,l#b)
= B (#(1(2),b(e)), fo(pa, c(#(1(2), b)) =x2  1#b7#C(cl3b)
= #(#(1(e), b(e)), c(c(F(1(e), b(¢)))) =1 1#bgcel#b

This paper is organized in six sections. Section 2 contains general notations and Section 3
recalls the concept of macro tree transducers, introduces the concept of macro tree transducers
with register functions and determines some useful properties of the reduction relation associated
to macro tree transducers with register functions. Besides the term “more efficient” is exactly
defined. In Section 4 the three transformation relations splitting g, a7, sharing Fgpere ar
and tupling F4ype,0r are presented. For each transformation relation the properties semantic-
preserving, confluent, and noetherian are proved. In Section 5 the transformation strategy is
defined. Furthermore, a decision algorithm is given which is able to determine whether or not,
rec-it(M) is more efficient than M.



2 Preliminaries

We recall some general notations and fundamental ideas which will be used in the rest of the
paper.

2.1 General notations

The set of nonnegative integers is denoted by IN. For n € IN, [n] denotes the set {1,...,n}. Let
S be an arbitrary set. The set of strings over S is denoted by S*. The empty string is denoted
by €.

For a finite set A, the cardinality of A is denoted by card(A).

Let = be a binary relation on an arbitrary set S. Then, for every n > 0, the relation ="
denotes the n-fold composition of =; the relation =" denotes the transitive closure of =; the
relation =* denotes the reflexive, transitive closure of =. As usual, we write & = £, rather
than (£1,&) €=

Let £ € S. If there is no &' € S such that ¢ = &', then ¢ is called irreducible with respect to
=. If £ is irreducible with respect to = and £, =* £ for some &, € S, then £ is an irreducible
form of & with respect to =-.

A derivation with respect to = is a sequence & = & = £3 = ... such that for every i > 1,
the elements & € S and & = &;41.

We say that = is

e confluent if, for every &,&1,& € S, the following implication holds: if £ =* & and £ =* &,
then there is a £’ € S such that & =* ¢ and & =* ¢,

e [ocally confluent if, for every £,£1,& € S, the following implication holds: if ¢ = &; and
¢ = &, then there is a & € S such that & =* ¢ and & =* ¢/, and

e noetherian if there are no infinite derivations.

We mention two results concerning a binary relation = (cf., e.g., [Hue80]). If = is locally
confluent and noetherian, then = is confluent. If = is confluent and noetherian, then, for every
& € S, there is a unique irreducible form of ¢ with respect to =, which is called normalform of
&, denoted by nf(=,£).

2.2 Lists and operations on lists

Let S be an arbitrary set. A list over S is a tuple (s1,...,s,,) for some elements s1,..., s, € S;

the empty list is denoted by ().
The set of lists over S is denoted by L(S). For an element s € S and a list [ € L(S), we
abbreviate the fact that s occurs at least once in [ by writing s in [. The append-operator

++ on lists over S is defined as follows: if (s1,...,$y) and (¢1,...,t,) are two lists over S,
then (s1,...,8m) + +(t1,---,tn) = (S1,--+38mst1,.-.,tn) is a list over S. A non-empty list
I = (81,.-.,8m) with m > 0 is also denoted by sy : [y where Iy = (s2,...,8m). The mapping

double : L(S) — L(IN) yields a list of positions at which elements of S occur repeatedly in the
argument list. It is defined as follows:

double(l) = f(,(),1,() where

f(a:l1,l2,i,l3) = f(ll,l2,i+1,l3++(i)), if ain s
fly,la + +(a),i+ 1,l3), otherwise

f(())l%i)l?)) = I3

10



For example, if S = {a,b,c}, then double((a,b,b,a,c,a)) = (3,4,6). The function delpos :
L(S) x L(IN)— — L(S) omits from the first argument list the elements, of which the positions
are given in the second argument list, if this second list is ordered by <, otherwise it is undefined.
It is defined as follows:

delpos(ly,15)
gla:11,b:1a,1)

g(l1,12,1) where
g(ll,l2,i+1), ifb=1
a:g(ly,b:la,i+ 1), otherwise
a:l1

0

g(a:11,(),9)
g(()7l27i)

2.3 Ranked alphabets and trees

A ranked alphabet T' is an alphabet in which to every symbol v € I a nonnegative integer is
associated; this integer is called the rank of v and it is denoted by rankp(vy). For every n > 0,
we denote the set of symbols of I' with rank n by '), If v has rank n, then we write also 7(").

Let I" be a ranked alphabet and let S be an arbitrary set. The set of trees over I' indezed
by S, denoted by T'(I')(S), is the smallest set 7" such that the following two conditions hold.

(i) For every s € S, the element s € T'.
(ii) For every v € T®) with k> 0 and ¢1,...,t, € T, the tree y(t1,...,t;) € T.

In the context of trees we prefer to write ~ instead of (), if v € T'©). The set T(I')(D) is
abbreviated by T(T'). Let t € T(T')(S). The set of paths of t, denoted by path(t), and the height
of t, denoted by height(t), are defined inductively on the structure of ¢.

(i) If t € T(O U S, then path(t) = {e} and height(t) = 0.

(ii) If ¢t = y(t1,...,t,) with & > 0, then path(t) = {e} U {iw | i € [k],w € path(t;)} and
height(t) = 1 + max({height(t;) | i € [k]}).

The prefix ordering on path(t) is denoted by < and the lexicographical ordering on path(t) is
denoted by <.

Let wy, wo € path(t) be two paths of t. Then w; and we are incomparable, iff neither wy < wo
nor wo < wi.

Let t = y(t1,...,t;) with & > 0 be a tree and let w € path(t). We define the label of t at w,
denoted by label(t, w), and the subtree of t at w, denoted by sub(t, w), inductively as follows:

(i) If w = ¢, then label(t,w) = v and sub(t,w) = t.

(ii) If w = 4v for some i € [k], v € path(t;), then label(t,w) = label(t;,v) and sub(t,w) =
sub(ti, v).

The label of ¢ at ¢ is also denoted by root(t). The set of subtrees of t is denoted by SU B(t).

Let wy,...,w, with n > 0 be paths of a tree ¢ such that, for every 4,j € [n] with i # j, w;
and w; are incomparable. Then, for trees sq,...,s,, we abbreviate by t{wy < s1,...,w,  s,]
the tree ¢ in which we have replaced each subtree at w; by the tree s;. Let ¢ be a tree and
let t1,...,t, be subtrees of ¢ such that, for every ,j € [n] with ¢« # j, t; ¢ SUB(t;) and
tj ¢ SUB(t;). The tree t in which we have replaced each occurrence of a subtree ¢; by the tree
s; is abbreviated by t[t1/s1,...,tn/Sn]-

11



2.4 Variables and Substitutions

For the rest of the paper, we fix three sets of variables, viz., the set X = {z1,z2,23,...}
of recursion wvariables, the set Y = {y1,y2,ys,...} of context parameters, and the set Z =
{z1, 22, 23, ...} of result variables. For every k > 0, we define X} = {z1,...,z;} and similarly for

Y), and Zj. The union X UY U Z is denoted by V. For a tree ¢t € T(I')(V'), the set of variables
which occur in ¢, is denoted by V'(t).

Let I be a ranked alphabet. A mapping ¢ : V — T(I')(V'), where the set {z | p(z) # z,z €
V'} is finite, is called I'-substitution. The set {x | ¢(z) # x} is denoted by D(y) and is called the
domain of ¢. The extension of ¢ is the mapping ¢ : T(T')(V) — T(I')(V') defined inductively as
follows.

(i) If t € V, then @(t) = p(t).

(ii) If ¢ = y(t1,...,tn), v € D then G(t) = y(P(t1), ..., @(tn))-

In the following the extension of a substitution ¢ is also denoted by ¢.
Let t € T(I')(V). If D(¢) = {z1,...,%n}, then ¢(t) is represented as t[z1/o(x1), ..., zn/o(Tn)]
or t[z;/p(z;);i € [n]].

2.5 Principle of simultaneous induction

Here we use the principle of simultaneous induction which is a kind of double induction on trees
[EV85]. Let I" be a ranked alphabet, let A be an arbitrary set, and for every k > 0, let By, be a
set. The mapping

[:T{)— A

and for every k£ > 0, the mapping
gk (T(0)* — By,

is defined by simultaneous induction if the following holds.

(a) For every o € I'®) with k& > 0 and s1,...,s; € T(T), gr((s1,...,5%)) is used to define
flo(si,-..,sk)-

(b) For every si,...,sp € T(I') with k >0, f(s1),... f(sg) are used to define gx((s1,. .., Sk))-

Similarly we can use the principle of simultaneous induction to prove properties. For every
k>0, let Q; and P be two predicates which range over (T(I'))* and T(I'), respectively. Q; and
P are said to be proved by simultaneous induction if (a) and (b) are proved.

(a) For every 0 € I'®) with k& > 0 and sy,...,s;, € T(D), if Qx((s1,...,5%)) holds, then
P(o(s1,...,s,)) holds.

(b) For every si,...,s, € T(I') with k& > 0, if P(s1) and P(s2) and ... and P(sg) hold, then
Qr((s1,--.,8k)) holds.
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3 Macro tree transducer and macro tree transducer with re-
gister functions

Before starting with the main topic of this paper — the transformation relations and the trans-
formation strategy — we define the class of term rewriting systems which we want to transform,
namely the class of macro tree transducers, and the class of term rewriting systems on which
these transformations are based. This class is called the class of macro tree transducers with
register functions.

Macro tree transducers are well-known from the literature and were introduced in [CF82,
Eng80] (see also [EV85]). They are formal calculi to describe the computation of primitive
recursive program schemes with parameters in which simultaneous recursion and nesting of
function calls in parameters are possible.

For technical reasons we define the set of ground right-hand sides of a macro tree transducer
separately.

Definition 3.1 Let F and A be two ranked alphabets. Let k,n > 0. The set of ground right-
hand sides over F, A, k and n, denoted by gr-RHS(F, A, k,n), is the smallest set RHS such
that the following properties hold:

(i) Y, C RHS.
(ii) For every d € A(™ with m >0 and (1,...,¢n € RHS, the term 0(Cy,...,¢n) € RHS.

(iii) For every f € F(™t1) with m > 0, i with 1 <4 < k, and (1,...,(n € RHS, the term
f($17C177Cm)€RHS O

Definition 3.2 A macro tree transducer is a tuple M = (F, 3, A, R) such that
e [ is the ranked alphabet of functions,
e 3 is the ranked alphabet of input symbols,
e A is the ranked alphabet of output symbols with ¥ C A and ANF = (), and

e R is a finite set of rules of the form I — ¢. For every f € F(®™) with n > 0 and o € £*%)
with & > 0, there is exactly one rule in R of the form

f(O'(ZEl,... axk)ayla"' ayn) - C
and ¢ is in gr-RHS(F, A, k,n). No other rules are in R.

|

The class of macro tree transducers is denoted by M. Let us give an example of a macro
tree transducer which will also serve as running example in the next sections.

Example 3.3 The tuple My = (F1, X1, Ay, Ry) with the components
o I = {lift® extr@®},
[ ] El = {0’(2),a(0)},

13



o A= {06@ 4D 0O} and

e R is the set of the rules which are shown in Figure 11,

is a macro tree transducer. O
liftla,y1) — n
lift(o(xr,x2),y1) —  o(lift(xi,y1),0(extr(x2,v(y1)), extr(zy,y1)))
extr(a,y1) — «
extr(o(zi,22),y1) —  o(lift(ze,lift(z,y1)),lift(z1,y1))

Figure 11: Rules of the macro tree transducer M;.

Since we will have to deal with some additional functions in the sequel, let us call the original
functions of a macro tree transducer simple functions.

As mentioned before, the transformation strategy which we will define, transforms a macro
tree transducer into a more general term rewriting system, called macro tree transducer with
register functions. Macro tree transducer with register functions are a generalization of macro
tree transducers in the sense that, to every pair (f, o) consisting of a simple function f and an
input symbol ¢, a finite sequence of register functions is associated. Intuitively, the arguments of
such register functions serve as registers in which trees over A can be built up and accumulated.
This accumulation is done as follows: the simple function f calls the first register function in
the corresponding sequence, and the i-th register function calls the (i + 1)-st register function.
Thus register functions are non recursive.

During the transformation process we will tuple simple functions into one function; such
functions will be called tuple functions. Note that also to every pair (g, o) consisting of a tuple
function g and an input symbol o, a finite sequence of register functions is associated. The next
definition describes the functions involved in a macro tree transducer with register functions
formally.

Definition 3.4 Let > be a ranked alphabet. A system FS of functions over X is a tuple
(sim(F'S),tup(FS),reg(FS)) of disjoint ranked alphabets sim(F'S), tup(F'S), and reg(FS) of
simple functions, tuple functions, and register functions, respectively, such that the following
properties hold:

o sim(FS) O Utup(FS)O) Ureg(FS)® = @, i.e., every simple function, tuple function, and
register function has at least rank 1.

o tup(FS) = {(fi,---, fm)™ |m>1,n>0,f1,..., fm € sim(FS)™}
i Teg(FS) = UfEsim(FS)Utup(FS),aeE (fa U)—Teg(FS).

o Forevery f € sim(FS)Utup(FS) of rank n+1and o € %) withn,k > 0, thereisanny, >
0 such that the set (f,o)-reg(F'S) = {(f,0,i)|l <1i < nyy} and rank,.qrs)((f,0,1)) =
n+k+ 1 for some ri ;5 > 0.

|

The set sim(F'S) U tup(FS) is called the set of ground functions, denoted by gr(F'S).
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In the following, given a system F'S of functions over ¥, we also use F'S as abbreviation for
sim(FS) Utup(FS)Ureg(FS).

Definition 3.5 A macro tree transducer with register functions is a tuple N = (F S, %, A, R)
such that

o 'S = (sim(FS),tup(FS),reg(FS)) is a system of functions over X.

e 3 and A are ranked alphabets of input symbols and output symbols, respectively. For every
tuple function (f1, ..., fm) with m > 1 it holds that comb,, € A(™),

e R is a finite set of rules which is partitioned into the sets gr(R) and reg(R) of ground
rules and register rules, respectively. Every rule in R is left linear, i.e., in the left-hand
side of every rule no variable may occur more than once. The two sets have the following
properties.

— gr(R): For every f € gr(FS)(”+1) with n > 0 and o € *) with k& > 0, there is
exactly one rule of the form

f(U(£U1,---,IIIk),y1,---,yn) ¢

such that either
x ( € gr-RHS(gr(F'S),A,k,n) or
* ( has the form (f, o, 1)(z1,...,Zk, Y1, -+ Yn,C1,---,(r) where r is determined by

the equality rank,.qrs)((f,0,1)) = k +n +r and, for every j with 1 < j <,
the term (; € gr-RHS(gr(FS), A, k,n).

— reg(R):

« For every (f,0,i) € reg(FS)™t5+7) with f € ¢gr(FS)"*Y and o € *), and
1 <i<ny,—1, there is exactly one rule in reg(F'S) of the form

(fao-ai>(jagaula"'aur) - (f,U,i+1>(57,g,C1,---,Cp)

where Z and g abbreviate the sequences z1,...,z; and y,...,y,, respectively,
and
- for every j with 1 < j <r, the term u; € Z or there are r(j) >0, § € AU
and zj1,..., 2, € Z such that u; = §(2j1,...,2j,(;) and

- p > 0 and for every j with 1 < j < p, the term (; € gr-RHS(gr(FS),A U
Ui<i<r V(ui), k,n).
* For every (f,o,nyq,) € reg(FS')(""'k""") with f € gr(FS’)(""'l) and o € ©(%)_ there
is exactly one rule in reg(F'S) of the form

(fao—anf,0>(£‘agaula"' ,’U,,«) _>C

where £ and gy abbreviate the sequences x1,...,z; and yi,...,y,, respectively,
and
- for every j with 1 < j <r, the term u; € Z or there are r(j) >0, § € Ar@)
and zj1,...,2j,(j) € Z such that u; = 0(2j1,-..,2;,(;)) and
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' C EgT'RHS(gr(FS)aAUUISigr V(uz),k,n) U

A rule of which the left-hand side has the form f(o(...),...) or (f,0,i)(...) is called an
(f,o)-rule.

We denote the class of macro tree transducers with register functions by N. Note that,
in a rule of a macro tree transducer with register functions, the argument list of a register
function (f,o,7) with rank(f) = n + 1 and rank(c) = k always starts with the variables
L1,y ThyY1,---,Yn- In the following we often abbreviate these sequences by Z and .

