
E�cient Call�by�value Evaluation Strategy

of Primitive Recursive Program Schemes

Andrea M�o�le�

Universit�at Ulm� Fakult�at f�ur Informatik� Abt� Programmiermethodik und Compilerbau

E�mail� andrea�bach�informatik�uni�ulm�de

Heiko Vogler

TU Dresden� Fakult�at Informatik� Lehrstuhl Grundlagen der Programmierung

E�mail� vogler�inf�tu�dresden�de

Abstract

We consider primitive recursive program schemes with parameters together with the call�
by�value computation rule� The schemes are �nite systems of functions which are de�ned
by primitive 	or� structural
 recursion� simultaneous recursion and nesting of function calls
is allowed� We present a transformation strategy which replaces primitive recursion by
iteration� The transformation strategy which is fully automatic� takes as input a primitive
recursive program scheme M with parameters and it computes a program scheme M � as
output� We prove that� for every argument tuple� M � is at least as 	time
 e�cient as M �
We also prove that there are in�nitely many nontrivial primitive recursive program schemes
M with parameters for which the transformation yields a program scheme M � such that
there are in�nitely many argument tuples for which M � is more e�cient than M � Moreover�
we provide an algorithm which decides for an arbitrary given primitive recursive program
scheme M with parameters whether M � is more e�cient than M �

� Introduction

Algorithms can be often elegantly described in a recursive way and consequently� recursion is of�
fered by every modern procedural programming language� Usually� such programming languages
are implemented on runtime stack machines which create for every function call an activation
block� in such blocks� the return address� static and dynamic links� and the variables of the
procedure are stored �see e�g� �Dij�	
� �McC�	
�� However� the creation and administration of
activation blocks cause a great amount of runtime overhead and hence� great e�orts have been
made to transform the programs such that recursion is replaced by iteration� Such transforma�
tions are quoted as recursion elimination �see� e�g�� �Knu
�
� �Ric��
� �Bir

a
� �Bir

b
� �AS
�
��

In functional programming languages� recursion is even the most important way of de�ning
objects� And in fact� during the investigation of functional programming languages� new facettes
with respect to recursion elimination appeared �BD

� Bir�	� Boi��
� One of the most well�known
techniques is the unfold�fold technique of �BD

 which has been re�ned in many ways �PP��
�

�The work of this author was supported by the Deutsche Forschungsgemeinschaft �DFG��

�

In the context of functional programming languages� the main goal of recursion elimination is
to avoid multiple computations of function calls and multiple traversals of subcomponents of
function arguments�

Also in the �eld of program transformation as a discipline to compose programs from an
abstract speci�cation by stepwise re�nement� the question of producing e�cient programs at�
tracted attention �Fea��� BW��� PP��� Par�	
� In particular� recursion elimination is addressed�
According to �Boi��
� the strategies of the cited papers can be divided into the following cate�
gories� accumulation� �nite di�erencing �cf�� e�g�� �PK��
�� algorithm theories� and inverting the
order of evaluation�

In �Kla��
� an alternative way of getting rid of structural recursion in functional programming
languages is suggested� Roughly speaking� there the recursion elimination is integrated into
the compiler and the resulting iteration is supported by a few new machine components and
instructions �also cf� �IK�
a� IK�
b� IKV�	� Thi��a� Thi��b
��

Many of the techniques �e�g�� the Unfold�Fold technique �BD

� are interactive in the sense
that they need the help of the user� Often the transformation techniques exploit additional
assumptions either about the form of the function de�nitions or about the domain and the
range of the functions �cf�� e�g�� �Bir�	
�� Also in some of the proposed solutions the resulting
formalism is of completely di�erent nature than the original formalism �cf�� e�g�� the intelligent
compilers or the method to �nd procedural solutions for recursive function de�nition��

For a long time� the necessity of proving the correctness of transformation strategies was
neglected� Recently� this topic has been dicussed in �San��a� San��b
� There� he presents a
tool for proving the correctness of existing transformation methods for higher�order functional
programs and a simple syntactic method for guiding and constraining the unfold�fold method�

In this paper we present a transformation strategy which eliminates primitive recursion�
The transformation strategy is fully automatic� it does not require any additional assumptions
about the domain or the range of the de�ned functions� it is presented in a formal way� and
its correctness is proved� As input the transformation strategy considers primitive recursive
program schemes �with parameters� �CF��
 equipped with the call�by�value computation rule�
Given a primitive recursive program scheme M � the transformation strategy transforms M into
a program scheme M �� the transformation is performed by means of a well�de�ned sequence of
transformation relations called splitting� sharing� and tupling denoted by �split�M � �share�M � and
�tuple�M � respectively� In fact� the transformation eliminates some of the recursive computations
of function values by turning them into iterative computations�

We prove that every call�by�value computation of M � is at least as e�cient as the correspon�
ding call�by�value computation of M � Also we prove that there are in�nitely many primitive
recursive program schemes and in�nitely many arguments for such schemes such that the trans�
formation strategy yields more e�cient �i�e�� shorter� call�by�value computations� Moreover� we
present an algorithm which decides for a given primitive recursive program scheme M whether
there is an argument for which the call�by�value computation of M � is more e�cient than the
call�by�value computation of M � We note that the strategy called �safe tupling� which is propo�
sed in �Chi��
 and extended in �CK��� CH��
� yields similar results� However� there the authors
do not show a decision algorithm with the mentioned behaviour�

Since the recursion elimination deals with the concept of computations� it is reasonable to
formalize our transformation strategy on formal models for the reduction semantics of primitive
recursive program schemes� An appropriate formal model is the macro tree transducer �Eng�	

�

�also cf� �EV��
�� Macro tree transducers are particular convergent �i�e�� con�uent and termi�
nating�� left�linear� non�overlapping� constructor based term rewriting systems �cf� �Klo��
 for a
survey on term rewriting systems�� Macro tree transducers also �t into our requirement not to
use additional assumptions about the domain and range of the de�ned functions� the semantic
domain of macro tree transducers is the free term algebra�

Now let us explain in more detail how the transformation strategy is de�ned on tree transdu�
cers �cf� Figure ��� In fact� the transformation strategy takes a macro tree transducerM as input

tree transducer

macro

� ��

rec�it�M�

�split�M �share�M
� �tuple�M

�
� � �

M

macro tree transducer with register functions

�split�M �share�M
� �tuple�M

�
� � �

Figure �� Transformation of a macro tree transducer�

and it considersM as a macro tree transducer with register functions� In such transducers a new
type of function may occur which is called register function� Intuitively� the arguments of such
functions can serve as registers in which the values of the original functions can be computed
iteratively �in the same spirit as� e�g�� in the register programs of �AE
�
 values are accumula�
ted in registers�� In fact� all the three mentioned transformation relations which constitute the
transformation strategy� i�e�� �split�M � �share�M � and �tuple�M � are de�ned as binary relations over
the class of macro tree transducers with register functions� We prove that �split�M � �share�M �
and �tuple�M are semantic preserving� con�uent� and noetherian� Then� roughly speaking� our
transformation strategy is de�ned as computing normalforms of a macro tree transducer with
respect to the composed relation

�split�M � ��share�M � ��tuple�M �

where� e�g�� ��share�M denotes the relation with all pairs �N�N �� such that N � is the normalform
of N with respect to �share�M �and similarly for �tuple�M�� Then M is transformed into the
macro tree transducer rec�it�M� with register functions which is called the recursive�iterative
tree transducer of M � This name is due to the fact that some of the function values are still
computed recursively while others are computed iteratively�

In the rest of this introduction we will �� show an example M� of a macro tree transducer
and the corresponding recursive�iterative tree transducer rec�it�M��� �� discuss the origins of
our transformation strategy� and �� outline the structure of this paper�

On �rst glance� the example might seem a bit too complicated to show the nature of macro
tree transducers� However� it is composed such that we can discuss smoothly the origins of the
transformation strategy also on the basis of this example�

�

fS�p��x��� � fA�x�� �� ��

fA�p��x�� x��� y�� y�� � ��fA�x�� ��y��� b�y���� fC�x�� c�fA�x�� ��y��� b�y������

fA�p�� y�� y�� � ��y�� y��

fC�p�� y�� � c�y��

Figure �� Rules of the macro tree transducer M��

The macro tree transducer M� has three functions fS � fA� and fC with arity �� �� and ��

respectively� It takes input trees over the ranked alphabet fp
���
� � p

���
� � p���� p

���
� g� The output

trees are built up over the ranked alphabet f����� c���� ����� b���� ����g� Figure � shows the rules
of M�� A call�by�value computation of M� on the input tree p��p��p�� p��� looks as follows�

fS	p�	p�	p�� p�

 � fA	p�	p�� p�
� �� �

�
	fA	p�� �	�
� b	�

� fC	p�� c	fA	p�� �	�
� b	�

��
	
	�	�
� b	�

� fC	p�� c	
	�	�
� b	�

�
	
	�	�
� b	�

� c	c	
	�	�
� b	�

Note that �ve derivation steps are necessary to compute the result and note that the function
call fA�p�� ����� b���� has to be evaluated twice� Also note that the result is computed recursively
in a demand driven way �or� top�down manner��

In this paper we will transform the macro tree transducer M� into the recursive�iterative
tree transducer rec�it�M� shown in Figure � �the function hfA� p�� �i is a register function��

fS�p��x��� � fA�x�� �� ��

fA�p��x�� x��� y�� y�� � hfA� p�� �i�x�� x�� y�� y�� fA�x�� ��y��� b�y����
hfA� p�� �i�x�� x�� y�� y�� z�� � ��z�� fC�x�� c�z����

fA�p�� y�� y�� � ��y�� y��

fC�p�� y�� � c�y��

Figure �� Rules of the recursive�iterative tree transducer rec�it�M���

Let us consider the computation of fS�p��p��p�� p���� performed by rec�it�M���

fS	p�	p�	p�� p�

 � fA	p�	p�� p�
� �� �

� hfA� p�� �i	p�� p�� �� �� fA	p�� �	�
� b	�

� hfA� p�� �i	p�� p�� �� ��
	�	�
� b	�

�
	
	�	�
� b	�

� fC	p�� c	
	�	�
� b	�

�
	
	�	�
� b	�

� c	c	
	�	�
� b	�

�

Note that rec�it�M��� as M�� computes the result in �ve steps� Also note that the re�
sult is computed sometimes demand driven and sometimes value driven� The function call
fA�p�� ����� b���� is only evaluted once�

In fact� for every input tree the evaluation of rec�it�M�� is at least as e�cient as the evaluation
ofM�� To illustrate this� let us consider input trees tn of the form p��p�����p��p��p�� p��� p������ p���
in which� for some n � �� n p� labeled nodes and n p� labeled nodes occur� Figure � shows a
comparison of the lengths of call�by�value computations of M� and rec�it�M��� In general� the
lengths of computations of M� on input trees of the form tn can be described by the function a
which is de�ned recursively as follows�

a��� � �

a�n� �� � � � � � a�n� ��

which is clearly an exponential function� In contrast� the lengths of computations of rec�it�M��
on input trees of the form tn can be described by the function b which is de�ned linearly as
follows�

b�n� � � � � � n

n M� rec�it�M��

� � �
� �� �
� �� ��
���

���
���

Figure �� Comparison of e�ciency of M� and rec�it�M���

Now we will describe the origins of our approach� The idea of the underlying transformation
strategy goes back to the fact that macro tree transducers are closely related to attribute gram�
mars �Eng�	� CF��
 and to a technique �DPSS

 of computing output objects of an attribute
grammar by means of IO macro grammars� Let us explain this chain of connections by applying
the two involved transformations to M�� and then compare the resulting IO macro grammar
with rec�it�M���

In the �rst step we apply the construction of �CF��
 which takes a well�presented macro
tree transducer and transforms it into an equivalent attribute grammar� In fact� M� is well�
presented� The input symbols pi of the macro tree transducer M� have to be considered as
productions of some context�free grammar� Here we choose the interpretation p� � S � A�
p� � A� aACa� p� � A� b� and p� � C � c� �Note that there is no reason why we have chosen
this particular interpretation�� Figure � shows the resulting attribute grammar G� �with slight
variations due to a better �tting in our context�� For an easier understanding� the involved
attribute dependencies are shown in Figures � and
� there we have omitted the superscripts of
the attributes� because the correspondence between attributes and nonterminals is clear�

Actually� the resulting attribute grammar can be considered as an instance of a particular
type of attribute grammar� it is a simple�L�attributed grammar� A simple�L�attributed grammar
is an attribute grammar �Knu��
 for which the following additional conditions hold�

�

p� � S � A s��S� � s��A�
i���A� � �
i���A� � �

p� � A � aACa s��A� � s��A��s��C�
i���A� � �i���A�
i���A� � bi���A�
i��C� � cs��A�

p� � A � b s��A� � i���A��i
�
��A�

p� � C � c s��C� � ci��C�

Figure �� Productions and semantic equations of G��

i� i� A s

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
�� ���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
��

�����
�����
������������������

�������������������������

��������������������
������
��

�������������������������

��������������������
������
��

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
������� ���

���

���������������������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
���
�������
���������������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
����������������

���

����������������������
������

��������
��������
��������
��������
���������
���������
���������
����������
�����������
�����������������
���

�������������������
�����
����

sS i� i�

C

A

i� i� Aa cs s

s

i

Figure �� Dependency graphs of the productions S � A and A� aACa� respectively�

� Every nonterminal has exactly one synthesized attribute �and an arbitrary number of
inherited attributes� the startsymbol S has zero inherited attributes��

� It is an L�attributed grammar �Boc
�
� i�e�� the attribute evaluation can be performed in
a depth��rst left�to�right tree traversal�

� The semantic domain is the set of words over some output terminal alphabet on which
word functions operate� a word function is a function of the form

�u���u�� � � � �ur�w

such that w is a word over the output terminal symbols and the variables u�� u�� � � � � ur�
the variables range over output terminal words�

As usual� the semantics of an input word w in the language of the underlying context�free
grammar is described as the value of the designated synthesized attribute at the root of the
derivation tree of w� For instance� abca is a word in the language of the context free grammar
underlying G�� The derivation tree of abca is the tree p��p��p�� p��� and the corresponding

�

�����
�����
������������������

��
����������
��������
�������
�������
������
������
�����
�����
�����
�����
����

��
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
��� ���

��
����������
���������
��������
��������
�������
��������
�������
���

�����
�����
�����������������

i� i�

b

C

c

A i
ss

Figure
� Dependency graphs of the productions A� b and C � c� respectively�

dependency graph is shown in Figure �� The semantics of abca is the output terminal word
��b�cc��b �recall that G� interprets its function symbols in semantic rules as word functions��

�����
�����
������������������

��
����������
��������
�������
������
������
������
������
�����
�����
�����
����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
�� ���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
��

�����
�����
������������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
������� ���

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
���
�������
���������������������

�������
�������
������
�������
������
�������
������
�������
������
�������
������
�������
������
�������
������
�������
������
�������
�������
������
�������
������
�������
������
�������
������
�������
������
�����

������
������
����������������

���

�����������������������
�����

��

�����������������������
�����

��

�������������������������

��������������������
������
��

�������������������������

��������������������
������
��

��

��������
��������
��������
��������
����������
���������
����������
���������
������������
����������������
��

�������������������
�����
����

��
����������
���������
������
������
������
�����
�����
������
������

�����
�����
����������������

S

C

A

a

b

A

c

a

Figure �� Dependency graph of the derivation tree�

Now we can apply the second step which is due to �DPSS

� There� a method is described
to associate with a simple�L�attributed grammar G an equivalent IO�macro grammar io�G�
�Fis��� ES
�
� The nonterminals of G are taken over as nonterminals of io�G�� the output
terminal symbols of G become the terminal symbols of io�G�� The rules of io�G� are computed
from the semantic equations of the simple�L�attributed grammar by imitating the depth��rst left�
to�right tree traversal locally to the current production� In fact� during this traversal attribute
values are computed iteratively in a value driven way� The rules of the IO�macro grammar

��� � S � H�
� �A��� ���

��� � H�
� �z�� � z�

��� � A�y�� y�� � H�
� �y�� y�� A��y�� by���

��� � H�
� �y�� y�� z�� � H�

� �y�� y�� z�� C�cz���
��� � H�

� �y�� y�� z�� z�� � z��z�

��� � A�y�� y�� � y��y�

��� � C�y�� � cy�

Figure �� Rules of the IO�macro grammar io�G���

io�G�� associated to G� are shown in Figure �� We note that new nonterminals appear �here�
H�

� � H
�
� � and H�

� ��

Now let us compute the semantics of the input word abca by means of io�G��� This is done
by deriving an output terminal word by leftmost�innermost derivation relation�

S ����
H��A��� ���

����
H��H

�
� ��� �� A��� b���

����
H��H

�
� ��� �� ��b��

����
H��H

�
� ��� �� ��b� C�c��b���

����
H��H

�
� ��� �� ��b� cc��b��

����
H����b�cc��b�

����
��b�cc��b

We note that the value of A��� b� only has to be computed once� it is stored in an argument
position of nonterminal H�

� for later use� Moreover� we note that the computation of the �nal
object� i�e�� the output terminal string� is computed iteratively in a value�driven way�

If we compare rec�it�M�� and io�G��� then we realize that rec�it�M�� can be considered as
a mixture of the rules of the original macro tree transducer M� �which still compute values in a
demand driven� i�e�� recursive way� and the IO macro grammar io�G�� �which compute values in
a value�driven� i�e�� iterative way�� In particular� the register function hfA� p�� �i corresponds to
the nonterminal H�

� � The connection between rec�it�M�� and io�G�� becomes even more clear
if we slightly optimize io�G�� without changing its semantics� The resulting IO�macro grammar
io�G��

� is shown in Figure �	� In fact� io�G��
� has the same structure as rec�it�M�� and the

computations of io�G��
� and rec�it�M�� on input tree p��p��p�� p��� are closely related�

�

��� � S � A��� ��

��� � A�y�� y�� � H�
� �y�� y�� A��y�� by���

��� � H�
� �y�� y�� z�� � z��C�cz��

��� � A�y�� y�� � y��y�

��� � C�y�� � cy�

Figure �	� Rules of the IO�macro grammar io�G��
��

derivation of rec�it	M�
 derivation of io	G�

�

fS	p�	p�	p�� p�

� fA	p�	p�� p�
� �� �

� hfA� p�� �i	p�� p�� �� �� fA	p�� �	�
� b	�

� hfA� p�� �i	p�� p�� �� ��
	�	�
� b	�

�
	
	�	�
� b	�

� fC	p�� c	
	�	�
� b	�

�
	
	�	�
� b	�

� c	c	
	�	�
� b	�

S
���

�

A	�� �

���
�

H�
� 	�� �� A	�� b

���
�

H�
� 	�� �� �
b

���
�

�
b
C	c�
b

���
�

�
b
cc�
b

This paper is organized in six sections� Section � contains general notations and Section �
recalls the concept of macro tree transducers� introduces the concept of macro tree transducers
with register functions and determines some useful properties of the reduction relation associated
to macro tree transducers with register functions� Besides the term �more e�cient� is exactly
de�ned� In Section � the three transformation relations splitting �split�M � sharing �share�M
and tupling �tuple�M are presented� For each transformation relation the properties semantic�
preserving� con�uent� and noetherian are proved� In Section � the transformation strategy is
de�ned� Furthermore� a decision algorithm is given which is able to determine whether or not�
rec�it�M� is more e�cient than M �

�

� Preliminaries

We recall some general notations and fundamental ideas which will be used in the rest of the
paper�

��� General notations

The set of nonnegative integers is denoted by IN� For n � IN� �n
 denotes the set f�� � � � � ng� Let
S be an arbitrary set� The set of strings over S is denoted by S�� The empty string is denoted
by ��

For a �nite set A� the cardinality of A is denoted by card�A��
Let � be a binary relation on an arbitrary set S� Then� for every n 	 	� the relation �n

denotes the n�fold composition of �� the relation �� denotes the transitive closure of �� the
relation �� denotes the re�exive� transitive closure of �� As usual� we write �� � �� rather
than ���� ��� ���

Let � � S� If there is no �� � S such that � � ��� then � is called irreducible with respect to
�� If � is irreducible with respect to � and �� �

� � for some �� � S� then � is an irreducible
form of �� with respect to ��

A derivation with respect to � is a sequence �� � �� � �� � � � � such that for every i 	 ��
the elements �i � S and �i � �i���

We say that � is

� con�uent if� for every �� ��� �� � S� the following implication holds� if � �� �� and � �� ���
then there is a �� � S such that �� �� �� and �� �� ���

� locally con�uent if� for every �� ��� �� � S� the following implication holds� if � � �� and
� � ��� then there is a �� � S such that �� �� �� and �� �� ��� and

� noetherian if there are no in�nite derivations�

We mention two results concerning a binary relation � �cf�� e�g�� �Hue�	
�� If � is locally
con�uent and noetherian� then � is con�uent� If � is con�uent and noetherian� then� for every
� � S� there is a unique irreducible form of � with respect to �� which is called normalform of
�� denoted by nf��� ���

��� Lists and operations on lists

Let S be an arbitrary set� A list over S is a tuple �s�� � � � � sm� for some elements s�� � � � � sm � S�
the empty list is denoted by ���

The set of lists over S is denoted by L�S�� For an element s � S and a list l � L�S�� we
abbreviate the fact that s occurs at least once in l by writing s in l� The append�operator
�� on lists over S is de�ned as follows� if �s�� � � � � sm� and �t�� � � � � tn� are two lists over S�
then �s�� � � � � sm� � ��t�� � � � � tn� � �s�� � � � � sm� t�� � � � � tn� is a list over S� A non�empty list
l � �s�� � � � � sm� with m � 	 is also denoted by s� � l� where l� � �s�� � � � � sm�� The mapping
double � L�S� � L�IN� yields a list of positions at which elements of S occur repeatedly in the
argument list� It is de�ned as follows�

double	l
 � f	l� 	
� �� 	

 where
f	a � l�� l�� i� l�
 � f	l�� l�� i� �� l� ��	i

� if a in l�

f	l�� l� ��	a
� i� �� l�
� otherwise
f		
� l�� i� l�
 � l�

�	

For example� if S � fa� b� cg� then double��a� b� b� a� c� a�� � ��� �� ��� The function delpos �
L�S�
 L�IN�� � L�S� omits from the �rst argument list the elements� of which the positions
are given in the second argument list� if this second list is ordered by 	� otherwise it is unde�ned�
It is de�ned as follows�

delpos	l�� l�
 � g	l�� l�� �
 where
g	a � l�� b � l�� i
 � g	l�� l�� i� �
� if b � i

a � g	l�� b � l�� i� �
� otherwise
g	a � l�� 	
� i
 � a � l�
g		
� l�� i
 � 	

��� Ranked alphabets and trees

A ranked alphabet � is an alphabet in which to every symbol
 � � a nonnegative integer is
associated� this integer is called the rank of
 and it is denoted by rank��
�� For every n 	 	�
we denote the set of symbols of � with rank n by ��n�� If
 has rank n� then we write also
�n��

Let � be a ranked alphabet and let S be an arbitrary set� The set of trees over � indexed
by S� denoted by T h�i�S�� is the smallest set T such that the following two conditions hold�

�i� For every s � S� the element s � T �

�ii� For every
 � ��k� with k 	 	 and t�� � � � � tk � T � the tree
�t�� � � � � tk� � T �

In the context of trees we prefer to write
 instead of
��� if
 � ����� The set T h�i�O� � is
abbreviated by T h�i� Let t � T h�i�S�� The set of paths of t� denoted by path�t�� and the height
of t� denoted by height�t�� are de�ned inductively on the structure of t�

�i� If t � ���� � S� then path�t� � f�g and height�t� � 	�

�ii� If t �
�t�� � � � � tk� with k � 	� then path�t� � f�g � fiw j i � �k
� w � path�ti�g and
height�t� � � �max�fheight�ti� j i � �k
g��

The pre�x ordering on path�t� is denoted by � and the lexicographical ordering on path�t� is
denoted by �lex�

Let w�� w� � path�t� be two paths of t� Then w� and w� are incomparable� i� neither w� � w�

nor w� � w��
Let t �
�t�� � � � � tk� with k 	 	 be a tree and let w � path�t�� We de�ne the label of t at w�

denoted by label�t� w�� and the subtree of t at w� denoted by sub�t� w�� inductively as follows�

�i� If w � �� then label�t� w� �
 and sub�t� w� � t�

�ii� If w � iv for some i � �k
� v � path�ti�� then label�t� w� � label�ti� v� and sub�t� w� �
sub�ti� v��

The label of t at � is also denoted by root�t�� The set of subtrees of t is denoted by SUB�t��
Let w�� � � � � wn with n 	 	 be paths of a tree t such that� for every i� j � �n
 with i
� j� wi

and wj are incomparable� Then� for trees s�� � � � � sn� we abbreviate by t�w� � s�� � � � � wn � sn

the tree t in which we have replaced each subtree at wi by the tree si� Let t be a tree and
let t�� � � � � tn be subtrees of t such that� for every i� j � �n
 with i
� j� ti �� SUB�tj� and
tj �� SUB�ti�� The tree t in which we have replaced each occurrence of a subtree ti by the tree
si is abbreviated by t�t��s�� � � � � tn�sn
�

��

��� Variables and Substitutions

For the rest of the paper� we �x three sets of variables� viz�� the set X � fx�� x�� x�� � � �g
of recursion variables� the set Y � fy�� y�� y�� � � �g of context parameters� and the set Z �
fz�� z�� z�� � � �g of result variables� For every k 	 	� we de�ne Xk � fx�� � � � � xkg and similarly for
Yk and Zk� The union X � Y � Z is denoted by V � For a tree t � T h�i�V �� the set of variables
which occur in t� is denoted by V �t��

Let � be a ranked alphabet� A mapping � � V � T h�i�V �� where the set fx j ��x�
� x� x �
V g is �nite� is called ��substitution� The set fx j ��x�
� xg is denoted by D��� and is called the
domain of �� The extension of � is the mapping � � T h�i�V �� T h�i�V � de�ned inductively as
follows�

�i� If t � V � then ��t� � ��t��

�ii� If t �
�t�� � � � � tn��
 � ��n�� then ��t� �
� ��t��� � � � � ��tn���

In the following the extension of a substitution � is also denoted by ��
Let t � T h�i�V �� If D��� � fx�� � � � � xng� then ��t� is represented as t�x����x��� � � � � xn���xn�

or t�xi���xi�� i � �n

�

��� Principle of simultaneous induction

Here we use the principle of simultaneous induction which is a kind of double induction on trees
�EV��
� Let � be a ranked alphabet� let A be an arbitrary set� and for every k 	 	� let Bk be a
set� The mapping

f � T h�i � A

and for every k 	 	� the mapping
gk � �T h�i�k � Bk

is de�ned by simultaneous induction if the following holds�

�a� For every
 � ��k� with k 	 	 and s�� � � � � sk � T h�i� gk��s�� � � � � sk�� is used to de�ne
f�
�s�� � � � � sk���

�b� For every s�� � � � � sk � T h�i with k 	 	� f�s���� � � f�sk� are used to de�ne gk��s�� � � � � sk���

Similarly we can use the principle of simultaneous induction to prove properties� For every
k 	 	� let Qk and P be two predicates which range over �T h�i�k and T h�i� respectively� Qk and
P are said to be proved by simultaneous induction if �a� and �b� are proved�

�a� For every
 � ��k� with k 	 	 and s�� � � � � sk � T h�i� if Qk��s�� � � � � sk�� holds� then
P �
�s�� � � � � sk�� holds�

�b� For every s�� � � � � sk � T h�i with k 	 	� if P �s�� and P �s�� and � � � and P �sk� hold� then
Qk��s�� � � � � sk�� holds�

��

� Macro tree transducer and macro tree transducer with re�

gister functions

Before starting with the main topic of this paper ! the transformation relations and the trans�
formation strategy ! we de�ne the class of term rewriting systems which we want to transform�
namely the class of macro tree transducers� and the class of term rewriting systems on which
these transformations are based� This class is called the class of macro tree transducers with
register functions�

Macro tree transducers are well�known from the literature and were introduced in �CF���
Eng�	
 �see also �EV��
�� They are formal calculi to describe the computation of primitive
recursive program schemes with parameters in which simultaneous recursion and nesting of
function calls in parameters are possible�

For technical reasons we de�ne the set of ground right�hand sides of a macro tree transducer
separately�

De�nition ��� Let F and " be two ranked alphabets� Let k� n 	 	� The set of ground right�
hand sides over F � "� k and n� denoted by gr�RHS�F�"� k� n�� is the smallest set RHS such
that the following properties hold�

�i� Yn � RHS�

�ii� For every � � "�m� with m 	 	 and ��� � � � � �m � RHS� the term ����� � � � � �m� � RHS�

�iii� For every f � F �m��� with m 	 	� i with � � i � k� and ��� � � � � �m � RHS� the term
f�xi� ��� � � � � �m� � RHS� �

De�nition ��� A macro tree transducer is a tuple M � �F�#�"� R� such that

� F is the ranked alphabet of functions�

� # is the ranked alphabet of input symbols�

� " is the ranked alphabet of output symbols with # � " and " � F � O� � and

� R is a �nite set of rules of the form l� �� For every f � F �n��� with n 	 	 and
 � #�k�

with k 	 	� there is exactly one rule in R of the form

f�
�x�� � � � � xk�� y�� � � � � yn�� �

and � is in gr�RHS�F�"� k� n�� No other rules are in R�

�

The class of macro tree transducers is denoted by M� Let us give an example of a macro
tree transducer which will also serve as running example in the next sections�

Example ��� The tuple M� � �F��#��"�� R�� with the components

� F� � flift���� extr���g�

� #� � f
���� ����g�

��

� "� � f
����
���� ����g� and

� R� is the set of the rules which are shown in Figure ���

is a macro tree transducer� �

lift	�� y�
 � y�
lift	�	x�� x�
� y�
 � �	lift	x�� y�
� �	extr	x� � �	y�

� extr	x�� y�

extr	�� y�
 � �
extr	�	x� � x�
� y�
 � �	lift	x�� lift	x�� y�

� lift	x�� y�

Figure ��� Rules of the macro tree transducer M��

Since we will have to deal with some additional functions in the sequel� let us call the original
functions of a macro tree transducer simple functions�

As mentioned before� the transformation strategy which we will de�ne� transforms a macro
tree transducer into a more general term rewriting system� called macro tree transducer with
register functions� Macro tree transducer with register functions are a generalization of macro
tree transducers in the sense that� to every pair �f�
� consisting of a simple function f and an
input symbol
� a �nite sequence of register functions is associated� Intuitively� the arguments of
such register functions serve as registers in which trees over " can be built up and accumulated�
This accumulation is done as follows� the simple function f calls the �rst register function in
the corresponding sequence� and the i�th register function calls the �i � ���st register function�
Thus register functions are non recursive�

During the transformation process we will tuple simple functions into one function� such
functions will be called tuple functions� Note that also to every pair �g�
� consisting of a tuple
function g and an input symbol
� a �nite sequence of register functions is associated� The next
de�nition describes the functions involved in a macro tree transducer with register functions
formally�

De�nition ��� Let # be a ranked alphabet� A system FS of functions over # is a tuple
�sim�FS�� tup�FS�� reg�FS�� of disjoint ranked alphabets sim�FS�� tup�FS�� and reg�FS� of
simple functions� tuple functions� and register functions� respectively� such that the following
properties hold�

� sim�FS����� tup�FS�����reg�FS���� � O� � i�e�� every simple function� tuple function� and
register function has at least rank ��

� tup�FS� � f�f�� � � � � fm��n� j m � �� n � 	� f�� � � � � fm � sim�FS��n�g

� reg�FS� �
S
f�sim�FS��tup�FS����	 �f�
��reg�FS��

� For every f � sim�FS��tup�FS� of rank n�� and
 � #�k� with n� k 	 	� there is an nf�� 	
	 such that the set �f�
��reg�FS� � fhf�
� iij� � i � nf��g and rankreg�FS��hf�
� ii� �
n� k � rhf���ii for some rhf���ii � 	�

The set sim�FS� � tup�FS� is called the set of ground functions� denoted by gr�FS�� �

��

In the following� given a system FS of functions over #� we also use FS as abbreviation for
sim�FS� � tup�FS� � reg�FS��

De�nition ��� A macro tree transducer with register functions is a tuple N � �FS�#�"� R�
such that

� FS � �sim�FS�� tup�FS�� reg�FS�� is a system of functions over #�

� # and " are ranked alphabets of input symbols and output symbols� respectively� For every
tuple function �f�� � � � � fm� with m � � it holds that combm � "�m��

� R is a �nite set of rules which is partitioned into the sets gr�R� and reg�R� of ground
rules and register rules� respectively� Every rule in R is left linear� i�e�� in the left�hand
side of every rule no variable may occur more than once� The two sets have the following
properties�

	 gr�R�� For every f � gr�FS��n��� with n 	 	 and
 � #�k� with k 	 	� there is
exactly one rule of the form

f�
�x�� � � � � xk�� y�� � � � � yn�� �

such that either

� � � gr�RHS�gr�FS��"� k� n� or

� � has the form hf�
� �i�x�� � � � � xk� y�� � � � � yn� ��� � � � � �r� where r is determined by
the equality rankreg�FS��hf�
� �i� � k � n � r and� for every j with � � j � r�
the term �j � gr�RHS�gr�FS��"� k� n��

	 reg�R��

� For every hf�
� ii � reg�FS��n�k�r� with f � gr�FS��n��� and
 � #�k�� and
� � i � nf�� � �� there is exactly one rule in reg�FS� of the form

hf�
� ii� x� y� u�� � � � � ur�� hf�
� i� �i� x� y� ��� � � � � �p�

where x and y abbreviate the sequences x�� � � � � xk and y�� � � � � yn� respectively�
and

� for every j with � � j � r� the term uj � Z or there are r�j� 	 	� � � "�r�j���
and zj��� � � � � zj�r�j� � Z such that uj � ��zj��� � � � � zj�r�j�� and

� p 	 	 and for every j with � � j � p� the term �j � gr�RHS�gr�FS��" �S
��i�r V �ui�� k� n��

� For every hf�
� nf��i � reg�FS��n�k�r� with f � gr�FS��n��� and
 � #�k�� there
is exactly one rule in reg�FS� of the form

hf�
� nf��i� x� y� u�� � � � � ur�� �

where x and y abbreviate the sequences x�� � � � � xk and y�� � � � � yn� respectively�
and

� for every j with � � j � r� the term uj � Z or there are r�j� 	 	� � � "�r�j���
and zj��� � � � � zj�r�j� � Z such that uj � ��zj��� � � � � zj�r�j�� and

��

� � � gr�RHS�gr�FS��" �
S
��i�r V �ui�� k� n�� �

A rule of which the left�hand side has the form f�
�� � ��� � � �� or hf�
� ii�� � �� is called an
�f�
��rule�

We denote the class of macro tree transducers with register functions by N � Note that�
in a rule of a macro tree transducer with register functions� the argument list of a register
function hf�
� ii with rank�f� � n � � and rank�
� � k always starts with the variables
x�� � � � � xk� y�� � � � � yn� In the following we often abbreviate these sequences by x and y�

Let us illustrate this de�nition by an example�

Example ��
 Consider the macro tree transducer N� with register functions which is the tuple
�FS��#��"�� R�� with the following components�

� sim�FS�� � ffib���� h���g� tup�FS�� � f�fib� h����g� and reg�FS�� � fhfib�
� �i����
h�fib� h��
� �i���g�

� #� � f
���� ����g�

� "� � fcomb
���
� ������
���� ����g� and

� the rules of R� are shown in Figure ��� Thus� gr�R�� contains the rules ���� ���� ���� ����
���� and �
� and reg�R�� contains the rules ��� and ���� �

fib	�
 � �	�
 	�

fib	�	x�

 � hfib� �� �i	x�� 	fib� h
	x�

 	�

hfib� �� �i	x�� comb�	z�� z�

 � �	z�� z�
 	�

h	�
 � � 	�

h	�	x�

 � fib	x�
 	�

	fib� h
	�
 � comb�	�	�
� �
 	�

	fib� h
	�	x�

 � h	fib� h
� �� �i	x�� 	fib� h
	x�

 	�

h	fib� h
� �� �i	x�� comb�	z�� z�

 � comb�	�	z�� z�
� z�
 	�

Figure ��� Rules of the macro tree transducer N� with register functions�

In the rest of this section� let N � �FS�#�"� R� be an arbitrary� but �xed macro tree
transducer with register functions� Let us introduce some useful notations which we will often
use in further sections�

De�nition ��� �� The set of right�hand sides of N � denoted by RHS�N�� is the set f� j l �
� � Rg�

�� Let t � T hFS �"i�V �� A subtree t� � f�t�� � � � � tn� of t with f � FS�n� for some n � 	
is called function call� If f � gr�FS��n�� then t� is called ground function call� The list of
subtrees �t�� � � � � tn� of t

� is called list of arguments of t�� denoted by arglist�t���

��

�� The set of function calls in t is denoted by Fcall�t�� the set of ground function calls in t is
denoted by F gr

call�t��

�� For every rule l� � in reg�R�� the left�hand side l is called �at� if arglist�l� in L�V �� �

Clearly� every macro tree transducer can be considered as a macro tree transducer with
register functions in which the system of functions FS has the form �F� O� � O� �� i�e�� sim�FS� � F �
tup�FS� � O� � and reg�FS� � O� �

To assign a reduction relation to macro tree transducers with register functions we �rst de�ne
the syntactical structure of the intermediate results of the reduction relation�

De�nition ��� The set of syntax�directed expressions over FS� #� and "� which is denoted by
sdExp�FS�#�"�� is the smallest set sdExp such that the following conditions hold�

�i� For every � � "�m� with m 	 	 and ��� � � � � �m � sdExp� the tree ����� � � � � �m� � sdExp�

�ii� For every f � gr�FS��n��� with n 	 	� s � T h#i� and ��� � � � � �n � sdExp� the function
call f�s� ��� � � � � �n� � sdExp�

�iii� For every g � reg�FS��k�n�r� for some k� n 	 	� and r � 	� s�� � � � � sk � T h#i� t�� � � � � tn �
T h"i� and ��� � � � � �r � sdExp� the function call g�s�� � � � � sk� t�� � � � � tn� ��� � � � � �r� �
sdExp� �

Until know we have only de�ned syntactical objects of macro tree transducers with register
functions� Now we de�ne a reduction relation for macro tree transducers with register functions�

De�nition ��
 The call�by�value derivation relation induced by N � denoted by
cbv
�N � is the

binary relation on sdExp�FS�#�"� such that� for every ��� �� � sdExp�FS�#�"�� ��
cbv
�N ��

i�

� there is a path w in path�����

� there is a rule l� � in R� and

� there is a "�substitution � with D��� � V �l�

such that ��l� � sub���� w� and �� � ���w � ����
� The substitution � is called matching
substitution of l and sub���� w�� �

Example ���� First� we consider the macro tree transducer N� with register functions of Ex�

ample ��� and show some steps of
cbv
�N applied to the syntax�directed expression fib�
�
�
�������

fib	�	�	�	�

cbv
�N hfib� �� �i	�	�	�

� 	fib� h
	�	�	�

with rule 	�
� path w � �� and matching substitution � � �x���	�	�

�
cbv
�N hfib� �� �i	�	�	�

� h	fib� h
� �� �i	�	�
� 	fib� h
	�	�

cbv
�N hfib� �� �i	�	�	�

� h	fib� h
� �� �i	�	�
� h	fib� h
� �� �i	�� 	fib� h
	�

cbv
�N hfib� �� �i	�	�	�

� h	fib� h
� �� �i	�	�
� h	fib� h
� �� �i	�� comb�	�	�
� �

cbv
�N hfib� �� �i	�	�	�

� h	fib� h
� �� �i	�	�
� comb�	�	�	�
� �
� �	�

cbv
�N hfib� �� �i	�	�	�

� comb�	�	�	�	�
� �
� �	�

��	�	�
� �

cbv
�N �	�	�	�	�
� �
� �	�

��	�	�
� �

�

It can be proved that the function fib computes the Fibonacci numbers assuming that � is
interpreted by 	�
 is interpreted by the successor function ��� and � is the addition of natural
numbers�

LetM� be the macro tree transducer of Example ���� As second example we show a derivation

of the function call t � lift�
�
�
��� ��� ��� ��� �� by
cbv
�M� in the following boxes� For the sake

of clearity� this time we use the graphical representation of the syntax�directed expressions� Note
that the result is computed in �� steps� Also note that during the derivation function calls arise
multiple time as� e�g�� the function call �� � f�
��� ��� ��� In further sections we will often fall
back upon the given function call t and its derivation� �

�

�

� �

�

�
�

�

� �

�

�

�

�

� �

�

�

extrextr

� �

�

�lift

�

lift

� �

cbv
�M�

��

cbv
�M�

�

�

�

� �

�

�lift

� � extr extr lift ��

� � � � � � � ��

� � �

� �

cbv
�M�

�

� �

�

�

� �

�

�

�lift

� � � �

�

��

lift lift � �

� � lift ��

��

� lift

� � extr extr

��

�

� �

� �

�

� �

� �

�

�

� �

� �

�

� �

� �

�

�

�

�

cbv
�M�

��

Let us list some properties of
cbv
�N �

Lemma ���� The relation
cbv
�N is locally con�uent�

Proof� By Lemma ��� of �Hue�	

cbv
�N is locally con�uent� because by de�nition of

cbv
�N there

does not exist any critical pair in R� In other words� the function calls which can be reduced in
a step are always non�overlapping� �

Lemma ���� For every syntax�directed expression � there is a bound on the length of deriva�
tions starting from ��

Proof� For the sake of brevity we coin the following notion� Let � � sdExp�FS�#�"� and a 	 	�
Then we write length der��� � a if every derivation starting from � is not longer than a�

Now we prove the following statement by induction on the structure of ��

For every � � sdExp�FS�#�"� of the form p���� � � � � �m� for some m 	 	� if for
every i � �m
� there is a number a�i such that length der��i� � a�i � then there is a
number a� such that length der��� � a��

Consider an arbitrary call�by�value derivation starting from p���� � � � � �m�� According to the
inductive de�nition of syntax�directed expressions� we have to consider three cases� p � "�m��
p � gr�FS��m�� or p � reg�FS��m��

�� p � "�m�� Then the derivation has the form

p���� � � � � �m�
cbv
�N

c

p���� � � � � �m�

where c � #m
i
�a�i � because length der��i� � a�i � Then choose a� � #m

i
�a�i �

�� p � gr�FS��m�� We prove the following two statements by simultaneous induction�

P� For every f � gr�FS��n���� n 	 	� s � T h#i� ��� � � � � �n � sdExp�FS�#�"��
if for every i � �n
� there is a number a�i 	 	 such that length der��i� � a�i � then
there is a number af�s���������n� such that length der�f�s� ��� � � � � �n�� � af�s���������n��

Q� For every k 	 	� s�� � � � � sk � T h#i� n 	 	� � � gr�RHS�gr�FS��" � Z� k� n� such
that V ��� � Z � fz�� � � � � zrg for some r 	 	� t�� � � � � tr � T h#i� and ��� � � � � �n �
sdExp�FS�#�"��
if for every j � �n
� there is a number b�j 	 	 such that length der��j� � b�j � then
there is a number b�� with �

� � ��xi�si� i � �k

�y	��	�� � �n

�z
�t
 � � � �r

 such that

length der�� �� � b�j �

��

P � Q� This implication is proved by induction on the structure of �� Let t�� � � � � tr �
T h#i� ��� � � � � �n � sdExp�FS�#�"� and b�j such that length der��j� � b�j �

�i� � � yj � Y with � � j � n� Since � � � �j � we can choose b�� � b�j and the
statement follows trivially�

�ii� � � ����� � � � � �m� with � � "�m� and assume that Q holds for ��� � � � � �m� We can
choose b�� � #m

j
�b�j and the statement holds�

�iii� � � f�xj� ��� � � � � �m� with f � gr�FS�n��� � � j � k and assume that Q holds
for ��� � � � � �n� Consider an arbitrary call�by�value derivation starting from � � �
f�xj� ��� � � � � �n��xi�si� i � �k

�y	��	�� � �n

�z
�t
 � � � �r

 � f�sj� �

�
�� � � � � �

�
n�

with� for every � � �n
� � �� � ���xi�si� i � �k

�y	��	�� � �n

�z
�t
 � � � �r

�

� �
cbv
�N

c

f�sj� $��� � � � � $�n�

Then $��� � � � � $�m � T h"i and c � #n
�
�b

�
��
� Since length der�$�i� � 	� Q follows

from P�

Q � P� Consider f � gr�FS��n���� s � T h#i� and ��� � � � � �n � sdExp�FS�#�"�� and
assume that for every i � �n
 there is an a�i such that length der��i� � a�i � Now
consider an arbitrary call�by�value derivation starting from f�s� ��� � � � � �n��

f�s� ��� � � � � �n�
cbv
�N

c

f�s� ��� � � � � �n�

Then ��� � � � � �n � T h"i and c � #n
i
�a�i �

Let s �
�s�� � � � � sk� and let f�
�x�� � � � � xk�� y�� � � � � yn�� � be the rule in R�

case � � � gr�RHS�gr�FS��"� k� n�� Then P follows immediately from Q and the
assumption on the �i%s�

case � � � hf�
� �i�x�� � � � � xk� y�� � � � � yn� ��� � � � � �rhf����i�� Then an arbitrary call�by�
value derivation starting from ��xi�si
�yj��j
 is a sequence

��xi�si
�yj��j
 � ��
cbv
�N

c�
��

cbv
�N�reg�R� ���

cbv
�N

c�
��

cbv
�N�reg�R� ���

���
cbv
�N

cnf����
�nf��

cbv
�N�reg�R� ��nf��

such that �i
cbv
�N�reg�R� �

�
i is induced by the register rule

hf�
� ii� x� y� u�� � � � � uhf���ii�� hf�
� i� �i� x� y� ��� � � � � �rhf���i��i��

From Q we can calculate the numbers c�� c�� � � � � cnf����� Then we can de�ne

af�s���������n� � c�#
nf����
i
� ci � �nf�� � ���

�� p � reg�FS��m�� Then the derivation has the form

hf�
� �i���� � � � � �m�
cbv
�N

c

hf�
� �i���� � � � � �m�

where c � #m
i
�a�i and ��� � � � � �m � T h"i� The argumentation is similar to ��� case ��

�	

Therewith the lemma is proven� �

Lemma ���� The relation
cbv
�N is noetherian�

Proof� We prove the lemma by contradiction� We assume that
cbv
�N is not noetherian� i�e��

there exists an in�nite derivation� Let

��
cbv
�N ��

cbv
�N �� � � �

where� for every i � IN� �i � sdExp�FS�#�"� be such an in�nite derivation� This is in
contradiction to Lemma ����� �

Lemma ���� The relation
cbv
�N is con�uent and noetherian�

Proof� This result follows directly by the fact that
cbv
�N is locally con�uent �cf� Lemma �����

and noetherian �cf� Lemma ����� and by Lemma ��� of �Hue�	
� �

An important consequence of the fact that
cbv
�N is con�uent and noetherian is the existance

of a unique normalform nf�
cbv
�N � �� of every syntax�directed expression ��

De�nition ���� The call�by�value tree function computed by N is the total function �cbv�N� �S
n	��gr�FS�

�n�
 T h#i
 �T h"i�n� � sdExp�reg�FS��#�"� de�ned as follows� for every f �

gr�FS��n��� with n 	 	� s � T h#i and t�� � � � � tn � T h"i�

�cbv�N��f� s� t�� � � � � tn� � nf�
cbv
�N � f�s� t�� � � � � tn���

�

Note that the register rules of a macro tree transducer with register functions are in gene�

ral not exhaustive� Hence� the
cbv
�N �normalform of a syntax�directed expression is a tree over

reg�FS� and "�

De�nition ���
 Let M � �FM �#M �"M � RM � be a macro tree transducer and let N � �FS�#�
"� R� be a macro tree transducer with register functions� M and N are semantically equivalent
if the following conditions hold�

� FM � sim�FS��

� #M � #�

� "M � "�

� For every f � F
�n���
M with n 	 	� s � T h#i� t�� � � � � tn � T h"M i� �cbv�M��f� s� t�� � � � � tn� �

�cbv�N��f� s� t�� � � � � tn��

� For every �f�� � � � � fm� � tup�FS��n��� for some n 	 	� s � T h#i� t�� � � � � tn � T h"Mi� if�
for every i � �m
� �cbv�M��fi� s� t�� � � � � tn� � �i� then

�cbv�N���f�� � � � � fm�� s� t�� � � � � tn�� � combm���� � � � � �m�

and combm � "�m�� �

��

Of course� in general it may be undecidable� if a macro tree transducer M and a macro tree
transducer N with register functions are semantically equivalent� But later� we will use this
notion in a context in which the semantical equivalence is given automatically�

Observation ���� Let M be a macro tree transducer and let N be a macro tree transducer
with register functions such that M and N are semantically equivalent� Then the range of the
function �cbv�N� is T h"i� �

Especially in the �eld of transformation relations and transformation strategies it is import�
ant to be able to compare the source and the target of the transformation in order to know
whether the transformation makes sense or not� Therefore an appropriate measure has to be
de�ned� Here we consider the number of steps to compute the same normalform as complexity
measure�

De�nition ���� Let N � �FS�#�"� R� and N � � �FS��#�"�� R�� be two macro tree transdu�
cers with register functions�

�� N � is at least as e�cient as N if� for every syntax�directed expression � � sdExp�gr�FS��
gr�FS���#�" � "�� the following holds� if there is some a 	 	 and an irreducible � �
sdExp�gr�FS� � gr�FS���#�" �"�� such that

�
cbv
�N

a

��

then there is a b with 	 � b � a such that

�
cbv
�N �

b

��

�� N � is sometimes better than N if there are a syntax�directed expression � � sdExp�gr�FS�
�gr�FS���#�"�"��� numbers a and b� and an irreducible � � sdExp�gr�FS� � gr�FS���#�
" � "�� such that

�
cbv
�N

a

�� �
cbv
�N �

b

�� and b 	 a�

�� N � is more e�cient than N if N � is at least as e�cient as N and N � is sometimes better
than N � �

��

� Transformation relations

In this section we de�ne three di�erent transformation relations on macro tree transducers with
register functions� splitting� sharing� and tupling�

��� Splitting

As before� let N � �FS�#�"� R� be an arbitrary� but �xed macro tree transducer with register
functions� In this subsection we present a transformation on macro tree transducers with register
functions which allows to introduce further register functions and therewith� further register
rules� The task of this transformation� called splitting transformation relation� is to create a rule
the right�hand side of which is a register function call and the argument list of this call contains
ground function calls with equal argument lists� These ground function calls are candidates for
the transformations sharing and tupling� Hence� the splitting transformation relation is only a
preparation for the other transformation relations� We note that this splitting technique has
been used in �Vog�	
�

We illustrate the principle of the splitting transformation relation by the macro tree trans�
ducer M� of Example ���� We consider the right�hand side of the �extr�
��rule in R��

extr�
�x�� x��� y�� �
�lift�x�� lift�x�� y���� lift�x�� y����

There� the ground function call lift�x�� y�� occurs twice� i�e�� we have two ground function calls
with equal argument lists� This rule is splitted by the splitting transformation relation into the
following two rules�

extr�
�x�� x��� y�� � hextr�
� �i�x� � x�� y�� lift�x�� y��� lift�x�� y���

hextr�
� �i�x�� y�� z�� z�� �
�lift�x�� z��� z���

Roughly speaking� the right�hand side � of the original rule is changed into a register function
call where its argument list contains �besides the variables x�� x�� and y�� some ground function
calls of �� As a preparation for the sharing� we are in particular interested to extract ground
function calls from � which have the same argument list� The second rule is necessary to compute
the context of the extracted ground function calls� Hereby� every variable in Z denotes the value
of a ground function call� This context is indeed nothing else but the old right�hand side in
which the extracted ground function calls are replaced by variables in Z�

To determine the appropriate ground function calls which are to be extracted� we de�ne the
cut through a right�hand side�

De�nition ��� Let � � RHS�N�� The cut through �� denoted by Cut���� is the maximal subset
S � path��� such that the following conditions hold�

� If root��� � reg�FS�� then S � O� � �split only ground right�hand sides�

� For every w � S� label��� w� � gr�FS�� �labeled by ground function�

� For every w � S� arglist�sub��� w�� in L�T h"i�V ��� �no nesting in arguments�

��

� If S
� O� � then there exist paths w� v � S with w
� v such that arglist�sub��� w�� �
arglist�sub��� v��� �splitting makes sense� �

The �rst condition makes sure that only rules with ground right�hand sides are considered�
It would be possible to de�ne splitting also on rules with register functions in their right�hand
side� but in our context we do not need such a general form of splitting� As explained before�
we take only ground function calls under consideration �cf� the second condition� which are
closest to the leaves of the right�hand side �cf� the third condition�� For the set of paths which
determine the listed function calls� we require that there are at least two di�erent paths in it
which lead to function calls with equal argument list �cf� the fourth condition�� We will see in
the next sections� how this property is used�

Consider� e�g�� the macro tree transducer M� of Example ���� there are two rules� namely
the �lift�
��rule and the �extr�
��rule of which the cuts through their right�hand sides are not
empty� More precisely� f�� ��� ��g and f��� �g are the cuts through the right�hand sides of the
�lift�
��rule and the �extr�
��rule� respectively�

Recall that the left�hand side of an �f�
��rule has the form either f�
�� � ��� � � �� or hf�
� ii�� � ���

De�nition ��� Let M be a macro tree transducer� The splitting transformation relation with
respect to M is the binary relation �split�M� N
N de�ned as follows� Let N � �FS�#�"� R�
and N � � �FS��#�"� R�� be two macro tree transducers with register functions� Then N �split�M
N � i� the following conditions hold�

� M and N are semantically equivalent�

� There is an �f�
��rule l � � in R with f � gr�FS��n��� and
 � #�k� for some k� n 	 	
such that Cut��� � fw�� � � � � wrg for some r � 	 and w�l�o�g� w� �lex � � � �lex wr�

� The variables in Z occurring in l can be written as list �z�� � � � � zp� for some p 	 	�

� Let the number i � nf�� � �� Then FS� � FS � fhf�
� ii�k�n�p�r�g�

� R� is obtained from R by replacing the rule l� � by the rules

l � hf�
� ii� x� y� z�� � � � � zp� sub��� w��� � � � � sub��� wr��

and
hf�
� ii� x� y� z�� � � � � zp� zp��� � � � � zp�r�� ��w� � zp��� � � � � wr � zp�r

where x and y denote the sequences x�� � � � � xk and y�� � � � � yn� respectively�

�

Note that the splitting transformation relation can only be applied� if there is at least one
rule with a ground right�hand side which has a nonempty cut� Also note that� if l has the form
f�
�x�� � � � � xk�� y�� � � � � yn�� then we assume that nf�� � 	� Recall that otherwise nf�� denotes
the number of �f�
��register functions�

Now we illustrate the splitting transformation relation on an example�

Example ��� Consider the macro tree transducer M� of Example ���� As mentioned before�
the cut through the right�hand side �extr�� of the �extr�
��ground rule is the set f��� �g� We
execute the step M� �split�M� N��

Let us stepwise examine the conditions of De�nition ����

��

� Trivially� M� is semantically equivalent to itself�

� Consider the �extr�
��ground rule� The cut through its right�hand side is f��� �g� Note
that r � ��

� There does not occur any variable in Z in the left�hand side of the �extr�
��ground rule�
i�e�� p � 	�

� Since card��extr�
��reg�FS�� � 	� it follows that i � � and FS�� � flift���� extr����
hextr�
� �i���g

� R�� is the set of rules which are shown in Figure ���

Therewith the conditions are ful�lled and M� �split�M� N��

lift	�� y�
 � y�
lift	�	x�� x�
� y�
 � �	lift	x�� y�
� �	extr	x� � y�
� extr	x�� y�

extr	�� y�
 � �
extr	�	x�� x�
� y�
 � hextr� �� �i	x�� x�� y�� lift	x�� y�
� lift	x�� y�

hextr� �� �i	x�� x�� y�� z�� z�
 � �	lift	x�� z�
� z�

Figure ��� Rules of the macro tree transducer N� with register functions�

If we assume that N� and M� are semantically equivalent �this fact is proven in the sequel��
then the splitting transformation relation can be again applied to N� by considering the �lift�
��
rule with f�� ��� ��g as cut through �lift��� Then N� �split�M� N� with N� � �FS��#��"�� R��
where FS� � flift���� extr���� hextr�
� �i��� � hlift�
� �i���g and R� is given in Figure ���

lift	�� y�
 � y�
lift	�	x�� x�
� y�
 � hlift� �� �i	x�� x�� y�� lift	x�� y�
� extr	x�� y�
� extr	x�� y�

hlift� �� �i	x�� x�� y�� z�� z�� z�
 � �	z�� �	z�� z�

extr	�� y�
 � �

extr	�	x� � x�
� y�
 � hextr� �� �i	x�� x�� y�� lift	x�� y�
� lift	x�� y�

hextr� �� �i	x�� x�� y�� z�� z�
 � �	lift	x�� z�
� z�

Figure ��� Rules of the macro tree transducer N� with register functions�

The following �gures show a derivation of the function call lift�
�
�
��� ��� ��� ��� �� by
cbv
�N� � Note that the result is computed bottom�up in �� steps�

�

�

� �

�

�
�

� �

�

��

� �

�

�

�

lift

�

�

lift

� �

hlift� �� �i

extr

�

�

�

�

�

�

�

� �

extr

cbv
�N�

��

� �

� �

� �

extrextr

� �

lift

��

� �

lift

��

� �

�

�� �

hlift� �� �i

�

�

�

�

�

hextr� �� �i

�

lift

� �

� �

� �

� �

hlift� �� �i

�

�

�

cbv
�N�

�

	�

� �

lift

� �

lift

� �

extr

hlift� �� �i

� hextr� �� �i

hlift� �� �i

�

	�

cbv
�N�

�

	�

� �

hextr� �� �i

lift
hlift� �� �i

extr

� �

�

� � �

� � �

	�

� � �

� �

hlift� �� �i

� hextr� �� �i

hlift� �� �i

�

hlift� �� �i

	�
	�

cbv
�N�

��

hextr� �� �i

� � �

� � �

��

�

� �

� �

� �

�

lift �

hlift� �� �i

� hextr� �� �i

hlift� �� �i

�

cbv
�N�

�

��

��
��

�

� �

�

� �

� �

hlift� �� �i

�

hlift� �� �i

 �

�

lift

�

� �

� �

cbv
�N�

�

� �

� �

��

�

� �

� �

�

� �

� �

�

�

� �

� �

�

� �

� �

�

hlift� �� �i

�

cbv
�N�

�

�

� �

� �

�

� �

� �

�

�

� �

� �

�

� �

� �

�

�

�

�

cbv
�N�

Remark ��� Let M be a macro tree transducer� If� for two macro tree transducers N �
�FS�#�"� R� and N � � �FS��#�"� R�� with register functions� N �split�M N �� then the following
holds�

�� card�FS�� � card�FS� � �� in particular� card�reg�FS��� � card�reg�FS�� � � and

�

tup�FS� � tup�FS���

�� gr�FS�� � gr�FS��

�� card�R�� � card�R� � ��

�� There is exactly one rule l � � in R such that there are two rules l � � � and l� � � �� in
R� and R � fl � �g � R� � fl � � �� l� � � ��g� Moreover� Cut���
� O� and Cut�� �� � O� �
The rule l� � is called splitted rule of N and N �� �

Clearly� by splitting one rule into two� the e�ciency of the resulting macro tree transducer
with register functions decreases with respect to the original transducer� Later �cf� Theorem �����
we will see that this increment is compensated by the application of the other two transformation
relations�

Corollary ��� Let M be a macro tree transducer� Let N�N � � N and N �split�M N �� N is
more e�cient than N �� In particular� assuming that l� � is the splitted rule of N and N �� then

if the evaluation of a syntax�directed expression � by
cbv
�N needs L derivation steps in which the

rule l� � is applied K times� then the evaluation of � by
cbv
�N � needs L�K derivation steps�

Proof� Let N � �FS�#�"� R� and N � � �FS��#�"� R�� be macro tree transducers with
register functions such that N �split�M N �� Let l � � be the splitted rule of N and N � and
let R� � �R � fl � �g� � fl � � �� l� � � ��g� To prove that N is more e�cient than N � we
have to prove the following statements� N is at least as e�cient as N � and N is sometimes
more e�cient than N � �cf� De�nition ������ In particular� we have to prove that� if for some
syntax�directed expression � � sdExp�gr�FS��#�"� there are an a 	 	 and an irreducible

�� � sdExp�FS � FS��#�"� such that �
cbv
�N �

a

��� then there is a b � a such that �
cbv
�N

b

�� �at
least as e�cient�� The property �sometimes more e�cient� corresponds to the second statement

of the corollary� we have to prove that K applications of the rule l � � � during the
cbv
�N ��

derivation of a syntax�directed expression � lead to a
cbv
�N �derivation of � which is K steps

shorter�
Let us consider an arbitrary derivation of a syntax�directed expression � by

cbv
�N � �

� � ��
cbv
�N � ��

cbv
�N � � � �

cbv
�N � �

cbv
�N � �
��

cbv
�N � � � �

cbv
�N � �
�	

cbv
�N �

�
�m � ���

Let � � �m
 such that for every i 	 �� in the step �i
cbv
�N � �i�� the rule l � � � is not applied

and �

cbv
�N � �
�� where �
�� � �
 �w � ��� ��
 and sub��
 � w� � ��l� for some path w and

matching substitution �� Furthermore� let �
�	 � �
 �w � �w
 and �w is the normalform of
sub��
 � w��

Since all other rules apart from the splitted rule are equal in N and N �� it holds that there

is an equal
cbv
�N �derivation until �
 is reached�

� � ��
cbv
�N ��

cbv
�N �� � � �

cbv
�N �

Note that by assumption � does not contain register function calls� but the syntax�directed
expressions �i with i � � may contain register function calls� because the applied rules may
introduce register function calls�

��

By De�nition ��� the splitted rule can be of one of the following form� either the root of the
left�hand side l is a ground function or a register function� The right�hand side � has to be a
ground right�hand side�

If we can prove that there is a
cbv
�N �derivation of �
 to �
�	 which isK steps shorter whereK

denotes the number of applications of the splitted rule� than the corresponding
cbv
�N ��derivation�

then the statements are proven �for the rest of the derivation� the same argumentation as above
holds��

Since �
�	 � �
 �w � �w
� it su�ces to prove the following two statements�

�� Let s �
�s�� � � � � sk� � T h#i and t�� � � � � tn � T h"i� If the left�hand side l of the splitted
rule has the form f�
�x�� � � � � xk�� y�� � � � � yn� and there is an a 	 � and an irreducible
� � sdExp�FS�#�"� such that

f�s� t�� � � � � tn�
cbv
�N �

a

��

then there is a b 	 � and a derivation

f�s� t�� � � � � tn�
cbv
�N

b

�

and b 	 a� If the splitted rule is appliedK times in the derivation by
cbv
�N � � then b � a�K�

�� Let s�� � � � � sk � T h#i� t�� � � � � tn � T h"i� and ��� � � � � �r � sdExp�FS�#�"�� If the left�
hand side l of the splitted rule has the form hf�
� i � �i� x� y� u�� � � � � urhf���i��i� and there
is an a 	 � and an irreducible � � sdExp�FS�#�"� such that

hf�
� i� �i� s� t� ��� � � � � �rhf���i��i�
cbv
�N �

a

��

then there is a b 	 � and a derivation

hf�
� i� �i� s� t� ��� � � � � �rhf���i��i�
cbv
�N

b

�

and b 	 a� If the splitted rule is appliedK times in the derivation by
cbv
�N � � then b � a�K�

No other forms of l are possible�
Proof�

�� Let l � f�
�x�� � � � � xk�� y�� � � � � yn� and let Cut��� � fw�� � � � � wrg for some r � 	 and
let� w�l�o�g�� w� �lex � � � �lex wr� Then by de�nition� for every j � �r
� sub��� wj� is a
ground function call of which the argument list is a list over T h"i�Xk �Yn�� In particular�
the �rst argument is a variable in Xk� the other arguments are elements of T h"i�Yn��
Note that the rules l � � � and l� � � �� have the forms f�
�x�� � � � � xk�� y�� � � � � yn� �
hf�
� �i� x� y� sub��� w��� � � � � sub��� wr�� and hf�
� �i� x� y� z�� � � � � zr�� ��w� � z�� � � � �
wr � zr
� respectively�

We prove the statement by induction over the height of the input tree� We have to start
the proof with height�s� � �� because in the case height�s� � 	� there is no �f� s��rule
which contains any ground function call in its right�hand side� Note that� for the same
reason� the rules for the nullary constructors are equal in R and R��

��

�i� Let height�s� � �� i�e�� s �
���� � � � � �k� for some k � 	�
 � #�k�� and ��� � � � � �k �

#���� Let us consider the
cbv
�N � derivation�

f�s� t�� � � � � tn�
cbv
�N � hf�
� �i���� � � � � �k� t�� � � � � tn� ��sub��� w���� � � � � ��sub��� wr���

where � � �x����� � � � � xk��k� y��t�� � � � � yn�tn

cbv
�N �

r

hf�
� �i���� � � � � �k� t�� � � � � tn� ��� � � � � �r�

where� for every j � �r
� sub������ wj�
cbv
�N � �j

and �j � T h"i
cbv
�N � ����w� � z�� � � � � wr � zr
��z����� � � � � zr��r

and ����w� � z�� � � � � wr � zr
��z����� � � � � zr��r
 is equal
to �����w� � ��� � � � � wr � �r

cbv
�N �

m

�
for some m 	 	 and � is irreducible�

Since the rules for the nullary constructors are equal in R and in R�� it follows that� for

every j � �r
� also sub������ wj�
cbv
�N �j� Hence� the corresponding

cbv
�N �derivation has the

following form�

f�s� t�� � � � � tn�
cbv
�N ����

where � � �x����� � � � � xk��k� y��t�� � � � � yn�tn

cbv
�N

r

�����w� � ��� � � � � wr � �r

cbv
�N

m

�
because during the further derivation only function calls
have to be evaluated which have a nullary constructor �j
with j � �k
 as recursion argument�

De�ne a � �� r���m and b � �� r�m� then a � b and we have seen that the splitted
rule was applied exactly once� i�e�� K � ��

�ii� Let height�s� � � � �� i�e�� s �
�s�� � � � � sk� for some k � 	� s�� � � � � sk � T h#i with

maxfheight�si� j i � �k
g � �� �� Again� we consider the derivation by
cbv
�N � �

f�s� t�� � � � � tn�
cbv
�N � hf�
� �i� s� t� ��sub��� w���� � � � � ��sub��� wr���

where � � �x
�s
 � � � �k

�y	�t	�� � �n

cbv
�N �

	r
j��aj

hf�
� �i� s� t� ��� � � � � �r�

where� for every j � �r
� sub������ wj�
cbv
�N �

aj
�j and

�j is irreducible� Note that the recursion argument
of sub������ wj� is at most of height �� ��

cbv
�N � ����w� � z�� � � � � wr � zr
��z����� � � � � zr��r

and ����w� � z�� � � � � wr � zr
��z����� � � � � zr��r
 is equal
to �����w� � ��� � � � � wr � �r

cbv
�N �

m

�

Let us consider the corresponding
cbv
�N �derivation�

�	

f�s� t�� � � � � tn�
cbv
�N ����

where � � �x
�s
 � � � �k

�y	�t	�� � �n

cbv
�N

	r
i��bi

�����w� � ��� � � � � wr � �r

where by induction hypothesis� for every j � �r
�

sub������ wj�
cbv
�N

bj
�j and bj � aj � more precisely�

aj � bj �Kj for some Kj 	 	 and Kj denotes the
number of applications of the splitted rule�

cbv
�N

m

�

De�ne a � ��m�#r
j
�aj � ��m�#r

j
��bj�Kj� and b � ��m�#r
j
�bj � Hence� b 	 a

and in particular� b � a� �� � #r
j
�Kj��

�� This case is similar to �� �

Lemma ��
 Let N and N � be macro tree transducers with register functions� If N �split�M N ��
then

�a	 �cbv�N� � �cbv�N
���

�b	 N � and M are semantically equivalent�

Proof�
�a� Since �cbv�N� and �cbv�N

�� are total functions� it su�ces to prove that �cbv�N
�� � �cbv�N��

Consider a derivation by N �� Then� since N is more e�cient than N � �cf� Corollary ����� there
is a corresponding derivation by N leading to the same normalform �cf� De�nition ������ Thus
�cbv�N

�� � �cbv�N��

�b� Let N � �FS�#�"� R� and N � � �FS��#�"� R��� M and N are semantically equivalent
�cf� De�nition ����� Since tup�FS� � tup�FS�� �cf� Remark ��� ��� and by Statement �a� it
holds that M and N � are semantically equivalent� �

The previous facts are illustrated by comparing Examples ���� ���	� and ���� In Example
��� the macro tree transducer N� with register functions is given such that M� �split�M� N�

and N� �split�M� N�� In the
cbv
�M��derivation of the function call t � lift�
�
�
��� ��� �� ���� ��

�cf� Example ���	� Page ��� the result is computed in �� steps� whereas the
cbv
�N��derivation

of t needs �� steps for the same result� In the
cbv
�M��derivation� the splitted �extr�
��rule of

M� and N� is applied twice and the splitted �lift�
��rule of N� and N� is applied � times�

This corresponds to the fact that the
cbv
�N��derivation needs
 steps more� It follows that the

cbv
�N� �derivation of t �which was not given� would need �� steps�

Note that M� and N� are semantically equivalent �cf� Lemma �����

Lemma ��� The relation �split�M is locally con�uent�

Proof� Let N � �FS�#�"� R�� N� � �FS��#�"� R��� and N� � �FS��#�"� R�� be macro
tree transducers with register functions such thatN �split�M N� andN �split�M N� withN�
� N��
We show that there exists a macro tree transducer N� � �FS��#�"� R�� with register functions
with N� �split�M N� and N� �split�M N��

��

Let l� � �� be the splitted rule of N and N� and let l� � �� be the splitted rule of N and
N�� Since N�
� N� and the cut through a right�hand side is unique� it holds that l� � �� and
l� � �� are di�erent rules�

Let us consider N� and N��

N�� By de�nition of the splitting transformation relation� the rule l� � �� is a rule of R�� Let
l� � hf��
�� i�i� x� y� ����� � � � � ���r�� and hf��
�� i�i� x� y� z�� � � � � zr�� � � �� be the two rules
in R� which have replaced the rule l� � ���

N�� The rule l� � �� is in R��
Let l� � hf��
�� i�i� x� y� ����� � � � � ���r�� and hf��
�� i�i� x� y� z�� � � � � zr�� � � �� be the two
rules in R� which have replaced the rule l� � ���

The splitting transformation can be applied to N� and N� because the rules l� � �� and
l� � �� are in R� and R�� respectively� Since the form of the new rules only depends on the
given rules� N� �split�M N� and N� �split�M N� by trivial comparison� �

Lemma ��� The relation �split�M is noetherian�

Proof� It can easily be seen that �split�M is only applicable to macro tree transducers with
register functions with rules of which at least one right�hand side has a nonempty cut� By one
step of �split�M such a rule is replaced by two rules� One of the new rules has an empty cut� the
other rule has on its right�hand side function calls with a nesting depth of ground function calls
decremented by one �in comparison to the original rule�� Since the nesting depth is �nite� the
number of applications of �split�M to these rules is also �nite� Since the number of new rules is
also �nite� the number of steps of �split�M is �nite for every macro tree transducer with register
functions� �

Lemma ��
 The relation �split�M is con�uent and noetherian�

Proof� This result follows directly by the fact that �split�M is locally con�uent and noetherian
�cf� previous lemmas� and by Lemma ��� of �Hue�	
� �

Hence� for every macro tree transducer with register functions there exists a normalform
with respect to �split�M � In Example ���� N� is the normalform of M� w�r�t� �split�M��

��

��� Sharing

In the �eld of graphs and graph rewriting techniques the notion of sharing is well�known� Instead
of having several occurrences of the same subgraph� every subgraph can be represented exactly
once and it is referred by multiple pointers to it� cf� Figure �� ��SPvE��� HP��
��

���������
���������
���������
���������
���������
���������
���������
� ��

�

f f

t t

f

t

���

���

�

graphtree

Figure ��� The term
�f�t�� f�t�� written as a tree and as a graph with shared subgraph�

In our context of trees and macro tree transducers with register functions the avoidance of
multiple occurrences of the same subtree cannot be handeled in this way� In the literature�
sharing is realized by introducing where�clauses �in the �eld of program transformation this
method is often called abstraction rule� and by associating a kind of graph semantics to these
clauses� If� e�g��
�f�t�� f�t�� is the right�hand side of a rule in a term rewriting system� then
this right�hand side is replaced by the right�hand side
�z� z� where z � f�t� �cf� e�g� �PP��
��
The semantics associated to term rewriting systems with where�clauses has to guarantee that
the where�clause is evaluated exactly once�

Since we only want to deal with macro tree transducers with register functions and we do
not want to introduce where�clauses with an extra semantic treatment� we choose another way
to realize sharing� As we have seen in the previous section� register functions have the property
that they only occur in right�hand sides at their root� The following procedure can be applied
to the argument list of such a register function� we evaluate each ground function call exactly
once under a register function symbol and copy its value several times�

Consider� e�g�� the part of the calling graph of the expression lift�
�
�
��� ��� ��� ��� �� in
Figure ���

��

��

���

lift��������	� �	� �	

extr��� ���		lift������	� �	 extr������	� �	 lift������	� �	

�������������������
���������������������

��������������������
��������������������

��������������������
���������������������

��������������������
��������������������

��������������������
���������������������

��������������������
��������������������

�� ��

��

��

extr��� ���		

lift����������	� �	� �	� �	

extr��������	� �	� �	

lift��� lift������	� �		

Figure ��� Part of a calling graph of ground functions�

The underlined function call occurs in multiple positions in the tree� In this section we are
interested in these positions which have the same predecessor� First we need some technical
notions�

��

De�nition ���� Let S be an arbitrary set and let B � �b�� � � � � br� be a list over S with r � 	�
Furthermore let B� � delpos�B� double�B�� with B� � �b��� � � � � b

�
r��� The index shift associated

with B is the mapping �B � Zr � Zr such that for every i � �r
� �B�zi� � zj � where j is the
unique element in �r�
 such that bi � b�j � �

Note that� if B
� B�� then r� 	 r� We illustrate this de�nition by an example� In Figure �
�
a list B is shown which contains the elements a and b in multiple positions� These positions can
be retrieved by the function double� The index shift �B associated with B is determined by the

list without double elements

B�
 delpos�B� double�B��
 �a� b� c�

� a
 a
 b
 �c
 ba
 b

position �

� � �

position �

B

position �

��
�
�
��double�B�

� a
 b
 c �

� a
 a
 b
 �c
 ba
 b

��

�������������������
�����
����

��

�������������������
�����
����

��

�������������������
�����
����

���

��������������������
������
��

��

��������������������
�������
�

���

�����������������������
�����

���

��������������������
������
��

delpos index shift

��

�������������������
�����
����

��

�������������������
�����
����

��

�������������������
�����
����

��

���������������������
������
�

��

���������������������
������
�

��
������������������������
����

��

��������������������
������
�

positions of double elementslist

� �z�z�
z�

B

B�

�z�� z�� z�� z
� z�� z�� z��

�B

Figure �
� Index shift associated with a list B�

positions of the list B and by the positions of the list B� � delpos�B� double�B��� Consider� e�g��
the element a which occurs in B in positions �� �� and �� In B�� the element a occurs exactly
once in position �� Hence� �B�z�� � �B�z�� � �B�z�� � z��

We de�ne a criterion which determines� if a macro tree transducer with register functions is
ready for sharing in the sense of avoiding multiple evaluation of several occurrences of the same
ground function call�

De�nition ���� Let N � �FS�#�"� R� be a macro tree transducer with register functions and
let l� � be a rule in R� Then N is ready for sharing in the rule l� � if the following conditions
hold�

� root��� � reg�FS��

� there exist paths w� � IN and w� � IN with w�
� w� such that sub��� w�� � sub��� w��
and sub��� wi� � F gr

call���� and

��

� the left�hand side l� of the rule l� � � � in R with root�l�� � root��� is �at� �

Note that �ready for sharing in a rule r� is a property which is completely determined by
the form of r and of the rule which has the same root in its left�hand side as r in its right�hand
side�

Now we are able to de�ne the sharing transformation relation of macro tree transducers with
register functions�

De�nition ���� Let M be a macro tree transducer� The sharing transformation relation with
respect to M is the binary relation �share�M� N
N de�ned as follows� Let N � �FS�#�"� R�
and N � � �FS��#�"� R�� be two macro tree transducers with register functions� It holds that
N �share�M N � i� the following conditions hold�

� M and N are semantically equivalent�

� There is a rule l � � in R such that N is ready for sharing in l � �� Let � �
hf�
� ii� x� y� ��� � � � � �r� with hf�
� ii � reg�FS��k�n�r�� k� n 	 	� r � 	� and x and y
abbreviate the sequences x�� � � � � xk and y�� � � � � yn� respectively�

� FS� � �FS � fhf�
� ii�n�k�r�g� � fhf�
� ii�n�k�r
��g�

� R� is obtained from R by the following replacement of rules�

	 The rule l� � is replaced by the rule

l � hf�
� ii� x� y� ���� � � � � �
�
r��

where ����� � � � � �
�
r�� � delpos����� � � � � �r�� double����� � � � � �r����

	 The rule hf�
� ii� x� y� z�� � � � � zr�� � � R� is replaced by the rule

hf�
� ii� x� y� z�� � � � � zr��� ����������r����

�

Note that we perform a maximal sharing� i�e�� if in a right�hand side � the terms ��� � � � � �m
with m 	 � occur several times� in particular� let each �i occur ki times� then in the new
right�hand side each �i occur exactly once�

Example ���� Let us consider the macro tree transducer N� � �FS��#��"�� R�� with register
functions of Example ���� The set R� of rules is recalled in Figure �� where we have underlined
terms which are candidates for sharing�

N� is ready for sharing in the �extr�
��ground rule� because its right�hand side%s root is
labeled by the register function hextr�
� �i� the function call lift�x�� y�� occurs twice in its
right�hand side at paths � and �� and the left�hand side of the hextr�
� �i rule is �at� Further�
more N� and M� are semantically equivalent �cf� previous section�� Hence� N� �share�M� N�

and N� is the macro tree transducer �FS��#��"�� R�� with register functions with FS� �
flift���� hlift�
� �i���� extr���� hextr�
� �i���g and R� is the set of rules as shown in Figure ���

��

lift	�� y�
 � y�
lift	�	x�� x�
� y�
 � hlift� �� �i	x�� x�� y�� lift	x�� y�
� extr	x�� �	y�

� extr	x�� y�

hlift� �� �i	x�� x�� y�� z�� z�� z�
 � �	z�� �	z�� z�

extr	�� y�
 � �
extr	�	x� � x�
� y�
 � hextr� �� �i	x�� x�� y�� lift	x�� y�
� lift	x�� y�

hextr� �� �i	x�� x�� y�� z�� z�
 � �	lift	x�� z�
� z�

Figure ��� Rules of the macro tree transducer N� with register functions�

lift	�� y�
 � y�
lift	�	x�� x�
� y�
 � hlift� �� �i	x�� x�� y�� lift	x�� y�
� extr	x�� �	y�

� extr	x�� y�

hlift� �� �i	x�� x�� y�� z�� z�� z�
 � �	z�� �	z�� z�

extr	�� y�
 � �
extr	�	x� � x�
� y�
 � hextr� �� �i	x�� x�� y�� lift	x�� y�

hextr� �� �i	x�� x�� y�� z�
 � �	lift	x�� z�
� z�

Figure ��� Rules of the macro tree transducer N� with register functions�

Note that double��lift�x�� y��� lift�x�� y���� � ��� and delpos��lift�x�� y��� lift�x�� y���� �� �
�lift�x�� y��� and the index shift associated with B � �lift�x�� y��� lift�x�� y��� is the mapping
�B with �B�z�� � z� and �B�z�� � z��

As before we show the derivation of the function call lift�
�
�
��� ��� ��� ��� �� by
cbv
�N� �

but we show only the begin of the derivation� The derivation is very similar to the derivation

by
cbv
�N� with the di�erence that some evaluations of lift�function calls are omitted� The result

is computed in �� steps�

�

�

� �

�

�
�

� �

�

��

� �

�

�

�

lift

�

�

lift

� �

hlift� �� �i

extr

�

�

�

�

�

�

�

� �

extr

cbv
�N�

��

� �

� �

� �

extrextr

� �

lift

��

� �

�

�� �

hlift� �� �i

�

�

�

�

�

hextr� �� �i

�

lift

� �

� �

� �

� �

hlift� �� �i

�

�

�

cbv
�N�

�

� �

lift

� �

lift

� �

extr

hlift� �� �i

� hextr� �� �i

hlift� �� �i

�

	�

	�

hextr� �� �i

hlift� �� �i

extr

� �

�

� � �

� � �

cbv
�N�

�

�

Remark ���� LetN�N � � N withN � �FS�#�"� R� andN � � �FS��#�"� R�� andN �share�M
N ��

�� It holds that tup�FS� � tup�FS���

�� There is a unique rule l� � in R such that N is ready for sharing in l� � and N � is not
ready for sharing in l� � � which is the corresponding rule in R�� The rule l� � is called
shared rule of N and N � and l� � � is called result of the shared rule�

�� For the shared rule l� � and the result l� � � of the shared rule� it holds that F gr
call��

�� �
F gr
call����

�� By de�nition of the sharing transformation relation� N � di�ers from N only in the rank
of a register function hf�
� ii and in the rules where this function occurs� Hence� for

every
cbv
�N ��derivation ��

cbv
�N � � � �

cbv
�N � �m with m � 	 and ��� � � � � �m � sdExp�FS� �

fhf�
� iig�#�"� there exists an equal
cbv
�N �derivation and vice versa� �

Clearly� we want to know if the de�ned sharing transformation relation is semantic preserving�
i�e�� if for every N�N � � N with N �share�M N � it holds that N � computes the same call�by�value

�

tree function as N � Another important question is� whether N � is more e�cient than N or not�
The following corollary gives an answer to these questions�

Corollary ���� Let N�N � � N and N �share�M N �� It holds that N � is more e�cient than N �
In particular� assuming that l � � is the shared rule of N and N �� then if the evaluation of a

syntax�directed expression � by
cbv
�N needs L derivation steps and the rule l � � is applied K

times� then the evaluation of � by
cbv
�N � needs less than L�K derivation steps�

Proof� Let N � �FS�#�"� R� and N � � �FS��#�"� R�� such that N �share�M N ��
By de�nition of �share�M there exists a register function hf�
� ii in both FS and FS� such

that rankFS�hf�
� ii�
� rankFS��hf�
� ii��
Let k � rank	�
� and n� � � rankFS�f� � rankFS��f�� For the sake of brevity we denote

the function symbol hf�
� ii of N of rank k � n� r by g and the function symbol hf�
� ii of N �

of rank k � n� r� by g��
Let l� � �� and l� � �� be the uniquely determined rules in N such that root���� � g and

root�l�� � g and let l� � � �� and l�� � � �� be the uniquely determined rules in N � such that
root�� ��� � g� and root�l�� � g�� �Note that l� � �� is the shared rule of N and N � and l� � � ��
is the result of the shared rule�� These rules are the only rules which are di�erent in N and N ��

As before �compare Corollary ����� to prove that N � is more e�cient than N we have to
prove the following statements� N � is at least as e�cient as N and N � is sometimes more
e�cient than N �cf� De�nition ������ In particular� we have to prove that� if for some syntax�
directed expression � � sdExp�gr�FS��#�"� �note that gr�FS�� � gr�FS�� there are an a 	 	

and an irreducible �� � sdExp�FS � FS��#�"� such that �
cbv
�N

a

��� then there is a b � a such

that �
cbv
�N �

b

�� �at least as e�cient�� The property �sometimes more e�cient� corresponds to
the second statement of the corollary� we have to prove that K applications of the rule l� � ��

during the
cbv
�N �derivation of a syntax�directed expression � lead to a

cbv
�N ��derivation of � which

is at least K steps shorter�

Let us consider an arbitrary derivation of a syntax�directed expression � by
cbv
�N �

� � ��
cbv
�N ��

cbv
�N � � �

cbv
�N �

cbv
�N �
��

cbv
�N � � �

cbv
�N �
�	

cbv
�N

�
�m � ���

Let � � �m
 such that for every i 	 �� in the step �i
cbv
�N �i�� the shared rule l� � �� is not

applied and �

cbv
�N �
�� where �
�� � �
 �w � �����
 and sub��
 � w� � ��l�� for some path w

and matching substitution �� Furthermore� let �
�	 � �
 �w � �w
 and �w is the normalform
of sub��
 � w��

Since all other rules apart from the shared rule and the result of the shared rule are equal

in N and N �� it holds that there is an equal
cbv
�N ��derivation until �
 is reached�

� � ��
cbv
�N � ��

cbv
�N � �� � � �

cbv
�N � �

Note that by assumption � does not contain register function calls� but the syntax�directed
expressions �i with i � � may contain register function calls� because the applied rules may
introduce register function calls�

By De�nition ���� the shared rule can be of one of the following form� either the root of the
left�hand side l� is a ground function or a register function� The right�hand side �� has to be a
register function call�

��

If we can prove that there is a
cbv
�N ��derivation of �
 to �
�	 which is at least about the

number of applications of the shared rule shorter as the corresponding
cbv
�N �derivation� then the

statements are proven �for the rest of the derivation� the same argumentation as above holds��
Since �
�	 � �
 �w � �w
� it su�ces to prove the following two statements for �� �

hf�
� ii� x� y� ��� � � � � �r� where x and y abbreviate the sequences x�� � � � � xk and y�� � � � � yn�

�� Let s �
�s�� � � � � sk� � T h#i and t�� � � � � tn � T h"i� If the left�hand side l� of the
shared rule has the form f�
�x�� � � � � xk�� y�� � � � � yn� and there is an a 	 � and a � �
sdExp�FS�#�"� such that

f�s� t�� � � � � tn�
cbv
�N

a

�

and � is irreducible� then there is a b 	 � and a derivation

f�s� t�� � � � � tn�
cbv
�N �

b

�

and b 	 a� If the shared rule is applied K times in the derivation by
cbv
�N � then b � a�K�

�� Let s�� � � � � sk � T h#i� t�� � � � � tn � T h"i� and ��� � � � � �r � sdExp�FS�#�"�� If the left�
hand side l� of the shared rule has the form hf�
� i� �i� x� y� z�� � � � � zrhf���i��i� and there is
an a 	 � and a � � sdExp�FS�#�"� such that

hf�
� i � �i� s� t� ��� � � � � �rhf���i��i�
cbv
�N

a

�

and � is irreducible� then there is a b 	 � and a derivation

hf�
� i� �i� s� t� ��� � � � � �rhf���i��i�
cbv
�N �

b

�

and b 	 a� If the shared rule is applied K times in the derivation by
cbv
�N � then b � a�K�

In fact� these are the only two possible forms of the predecessor of �� with respect to
cbv
�N �

Proof�

�� Let l� � f�
�x�� � � � � xk�� y�� � � � � yn�� Note that g is in this case hf�
� �i� We prove this
statement by induction on the height of s� We have to start the proof with height�s� � ��
because in the case height�s� � 	� the right�hand side �� does not contain any ground
function call and hence� the assumptions above cannot hold�

�i� height�s� � �� i�e�� s �
���� � � � � �k� with �i � #���� The
cbv
�N �derivation of

f�s� t�� � � � � tn� has the following form�

f�s� t�� � � � � tn�
cbv
�N ������ � hf�
� �i� �� t� ��� � � � � �r�

where �� � �x
��
 � � � �k

�y	�t	�� � �n

cbv
�N

a�
hf�
� �i� �� t� ��� � � � � �r�

for some a� 	 � and� for every j � �r
� �j � nf�
cbv
�N � �j�

cbv
�N ������

where �� � �x
��
 � � � �k

�y	�t	�� � �n

�z
��
 � � � �r

Note that this step is possible because l� is �at�

cbv
�N

a�
�
for some a� 	 ��

��

De�ne a � a��a���� Since the rules for nullary constructors have not been changed
by �share�M �for the reason that no ground function calls occur in their right�hand
sides� and� for every j � �r
� �j is by de�nition a tree over ground function calls with
recursion argument of height 	 and constructors� it holds that

nf�
cbv
�N � �j� � nf�

cbv
�N � � �j�

and the lengths of the derivations are equal� The shared rule was applied exactly once�

Hence�

f�s� t�� � � � � tn�
cbv
�N � ����

�
�� � hf�
� �i� �� t� ���� � � � � �

�
r��

where by de�nition of �share�M it holds that
����� � � � � �

�
r�� � delpos����� � � � � �r�� double����� � � � � �r���

and� by de�nition of delpos and double and
by the fact that �j is an instance of �j�
for every j� � �r�
� there is a j � �r
 such that ��j� � �j�

cbv
�N �

b�
hf�
� �i� �� t� ���� � � � � �

�
r��

for some b� 	 � and� for every j � �r�
� ��j � nf�
cbv
�N � � ��j��

With the remark above� it holds that for every
j� � �r�
� there is a j � �r
 such that ��j � �j
and it holds that b� 	 a� because of r� 	 r�

cbv
�N � �������������r������

where
�� � �x
��
 � � � �k

�y	�t	�� � �n

�z
��

�

 � � � �r�

and ����������r� is the index shift

We prove that
�&� �������������r������ � �������

The domain of the index shift is the set Z� the other variables remain unchanged�
i�e�� it su�ces to prove that