Let us illustrate this definition by an example:

Example 3.6 Consider the macro tree transducer N; with register functions which is the tuple
(FS1,%1,A1, Ry) with the following components:

o sim(FS)) = {fibM, hV}, tup(FSy) = {(fib,h)(V}, and reg(FS,) = {(fib,o,1)?),
((fib, h),0,1)?)},

[ ] El = {U(l),a(o)},
o A = {combéZ), +@ oM a0} and

e the rules of R; are shown in Figure 12. Thus, gr(R;) contains the rules (1), (2), (4), (5),

(6), and (7) and reg(R;) contains the rules (3) and (8). O
fibla) — o(a) (1)
fib(o(z1)) — (fib,0,1)(z1, (fib, h)(z1)) (2)
(fib,0,1) (@1, comba(z1,22)) — +(z1,22) (3)
ha) = a (4)
h(o(z1)) —  fib(z1) (5)
(fib,h)(a) — combs(o(a), ) (6)
(fib,h)(o(z1)) — ((fib,h),0,1)(z1, (fib, h)(x1)) (7)
((fib,h),0,1)(z1,comba(21,22)) — comba(+(21,22), 21) (8)

Figure 12: Rules of the macro tree transducer Ny with register functions.

In the rest of this section, let N = (F'S,%, A, R) be an arbitrary, but fixed macro tree
transducer with register functions. Let us introduce some useful notations which we will often
use in further sections.

Definition 3.7 1. The set of right-hand sides of N, denoted by RHS(N), is the set {{ | | —
¢ € R}.

2. Let t € T(FSUA)V). A subtree ¢! = f(t1,...,t,) of t with f € FS™ for some n > 0
is called function call. If f € gr(FS)™ then t' is called ground function call. The list of
subtrees (t1,...,t,) of t' is called list of arguments of t', denoted by arglist(t').
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3. The set of function calls in t is denoted by F,q;(t); the set of ground function calls in t is
denoted by F7" (t).

4. For every rule [ — ( in reg(R), the left-hand side [ is called flat, if arglist(l) in L(V). O

Clearly, every macro tree transducer can be considered as a macro tree transducer with
register functions in which the system of functions F'S has the form (F, @, @), i.e., sim(FS) =
tup(FS) = ¢, and reg(FS) = (.

To assign a reduction relation to macro tree transducers with register functions we first define
the syntactical structure of the intermediate results of the reduction relation.

Definition 3.8 The set of syntaz-directed expressions over F'S, 3, and A, which is denoted by
sdExp(FS, %, A), is the smallest set sdExp such that the following conditions hold:

(i) For every d € AU with m > 0 and ¢, ..., ¢, € sdEzp, the tree (i1, ..., 1y) € sdExp.

(ii) For every f € gr(FS)™t1) with n > 0, s € T(X), and 11, .., 1, € sdEzp, the function
call f(s,91,...,1,) € sdExp.

(iii) For every g € reg(FS)* +7+7) for some k,n >0, and 7 > 0, s1,...,5, € T(), t1,...,tp €
T(A), and tq,...,¢, € sdExzp, the function call g(s1,...,8k,t1,---stn,¥V1,...,9p) €
sdExp. O

Until know we have only defined syntactical objects of macro tree transducers with register
functions. Now we define a reduction relation for macro tree transducers with register functions.

Definition 3.9 The call-by-value derivation relation induced by N, denoted by @N, is the

binary relation on sdExzp(F'S, >, A) such that, for every 1,¢e € sdExzp(FS, %, A), ¢ 0y o
iff

e there is a path w in path(i)y),
e there isarule! — ¢ in R, and
e there is a A-substitution ¢ with D(p) = V(i)

such that p(l) = sub(¢1,w) and 1y = P1[w < ({)]. The substitution ¢ is called matching
substitution of | and sub(1)1,w). O

Example 3.10 First, we consider the macro tree transducer N; with register functions of Ex-
ample 3.6 and show some steps of &y applied to the syntax-directed expression fib(c(o(o()))).

Q
S
<

fib(o(o(o(a)) =~ (fib,o,1)(a(co(a)), (fib,h)(o(o(a))))
with rule (2), path w = ¢, and matching substitution ¢ = [z1/0(0(a))]

C=Z§N (fib,0,1)(o(o(a)), ((fib, h),0,1) (o (), (fib, h)(o(ax))))
SN (fib,o,1)(a(0(a)),((fib, h), 0, 1) (o (a), ((fib, h), 0, 1)(a, (fib, h)(a))))
Ln (fib,o,1)(o(a(e), ((fib, h), o, 1)(o(a), (fib, h), 0, 1) (e, combs (o(a), @))))
LN (fib,o, 1)(a(o(e), ((fib,h), o, 1)(o(e), comba(+(0(a), @), 0(a))))
LN (fib,o,1)(a(o(e), comb (+(+(0 (@), a),0(a)), +(o(a), @)
LN +(+(+(0(a),a),0()), +(0(a), @)
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It can be proved that the function fib computes the Fibonacci numbers assuming that « is
interpreted by 0, o is interpreted by the successor function +1, and + is the addition of natural

numbers.

Let M; be the macro tree transducer of Example 3.3. As second example we show a derivation
of the function call t = lift(o(o(o(a, @), @), @), ) by c:bng in the following boxes. For the sake
of clearity, this time we use the graphical representation of the syntax-directed expressions. Note
that the result is computed in 22 steps. Also note that during the derivation function calls arise
multiple time as, e.g., the function call ¢y = f(o(a, ), ). In further sections we will often fall
back upon the given function call ¢ and its derivation.

lift =M o
— ~
o— o
— ~ lift o
— T~ o2 (6% extr extr
o @ — PN — ~
— ~ o o oy s o
(6% « - ‘ — ™~
@ @ « o2 (6%
/ \
(6% «
cbv 3
= M;

o« a extr extr
P P
a v a «
|
a
=
)2
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= M o
o o
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N N N
a o «a o
o o
o @ IS N
ax o o o
N PN
a a o «o

Let us list some properties of cby N-
Lemma 3.11 The relation @N 1s locally confluent.

Proof. By Lemma 3.1 of [Hue80] R\ s locally confluent, because by definition of . there
does not exist any critical pair in R. In other words, the function calls which can be reduced in
a step are always non-overlapping. O

Lemma 3.12 For every syntaz-directed expression v there is o bound on the length of deriva-
tions starting from 1.

Proof. For the sake of brevity we coin the following notion. Let ¢ € sdExzp(FS, %, A) and a > 0.
Then we write [ength_der() < a if every derivation starting from 1 is not longer than a.
Now we prove the following statement by induction on the structure of 1.

For every ¢ € sdExp(FS,%,A) of the form p(41,...,1,,) for some m > 0, if for
every 4 € [m], there is a number a,, such that length_der(1;) < ay,, then there is a
number a,, such that length_der(y) < ay.

Consider an arbitrary call-by-value derivation starting from p(t)1, ..., %, ). According to the
inductive definition of syntax-directed expressions, we have to consider three cases: p € A(™),
p € gr(FS)™, or p € reg(FS)m.

1. p € Al™: Then the derivation has the form

chy €
p(l/)h s 71/)771):}]\7 p(§17 s 75771)
where ¢ < 37 ay,, because length_der(1;) < ay,. Then choose ay = X[ ay,.

2. p € gr(FS)™: We prove the following two statements by simultaneous induction.

P: For every f € gr(FS)™t1), n >0, s € T(X), 61,...,0, € sdExp(FS,%,A),
if for every i € [n], there is a number ag, > 0 such that length_der(6;) < ay,, then
there is a number af(, g, . g,) such that length_der(f(s,01,...,0n)) < afp,...0,)-
Q: For every k > 0, s1,...,8, € T(X), n > 0, ¢ € gr-RHS(gr(FS),A U Z,k,n) such
that V({) N Z = {z,...,2,} for some r > 0, t1,...,t, € T(X), and 04,...,0, €
sdExp(FS,%,A),
if for every j € [n], there is a number by, > 0 such that length_der(0;) < bg,, then
there is a number by with (" = ([z;/si;4 € [K]][yu/O0u; 1 € [n]][20/tu; v € [r]] such that

length_der(¢") < by, .
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P = Q: This implication is proved by induction on the structure of . Let ¢1,...,t, €
T(%), 61,...,0n € sdEzp(F S, X, A) and by, such that length_der(6;) < by, .
(i) ¢ =y; € Y with 1 < j < n: Since ¢’ = 6;, we can choose by = by, and the
statement follows trivially.

(ii) ¢ =0(C1y...,Cm) with 6 € A and assume that Q holds for (1, ..., ¢y,. We can
choose by = X7 b¢; and the statement holds.

(iii) ¢ = f(%},¢1,---,Cm) With f € gr(FS)"L, 1 < j < k and assume that Q holds
for {1,...,¢,. Consider an arbitrary call-by-value derivation starting from ¢’ =
f(@j, Qe Co)lmi/sisi € [K]llyu/Ousn € [n]llz/tuiv € [r]] = Ff(s5,C5---56h)
with, for every p € [n], (), = ([zi/si;i € [K]][yu/O0u; 1 € ][z /tu;v € [r]]:

CIC:ngCf(Sja 517 v 7(71)

Then (i,...,(n € T{A) and ¢ < Ezzlblgp- Since length_der((;) < 0, Q follows
from P.
Q = P: Consider f € gr(FS)™tY), s € T(), and 6y,...,0, € sdExp(FS,%,A), and
assume that for every ¢ € [n] there is an ap, such that length_der(0;) < ap,. Now
consider an arbitrary call-by-value derivation starting from f(s,61,...,6,):

f(sagla"'70n)C:b;}ch(87§17"' 7571,)

Then &;,...,&, € T(A) and ¢ < X7 ;ay,.
Let s = o(s1,...,s;) and let f(o(z1,...,2%),Y1,---,Yn) — ¢ be the rule in R.
case 1 ¢ € gr-RHS(gr(FS),A,k,n): Then P follows immediately from Q and the
assumption on the 6;’s.

case 2 ( = (f,o0, 1)($1,...,xk,yl,...,yn,Cl,...,Cr(f,o,U): Then an arbitrary call-by-
value derivation starting from ([z;/s;][y;/§;] is a sequence

chv chy '
C[xz/sz] [yj/ﬁj] =p1 =N ®2 = N,reg(R) 2
chy €2 chy '
=N ¥3 :>N,reg(R) Y3
chy Cnfo—1 chy '
=N Pns, = N,reg(R) Pnsy

such that ¢; cby N,reg(R) ¢! is induced by the register rule

(fao-ai>(jagaula' .. 7u(f,0',i>) — (fao-ai + 1)(5775,4-1, v 7C7‘(f,o,i+1>)-

From Q we can calculate the numbers ci, ¢, ..., ¢n; ,—1. Then we can define
_ nfo—l
Af(s,01,000) = CH 827 it (nge —1).
3. p € reg(FS)(™): Then the derivation has the form

<f70-7V>(1/)17"'71/)m)C:b§]NC<f70-7V>(§17"'75771)

where ¢ < 37 ay, and &, ..., &y, € T(A). The argumentation is similar to 2., case 2.

20



Therewith the lemma is proven. O
Lemma 3.13 The relation c:ng 18 noetherian.

Proof. We prove the lemma by contradiction. We assume that C:ng is not noetherian, i.e.,
there exists an infinite derivation. Let

cbv cbv

Y1 =N Y2 =N P3...

where, for every i € IN, ¢; € sdEzp(FS,%X,A) be such an infinite derivation. This is in
contradiction to Lemma 3.12. O

Lemma 3.14 The relation c:ng is confluent and noetherian.

Proof. This result follows directly by the fact that cby ~ is locally confluent (cf. Lemma 3.11)
and noetherian (cf. Lemma 3.13) and by Lemma 2.4 of [Hue80]. O

An important consequence of the fact that cby ~ is confluent and noetherian is the existance
of a unique normalform n f (djzg N, 1) of every syntax-directed expression 1.

Definition 3.15 The call-by-value tree function computed by N is the total function 7., (N) :
Unzo(QT(FS)(n) x T(X) x (T(A))") — sdEzp(reg(FS),%,A) defined as follows: for every f €
gr(FS)™*D) with n >0, s € T(X) and t1,...,t, € T(A),

cbhv

chv(N)(fasatla s 7tn) = nf(:>N7f(87t17' . 7tn))

|

Note that the register rules of a macro tree transducer with register functions are in gene-

ral not exhaustive. Hence, the by ~-normalform of a syntax-directed expression is a tree over
reg(F'S) and A.

Definition 3.16 Let M = (Fas, X, Apr, Rar) be a macro tree transducer and let N = (F'S, %,
A, R) be a macro tree transducer with register functions. M and N are semantically equivalent
if the following conditions hold:

o Iy = sim(FS).
o Xy =2
o Ay CA.

e For every [ € FJS};H) withn >0, s € T(X), t1,...,tn € T(Anr), Tepo (M) (f, 8,81, ... tn) =
chv(N)(fasatla"'atn)-

e For every (f1,...,fm) € tup(FS)"*Y for some n > 0, s € T(X), t1,...,t, € T(Ay), if,
for every i € [m], Tepo (M) (fiy 8, t1,...,tn) =&, then

chv(N)((fla .- 'afm)asatla N atn)) = combm(fl,. .- agm)

and comb,, € A™). O
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Of course, in general it may be undecidable, if a macro tree transducer M and a macro tree
transducer N with register functions are semantically equivalent. But later, we will use this
notion in a context in which the semantical equivalence is given automatically.

Observation 3.17 Let M be a macro tree transducer and let N be a macro tree transducer
with register functions such that M and N are semantically equivalent. Then the range of the
function 7.4, (N) is T(A). O

Especially in the field of transformation relations and transformation strategies it is import-
ant to be able to compare the source and the target of the transformation in order to know
whether the transformation makes sense or not. Therefore an appropriate measure has to be
defined. Here we consider the number of steps to compute the same normalform as complexity
measure.

Definition 3.18 Let N = (FS,X,A,R) and N' = (FS',2, A’ R') be two macro tree transdu-
cers with register functions.

1. N'is at least as efficient as N if, for every syntax-directed expression 1 € sdExp(gr(FS)N
gr(FS"), %, AN A') the following holds: if there is some a > 0 and an irreducible £ €
sdExp(gr(FS) Ngr(FS’), %, AN A’) such that

b a
1/)C:§N 67
then there is a b with 0 < b < a such that
chy
Y= €
2. N'is sometimes better than N if there are a syntax-directed expression ¢ € sdExp(gr(FS)

Ngr(FS"), 2, ANA’), numbers ¢ and b, and an irreducible ¢ € sdEzp(gr(FS) N gr(FS'), %,
A N A') such that

a b
PN €, v € and b < a.

3. N' is more efficient than N if N' is at least as efficient as N and N’ is sometimes better
than N. O
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4 Transformation relations

In this section we define three different transformation relations on macro tree transducers with
register functions: splitting, sharing, and tupling.

4.1 Splitting

As before, let N = (F'S,%X, A, R) be an arbitrary, but fixed macro tree transducer with register
functions. In this subsection we present a transformation on macro tree transducers with register
functions which allows to introduce further register functions and therewith, further register
rules. The task of this transformation, called splitting transformation relation, is to create a rule
the right-hand side of which is a register function call and the argument list of this call contains
ground function calls with equal argument lists. These ground function calls are candidates for
the transformations sharing and tupling. Hence, the splitting transformation relation is only a
preparation for the other transformation relations. We note that this splitting technique has
been used in [Vog90].

We illustrate the principle of the splitting transformation relation by the macro tree trans-
ducer M; of Example 3.3. We consider the right-hand side of the (extr,o)-rule in Ry:

extr(o(r1,72),y1) — o(lift(za,lift(r1,y1)),lift(z1,y1))-

There, the ground function call [ift(x1,y1) occurs twice, i.e., we have two ground function calls
with equal argument lists. This rule is splitted by the splitting transformation relation into the
following two rules:

extr(o(zy,x2),y1) — (extr,o,1)(x1,z2,y1,lift(x1,y1), lift(z1,91))
(extr,o,1)(z1,y1,21,22) — o(lift(z2,21),22).

Roughly speaking, the right-hand side ¢ of the original rule is changed into a register function
call where its argument list contains (besides the variables z1, 22, and y;) some ground function
calls of {. As a preparation for the sharing, we are in particular interested to extract ground
function calls from ¢ which have the same argument list. The second rule is necessary to compute
the context of the extracted ground function calls. Hereby, every variable in Z denotes the value
of a ground function call. This context is indeed nothing else but the old right-hand side in
which the extracted ground function calls are replaced by variables in Z.

To determine the appropriate ground function calls which are to be extracted, we define the
cut through a right-hand side.

Definition 4.1 Let ( € RHS(N). The cut through ¢, denoted by Cut((), is the maximal subset
S C path(¢) such that the following conditions hold:

e If root(¢) € reg(FS), then S = (. (split only ground right-hand sides)
e For every w € S, label(¢,w) € gr(FS). (labeled by ground function)
e For every w € S, arglist(sub({,w)) in L(T(A)(V)). (no nesting in arguments)
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o If S # (), then there exist paths w,v € S with w # v such that arglist(sub((,w)) =
arglist(sub((,v)). (splitting makes sense) O

The first condition makes sure that only rules with ground right-hand sides are considered.
It would be possible to define splitting also on rules with register functions in their right-hand
side, but in our context we do not need such a general form of splitting. As explained before,
we take only ground function calls under consideration (cf. the second condition) which are
closest to the leaves of the right-hand side (cf. the third condition). For the set of paths which
determine the listed function calls, we require that there are at least two different paths in it
which lead to function calls with equal argument list (cf. the fourth condition). We will see in
the next sections, how this property is used.

Consider, e.g., the macro tree transducer My of Example 3.3: there are two rules, namely
the (lift,o)-rule and the (extr,o)-rule of which the cuts through their right-hand sides are not
empty. More precisely, {1,21,22} and {12,2} are the cuts through the right-hand sides of the
(lift,o)-rule and the (extr,o)-rule, respectively.

Recall that the left-hand side of an (f, o)-rule has the form either f(o(...),...) or (f,o,%)(...).

Definition 4.2 Let M be a macro tree transducer. The splitting transformation relation with
respect to M is the binary relation gy 7 C N X N defined as follows. Let N = (F'S, %, A, R)
and N' = (FS', X, A, R') be two macro tree transducers with register functions. Then N F gy ar
N' iff the following conditions hold.

e M and N are semantically equivalent.

e There is an (f,o0)-rule I — ¢ in R with f € gr(FS)"*Y and o € 2% for some k,n > 0
such that Cut(¢) = {wy,...,w,} for some r > 0 and w.l.o.g. w1 <jey - .. <jeg Wy.

e The variables in Z occurring in [ can be written as list (21,...,2,) for some p > 0.
e Let the number i = ns, + 1. Then F'S' = FS U {(f,0,i)k+ntpir)},
e R’ is obtained from R by replacing the rule [ — ¢ by the rules

I — <fa O—ai>(jag7 21y 2py SUb(Cawl)a s aSU'b(CawT))

and
<f707i>(‘%7g7z17"' y2py Bp+1s- -+ 7zp+1“) — C[wl < Zpg1y .., W £ Zp+1“]

where = and y denote the sequences z1,...,x; and yi,...,yy, respectively.

a

Note that the splitting transformation relation can only be applied, if there is at least one
rule with a ground right-hand side which has a nonempty cut. Also note that, if [ has the form
flo(z1,...,2k), Y1, .-, Yn), then we assume that ny, = 0. Recall that otherwise ns, denotes
the number of (f, o)-register functions.

Now we illustrate the splitting transformation relation on an example.

Example 4.3 Consider the macro tree transducer M; of Example 3.3. As mentioned before,
the cut through the right-hand side (eztr s of the (extr,o)-ground rule is the set {12,2}. We
execute the step My Fgpie v, N1

Let us stepwise examine the conditions of Definition 4.2.
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e Trivially, M; is semantically equivalent to itself.

e Consider the (extr,o)-ground rule. The cut through its right-hand side is {12,2}. Note
that r = 2.

e There does not occur any variable in Z in the left-hand side of the (extr,o)-ground rule,
ie., p=0.

e Since card((extr,o)-reg(FS)) = 0, it follows that i = 1 and FS| = {lift®, extr?),
(extr,o,1)®)}

e R] is the set of rules which are shown in Figure 13.

Therewith the conditions are fulfilled and M &g s, N1

lift(a,y Y1
lift(o(z1,22),y olift(z,y1), olextr(w2, y1), extr(z1,y1)))
[0

extr(o(zy,x2),y
(extr,o,1)(x1,T2,Y1,21, 22

<€:L’t7‘, a, 1>(1‘1 y L2, Y1, lth(iL’l, yl)) llft(xla yl))

)
1)
extr(a, yl)
1)
) o(lift(ra, 21), 22)

L1 dd

Figure 13: Rules of the macro tree transducer N; with register functions.

If we assume that N; and M; are semantically equivalent (this fact is proven in the sequel),
then the splitting transformation relation can be again applied to Ny by considering the (lift, o)-
rule with {1,21 22} as cut through Clzfta Then Ny l_split,Ml Ny with Ny = (FS9, %1, A1, Ry)
where FSy = {lift®), extr® (extr,0,1)®) (lift,0,1)®} and R, is given in Figure 14.

lift(a,y1
llft( (371,372)

; Y1
(lift,a, 1>(Cl71,372,y1, 21,22, 3%

1)

)

(lift,o,1)(x1, 22,91, lift(z1,y1), extr(za, y1), extr(z1,y1))
o(z1,0(22,23))

o

(61‘t1“, 0, 1)(1’1,1'2, Y1, llft(xla yl)) llft(xh yl))
o(lift(zs, 21), 22)

extr(a,y;
extr(o(xy,x2),y
(extr, o, 1)(w1, 72,41, 21, 22

A A

Figure 14: Rules of the macro tree transducer Ny with register functions.

The following figures show a derivation of the function call lift(o(o(o(e, @), @), a),a) by
C:ngz. Note that the result is computed bottom-up in 29 steps.

. cbv .
lift EA (lift,o,1)
/ \
i a ) T
— ~ o a « lift extr extr
o e — ~ T~ -~ — ~
— ~ o a o a o ~ o a
o @ — ~ — ~ | — ~
— ~ Q@ a o a a o a
a a — — ~
a a a a




=N (lift,o,1)

///v

o (extr,o,1)
— ~ T
o a o« lift lift
a < {lift,0,1) a o ;7 Ta o a
VRN VRN
///\\\ a « a
o« a lift extr extr
VRN ~ ™~ VRN ~
a o a a vy o a
~ ™~ | VRN
a o« e a
cby 5 .
=N, (lift,o,1)
o (extr,o,1)

a (extr,o,1)
e
e
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(lift,o,1)

///\\\

(07

)2
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=N (lift,o,1)

///v

(extr,o,1)

<lift,Z, 1 R
T

=N (lift,o,1)
o
o o o o
N PN P PN
o O o O o O o O
PN PN PN PN
a « a « a @ a @
cbv
= N» o
o o
o o «a o
PN PN N
o O o O
g g
PN PN
PN PN
a a a o a o
PN PN
a a

Remark 4.4 Let M be a macro tree transducer. If, for two macro tree transducers N =
(FS,3,A,R) and N' = (FS',%, A, R') with register functions, N tgp; ps N', then the following
holds:

1. card(FS') = card(FS) + 1, in particular, card(reg(FS")) = card(reg(FS)) + 1 and
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tup(FS) = tup(FS’).
2. gr(FS") = gr(FS).
3. card(R') = card(R) + 1.

4. There is exactly one rule | — ¢ in R such that there are two rules | — ¢’ and I’ — ¢" in
RandR—{l = (¢} =R —{l = ¢',I' = ¢"}. Moreover, Cut(¢) # ¢ and Cut(¢’) = .
The rule | — ( is called splitted rule of N and N'. |

Clearly, by splitting one rule into two, the efficiency of the resulting macro tree transducer
with register functions decreases with respect to the original transducer. Later (cf. Theorem 5.13)
we will see that this increment is compensated by the application of the other two transformation
relations.

Corollary 4.5 Let M be a macro tree transducer. Let N,N' € N and N Fgpipms N'. N is
more efficient than N'. In particular, assuming that | — ( is the splitted rule of N and N', then

if the evaluation of a syntax-directed expression 1 by C:ng needs L derivation steps in which the
rule | — ( is applied K times, then the evaluation of 1 by C:ng/ needs L + K derivation steps.

Proof: Let N = (FS,%,A,R) and N' = (FS’,%, A, R") be macro tree transducers with
register functions such that N by ar N'. Let [ — ¢ be the splitted rule of N and N’ and
let R = (R—{l — ¢})U{l = ¢',I" = ("}. To prove that N is more efficient than N’ we
have to prove the following statements: N is at least as efficient as N’ and N is sometimes
more efficient than N’ (cf. Definition 3.18). In particular, we have to prove that, if for some
syntax-directed expression 1 € sdExzp(gr(FS),%,A) there are an ¢ > 0 and an irreducible

a b
W' € sdExp(FSNFS', %, A) such that 2y ', then there is a b < a such that %y ' (at
least as efficient). The property “sometimes more efficient” corresponds to the second statement
of the corollary: we have to prove that K applications of the rule | — ¢’ during the cby N-

derivation of a syntax-directed expression 1 lead to a by n-derivation of ¢ which is K steps
shorter.
Let us consider an arbitrary derivation of a syntax-directed expression v by by N

*
=11 Lnhy v B by B b Do B by B i = 1)

Let v € [m] such that for every i < v, in the step 1; c:ng, ir1 the rule [ — (' is not applied

and 1), L y41 where 1,11 = P [w + ©(¢")] and sub(vp,, w) = p(I) for some path w and
matching substitution . Furthermore, let 1,4, = ¥, [w < &,] and &, is the normalform of

sub(tpy,, w).
Since all other rules apart from the splitted rule are equal in N and N’, it holds that there

. b o . .
is an equal = y-derivation until ¢, is reached:

b b b
=11 SN P FNP3... SN by,

Note that by assumption 1 does not contain register function calls, but the syntax-directed
expressions 1; with ¢ > 1 may contain register function calls, because the applied rules may
introduce register function calls.
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By Definition 4.2 the splitted rule can be of one of the following form: either the root of the
left-hand side [ is a ground function or a register function. The right-hand side ¢ has to be a
ground right-hand side.

If we can prove that there is a cby n-derivation of 4, to 9,4, which is K steps shorter where K

denotes the number of applications of the splitted rule, than the corresponding cby nr-derivation,
then the statements are proven (for the rest of the derivation, the same argumentation as above
holds).

Since 4, = P, [w &), it suffices to prove the following two statements.

1. Let s = o(s1,...,s,) € T(E) and t1,...,t, € T(A). If the left-hand side [ of the splitted
rule has the form f(o(z1,...,2%),y1,...,Yn) and there is an a > 1 and an irreducible
¢ € sdExzp(FS, %, A) such that

b a
f(satla N 7tn)C:§N’ 57

then there is a b > 1 and a derivation

b
fls,t, . t)FN €
and b < a. If the splitted rule is applied K times in the derivation by djng/, thenb =a—K.

2. Let s1,...,8;, € T(X), t1,...,t, € T(A), and 1,...,¢, € sdExp(FS, X, A). If the left-
hand side [ of the splitted rule has the form (f,o,i — 1)(Z, 9, u1,. . ) and there
is an @ > 1 and an irreducible £ € sdEzp(F'S,%, A) such that

. ’ur(f,a,i—l)

. Loz b @
(f,O',Z - 1>(S,t,1/)1,...,Z/)nf,o_,i_l))c:g]vl 53

then there is a b > 1 and a derivation

b

. - b
<f7 0,1 — 1>(87 ta 1/)17 s 71/)T<f,g,i71>)02;}]\7 5
and b < a. If the splitted rule is applied K times in the derivation by C:be/, thenb=a— K.

No other forms of [ are possible.
Proof.

1. Let I = f(o(z1,...2k),Y1,---,Yn) and let Cut(() = {wy,...,w,} for some r > 0 and

let, w.lo.g., wi <jeg ... <jeg wy. Then by definition, for every j € [r], sub(¢,w;) is a
ground function call of which the argument list is a list over T(A)(X; UY},). In particular,
the first argument is a variable in X, the other arguments are elements of T(A)(Y;,).
Note that the rules I — ¢’ and I’ — (" have the forms f(o(Z1,...,Zk), Y15+ Yn) —
(f,o,1)(Z, 7, sub({,w1),...,sub(,w,;)) and (f,o,1)(Z,9,21,...,2,) = C[wy < 21,...,
wy < zr|, respectively.
We prove the statement by induction over the height of the input tree. We have to start
the proof with height(s) = 1, because in the case height(s) = 0, there is no (f,s)-rule
which contains any ground function call in its right-hand side. Note that, for the same
reason, the rules for the nullary constructors are equal in R and R’.
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(i) Let height(s) =1, ie., s = o(ay,...,qy) for some k > 0, 0 € ¥ and a1,...,q; €

$). Let us consider the dj:f N derivation:

b
f(S,tl, . ’tn)C:gN,

<fa 0, 1>(O€1, N T A T (p(SU’b(Cawl))a cee 7(:0(SUb(C?w7")))
where ¢ = [z1 /a1, ..., zk /g, y1/t1, - Yn/tn]

<f7071>(a17"'7ak7t17"'7tn7§17"'7§7“)
)cbv

where, for every j € [r], sub(o(C), w;) = N &
and & € T(A)

e(Clwy = z1,...,wr < )21 /&1y 20 /0]

and o(Clwy < 21, ..., wy < 2])[21/&1, - -+, 20 /€] 1S equal
to p(Q)[wr < &1,...,wy < &]
§

for some m > 0 and ¢ is irreducible.

Since the rules for the nullary constructors are equal in R and in R’, it follows that, for

every j € [r], also sub(¢(¢), w;) Lo ¢;. Hence, the corresponding 2 -derivation has the

following form:
Flsity, .. ty) &

=

I&
=

Q
o
<

Y
£

¢(C)

where ¢ = [z1 /a1, ..., ¢k, y1/ti, .. Yn/tn]
@(C)[wl (—51,...,11),« <_€7"]

3

because during the further derivation only function calls
have to be evaluated which have a nullary constructor «;
with j € [k] as recursion argument.

Definea=1+r+1+mand b =1+ r+m, then a > b and we have seen that the splitted
rule was applied exactly once, i.e., K = 1.

(ii) Let height(s) = p > 1, i.e., s = o(s1,...,5) for some k > 0, s1,...,s; € T(X) with
|

maz{height(s;)
Flsytstn) L

cbhy
=

chy

T .
ijlaj

m
=N/

, € [k]} = p— 1. Again, we consider the derivation by G

(f0, 1)(3, E, p(sub(C,wr)), - ., p(sub((, wr)))
where ¢ = [z,,/$,;v € [k]][yu/tu; 1 € [n]
<f70-71>(§7£7§17"'7§1") o
where, for every j € [r], sub(go(C),wj)C:bﬁlN/ ]fj and
§j is irreducible. Note that the recursion argument

of sub(yp(¢),w;) is at most of height p — 1.

e(Clwy <= 21, ..., wr < )21 /615 20 /)]

and @(([wy < z1,...,wy « 2z])[z1/€1,. .., 2 /&] is equal
to W(C)[wl <~ 617"' y Wy < 61"]
3

. . ch .
Let us consider the corresponding = y-derivation:
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Q
o
<

f(satla"'atn) =N QO(C)
. where ¢ = [z, /s,;v € [K]][yu/tu; b € [n]]
BT o(Owr & wr — &

where by induction hypothesis, for every j € [r],

cbhy

sub(go(g),wj):>Nb] ¢; and b; < a;, more precisely,
a; = b; + K; for some K; > 0 and K; denotes the
number of applications of the splitted rule.
do "
Define a =2+m+¥7_ja; =2+m+X7_,(bj+ K;) and b=1+m+X7_,b;. Hence, b <a
and in particular, b =a — (1 + Zglej).

2. This case is similar to 1. O

Lemma 4.6 Let N and N' be macro tree transducers with register functions. If N Fgpievr N,
then

(a) chv(N) = chv(Nl).

(b) N' and M are semantically equivalent.

Proof.

(a) Since Tepy (N) and 7oy, (N') are total functions, it suffices to prove that 7oy, (N') C 7epy (V).
Consider a derivation by N'. Then, since N is more efficient than N’ (cf. Corollary 4.5), there
is a corresponding derivation by N leading to the same normalform (cf. Definition 3.18). Thus
chv(Nl) - chv(N)-

(b) Let N = (FS,%,A,R) and N' = (FS',%,A,R"). M and N are semantically equivalent
(cf. Definition 4.2). Since tup(FS) = tup(FS’) (cf. Remark 4.4 1.) and by Statement (a) it
holds that M and N’ are semantically equivalent. O

The previous facts are illustrated by comparing Examples 3.3, 3.10, and 4.3. In Example
4.3 the macro tree transducer Ny with register functions is given such that My Fg 0, N1

and Ny Fgpie v, No. In the djngl—derivation of the function call t = lift(o(o(o(a, a), a,)a), a)
(cf. Example 3.10, Page 18) the result is computed in 22 steps, whereas the C:bgz\rQ—deriv.‘aJtion

of t needs 29 steps for the same result. In the @Ml—derivation, the splitted (extr,o)-rule of
M; and Nj is applied twice and the splitted (lift,o)-rule of Ny and Ny is applied 5 times.

This corresponds to the fact that the by N,-derivation needs 7 steps more. It follows that the

Y N, -derivation of ¢ (which was not given) would need 24 steps.
Note that M; and Ny are semantically equivalent (cf. Lemma 4.6).

Lemma 4.7 The relation tgp 0 15 locally confluent.

Proof. Let N = (FS,X,A,R), Ny = (FS1,2,A,Ry), and Ny = (FS3,%,A, Ry) be macro
tree transducers with register functions such that N g5 07 N1 and N Fgppie s No with Ny # No.
We show that there exists a macro tree transducer N3 = (F'S3, X, A, R3) with register functions
with Ny Fgpiiepr N3 and Na Fgprie v N3.
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Let [y — (1 be the splitted rule of N and Ny and let 5 — (> be the splitted rule of N and
Ns. Since N7 # No and the cut through a right-hand side is unique, it holds that Iy — {; and
lo — (5 are different rules.

Let us consider N7 and Ns.

Ni: By definition of the splitting transformation relation, the rule lo — (2 is a rule of R;. Let
l1 — <f1, 01,2'1)(:%,?}, 91,1, N ,91,,«1) and <f1,01,’i1>(i‘,g,2’1, Ce ,Zrl) — C{ be the two rules
in R; which have replaced the rule [ — (;.

Ny: The rule [y — (; is in Rs.
Let l2 — <f27 0-271.2)(57757 92,17 e 702,1"2) and <f270-27i2>(‘%7g7 Zlyen- 7z7‘2) — Cé be the two
rules in R which have replaced the rule Iy — (5.

The splitting transformation can be applied to N; and Ns because the rules s — (3 and
Iy — (1 are in Ry and Rs, respectively. Since the form of the new rules only depends on the
given rules, N1 Fgpie v N3 and No g5 0 N3 by trivial comparison. O

Lemma 4.8 The relation gy 0 15 noetherian.

Proof. It can easily be seen that i, ar is only applicable to macro tree transducers with
register functions with rules of which at least one right-hand side has a nonempty cut. By one
step of i, a7 such a rule is replaced by two rules. One of the new rules has an empty cut, the
other rule has on its right-hand side function calls with a nesting depth of ground function calls
decremented by one (in comparison to the original rule). Since the nesting depth is finite, the
number of applications of g, ar to these rules is also finite. Since the number of new rules is
also finite, the number of steps of g, s is finite for every macro tree transducer with register
functions. O

Lemma 4.9 The relation gy 0 s confluent and noetherian.

Proof. This result follows directly by the fact that g, ar is locally confluent and noetherian
(cf. previous lemmas) and by Lemma 2.4 of [Hue80]. O

Hence, for every macro tree transducer with register functions there exists a normalform
with respect to g5 a7. In Example 4.3, Na is the normalform of My w.r.t. =gy s, -
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4.2 Sharing

In the field of graphs and graph rewriting techniques the notion of sharing is well-known. Instead
of having several occurrences of the same subgraph, every subgraph can be represented exactly
once and it is referred by multiple pointers to it, cf. Figure 15 ([SPvE93, HP91]).

o o

7N @,

f f f

| | |

t t t
tree graph

Figure 15: The term y(f(¢), f(t)) written as a tree and as a graph with shared subgraph.

In our context of trees and macro tree transducers with register functions the avoidance of
multiple occurrences of the same subtree cannot be handeled in this way. In the literature,
sharing is realized by introducing where-clauses (in the field of program transformation this
method is often called abstraction rule) and by associating a kind of graph semantics to these
clauses. If, e.g., y(f(t), f(t)) is the right-hand side of a rule in a term rewriting system, then
this right-hand side is replaced by the right-hand side ~(z, z) where z = f(t) (cf. e.g. [PP93]).
The semantics associated to term rewriting systems with where-clauses has to guarantee that
the where-clause is evaluated exactly once.

Since we only want to deal with macro tree transducers with register functions and we do
not want to introduce where-clauses with an extra semantic treatment, we choose another way
to realize sharing. As we have seen in the previous section, register functions have the property
that they only occur in right-hand sides at their root. The following procedure can be applied
to the argument list of such a register function: we evaluate each ground function call exactly
once under a register function symbol and copy its value several times.

Consider, e.g., the part of the calling graph of the expression lift(o(o(o(a, ), ), ), ) in
Figure 16.

lift(o(o(o(a, ), @), @), )

lift(o(o(a, ), ), cx) extr(o,v(a)) extr(o(o(a, o), o), o)

lift(o(a,a), a) extr(a,v(a)) extr(o(a,a), a) lift(e,lift(o(a,a), a)) lift(o(a,a), a)

Figure 16: Part of a calling graph of ground functions.

The underlined function call occurs in multiple positions in the tree. In this section we are
interested in these positions which have the same predecessor. First we need some technical
notions.
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Definition 4.10 Let S be an arbitrary set and let B = (bl, ..., by) be a list over S with r > 0.

Furthermore let B’ = delpos(B, double(B)) with B" = (b},...,bl,). The index shift associated
with B is the mapping ¢p : Z, — Z, such that for every i € [r], ¢p(2z;) = zj, where j is the
unique element in [r'] such that b; = b’ O

Note that, if B # B’, then r’ < r. We illustrate this definition by an example. In Figure 17,
a list B is shown which contains the elements ¢ and b in multiple positions. These positions can
be retrieved by the function double. The index shift pp associated with B is determined by the

list positions of double elements
B=(a,a,b,a b,c,b) double(B) =(2,4,5,7)
position 3 list without double elements
position 2 B' = delpos(B, double(B)) = (a,b,c)
position 1
delpos index shift
= (a,a, b,a,byc, b (1,22, 23, 24, 25, 26, 27)
W " J//
= (a, (21,22,23)

Figure 17: Index shift associated with a list B.

positions of the list B and by the positions of the list B’ = delpos(B, double(B)). Consider, e.g.,
the element a which occurs in B in positions 1, 2, and 4. In B’, the element a occurs exactly
once in position 1. Hence, vp(z1) = ¢p(22) = pp(24) = 21.

We define a criterion which determines, if a macro tree transducer with register functions is
ready for sharing in the sense of avoiding multiple evaluation of several occurrences of the same
ground function call.

Definition 4.11 Let N = (F'S,%, A, R) be a macro tree transducer with register functions and

let [ — ¢ be arulein R. Then N is ready for sharing in the rule [ — ( if the following conditions
hold:

e root(() € reg(FS),

e there exist paths w; € IN and wy € IN with wy # wy such that sub(¢,w;) = sub((, ws)
and sub({,w;) € F2,(¢), and
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e the left-hand side !’ of the rule I’ — ¢’ in R with root(l') = root(¢) is flat. O

Note that “ready for sharing in a rule r” is a property which is completely determined by
the form of r and of the rule which has the same root in its left-hand side as r in its right-hand
side.

Now we are able to define the sharing transformation relation of macro tree transducers with
register functions.

Definition 4.12 Let M be a macro tree transducer. The sharing transformation relation with
respect to M is the binary relation gpqre iy C N X N defined as follows. Let N = (F'S, %, A, R)
and N' = (FS',3, A, R') be two macro tree transducers with register functions. It holds that
N Fshare,nr N iff the following conditions hold:

e M and N are semantically equivalent.

e There is a rule I — (¢ in R such that N is ready for sharing in [ — (. Let ( =
(f, 0,0 (&, 7,91, ...,1,) with (f,0,7) € reg(FS)*t"+") k. n > 0, r > 0, and & and §
abbreviate the sequences z1,...,z; and y1,...,y,, respectively.

o FS' = (FS — {(f, J,i>(”+k+r)}) U {(f’ U’Z’>(n+k+r’)}‘

e R’ is obtained from R by the following replacement of rules:

— The rule I — ( is replaced by the rule
[ — (f,O','L)(Ii,g,l/)i,.__ 71/)1,"’)

where (¢, ...,4,) = delpos((¢1, ..., ¢y), double((1, ..., ¢r))).
— The rule (f,0,i)(%,9,21,...,2) = ¢ € R, is replaced by the rule

<f7 g, Z) (577 Uy 215 7Z1“') - So(wl,,wr)(g)
O

Note that we perform a maximal sharing, i.e., if in a right-hand side { the terms 6y,...,6,,
with m > 1 occur several times, in particular, let each 6; occur k; times, then in the new
right-hand side each 6; occur exactly once.

Example 4.13 Let us consider the macro tree transducer Ny = (F'Sg, X9, Ag, Ro) with register
functions of Example 4.3. The set Ry of rules is recalled in Figure 18 where we have underlined
terms which are candidates for sharing.

N, is ready for sharing in the (extr,o)-ground rule, because its right-hand side’s root is
labeled by the register function (extr,o,1), the function call lift(z1,y1) occurs twice in its
right-hand side at paths 4 and 5, and the left-hand side of the (extr, o, 1) rule is flat. Further-
more Ny and M; are semantically equivalent (cf. previous section). Hence, No Fgpare,n; N3
and N3 is the macro tree transducer (F'Ss, Yo, Ag, R3) with register functions with F'S3 =
{lift® (lift,0,1)) extr® (extr,0,1)*} and Rs is the set of rules as shown in Figure 19.
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lift(a> U1
lift(o(z1,z2), 1
(lift,o,1)(z1,22,y1, 21, 22, 23

Y1
(llfta a, 1>($1, Z2,Y1, llft('rla yl)ﬂ emtr(mQ, ’Y(yl)): C.Ttr(flfl,yl))
o(21,0(22,23))

extr(a,y;
extr(o(x1,x2), )1
(extr,o,1)(x1,T2,Y1,21, 22

(6]
(ewtr, g, 1)(.’1}1,372, Yi, l’Lft(fEl, yl): llft('rla yl))
U(lift(l’g, Zl), 22)

L4l Ll

N — ~— N

Figure 18: Rules of the macro tree transducer Ny with register functions.

lift(a,y;
llft( (561,372) Y1
(lift,U,1>(561,352,y1,2’1,22, Z3

Y1
(llfta g, 1>($1, 2, Y1, llft('rla yl)ﬂ emtr(mQ, ’Y(yl)): C.Ttr(.’lfl ) yl))
o(z1,0(22,23))

extr(a,y1
extr(o(z1,x2),y
(eatr,o,1)(@1,22,y1, 21

(emtr o, 1)(z1,z2,y1, lift(z1,y1))

)
)
)
)
1)
) o(lift(ze,21),21)

N

Figure 19: Rules of the macro tree transducer N3 with register functions.

Note that double((lift(x1,y1),lift(z1,y1))) = (2) and delpos((lift(x1,y1),lift(z1,91)),2) =
(lift(xz1,y1)) and the index shift associated with B = (lift(x1,y1),lift(z1,y1)) is the mapping

wp with pp(2z1) = 21 and pp(z2) = 21.
As before we show the derivation of the function call lift(o(o(o(a, @), ), a),a) by C:ngg,
but we show only the begin of the derivation. The derivation is very similar to the derivation

by by N, with the difference that some evaluations of /i f{-function calls are omitted. The result
is computed in 23 steps.

lift C:b§)N3 (lift,o,1)
/ \
o a ///\\
— ~ o a « lift extr extr
o Q — ~— T~ -~ — ~
— o a o a o ~ o a
o @ — — ~ | — ~
— ~ « o o @ a o a
a Q@ — — ~
a a a a
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= N3 (lift,o,1)

///v

o (extr,o,1)

o a o« a ift

T T

e (extr,o,1)
— X

(lift,o,1)

///\\\

o lift extr extr
VAN

e
a a

Q-2
R
R

Y1

|

Remark 4.14 Let N,N' € N with N = (F'S,X,A,R) and N' = (F'S", 2, A, R') and N Fgpare,m
N'.

1. Tt holds that tup(FS) = tup(FS").

2. There is a unique rule | — ¢ in R such that N is ready for sharing in [ — ¢ and N’ is not

ready for sharing in [ — ¢’ which is the corresponding rule in R'. The rule [ — ( is called
shared rule of N and N’ and | — (’ is called result of the shared rule.

3. For the shared rule ! — ¢ and the result [ — ¢’ of the shared rule, it holds that F?, (¢') =
Fan(€)-

4. By definition of the sharing transformation relation, N’ differs from N only in the rank
of a register function (f,o,7) and in the rules where this function occurs. Hence, for

every C:b;]]w—derivation 1 @N/ C:ng/ Y with m > 0 and 1,...,%, € sdEzp(FS" —
{{f,0,i)}, 2, A) there exists an equal by n-derivation and vice versa. O

Clearly, we want to know if the defined sharing transformation relation is semantic preserving,
ie., if for every N, N' € N with N Fgpgpear N' it holds that N’ computes the same call-by-value
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tree function as N. Another important question is, whether N’ is more efficient than N or not.
The following corollary gives an answer to these questions.

Corollary 4.15 Let N,N' € N and N bgparenr N'. It holds that N' is more efficient than N.
In particular, assuming that | — ( is the shared rule of N and N', then if the evaluation of a

syntaz-directed expression ¥ by C:ng needs L derivation steps and the rule | — ( is applied K
times, then the evaluation of ¥ by C:ngr needs less than L — K derivation steps.

Proof: Let N = (FS,%,A,R) and N' = (FS', X, A, R') such that N Fgpgre,nr N'.

By definition of Fgpare s there exists a register function (f,0,4) in both F'S and F'S’ such
that rankps({f,o,1)) # rankps ({f,o,1)).

Let k = ranky (o) and n+ 1 = rankps(f) = rankps (f). For the sake of brevity we denote
the function symbol (f,o,i) of N of rank k + n + r by g and the function symbol (f,o,i) of N’
of rank k +n + 7' by ¢'.

Let I3 — ¢4 and ls — (2 be the uniquely determined rules in N such that root({;) = g and
root(ls) = g and let [y — ¢{ and I — ¢} be the uniquely determined rules in N’ such that
root(¢]) = ¢ and root(ly) = g'. (Note that [y — (; is the shared rule of N and N and Iy — (]
is the result of the shared rule.) These rules are the only rules which are different in N and N'.

As before (compare Corollary 4.5), to prove that N’ is more efficient than N we have to
prove the following statements: N’ is at least as efficient as N and N’ is sometimes more
efficient than N (cf. Definition 3.18). In particular, we have to prove that, if for some syntax-
directed expression ¢ € sdExp(gr(FS),%,A) (note that gr(FS’) = gr(FS)) there are an a > 0

a
and an irreducible ¢’ € sdExp(FS N FS', 2, A) such that I/JC:ng 1)’, then there is a b < a such
b
that z/)czbg N ¢ (at least as efficient). The property “sometimes more efficient” corresponds to
the second statement of the corollary: we have to prove that K applications of the rule Iy — (4

during the cby n-derivation of a syntax-directed expression 1 lead to a by n-derivation of 1 which
is at least K steps shorter.

Let us consider an arbitrary derivation of a syntax-directed expression v by by N

chy chy chy

b b b b ¥
P=101 FN P2 BN . NP BN Y1 BN BN Yo u BN P =1

Let v € [m] such that for every i < v, in the step v; c:ng ;41 the shared rule I; — (; is not

applied and 1, £ Yy41 where 1,41 = Y [w < ©((1)] and sub(tp,, w) = (l1) for some path w
and matching substitution ¢. Furthermore, let ¢, = ¥, [w + &,] and &, is the normalform
of sub(t,,w).

Since all other rules apart from the shared rule and the result of the shared rule are equal
in N and N', it holds that there is an equal by nv-derivation until 1), is reached:

b =1p1 L ho En s ... B oy

Note that by assumption ¢ does not contain register function calls, but the syntax-directed
expressions 1; with ¢ > 1 may contain register function calls, because the applied rules may
introduce register function calls.

By Definition 4.12 the shared rule can be of one of the following form: either the root of the
left-hand side /; is a ground function or a register function. The right-hand side {; has to be a
register function call.
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If we can prove that there is a ey nr-derivation of 4, to 1,4, which is at least about the

number of applications of the shared rule shorter as the corresponding by n-derivation, then the

statements are proven (for the rest of the derivation, the same argumentation as above holds).
Since Y4y = Py[w — &), it suffices to prove the following two statements for ¢; =

(f,o0,i)(Z,9,61,...,0,) where  and § abbreviate the sequences z1,...,z; and y1,...,yn.

1. Let s = o(s1,...,s;) € T(X) and ty,...,t, € T(A). If the left-hand side [; of the
shared rule has the form f(o(z1,...,2k),¥y1,...,yn) and there is an ¢ > 1 and a & €
sdExp(FS, %, A) such that

b a
fls,ty, .o tn) SN €

and ¢ is irreducible, then there is a b > 1 and a derivation

b b
f(satla"'atn)C:gN’ f
and b < a. If the shared rule is applied K times in the derivation by C:ng, then b < a— K.

2. Let s1,...,8;, € T(X), t1,...,t, € T(A), and 1,...,9, € sdExp(FS, X, A). If the left-
hand side /1 of the shared rule has the form (f,o,i —1)(Z, 9, 21, ... ,z,«“,a,i_l)) and there is
an a > 1 and a £ € sdEzp(F'S, X, A) such that

cbhy

~ a
<f7 Uai - 1>(§7t71/)17 T 71/)r<f,g,i71>):>N f
and ¢ is irreducible, then there is a b > 1 and a derivation

cbhy

~ b
(fa 0,1 — 1)(57 t7 1/)17 s ’1/)7'(f,o,i—1)):>N’ f
and b < a. If the shared rule is applied K times in the derivation by C:ng, then b < a— K.
In fact, these are the only two possible forms of the predecessor of {; with respect to by N-
Proof.

1. Let Iy = f(o(x1,...,2Zk),Y1,---,Yn). Note that g is in this case (f,o,1). We prove this
statement by induction on the height of s. We have to start the proof with height(s) = 1,
because in the case height(s) = 0, the right-hand side {; does not contain any ground
function call and hence, the assumptions above cannot hold.

(i) height(s) = 1, ie., s = o(o,...,a) with a; € 2. The & -derivation of
f(s,t1,...,t,) has the following form:

f(satla"'atn)

Q
(ol
<

=N (pl(cl):<f30—31>(&?£a¢13"'ad)7")

-, where g = [ o € Kl /i € ]

CZ?N <f70-71>(d7t7§17"'7§7‘)
for some a; > 1 and, for every j € [r], {; = nf(C:ng,z/)j)

Ly ()
where g = [z, /aw;v € [K]][yu/tus p € [n]][z /€0 v € [r]]
Note that this step is possible because I is flat.

(43
e

for some ay > 1.

39



Define ¢ = a1 +as+2. Since the rules for nullary constructors have not been changed
by Fshare,m (for the reason that no ground function calls occur in their right-hand
sides) and, for every j € [r], 1; is by definition a tree over ground function calls with
recursion argument of height 0 and constructors, it holds that

nf(En,1by) = nf(En, i)
and the lengths of the derivations are equal. The shared rule was applied exactly once.
Hence,

f(S,tl, R ,tn)
b o~
C:ﬁ}N’ (,01(({):<f,0',1>(04,t,1,[211,...,1,[);/)
where by definition of Fgpqpe,0s it holds that
(WL, L) = delpos((41, . ..,y ), double((01, .. .,6;)))
and, by definition of delpos and double and
by the fact that 1); is an instance of 0,
for every j' € [r'], there is a j € [r] such that ¢}, = ;.

=N’ <fv0v1>(&v£agllv"'v£7l~’)
for some b; > 1 and, for every j € [r'], & = nf(czng:,z/);-).
With the remark above, it holds that for every
j' € [r'], there is a j € [r] such that £} = ¢;
and it holds that b; < a; because of r’ < r.
v P (e,..0.)(C2))
where
¢ = [zv/av;v € [klllyu/ty; p € 0]z, /&5 v €[]
and @, .. g,) is the index shift

We prove that
(*) ¢ (001,00 (G2) = p2(C2)-

The domain of the index shift is the set Z, the other variables remain unchanged,
i.e., it suffices to prove that

(@eor,...00) (C)zi/Es i € [r']] = Golzi/&isi € [r])

Let us consider a variable z; with ¢ € [r] which occurs in the left-hand side and in
the right-hand side of the equation (*). By definition of the index shift this z; is
replaced by z; with j € ['], if §; = 0. Note that if 6; = ¢ then {; = ;. By the
second substitution in the left-hand side of the equation (*) this z; is replaced by f}
whereas the variable z; in the right-hand side of the equation is replaced by &;. Since
& and f} are equal, the equation holds. Therewith (*) is proved. During further

by nr-derivation steps of ¢2((2) there have only function symbols to be applied of
which the rules were not changed. Hence,

chpb?

©2(C2) = nv €

and by = ao. Define b = by + by + 2. It holds that b < a, i.e., b<a — 1.
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(ii) Let height(s) = p, i.e., s = o(s1,...,8k). We argue in the same way as in (i) except
that now for every cby n-derivation of function calls ¢, there exists a by N7-derivation
of 1p; which is either of equal length or shorter (if the shared rule is applied) because
of the induction hypothesis and because of the fact that other rules have not been
changed.

2. This part of the proof is similar to (a).

Now we have proved that a derivation in which the changed rules occur, is shorter w.r.t. dy N

than the one w.r.t. C:be/. Since no other rules are changed, it follows immediately that N’ is
more efficient than V. O

In Example 4.13 a part of the derivation of the function call t = lift(o(o(o(a, @), ), @), a)

by @Ng is given. The derivation of ¢ by @NQ is given in Example 4.3; its length is 29.
Note that No Fgpare,nr; N3 and the shared rule of N and N3 is the rule with left-hand side

extr(o(zy,x2),y1). During the by N,-derivation of ¢ the shared rule is applied twice. Hence, in

accordance with our statements the result has to be computed in at most 27 steps by by Ns- In
fact, it is computed in 23 steps.

Lemma 4.16 Let N and N’ be two macro tree transducers with register functions. If N Fshare,M
N', then

(a) chv(N) = chv(Nl).

(b) N' and M are semantically equivalent.

Proof.
(a) Since Tepy (N) and 7oy, (N') are total functions, it suffices to prove that 7ep,(N) C Tepy (N').
This follows again from the notion of more efficient and from Corollary 4.15.

(b) Let N = (FS,%,A,R) and N' = (FS",¥,A,R"). M and N are semantically equivalent
(cf. Definition 4.12). Since tup(FS) = tup(FS’) (cf. Remark 4.14 1.) and by Statement (a) it
holds that M and N’ are semantically equivalent. O

Lemma 4.17 The relation =gparenr is locally confluent.

Proof. Let N = (FS, %, A,R),N' = (FS",X,A,R'),and N" = (FS",%, A, R") be macro tree
transducers with register functions such that N Fgpgre. s N’ and N Fgpgrenr N and N’ # N”.

Then by Definition 4.12 it follows that there are two different, uniquely determined rules
Iy = (1 and [s — (5 in R for which the following three conditions hold:

1. N is ready for sharing in [y — {§ and in Iy — (5.
2. N’ is not ready for sharing in the rule in R’ with left-hand side /. (Remark 4.14).

3. N" is not ready for sharing in the rule in R"” with left-hand side l3. (Remark 4.14).
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Note that the relation Fgpqr¢ a7 only changes two rules: the rule [ — ¢ in which N is ready
for sharing and the rule of which the left-hand sides root is labeled by the register function
root(¢). Also note the the manner in which these rules are changed, is determined by the form
of (.

Hence, in our case it holds that if these four rules, i.e., the rules [y — (3, ls — (» and the rules
the left-hand side’s roots of which are labeled by root((;) and root((s), are pairwise different,
then the following holds: lo — (5 is a rule in R’ and N’ is ready for sharing in ls — (o. 1 — {4
is a rule in R” and N" is ready for sharing in /; — ¢;. Thus, it is easy to construct N with
N' I_sh,a,re M N and N" - share,M N

More interesting are the cases in which the rules are not pairwise different. By the assumption
above (N’ # N") it holds that [y — ¢; and ls — (o are different. This implies that also the two
rules with left-hand side’s roots root({;) and root((2) are different.

Hence, it remains to consider the following cases: root(l2) = root((y) or root(ly) = root((s).

Let us consider the case root(lz) = root((;) (the other case can be proved analogously).
Then, (; is of the form

(f,o,i)(%,9,61,...,6)
for some (f,0,i) € reg(FS) of rank n+k+r; where n and k are the ranks of f and o, respectively.

By definition of macro tree transducers with register functions and by the fact that IV is ready
for sharing in lo — (s, lo — (5 is of the form

(fao—ai>(*;i‘agazla"' azri) - (f,O',i + 1>(j?g?61?"' ’67"i+1)

and there is a rule I3 — (3 of the form

(fao—ai + 1)(5%7@’21’ s azri+1) — C3
We can concentrate our attention to these three rules.

Let us consider the application of Fgpgre,ns to N': By definition of the sharing transfor-
mation relation, instead of the rules [; — (; and ly — (2, the rules [y — (] with (] =
(f,000)(2,9,01,-..,0,,) and (f,0,i)(Z, 9,21, .., %) = @(o,,..0,)(C2) (denoted as I — (3) are
in N'. The list (61,. . ,0;2) is the result of delpos((61,...,0, i),double((ﬁl, ...,0:.))). Since the

index shift (p(gl 0r,) (in the following abbreviated by ¢;) maps variables in Z, to variables
in Z, ' with 7} < rz, it holds that no equal ground function call can disappear, but additional
equal ground function calls can arise (if, e.g., f(x1,21) and f(z1,22) are two function calls in
the argument list of {, and the index shift maps z2 to z1). Note that from the fact that N is
ready for sharing in [y — (o it follows that there are equal ground function calls in (5. With the
remark above it follows that N’ is still ready for sharing in I, — (.

Let N' Fgpare,m N such that I, — ¢} is the shared rule of N’ and N. Then the set of rules
of N contains instead of the rules I}, — ¢, and I3 — (3, the rules I, — (3 and I3 — (3. Note
that comparing N with N, additionally to the above named rules, N contains the rule [; — ¢l
instead of the rule [y — (;. The form of the considered rules in N and their changes in N are
listed below:

e [y — (1 with (g = (f,0,i)(Z,9,61,...,6;,) isin N and
= ¢l with & = (0,005, 5, 8. 001) and
),

(64,...,0.) = delpos((01,. .., 0, do uble((61,...,6,,))) is in N.
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o (f,o0)(Z,9,21,...,2r,) = (f,0,i +1)(Z,7,01,..., (5,«“) isin N and
<f70 Z)(i gvzla . ZT') <f70 Z+]‘>(‘%7g7517 5~) with

b rit1

((51, s aér il ) = delpos(((pl (61) -P1 (67"i+1))’ double((apl (51)7 - Pl (6ri+1))) Is in N
o (f,oi+1)(2,9,21,...,2r,,,) = (3 isin N and
(f,o, z'~+ (Z,7,21,. -, 27,,) — ¢2((3) where @2 denotes the index shift P(p1(81),sp1 (5ri 1))
isin N.
We have to show that N can also be computed by Fshare,nm-steps applied to N”.

Now, we consider N”: Instead of the rules lo — (5 and I3 — (3, the rules s — ¢} with
= (f,0,i)(Z,9,0],...,0,, ) and I — (5 are in R". The list (6},...,0!, ) is the result of
i+1 i+1

delpos((01,...,0r,,,),double((d1,...,0r,,,))). Therulel; — ¢ is still in R”. Hence, N" is ready
for sharing in this rule. Then, N” Fgpqre,mr N and N™ contains instead of the rules I; — (3

and lo — ¢} the rules [y — (] and I, — ¢1(¢)). Let us again list, how the three considered rules
looks like in N

e [} — (! isin N and is equal to the rule in N

o IS = oi((f,o,i+1)(%,9,01,... ,5;;“)) with
(0%,... ,5;2+1) = delpos((d1,...,0r,,,),double((dy,...,0
be written as Iy, — (f, 0,1+ 1)(%,9, 01, .. .,(5r;+1)) with
(01,... ,5r§+1) = delpos((p1(01), ... ,(,01(5n.+1)), double((1, . .. ,5““)))

o I3 — 3((3) is in N where (3 is the index shift ¢,

rir1))) is in N"'. This rule can also

Orip1)”

Two cases are possible:

(a) double((d1,...,0r,,)) = double((¢1(61),...,¢1(0r;4,))), i-e., no new additional ground func-
tion calls arise by applying ¢1. Then, the rules arised from Iy — (5 in N and N" are equal.

Consequently, the same holds for the rules arised from I3 — (3. Therewith, N " share, M N and
N" I_sh,a.re,M N.

(b) double((61,...,0,,,)) # double((¢1(d1),...,¢1(dr,,,))), i.e., new additional ground function
calls arise by applymg 1. Then N" is ready for sharing in Iy — ¢1(¢5), i.e., N Foparens N.
As before, we consider the three rules in N.

e The rule ; — ¢{ isin N and in N.

o I = (f,0,i+1)(#,§,01,...,0;,,) with
(61, ... ,&Aiﬂ) = delpos((61,. .. ,5%“)), double((0y, . .. ,5,n;+1))). By definition of delpos and
double and by the fact that

(81,... ,5r§+1) = delpos((¢1(61), ..., @1(0r;y,)), double((d1,...,0p,,,)))
it follows immediately that (31, e vgfi+1) = (6~1, - ,gm) Hence N = N.

We have proved that if N I—sha,«e v N and N Fgpgre,nr N, then there exists a N such that
N' Fshare, M N and N” - Share, 0 N, ie. , Fshare,nr is locally confluent. O
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Lemma 4.18 The relation tgpere nr 18 noetherian.

Proof. We prove the following statement by induction on K.

For every macro tree transducer N with register functions there exists a number
K > 0 such that the length of the derivations by Fgp4re 3 starting from N is exactly
equal to K.

Let N = (FS,%X,A,R) be a macro tree transducer with register functions and let K > 0
denote the number of rules in which N is ready for sharing. We prove that this K fulfills the
conditions by induction on K.

(i) K =0. Then Ntgparen°N' = N.

(i) K > 0. Let the statement hold for K — 1.
By assumption there are rules Iy — (y,...,lxk — (x in which N is ready for sharing.
By Definition 4.11, for every j € [K], (; is of the form g;(%,7,%;1,--.,%;r;) with g; €
reg(FS). Let, for every j € [K], g;(Z,9,21,---,2;) — 0; be the g;-rules. (Note that by
Definition 4.11 the left-hand side of the gj-rule has exactly this form). Hence, Nt pqre, 0 N1
and Ny = (FSy,%,A,Ry) where F'S; = (FS — {g§k+n+”)}) U {gikﬂwr’l)} and Ry =
(R — {ll — Cl,gl(:i,g],zl, e ,Zrl)}) U {ll — C{,gl(i,g,zl, e ,Z,«/l) — 9’1} Now, N is not
ready for sharing in rule [y — (], because (] does not contain any equal function calls
by definition of delpos and double. Since the index shift only renames variables in Z,
even if the rule ¢1(z,9,21,...,2r,) — 01 is equal to a rule in {lo — (2,...,lxk = (x}, N1
is still ready for sharing in the rules l5 — (5,...,l% — () where, for every i € [2, K],
(I =¢) = = G), ifl; # g1(2,9, 21, .., 2, ), and otherwise the rule has to be adapted.
Hence, by induction hypothesis Nll—shme’MKle’. O

Lemma 4.19 The relation =gpqrenr s confluent and noetherian.

Proof. This result follows directly by the fact that 4,27 is locally confluent and noetherian
(cf. previous lemmas) and by Lemma 2.4 of [Hue80]. O

Hence, for every macro tree transducer N with register functions there is a unique macro tree
transducer nf (Fspare,ar, N) with register functions which is irreducible with respect to Fgpare, as-
Note that N3 (cf. Example 4.13) is the normalform of Ny with respect to Fspare,ns; -

Finally, let us describe a connection between the splitting transformation relation and the
sharing transformation relation.

Lemma 4.20 Let M be a macro tree transducer. It holds that

00 00 00
l_SPlit,M © l_share,M - l_share,M o l_Split,M © l_share,M :

Proof. The following statement has to be proved: Let N and N’ be two macro tree transducers
with register functions. If N Fgpiear 0 F9 o ap N's then N F29 o bepiitar © F5arens N

Let N Fgpiit.vr © l—gﬁamM N', i.e., there is a macro tree transducer N; with register functions
such that N gy 00 Ny l_(;?mre, v N'. We distinguish the following two cases:

1. If N is not ready for sharing, then nf(Fspare,nr, N) = N and the statement holds trivially.
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2. If N is ready for sharing in the rules Iy — (1, ..., — (n, then Ny is also ready for sharing
in these rules, because the splitting transformation relation may only enable a further
sharing, but it has no influence to rules of which the root of the right-hand side is labeled
by a register function (note that this property holds for the rules Iy — (1,...,0n — (n).
Let N be a macro tree transducer with register functions such that N £33, Nao. By
assumption (Fgpe,ar is applicable to N) there is a rule I — ¢ in the set R of rules of
N such that Cut(¢) # (. Note that ¢ is a ground right-hand side (cf. definition of the
splitting transformation relation). The sharing transformation steps applied to N in the
derivation N 35 .. 1, N2 may only rename variables of ground right-hand sides. Thus,
the rule I — ¢’ where [ = ', if root(l) is a ground function, or root(l) = root(l'), if root(l)
is a register function, ¢’ = ¢((), and ¢ is a renaming of variables in Z, is in the set of
rules of Ny and Cut(¢') # (. Hence, there is a macro tree transducer N3 with register
functions such that No gy 07 N3. By similar comparisons as in the proofs of the local
confluence of the two transformation relations it holds that nf(Fspare,pr, N3) = N'. O
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4.3 Tupling

In the previous section we have introduced a transformation relation which allows to avoid the
recomputation of values caused by equal function calls in a right-hand side. But also function
calls with different ground functions at their root, but the same list of arguments can cause the
effect that during a computation equal function calls arise which have to be evaluated. Note
that by such function calls with the same list of arguments also multiple traversals of common
inputs take place.

Consider, e.g., the part of the calling graph of lift(o(o(«, @), «), @) on the basis of the rules
of N3 of Example 4.13 which is shown in Figure 20.

lift(o(o(o(a, ), ), ), @)

T

lift(o(o(a, @), @), @) extr(a, v(a)) extr(o(o(a, a), a), a)

lift(o(a, a), @) extr(a,v(a)) extr(o(a,a),a) lift(a, z1) lift(o(a, a), )

Figure 20: Part of a calling graph of ground functions.

We show a method to tuple ground function calls with different ground functions at their
root, but the same list of arguments, as, e.g., extr(t1,t2) and lift(t1,t2). Before starting with
the formal details, let us discuss this tupling informally.

The idea of the tupling is to create a new function which is a tuple of these functions with the
same list of arguments, such that multiple traversals of common inputs are avoided. This idea
on its own is not new, it is proposed in many other papers (cf., e.g., [PP93, CH95]). What is new
is the algorithmical way in which this is done. For the created tuple function, new rules have to
be defined as follows: for every input symbol o, the right-hand sides of the rules of the simple
functions from which the tuple function is build, are combined by a comb-symbol. For the sake
of simplicity, we combine the rules of the original macro tree transducer. Taking the rules of a
macro tree transducer with register functions where for every simple function register functions
occurs, we would have to take care of a lot of technical details by merging the right-hand side
of the register rules in an appropriate way.

With the described procedure the calling graph of Figure 20 is changed to the calling graph
in Figure 21.

lift(o(o(o(a, a), ), a), @)

(Lift, extr)(o(o(a, o), @), @) extr(a,v(a))

lift(o(a, a), ) extr(a,v(a)) extr(o(a, a), a) lift(a,lift(o(a, a), a)) lift(o(a, ), a)

Figure 21: Part of a calling graph of ground functions.
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Examining the tupling more carefully, we observe that the following three steps have to be
executed:

1. We consider a right-hand side of a rule of a macro tree transducer with register functions
and determine if there are candidates which can be tupled. Note that this requires that the
right-hand side’s root is labeled by a register function and the candidates occur directly
under this function (with the same argumentation as in Section 4.2). These candidates
are replaced by a new function which is the tuple of the simple functions.

2. By step 1.), the rank of the register function at the root shrinks. Hence, the rule for the
register function has to be adapted in its left-hand side and in its right-hand side.

3. New rules have to be created for the new function symbol.

Before defining the tupling transformation relation, we define under which conditions a right-
hand side of a macro tree transducer with register functions is called ready for tupling.

Definition 4.21 Let N = (F'S,%, A, R) be a macro tree transducer with register functions and
let [ — ¢ be a rule in R with root(¢) € reg(FS). Let ¢ be in arglist(¢) and ¢ € F? (¢). Define

call

F(¢,) = {¢' | ¢ is in arglist((), ¢' € F,,(C), ¢ # ¢, and arglist(¢) = arglist(y’)}. If
F(¢,p) # @, then we say that ¢ is ready for tupling the set F(C,4) U {4} of ground function
calls. O

Note that only right-hand sides can be ready for tupling S, of which the root is labeled by a
register function. Also note that, if { is ready for tupling S, then the cardinality of S is at least
2. Finally note that ¢ can be ready for tupling several different sets of ground function calls.
Let, e.g., f(O'(:L‘l), yl) — ¢ with ¢ = (fa g, 1>($17 Y1, f($17 y1)7 g($1,y1),g(:1:1,7(y1)), f(xla'}l(yl)))
be a rule of a macro tree transducer with register functions. Then ( is ready for tupling
{F(z1,91), g1, 1)} and ¢ is ready for tupling {/ (z1,7(1)), g(w1, (1)}

Definition 4.22 Let M be a macro tree transducer. The tupling transformation relation with
respect to M is the binary relation Fyype iy C N x N defined as follows. Let N = (F'S, %, A, R)
and N’ be two macro tree transducers with register functions. Then N ke N’ iff the
following conditions hold:

e N and M are semantically equivalent.

e There is a rule [; — (1 in R such that (; is ready for tupling the set .S of ground function
calls and N is not ready for sharing in {; — (.

e N/ = (FS',X, A" R") where the components FS’, A’, and R’ are constructed by the
algorithm TUPLE which is shown in the following box. The algorithm receives as input
N,M,ll—>§1,and8. O

47



Algorithm TUPLE:

Let F'S', R', and A’ be program variables.

Input: macro tree transducer N = (F'S, 3, A, R) with register functions,
macro tree transducer M = (sim/(F'S), 3, Ay, Ryr),
rulely - (1 € R,
set S of ground function calls in (;.

Output: F'S", A", R
Initialization: Let 'S’ := FS, R' := R, and A’ := A.

Let ¢, = (f,0,i)(&, 7,11, - .., ,) with (f,0,i) € reg(FS)* +"+7) for some k,n > 0 and r > 0.
Let S ={vp,,...,¢p, } where pi,...,pp € [r] and wlo.g. p1 <... <ppm.

Let, for every v € [m], ¥, = fu(60,61,...,0,) and let frew, = (f1,..., fm)-

Furthermore, let I — (2 be the rule in R where ls = (f,0,i)(Z, 7, u1,...,uy).

Perform the following three steps COMB, ADAPT, and NEW (in this order).

COMB: Define (| = (f,0,i)(z,9,¢],...,9¥.) withr’ =r —m +1, and
(P15 - Ph) = delpos((1, ..y Pp 1, Up s Ypyaty -5 00), (P25 -+ s Pm))
with 1) = fuew(00, 01, .., 0,).
FS" = (FS' — {(f,o,i)}F+n) U {(f, 0, i) FHHT) fo0}
R= (R —{l = aHu{ll =}

ADAPT: Define l5 = (f,0,i1)(Z,7,u],...,u.) and
(ulla v 7“2«’) = delpos((ul, cee 7uplflaup’17upl+17 cee 7“7‘)7 (p27 v ,pm))
with u;, = combp(2p,,-- -, 2p,,)-
A:=A"U {comb%’l)}

R := (R —{la = (2}) U{l5 = (o}

NEW: if f,c ¢ F'S then
R :=R'U {fnew(é(a:la v 7$q)7y17 v 7y’u) — Combm(<f1,57 sy Cfm,5) |
for every 0 € £(9 with ¢ > 0}
fi
(* Note that (y, 5 is the right-hand side of the (f;,d)-ground rule in Rys.*)

By executing such a tupling, equal ground function calls can arise on the right-hand sides of
the new rules. Therewith applying Fypie,ns to a macro tree transducer with register functions
enables us often to apply Fgpir,ar and bFgpere ar even if this was not possible before.

Example 4.23 Let us consider the macro tree transducer N3 with register functions of Example
4.13. The right-hand side (5, of the (lift,o)-ground rule has the form

(fa g, 1>($17 z2,Y1, l’Lft(II?l, yl)? ea:tr(an’Y(yl))? e$tr($17 yl))

In this right-hand side there are two function calls with the same argument list (x1,y1), namely
lift(z1,y1) and extr(z1,y1). Hence, (i is ready for tupling the set {lift(z1,y1), extr(z1,y1)}
of ground function calls.
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Since N3 was constructed by applications of g, a7, and Fgpare,nr, starting from the ma-
cro tree transducer M; of Example 3.3, it holds that N3 and M; are semantically equivalent.
Furthermore it holds that N3 is not ready for sharing in the (lift,o)-ground rule. Hence,
N3 Fiuple,nr, Na and Ny is the macro tree transducer (F'Sy, X1, Ay, Ry) with register functions
defined as follows:

o FSy = {lift? (lift,0,1)) (lift,extr)?, extr?, (extr,,1)D}
e Ay = {0(2),00mb§2),7(1), o0}
e Ry, is the set of rules as shown in Figure 22.

Note that Ny is irreducible with respect to Fyypie,ar, -

lift(a> Y1
lift(o(xy,22), 11

) Y1
),y1)
(lift,o,1)(x1,z2,y1, comba(z1, 23), 22)
)
)

<llft, o, 1>(£L’1, T2,Y1, (llft, ea:tr) (1’1 ) y1)7 61‘t1“(1‘2, 7(y1)))
o(z1,0(22,23))

(lift, extr)(a,
(lift,extr)(o(z1, z2),

combs (y1, )

comba (o (lift(z1,y1),0(extr(z2,v(y1)), extr(z1,y1))),
o(lift(za,lift(z1,y1)),lift(z1,y1)))

1
1

L1 Ll

<

extr(a,y;) — «

emtr(a(ml ) :I’.Q)a yl) <€.’I}t7", g, 1>(CC1 y L2, Y1, l’Lft(fL'l, yl))
(ewtr,o,1)(z1,72,y1,21) o(lift(ws,21),21)

11

Figure 22: Rules of the macro tree transducer N4 with register functions.

Let us show a part of the derivation by c:ngLl of the function call t = lift(o(o(o(a, @), @), a), @)
which is well-known from earlier derivation examples. The result is computed in 27 steps. In

comparison to this derivation, the length of the derivation of ¢ by by Ny was 23 (cf. Example
4.13). Note that during the C:bgm—derivatiom of ¢, function calls occur which were avoided in

the derivations of the macro tree transducers with register functions Ny and N3. Hence, Nj is
sometimes better than Ny.

cby .
lift Na (lift,o,1)
— ~—
o « ///\\
— ~ o a a (lift,extr) extr
o a — ~ T~
— ~— o a o aa 5y
o a — ~ — — !
o~ a a o a a
a a o~
a a
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= N, (liftao-a 1>

///\\

o a Q
/ \
o « comby
a Q
o o
) o :
o dift o lift
o a  extr extr & lift o a
~ ~— VRN
a a o a a «

But there can also syntax-directed expressions found such that N4 is sometimes better than

Nj3. Consider, e.g., the derivations of the function call ¢ = lift(o(a, ), ) by C:ngi,) and c:b§1N4‘
chy

liftlo(a, ), ) =n,  (lift,o, ), a,a,lift(a, @), extr(a, y(a)), extr(a, o))
Ly, (lift,0,1) (0, 0,0,0,0,0)
chy

=N, oo, o(a,q))

The corresponding by n4-derivation has the following form:
chy

liftlo(a,a),a) =n,  (lift,0,1)(a, , o, (lift, extr) (o, o), extr(a, v(a)))
C:bgm (lift,o,1)(a, a, v, comby (v, @), o)
cbv

=~ ola,o(a,a))

The normalform of v is computed in 5 steps by by N, and in 4 steps by by Na-
This phenomenon is due to the construction of the rules for the tuple functions: the con-
struction is based on the right-hand side of the macro tree transducer M;. O

For the above mentioned reason, if N e a7 N', then statements about the efficiency of N
with respect to N’ are not possible.
Let us determine some properties of e a7

Remark 4.24 Let N = (FS,X,A,R) and N' = (FS', 2, A’', R') be macro tree transducers with
register functions and let M be a macro tree transducer such that N Fyype 1 N'.

1. There is exactly one rule [ — ¢ in R such that I — ¢’ is in R’ and ¢ # (’. There is exactly
one set S of ground function calls such that ¢ is ready for tupling S and ¢’ is not ready
for tupling S. The rule I — ( is called in S tupled rule of N and N'.

2. For this set S it holds that card(S) > 2.
3. Either card(FS) = card(FS’) or card(FS) = card(FS") — 1.
4. If card(FS) = card(FS'), then card(R) = card(R').

5. If card(FS) = card(FS') — 1, then card(R) < card(R'). More precisely, card(R') =
card(R) + card(X).

6. Let Iy — (3 be the rule in R such that ¢(; = ¢(z,9,%1,...,%,) is ready for tupling the
set {Yp,,...,%¥p,, } of ground function calls with pi,...,p, € [r] and p1 < ... < pp.
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Furthermore let lo — (o be the rule in R with root(l3) = g = root(¢1). Then it holds that
in lp = ¢(Z,9,u1,...,u,) the arguments wu,,,...,u,, are variables in Z, more precisely,

(Uppse ey Upp) = (Zprse-esZpp)- O

As usually, we examine if the defined relation t,,. a7 is semantic preserving, locally conflu-
ent, and terminating.

Lemma 4.25 Let N = (FS,2,A,R) and N' = (FS', Y, A", R') be macro tree transducers with
register functions. If N Fypienr N', then

(a) For every f € gr(FS)™D withn >0, s € T(X), t1,...,t, € T(A),

chv(N)(fa Syl atn) = chv(Nl)(fa Syt1y ... atn)-
(b) N' and M are semantically equivalent.

Proof. Let M = (Far, ¥, A, Rar) be the macro tree transducer such that N Fyypie ar N'.
It holds that N and M are semantically equivalent.

(a) Since the function 7, is total, it suffices to prove that 7., (N) C Tepy (N').

Before we start with the proof we make some preliminary considerations.

By definition of Fyype as there exists a rule [y — (7 in R such that (; is ready for tup-
ling the set S of ground function calls, and there is a rule Iy — ¢ in R’ such that (] # {
and (] is not ready for tupling S (cf. Remark 4.24 1.). By definition, ¢; is of the form
(f,0,0)(Z,9,%1,...,%) and (| = (f,0,i)(Z,9,9],...,9) where ' < r. Furthermore there
is a rule (f,0,i)(Z,9,u1,...,u,) = (2 in R and a rule (f,0,1)(z,7,u],...,u.) = { in R

No other rules are changed by Fypie,ar, but there may be card(X) new rules in R’ which are
not in R. Let S = {¢p,,...,¥p,,} where m > 1, p1,...,py € [r] and p1 < ... < py,. Let, for
every v € [m], root(ip,) = fu.

By definition of Fype as it holds that

(d)lla N ad);-’) = delpos((d)l, v az/)pl—laz/);)pz/)pl-l-la v ad)r)’ (an' .. apr))

and ¢y, =Py, € < (f1,-- -, fm)].
It suffices to prove that, for every s = o(s1,...,s;) € T(X) and t1,...,t, € T(A), the
following two statements hold.

L. Ifly = f(o(z1,-..,2k), Y1, - .- ,yn) and there is an irreducible £ € T(A) such that

b *
f(satla"'atn)c:gN 57

then there exists a derivation -
f(S,tl,...,tn)C:;}Nl f

2. Let A1,..., A\r,_, € sdExzp(FS,%,A) forsomer;_y > 0. Ifl; = (f,0,i—1)(Z,9,u1,...,ur,_,)
and there exists an irreducible £ € sdExp(reg(F'S),%, A) such that

(fao-ai - 1)(577?, Al?"-akri,l)czb;]N 57

then there exists a derivation

*

(frovi— 1) (EE M, A )R &
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Proof.

1. Let Iy = f(o(x1,...,Zk),Y1,---,Yn). We prove this fact by induction on the height of s.
Also here we have to start the proof with height(s) = 1, because in the case height(s) = 0,
the right-hand side (; does not fulfill the assumptions: by definition, no ground function
call can occur.

(i) height(s) =1, ie., s = o(aq,...,ax). The C:bgz\z—derivation of f(s,t1,...,t,) has the
following form:

Q
S
<

f(S,tl,...,tn) :>N* (f,U,1>(6z,£,91,...,97«)
C:ng <f7071>(5‘7£7§17---76r)
where, for every j € [r], & = nf(c:ng,Hj)
E N ()
 where p = [m/aiv € )/t € ][/ € B
Ly ¢

The rules for nullary constructors have not been changed by Fypie 17, because there
are no function calls in the right-hand sides of these rules. Hence, it holds that

cbhv cbhy

for every j € [r], nf(=nw,0;) =nf(=n,0;).

. b ..
Let us consider the £ s derivation:

chv

f(s, 1, tn) SN {f,0,1)(&,t,0,...,0.)

where by definition of e ar and delpos for every j € [r'], j # p1, there is an i € [r]
such that 0 = 6; and 6 = (fi,..., frn) (@, 01, -+, 0n), if Oy = fr(as 1, .., 00)

with d € [k].

Hence, instead of having m function calls fi(ag,d1,...,0n),-. ., fm(ag, d1,...,0,) we
have one function call (f1,..., fm)(ag,01,...,0,). Since height(ag) = 0, we have
to consider the ((f1,..., fm), @g)-rule of R" which was constructed by the Algorithm
TUPLE:

(f17 s 7fm)(ad7y17 s ,yn) — Combm(gfl,ada s Cfm,ad)

where, for every i € [m], (f, o, denotes the right-hand side of the (f;, aq)-ground rule
in the macro tree transducer M. Hence by the fact that 7., (M) = 7 (N) it holds
that, for every i € [m], fi(aq,y1,--.,yn) = (J,,a, are rules in R. It follows directly

by the fact that by N is confluent that

nf(Cb:ng,H;)l) = combm(nf(czbﬁ}N,le), ... ,nf(Cb:gN,Hpm)).
Hence,
~ 7 chy * -~
<f7071>(a7t79,17"'79;’):>N’ <f70-71>(a7t76117"'7§;’)
where

(517 s 764«’) = delpos((fl, e 76}11717 Combm(gla e 7§pm)7§p1+17 e 761")7 (p27 e 7pm))
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By definition of tFyype s (part ADAPT in Algorithm TUPLE) there is a rule in
R’ which can be applied to the syntax-directed expression (f,o, 1)(&,%,&,..., &),
namely the rule (f, o, 1)(Z,9,u}, .., u.) — (2 and uy,, = combpy (up,, - - -, Up,, )-

oo 1) (Gt € €0 BN ()

and (comparing this derivation with the derivation by @N) it holds that ¢ = ¢,
because

(ull) . ,’U,;.) = delpos((ul) s )uplfl)combm(um: s 7upm))up1+1) s ;UT)v (p27 v 7pm))7

i.e., the arguments of the left-hand side [, are re-ordered in the same way as the
arguments in ¢; and the evaluation of 01’,1 created the symbol comb,, at its root which
is consumed while the application of the rule I — (s.

During further by nr-derivation steps of ¢((2) there have only function symbols to be
applied of which the rules were not changed. Hence,

b o
¢((2) g}N’ §
(ii) Let height(s) = p, i.e., s = o(s1,...,5;). We argue in the same way as in (i) except
that now for every by n-evaluation of function calls 6; there exists a cby n-evaluation of

0; because of the induction hypothesis and because of the fact that M is semantically
equivalent to N.

2. This part of the proof is similar to 1.
To prove (b) the following two conditions have to be proved:
(b)) For every f € F"™V withn >0, s € T(), t1,. ...ty € T(Aur), Tapo (M)(f 8, t1,- - 1) =
chU(NI)(fa Sytyy. .. 7tn)

(by) For every (fi,...,fm) € tup(FS)™t)) for some n > 0, s € T(Z), t1,...,tn € T{Ay), if,

for every i € [m], Tepo (M) (fi, S, t1,- .- tn) = &1, then 7o, (N)((f1, .-y fim), Sy b1, .- tn)) =
comby, (&1, ..., &m) and comb,, € A,

Condition (by) follows directly by (a), because Fy; C gr(F'S).

Since M and N are semantically equivalent (by definition), it follows that for every (f1,..., fm) €
tup(FS) with f1,..., fm € sim(FS)™t1) s € T(X), t1,...,t, € T(A), if

chp>®

fl(s,tl,... ,tn) =M 51

chv™>®

fm(S,tl,. .. ,tn) :>M fm,

then 100
(fl,-..’fm)(s,tl,-..,tn) Czﬁ}N Combm(gl""’ﬁm)
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With Part (a) and the fact that tup(FS) C tup(FS’), it follows that

(Freees fo) (8380, 1) B combpm (1, -+, Em)

By Remark 4.24, if tup(FS) = tup(FS"), then the statement is proved. If tup(F'S) # tup(FS"),
then F'S’ contains exactly one tuple function more than N. Let (g1,...,gx) be this function. It
follows directly by construction that if

b o0
gl(s,tl,...,tn) cng fl
b 0
gk(satla-"atn) c:§M £ka
then 00
(9155 98)(Syt1, .oy tn) C:gN comby, (&1, ..., &)

Lemma 4.26 The relation yype s is locally confluent.

Proof. Let N = (FS,%,A,R), N' = (FS',3%,A",R), and N" = (FS", %, A", R") be ma-
cro tree transducers with register functions and let M be a macro tree transducer such that
N l_tuple,M N’ and N l_tuple,M N and N 75 N'.

We have to show that there exists a macro tree transducer N with register functions such
that N' 5,0 ar N and N” = buple. M N. By definition it follows that there are two rules [; — (;
and 3 — (2 in R and two sets S and 7" of ground function calls such that the following conditions
hold:

(1 is ready for tupling S, (s is ready for tupling T

o if (1 =(o, then S#T

e There is a rule [y — ¢{ in R such that (] is not ready for tupling S.
e There is a rule [y — ¢} in R” such that ¢} is not ready for tupling 7'

Let us consider the tupling transformation relation. If, for some macro tree transducers
N1 and No with register functions, N1 Fyype,pr N2, then two rules of the set of rules of Ny
occur modified in the set of rules of Ny: more precisely, the right-hand side of one rule of which
the root is labeled by a register function (f,o,%), and the left-hand side of the another rule of
which the root is labeled by the same register function (f, 0,%), are modified. Furthermore, No
may contain some more rules of a new tuple function. These rules cannot be ready for tupling
because their right-hand sides do not contain any register function. Their construction is based
on the rules of the macro tree transducer M.

We have to distinguish the following two cases: (a) [; — (1 and lo — (y are different, i.e.,
I1 #1y and (b) Iy — ¢; and Iy — (o are equal.

(a) Here, three cases are possible.
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1. The rule Iy — (5 is in N’ and the rule I; — (; is in N”. Then (5 is ready for
tupling 7' and ¢; is ready for tupling S. Hence, N’ Fyypie s N' and N’ contains
(in comparison with N') the same new rules as N”. Also N" b0 11 N" and N"
contains (in comparison with N”) the same new rules as N'. By trivial comparison
of the executed changes to the rules it holds that N'=N"=N.

2. The rule I — (5 is in N’ and instead of the rule I; — (;, the rule I — (3 is in
N" ie., root(ly) = root({2). As before, (s is ready for tupling T" and (; is ready for
tupling S. The rest of this case is similar to 1.

3. Instead of the rule Iy — (5, the rule I, — (5 is in N’ and the rule [y — (3 is in N”,
i.e., root(ly) = root(¢1). Compare case 2.

(b) If the rules are equal, then S and T are different (otherwise it would hold that N’ = N").
By definition it holds that SNT = (. (] is still ready for tupling T" and ¢his ready for
tupling S (note that lo = [, but C1 # (}). Hence, N’  tuple, M N’ and N" Ftupie, M N". By
comparing the rules of N’ and N” it holds that N’ = N" = N. O

Lemma 4.27 The relation tyype pr is noetherian.

Proof. Let N = (F'S,%X, A, R) be a macro tree transducer with register functions and let
M be a macro tree transducer such that M and N are semantically equivalent. For every rule
[ = ¢ in N there is a unique number k(I — () of different sets Si,..., Sk ¢) such that ¢ is
ready for tupling the set S; of ground function calls. The rules which are newly created by
the TUPLE-Algorithm are rules which have no register function calls in their right-hand sides.
Hence, no such right-hand side can be ready for tupling. Since the number of rules is finite and
to every rule a finite number is associated, it holds that the relation type s is noetherian. O

Lemma 4.28 The relation tyype ar is confluent and noetherian.

Proof. This result follows directly by the fact that Fy,pe a7 is locally confluent and noetherian
(cf. previous lemmas) and by Lemma 2.4 of [Hue80]. O

Lemma 4.29 Let M be a macro tree transducer.

o0 o0
1. I_sh,a.re,M °© l_t'u,ple M C l_t'u,ple M ° l_share M l_t'u,ple,M‘
. o0 &) . ee]
2. l_splzt,M © I_tuple,M C I_tuple,M ° l_splzt,M ° I_tuple,M‘
Proof. Let N = (F'S,2, A, R) and N’ be two macro tree transducers with register functions.

1. Let N =55 re.ar © Fuprear V- We have to show that also N =50, 3 0 B35 e 1 © Fiipre.nr
N’ holds. If N Foupte s N or N E55 oy IV, then the statement holds trivially. Otherwise
there arerulesl; — (3,...,ln — (n withm > 1in R such that, for every i € [m], (; is ready
for tupling S;1,...,S;, for some n > 1. It holds that N is not ready for sharing in some
of these rules because this is a condition for the applicability of the tupling transformation
relation. Note that this condition makes sure that rules which are both, ready for sharing
and ready for tupling, are first changed by the sharing transformation relation. Let [;, —
Cjrs---slj, — (j, be these rules. On the one hand the tupling transformation relation
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enables or disables no further tupling and, on the other hand, no further sharing, i.e,
N I—t"gple, u N1 and N is ready for sharing, because N is ready for sharing. Hence, there
is a macro tree transducer Ny with register functions such that Ny =57 e M Ny. By trivial
comparison of the changes applied to the rules it follows that nf (N1, Fpie,nr) = N'.

Note that the sharing transformation relation may enable the applicability of the tupling
transformation relation. For this reason, only the C relation holds.

. Let N Fprit, v © Foopre N'. We have to show that also N papte.nr © Fsplit, M © Fieie v N’
holds. This proof is similar to the proof of statement 1.: if N F70, ., N, then the
statement holds trivially. The splitting transformation relation may enable but not disable

the tupling transformation.
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5 Transformation strategy

As explained in the introduction we want to present a method how to transform a macro tree
transducer M into a macro tree transducer N with register functions such that M and N
are semantically equivalent and N is more efficient than M. Until now we have defined three
different transformation relations. Now we define how they have to be combined such that the
goal is reached.

Definition 5.1 Let M = (Fy;, %, Ay, Ryy) be a macro tree transducer. The reducing trans-
formation relation with respect to M is the binary relation e C N x N defined as follows.
Let N = (F'S,%,A,R) and N’ be two macro tree transducers with register functions. It holds
that N bpeqpr NV ', if the following conditions hold:

e M and N are semantically equivalent.
e There is a rule [ — ¢ in R such that Cut(¢) # .

Then N’ is determined by the transformation N it pr N1 l—;’fmm,M Ny l—;‘jpl&M N'. O
Let us give a short example for the application of .q rr.

Example 5.2 Consider the macro tree transducer N; with register functions of Example 4.3. It
is well-known that M; (cf. Example 3.3) and N; are semantically equivalent. For the right-hand
side ¢ of the (lift,o)-rule of N; it holds that Cut(¢) # @ (cf. Example 4.3). By Ny Frean, N/,
it holds that N’ is the result of the transformation Ny Fgpit ar, N{ = Chare. M, Ny - peple. M, N’
for some macro tree transducers N{ and Nj' with register functions. By the previous Examples
4.3, 413, and 423, it holds that N1 |_split,M1 NQ, N2 l_(sxfjbare,Ml N3, and N3 l_?;;ple,Ml N4.

Hence, we can choose N’ = Njy.

Remark 5.3 Let N = (F'S,3, A, R) be a macro tree transducer with register functions and M
be a macro tree transducer such that M and N are semantically equal.

1. If there is a macro tree transducer N’ with register functions such that N Fred, v N "
then N' = (FS', 3, A", R') with sim(FS) = sim(FS'), tup(FS) C tup(FS"), reg(FS) C
reg(FS"), and A C A’.

2. If N Fpegmr N' with N' = (FS', X, A", R') and A C A’, then tup(FS) C tup(FS'").

3. If there are exactly k different rules l; — (1,...,lr — (x in R such that, for every i € [k],
Cut((;) # @, then there are exactly k different macro tree transducers with register
functions Ny, ..., Nj such that, for every i € [k], N Fpeqnr N;. O

Lemma 5.4 Let M be a macro tree transducer. The following holds:

. 00 00 00 00 ) 00 00
1. l_splzt,M © I_share,M © l_tuple,M - I_share,M ° l_tuple,M © l_splzt,M © l_share,M ° l_tuple,M
(or equivalently: Freqnr C Foharen © Foaptenr © Fred, )

2. I_split,M ° I_7"ed,M c l_red,M ° I_7"ed,M

Proof.
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N 1NN

Now
sions

. o o0
Fsplit,M © I—Share,M o I—tuple,M by Lemma 4.20

00 . 00 00

share,M © l_splzt,M © I_share,M © l_tuple,M by Lemma 4.29 1.
00 . 00 00 00

share,M © l_splltyM °© l_tuple,M © l_share,M °© l_tuple,M by Lemma 4.29 2.

00 00 . 00 00 00
l_share,M © l_t'u.ple,M © l_SPllt,M © l_tuple,M © l_share,M © l_tuple,M

we analyse the transformation relation which results from the sequence of inclu-
. Let N and N; be two macro tree transducers with register functions such that

N Foharenr © Foupiens Ni- Since the tupling transformation relation does not introduce

new

l_splz't
ling,

sharing possibilities, N1 = nf(Ni,Fshare,n). Applying the transformation relation
v to Ny introduces exactly one rule [ — ¢ which may be ready for sharing or tup-
i.e., if N1 Fgpit,pr N2, then the transformation relation '_?Sple,M ) I—S?mre,M o I—t"gple,M

is concentrated to this rule [ — ¢ and to the rule I’ — (' such that root(¢) = root(l').

Note

that neither Fyyp1e p7 DOT Fgpgre v introduces rules which can be ready for sharing or

tupling. By definition of the splitting transformation relation, it holds that ¢’ is a ground
right-hand side, i.e., I’ — ¢’ cannot be a shared or tupled rule. Now two cases are possible:

If 4upie,ar can be applied to Na, then [ — ¢ must be the tupled rule. By definition
of the sharing transformation relation, ¢ is not ready ready for sharing (this was a
condition for the applicability of the tupling transformation relation). No other rule
can be ready for sharing by the previous considerations. Hence, if N I‘—t"ggle, M‘Ng,
then N3 = nf(N3,Fspare,nr) and bFgppie ar © Fupte.nr © Fsharenr © Fiupie,ns 18 simplified
to l_split,M ° I_?Sple,M‘

If F4upie,nr cannot be applied to Na, then gy s © I—;’gPle’M ) l—‘s’ﬁamM ) I—;’gPle’M is
simplified to Fgppt s © l—??mre’M ) l—fjple’M. Note that, since -7 5, is local to the

share,
rule | — (, I—;’}’mre,M is equal to Fgpqre,nr, if sharing is applicable.

Altogether, the statement holds.

N

Fsplit,M © Fred,m by Definition 5.1
Fsplit,M © Fsplit, M © Fpare v © Fhupte,m by 1.

. oo o0 . o0 00 o, .
l_SPllt,M °© l_share,M °© l_tuple,M °© l_SPllt,M °© l_share,M °© l_tuple,M by Definition 5.1
l_red,M ° l_red,M

a

In the following, we call a t~y.q rr-step local, if the involved Fgpqre, v and Fyypre ar transforma-

Lemma 5

tion relations only change the rules which were created by the splitting transformation relation.
Note that for such a local .4 a/-step the involved sharing transformation relation is applied at
most once.

5 If N byeqnr N', then N and N' are semantically equivalent.

Proof. This statement follows directly by the fact that .42/ is a sequence of relations for

which it is

was proved that they are semantic-preserving. O
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oo oo i \7 o0 oo
« it M Fshare,M o '_tuple,M N]_'_Spllt,M N I_share,M o e
split,
tuple, M
oo S U
N I_share,M o l_tuple,M N N3

(oo}

. ! oo oo \7 [e%S) tuple, M
split, M N2 Fshare,M o '_tuple,M N2'_split,M N> I_share,M o X fuple

Figure 23: Proof of the local confluence of F,.¢q a7

Lemma 5.6 The relation bpeq s is locally confluent.

Proof. Let N, Ni, and Ny be macro tree transducers with register functions such that
N Fregr N1 and N g No where Ny # Np. We prove that there exists an N3 such that
Ni Freanr N3 and N peg ar V3.

By Lemma 5.4 it follows that
N l_shareM ° l_?;)ple,M ° I_7"ed,M Ni and

00
N l_shareM © l_tuple,M °© l_red,M No.

Since the normalforms are unique it holds that there exists a macro tree transducer N’ with
register functions such that

N l_gzare,M o l_?;)ple,M N’ and N’ l_red,M N1 and N’ l_red,M N2
and thus (by Definition 5.1) there are N| and N such that
N’ l_SPlit,M N{ Csxf)l,a,re,M °© l_?zple,M Ny and

! !
N Fgprieir Ny Foharens © i

share,

tuple, M Ns.

It holds that N # Nj because of N1 # Ny and because of the fact that normalforms of Fgpepe nr
and Fyype s are unique. Hence, there exist two rules [y — (7 and I — (2 in N’ such that
Cut((1) # @ and Cut(¢z) # ¢. As we have seen in the proof of Lemma 5.4, the relation

share,M © Miupie,n 18 local to the rules which are constructed by splitting the rules [; — ¢; and
lo — (5. Hence, the rule lo — (5 is still in the set of rules of N; and the rule [; — (; is still in
the set of the rules of Ny. Therewith Fsplit,p can be applied to Ny and N, i.e., N1 Fgpriemr Ny

and Na Fgpiit v N2 for some N1 and Ny. As before, the relation I—share M I—tuple a 18 local to
the new constNructed rules. Let Ny -9 share,m © Fiuple,n N3- By trivial comparison of the rules it
follows that No I—gﬁ’mm,M o I—t"gple,M N3. Hence, the statement is proved. The proof is pictured

in Figure 23. O

Lemma 5.7 The relation bpeq s s noetherian.
Proof. Let M = (Fy, %2, Apr, Ryr) be a macro tree transducer and let Ny be a macro tree

transducer with register functions which is semantically equivalent to M. Consider an arbitrary
derivation
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No Fred, v N1 Freanr No Fredgns - Fred, v Ne Freanr Neg1 Frednr - -
of Freg, - By Lemma, 5.4 a sequence of .4 1/-steps can be reordered as follows: if Ng Fpeq ar N1,
then N l—;’?mre,M o l—;’;}ple’M o Freg,mr N1 and the k0427 step is local. The same holds for all
other t.q rr-steps, because, for every 7 > 0, NN; is the normalform of N; with respect to the
Fshare,m and Fyype 3 transformation relation.

We observe that e 1/ is the only transformation relation (w.r.t. the three basic transfor-
mation relations) which can introduce new rules with the property that their right-hand sides
can be splitted. In particular, these right-hand sides are combinations of right-hand sides of
the macro tree transducer M (cf. TUPLE-Algorithm, Part NEW). However, the left-hand sides
of such new rules have tuple functions as root label and, since there are only finitely many
permutations over the set Fj; and since no two rules start with the same tuple function and
input symbol, this process of adding new rules eventually stops.

For a finite set of given rules, g,/ s is noetherian. Hence, assuming that no more new rules
are added, 4 s is also noetherian. O

Lemma 5.8 The relation bpeq s is confluent and noetherian.
Proof. This result follows directly by the fact that F,..4 2/ is locally confluent and noetherian

(cf. previous lemmas) and by Lemma 2.4 of [Hue80]. O

Definition 5.9 Let M be a macro tree transducer. The recursive-iterative tree transducer
associated with M, denoted by rec-it(M), is the macro tree transducer nf(yeqnr, M) with
register functions. O

Example 5.10 Let us continue our running example by showing the recursive-iterative tree
transducer associated with My (cf. Example 3.3). It can be computed by the following transfor-
mation sequence:

I .
M,y l_split,Ml Ny l_share,Ml N3 l_split,Ml N3 l_tuple,Ml Ny I_split,Ml © l_share,Ml ° I_tuple,Ml TeC'Zt(Ml)

~~ e

Fred,Ml Fred,Ml Fred,Ml
where

e the macro tree transducer N; with register functions is the one from Example 4.3 (the
rules are shown in Figure 13),

e the macro tree transducer Nj with register functions is obtained from N3 (cf. Example
4.13, Figure 19) as follows: the extr-rules of N3 are equal to those of N3 and the li ft-rules
are the ones of Ny, and

e the macro tree transducer N4 with register functions can be found in Example 4.23.

The rules of rec-it(M;) are shown in Figure 24. The following pictures Figures 25 and 26

show a derivation of the well-known function call by C:bg,nec_z-t( ay)- It is remarkable that before
computing the results of more complex subcalls, the input tree is analyzed and with the help
of the register functions a computation plan is created. Note that this derivation only needs 12
steps.
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liftla,y1) — w0
lift(o(xi,22),p1) — (lift,o,1)(x1,22,y1, (lift,extr)(z1,91),
extr(z2,v(y1)))
(lift,o,1)(x1,2,y1,comba(21,23),22) —  0(21,0(22,23))
(lift,extr)(a,y1) —  comba(y1,)
(liftvemtr)(o-(mlvx2)ayl) — ((lift,ea:tr),a,1)(:61,352,311, (lift,ea:tr)(a:l,yl),
extr(zz,y(y1)))
((lift,ea:tr),a,1>(x1,x2,y1,combg(zl,zg),zz) — COme(U(Zl,U(Zg,Zz)),U(lift(Z’g,2’1),21))
extr(a,y1) — «
extr(o(zy,22),y1) — (extr,o,1)(x1, 22, y1,lift(w1,1))
(extr,o,1)(z1,2,91,21) —  o(lift(zz,21),21)

Figure 24: Rules of the macro tree transducer rec-it(M;) with register functions.

n by C:bg)Ml by C:bgjrec—it(Ml)
0 1 1

1 4

2 10 8

3 22 12
kE|lak—1)+2%a(k—2)+4 dxk

Table 1: Comparison of a derivation by by M, and Cb:%,ec_it( M)

Consider a function call lift(s,t) with ¢ € T'(A;) and s is a tree over ¥; such that each
second subtree is the nullary symbol « and n denotes the number of symbols ¢ occurring in s.
The number of reduction steps a(n) necessary to compute the normalform of the function call
is given in Table 1. As it can be seen, there is a great gain in efficiency.

O

We make the following observation about the structure of the rules in rec-it(R):

Observation 5.11 Let M = (F,%,A, R) be a macro tree transducer and rec-it(M) = (rec-
it(FS), X, rec-it(A), rec-it(R)). For every rule | — (f,o0,i)(Z,7,%1,...,%,) in rec-it(R) with
(f,0,i) € reg(FS)*+7+7) it holds that, for every j € [r], ¢; is either

e in Z or

e a ground function call. O
Now we can state the following important result.

Theorem 5.12 Let M = (F,X, A, R) be a macro tree transducer. It holds that rec-it(M) is at
least as efficient as M.
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Figure 25: Derivation by C——bgrec_z-t(Ml) (Part 1).

Proof. Since F¢q,as is semantic-preserving, for every C:bgﬂ/[—derivation of a syntax-directed
expression ¢ to a normalform &, there exists also a C:bgrec_it( a-derivation of 9 to £. It has to be

proved that the derivations by C:bgrec_it( M) are at most as long as the derivations by by M-
Since g, ns is noetherian, there is an L > 0 such that

M l_red,M Ny l_red,M cee l_red,M Ny = Tec‘it(M)

M is a macro tree transducer, i.e., there are no register functions and register rules in the set
of rules of M. By definition, Fyeqpr = Fgprit,pr © l—gﬁamM ) I—togple,M and the transformation
relation g, a7 introduces a new register rule into the set of rules: the splitted rule of M and
N is replaced by two rules and only one of these rules can be changed by the transformation
relations Fgpgre,ns and Fyypre v, namely the rule of which the root of the right-hand side is
labeled by a register function. The relations gp4re,37 and Fyypie pr introduce no new rules with
register functions: they only change an existing rule with a register function at the root of the
right-hand side; Fy,pe, 2 creates rules for tuple functions without register function calls.

It has been proved in Corollary 4.5 that, if N Fgpi,0 N, then N is more efficient than N'.
Every application of the splitted rule in a derivation by C:ng is simulated by the application
of two rules in a derivation by by 7. But, according to Definition 4.1, a rule is only splitted
if its right-hand side contains at least two ground function calls with equal argument lists.
This condition is exactly the one which is needed for the applicability of at least one of the
transformation relations tgp4re,3r and Fyyprear. The other conditions which are neccessary, are
automatically fulfilled in this sequence of transformation steps.

In Corollary 4.15 it was proved that, for every macro tree transducer N with register func-
tions, the macro tree transducer N’ with register functions obtained by N Fgp4re.ar N', is more
efficient than N in the following sense: Let [ — ( be the shared rule of N and N'. Every
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Figure 26: Derivation by = ,.c.i(n,) (Part 2).

application of this rule during a derivation by cby ' needs at least one step less than a derivation

by cby ~. Therewith the loss of efficiency by the relation gy 27 is compensated.

If no Fgpare,mr step can be executed, then the loss of efficiency has to be compensated by
the relation Fype pr. There, different function calls with equal argument list are glued together
and a new function call with the same argument list arises. The rules for the new function
call are created by simply combining the right-hand sides of the rules for these functions of M.
Hence, instead of computing, e.g., r different function calls which means r applications of rules,
only one function call has to be computed with the same combined right-hand side. Altogether
there are r — 1 steps less if the right-hand side with register function which has arised by the
application of gy a7, has to be evaluated.

The other steps Ny Fpeqar N2, ... can be justified as above: the splitting transformation
relation is executed exactly once and the arising rule the right-hand side of which is a register
function, is the only rule in which ground function calls in its right-hand side can be deleted or
tupled.
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Note that it cannot be stated that, for every j € [L], N; is at least as efficient as N;_; but
in comparison with M, every IN; is at least as efficient as M. Altogether the statement holds
with b < a. O

Theorem 5.13 There are infinite many macro tree transducers M such that rec-it(M) is more
efficient than M.

Proof. We have seen in the proof of Theorem 5.12 that the loss of efficiency due to the
Fspiit,mr steps is compensated by the other transformation relations. We can formulate five cases
in which the compensation leads even to a more efficient macro tree transducer with register
functions. We state that rec-it(M) is sometimes better than M if, in the transformation from M
into rec-it(M) by breq,nr, there is at least one Frqq ps step such that for its constituents Fgpqre
and Fyype,0r at least one of the following conditions holds:

1. the k.4 s step contains an application of gp4r¢,37 and an application of Fypie ar,
2. the g1 step contains at least two applications of e a1,

3. in the k.4 7 step at least one gpq.¢, 07 step is applied which deletes at least two function
calls,

4. the bFyeq s step contains a tgpapear step which deletes a function call f(...) of which at
least one rule has a function call in its right-hand side, or

5. in the . a7 step at least one Fyypje 1 step is applied which tuples at least three function
calls.

The cases 1.-3. and 5. are clear from the proof of Theorem 5.12. Case 4. needs a more
detailled explanation: Let us assume that the .4 3 step contains one application of Fgpqre ar
and no applications of Fyype,ar (otherwise case 1. would hold). Furthermore let us assume that
Fshare,m deletes only one function call f(...) from the argument list of a rule [ — (. This means

that during a Y _derivation where the rule [ — ¢ is applied, the evaluation of this function call
(where the formal parameters are replaced by concrete instances of trees) is omitted. If this
evaluation would need more than one derivation step, then the loss of efficiency due to splitting
is overcompensated. In the case that there is an input symbol o € ¥ such that the (f, o)-rule has
a function call in its right-hand side, an input tree can be constructed such that the evaluation of
the omitted function call needs more than one step. Hence also case 4. leads to a more efficient
macro tree transducer with register functions.

One may ask which macro tree transducers fullfill the conditions above. Obviously, at least
every macro tree transducer which has at least one rule of which the right-hand side contains
three function calls with equal argument list. There are also infinitely many other macro tree
transducers which fulfill the conditions above by simultaneous function calls as, e.g., the macro
tree transducer version of the Fibonacci-function and, of course, our running example. O

Considering the transformation sequence from a macro tree transducer M to the recursive-
iterative tree transducer rec-it(M), it can be exactly determined whether rec-it(M) is more
efficient than M or not. The following decision algorithm accepts as input the macro tree
transducer and it yields “yes”, if rec-it(M) is more efficient than M, and “no”, otherwise. The
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algorithm uses the instruction “stop” which terminates the execution of the algorithm at this
spot. The terms “Case i” with ¢ € [5] are concerned to the five cases which are enumerated in
the proof of Theorem 5.13. The global while-statement performs a local .4 r/-step. Note that
the sharing transformation relation is embedded in an if-statement instead of a while-statement,
because only local .4 r/-steps are executed and such a local b4 3/ step contains at most one
application of spgre -

Decision Algorithm:

Let countsh, counttup, N, and N’ be program variables.
Input: macro tree transducer M = (F, %, A, R).

Output: either “yes, rec-it(M) is more efficient than M”
or “no, rec-it(M) is not more efficient than M”

Initialization: Let countsh := 0, counttup := 0, N = M.

while there is an N’ such that N kg0 N' do

N := N';

if N is ready for sharing then
N Fghare,m N'; countsh := countsh + 1;
Let I — (f,0,i)(Z,9,%1,-..,%,) be the shared rule of N and N'.
if double(vpy,...,9) = (l1,...,lm) with m > 1 then

return “yes” and stop; fi (* Case 3 *)

if double(v1,...,%,) = (I1) and [ is a function call of the form f(...) such that
there is an (f, o)-rule of which the right-hand side contains at least one function

call then
return “yes”and stop; fi (* Case 4 %)
N := N';

fi

while there is a rule [ — ( in the set of rules of N
such that ¢ is ready for tupling the set S of ground function calls do
N Fiupienr N'; counttup := counttup + 1;
Let [ — ¢ be the in S tupled rule of N and N’

if card(S) > 2, then return “yes” and stop; fi (* Case 5 *)
N := N';
if counttup > 1 then return “yes” and stop; fi (* Case 2 *)
od
if counttup + countsh > 1 then return “yes” and stop; fi (* Case 1 %)
counttup := 0; countsh := 0;
od;
return “no”;

At the end of this section we present a macro tree transducer M such that rec-it(M) is not
more efficient than M.

Example 5.14 Let us consider the macro tree transducer My, = (Fb, X5, Ao, Re) which is a
modified version of M. The components of My are given as follows:
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= {li(Z), ex(Q)},
Yo = {0(2),a(0)},

Ag = {0—(2)”7(1)’ a(O)}’ and

e Ry is the set of the rules which are shown in Figure 27,

Then rec-it(Ms) is computed by the following transformation sequence:

Mo I_split,Mz o I_tuple,Mg o l_split,Mg o l_tuple,Mz Tec'it(MQ)

~~ ~~

Fred,MQ Fred,MQ

The rules of rec-it(Ms) are shown in Figure 28. For every syntax-directed expression 1) €

sdExp(Fy, X9, Ag) it holds that the derivations by C:bg,nec_it( M) and by by M, are of equal length.

lilayy1) — 0

lilo(z1,22),y1) —  o(li(z1,y1), 0(ex(w2,7(y1)), ex(z1,91)))
ex(a,y1) — «

ex(o(x1,22),y1) —  li(xy, li(ze,y1))

Figure 27: Rules of the macro tree transducer M.

li(a,y1)
li(o(z1,22), 1)

Y1
<l7/7 g, 1>(.’I}1, Z2,Y1, (ll’ 637)(.’1}1, y1)7
ex(z2,7(y1)))

11

(li,o,1)(x1,2,y1,comby(21,23),22) — 0o(21,0(22,23))

comba (y1, @)
<(lZ, 61‘),0’, 1>(1’1,1’2,y1, (li)em)(xlyyl))

ex(z2,v(y1)),li(z2,y1))
((Ii,ex), 0, 1) (x1, T2, y1, comba (21, 23), 22,24)  —  combs(o(21,0(23,22)),li(x1,24))

(Ii,ex)(a,y1)
(lZ) 61’)(0’(1‘1,1'2), yl)

Ll

61‘(&, yl)
ex(o(z1,22),y1)

11

«
li(zy,li(w2,y1))

Figure 28: Rules of the macro tree transducer rec-it(Msy) with register functions.
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6 Conclusion

We have defined particular classes of recursive program schemes, namely the class M of macro
tree transducers and the class N of macro tree transducers with register functions which contains
the first one. Our aim was to define a transformation from an arbitrary macro tree transducer
into a macro tree transducer with register functions such that the resulting transducer is at
least as efficient as the original transducer, and there exist macro tree transducers for which
the transformation even yields a macro tree transducer with register functions which is more
efficient than the original one. As measure of efficiency we have taken the number of call-by-
value derivation steps necessary to compute the normalform of a syntax-directed expression built
from the components of the underlying macro tree transducer.

For this purpose we have defined three transformation relations gyt ar, Fshare,nr, and
Ftuple,mr With the pleasant properties that they are semantic preserving, confluent, and noethe-
rian. For two of these transformation relations, namely gt a7 and Fgpqre a7, €xact statements
about the efficiency were proven: an application of F,; pr decreases the efficiency whereas
Fshare,m increases the efficiency. For the tupling transformation relation no such statement
could be proven.

With the help of these three transformation relations a transformation from a macro tree
transducer M to a macro tree transducer rec-it(M) with register functions was defined such
that rec-it(M) is at least as efficient as M. This transformation is the computation of the
normalform of M with respect to the transformation relation F, .4 2s which is the composition
split, M © l—gﬁamM o l—togple,M. It was shown that, for every macro tree transducer, this normal-
form exists.

Finally a decision algorithm was given which is able to determine whether or not, rec-it(M)
is more efficient than M.

An important topic of this paper was to define the relations as precise and easy as possible
to be able to proof all the statements we made. Hence, the transformation strategy itself is not
very efficient and many optimations are possible to speed up the strategy and to optimize also
rec-it(M), e.g., the life time of the formal parameters which were saved in the argument list
of register functions no matter if they are used or not, could be examined. Another obvious
optimization would be to define an ordering on the simple functions to avoid that by the tupling
transformation relation, e.g., the tuple functions (f, g) and (g, f) arise. But these optimizations
have no effects to the efficiency of rec-it(M) and only complicates the proof and the clearity of
the presentation.

At the time being we are generalizing this strategy to more powerful program schemes.
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