�����������r�������zi��
�
i� i � �r�

 � ���zi��i� i � �r

�

Let us consider a variable zi with i � �r
 which occurs in the left�hand side and in
the right�hand side of the equation �&�� By de�nition of the index shift this zi is
replaced by zj with j � �r�
� if �i � ��j� Note that if �i � ��j then �i � ��j� By the
second substitution in the left�hand side of the equation �&� this zj is replaced by ��j
whereas the variable zi in the right�hand side of the equation is replaced by �i� Since
�i and ��j are equal� the equation holds� Therewith �&� is proved� During further
cbv
�N ��derivation steps of ������ there have only function symbols to be applied of
which the rules were not changed� Hence�

������
cbv
�

b�

N � �

and b� � a�� De�ne b � b� � b� � �� It holds that b 	 a� i�e�� b � a� ��

�	

�ii� Let height�s� � �� i�e�� s �
�s�� � � � � sk�� We argue in the same way as in �i� except

that now for every
cbv
�N �derivation of function calls �j there exists a

cbv
�N ��derivation

of �j which is either of equal length or shorter �if the shared rule is applied� because
of the induction hypothesis and because of the fact that other rules have not been
changed�

�� This part of the proof is similar to �a��

Now we have proved that a derivation in which the changed rules occur� is shorter w�r�t�
cbv
�N

than the one w�r�t�
cbv
�N � � Since no other rules are changed� it follows immediately that N � is

more e�cient than N � �

In Example ���� a part of the derivation of the function call t � lift�
�
�
��� ��� ��� ��� ��

by
cbv
�N� is given� The derivation of t by

cbv
�N� is given in Example ���� its length is ���

Note that N� �share�M� N� and the shared rule of N� and N� is the rule with left�hand side

extr�
�x�� x��� y��� During the
cbv
�N��derivation of t the shared rule is applied twice� Hence� in

accordance with our statements the result has to be computed in at most �
 steps by
cbv
�N� � In

fact� it is computed in �� steps�

Lemma ���
 Let N and N � be two macro tree transducers with register functions� If N �share�M
N �� then

�a	 �cbv�N� � �cbv�N
���

�b	 N � and M are semantically equivalent�

Proof�
�a� Since �cbv�N� and �cbv�N

�� are total functions� it su�ces to prove that �cbv�N� � �cbv�N
���

This follows again from the notion of more e�cient and from Corollary �����

�b� Let N � �FS�#�"� R� and N � � �FS��#�"� R��� M and N are semantically equivalent
�cf� De�nition ������ Since tup�FS� � tup�FS�� �cf� Remark ���� ��� and by Statement �a� it
holds that M and N � are semantically equivalent� �

Lemma ���� The relation �share�M is locally con�uent�

Proof� Let N � �FS�#�"� R�� N � � �FS��#�"� R��� andN �� � �FS���#�"� R��� be macro tree
transducers with register functions such that N �share�M N � and N �share�M N �� and N �
� N ���

Then by De�nition ���� it follows that there are two di�erent� uniquely determined rules
l� � �� and l� � �� in R for which the following three conditions hold�

�� N is ready for sharing in l� � �� and in l� � ���

�� N � is not ready for sharing in the rule in R� with left�hand side l�� �Remark ������

�� N �� is not ready for sharing in the rule in R�� with left�hand side l�� �Remark ������

��

Note that the relation �share�M only changes two rules� the rule l � � in which N is ready
for sharing and the rule of which the left�hand sides root is labeled by the register function
root���� Also note the the manner in which these rules are changed� is determined by the form
of ��

Hence� in our case it holds that if these four rules� i�e�� the rules l� � ��� l� � �� and the rules
the left�hand side%s roots of which are labeled by root���� and root����� are pairwise di�erent�
then the following holds� l� � �� is a rule in R� and N � is ready for sharing in l� � ��� l� � ��
is a rule in R�� and N �� is ready for sharing in l� � ��� Thus� it is easy to construct N with
N � �share�M N and N �� �share�M N �

More interesting are the cases in which the rules are not pairwise di�erent� By the assumption
above �N �
� N ��� it holds that l� � �� and l� � �� are di�erent� This implies that also the two
rules with left�hand side%s roots root���� and root���� are di�erent�

Hence� it remains to consider the following cases� root�l�� � root���� or root�l�� � root�����

Let us consider the case root�l�� � root���� �the other case can be proved analogously��
Then� �� is of the form

hf�
� ii� x� y� ��� � � � � �ri�

for some hf�
� ii � reg�FS� of rank n�k�ri where n and k are the ranks of f and
� respectively�
By de�nition of macro tree transducers with register functions and by the fact that N is ready
for sharing in l� � ��� l� � �� is of the form

hf�
� ii� x� y� z�� � � � � zri�� hf�
� i� �i� x� y� ��� � � � � �ri���

and there is a rule l� � �� of the form

hf�
� i� �i� x� y� z�� � � � � zri���� ��

We can concentrate our attention to these three rules�

Let us consider the application of �share�M to N �� By de�nition of the sharing transfor�
mation relation� instead of the rules l� � �� and l� � ��� the rules l� � � �� with � �� �
hf�
� ii� x� y� ���� � � � � �

�
r�i
� and hf�
� ii� x� y� z�� � � � � zr�i� � ����������ri�

���� �denoted as l�� � � ��� are

in N �� The list ����� � � � � �
�
r�i
� is the result of delpos����� � � � � �ri�� double����� � � � � �ri���� Since the

index shift ����������ri�
�in the following abbreviated by ��� maps variables in Zri to variables

in Zr�i with r�i 	 ri� it holds that no equal ground function call can disappear� but additional
equal ground function calls can arise �if� e�g�� f�x�� z�� and f�x�� z�� are two function calls in
the argument list of �� and the index shift maps z� to z��� Note that from the fact that N is
ready for sharing in l� � �� it follows that there are equal ground function calls in ��� With the
remark above it follows that N � is still ready for sharing in l�� � � ���

Let N � �share�M N such that l�� � � �� is the shared rule of N � and N � Then the set of rules
of N contains instead of the rules l�� � � �� and l� � ��� the rules l�� � �� and l� � ��� Note
that comparing N with N � additionally to the above named rules� N contains the rule l� � � ��
instead of the rule l� � ��� The form of the considered rules in N and their changes in N are
listed below�

� l� � �� with �� � hf�
� ii� x� y� ��� � � � � �ri� is in N and
l� � � �� with � �� � hf�
� ii� x� y� ���� � � � � �

�
r�
i
� and

����� � � � � �
�
r�i
� � delpos����� � � � � �ri�� double����� � � � � �ri��� is in

 N �

��

� hf�
� ii� x� y� z�� � � � � zri�� hf�
� i� �i� x� y� ��� � � � � �ri��� is in N and

hf�
� ii� x� y� z�� � � � � zr�i�� hf�
� i� �i� x� y� e��� � � � � e�gri��� with
� e��� � � � � e�gri��� � delpos��������� � � � ����ri����� double��������� � � � � ����ri����� is in

 N �

� hf�
� i� �i� x� y� z�� � � � � zri���� �� is in N and
hf�
� i��i� x� y� z�� � � � � z�ri���� ������ where �� denotes the index shift �����
����������
ri�� ��

is in N �

We have to show that N can also be computed by �share�M �steps applied to N ���

Now� we consider N ��� Instead of the rules l� � �� and l� � ��� the rules l� � � ��� with
� ��� � hf�
� ii� x� y� ���� � � � � �

�
r�
i��

� and l��� � � ��� are in R��� The list ����� � � � � �
�
r�
i��

� is the result of

delpos����� � � � � �ri���� double����� � � � � �ri������ The rule l� � �� is still in R��� Hence� N �� is ready
for sharing in this rule� Then� N �� �share�M N ��� and N ��� contains instead of the rules l� � ��
and l� � � ��� the rules l� � � �� and l�� � ����

��
� �� Let us again list� how the three considered rules

looks like in N ����

� l� � � �� is in N ��� and is equal to the rule in N

� l�� � ���hf�
� i � �i� x� y� ���� � � � � �
�
r�i��

�� with

����� � � � � �
�
r�
i��

� � delpos����� � � � � �ri���� double����� � � � � �ri����� is in N ���� This rule can also

be written as l�� � hf�
� i� �i� x� y� $��� � � � � $�r�i���� with

�$��� � � � � $�r�
i��

� � delpos��������� � � � � ����ri����� double����� � � � � �ri�����

� l��� � ������ is in N ��� where �� is the index shift ��
������
ri���
�

Two cases are possible�
�a� double����� � � � � �ri���� � double��������� � � � � ����ri������ i�e�� no new additional ground func�

tion calls arise by applying ��� Then� the rules arised from l� � �� in N and N ��� are equal�
Consequently� the same holds for the rules arised from l� � ��� Therewith� N � �share�M N and
N �� �share�M N �

�b� double����� � � � � �ri����
� double��������� � � � � ����ri������ i�e�� new additional ground function

calls arise by applying ��� Then N ��� is ready for sharing in l�� � ����
��
� �� i�e�� N

��� �share�M 'N �

As before� we consider the three rules in 'N �

� The rule l� � � �� is in 'N and in N �

� l�� � hf�
� i� �i� x� y� '��� � � � � '��ri��� with

�'��� � � � � '��ri��� � delpos��$��� � � � � $�r�i����� double��
$��� � � � � $�r�i������ By de�nition of delpos and

double and by the fact that

�$��� � � � � $�r�i��� � delpos��������� � � � � ����ri����� double���� � � � � � �ri�����

it follows immediately that �'��� � � � � '��ri��� � � e��� � � � � e�gri���� Hence 'N � N �

We have proved that if N �share�M N � and N �share�M N ��� then there exists a N such that
N � �share�M N and N �� ��share�M

 N � i�e�� �share�M is locally con�uent� �

��

Lemma ���� The relation �share�M is noetherian�

Proof� We prove the following statement by induction on K�

For every macro tree transducer N with register functions there exists a number
K 	 	 such that the length of the derivations by �share�M starting from N is exactly
equal to K�

Let N � �FS�#�"� R� be a macro tree transducer with register functions and let K 	 	
denote the number of rules in which N is ready for sharing� We prove that this K ful�lls the
conditions by induction on K�

�i� K � 	� Then N�share�M
�N � � N �

�ii� K � 	� Let the statement hold for K � ��
By assumption there are rules l� � ��� � � � � lK � �K in which N is ready for sharing�
By De�nition ����� for every j � �K
� �j is of the form gj� x� y� �j��� � � � � �j�rj � with gj �
reg�FS�� Let� for every j � �K
� gj� x� y� z�� � � � � zrj � � �j be the gj�rules� �Note that by
De�nition ���� the left�hand side of the gj�rule has exactly this form�� Hence� N�share�MN�

and N� � �FS��#�"� R�� where FS� � �FS � fg
�k�n�r��
� g� � fg

�k�n�r���
� g and R� �

�R � fl� � ��� g�� x� y� z�� � � � � zr��g� � fl� � � ��� g�� x� y� z�� � � � � zr��� � ���g� Now� N� is not
ready for sharing in rule l� � � ��� because � �� does not contain any equal function calls
by de�nition of delpos and double� Since the index shift only renames variables in Z�
even if the rule g�� x� y� z�� � � � � zr�� � �� is equal to a rule in fl� � ��� � � � � lK � �Kg� N�

is still ready for sharing in the rules l�� � � ��� � � � � l
�
K � � �K where� for every i � ���K
�

�l�i � � �i� � �li � �i�� if li
� g�� x� y� z�� � � � � zr��� and otherwise the rule has to be adapted�
Hence� by induction hypothesis N��share�M

K��N �� �

Lemma ���
 The relation �share�M is con�uent and noetherian�

Proof� This result follows directly by the fact that �share�M is locally con�uent and noetherian
�cf� previous lemmas� and by Lemma ��� of �Hue�	
� �

Hence� for every macro tree transducer N with register functions there is a unique macro tree
transducer nf��share�M � N� with register functions which is irreducible with respect to �share�M �
Note that N� �cf� Example ����� is the normalform of N� with respect to �share�M��

Finally� let us describe a connection between the splitting transformation relation and the
sharing transformation relation�

Lemma ���� Let M be a macro tree transducer� It holds that

�split�M � ��share�M � ��share�M � �split�M � ��share�M �

Proof� The following statement has to be proved� LetN andN � be two macro tree transducers
with register functions� If N �split�M � ��share�M N �� then N ��share�M � �split�M � ��share�M N ��

Let N �split�M � ��share�M N �� i�e�� there is a macro tree transducer N� with register functions
such that N �split�M N� ��share�M N �� We distinguish the following two cases�

�� If N is not ready for sharing� then nf��share�M � N� � N and the statement holds trivially�

��

�� If N is ready for sharing in the rules l� � ��� � � � � lm � �m� then N� is also ready for sharing
in these rules� because the splitting transformation relation may only enable a further
sharing� but it has no in�uence to rules of which the root of the right�hand side is labeled
by a register function �note that this property holds for the rules l� � ��� � � � � lm � �m��
Let N� be a macro tree transducer with register functions such that N ��share�M N�� By
assumption ��split�M is applicable to N� there is a rule l � � in the set R of rules of
N such that Cut���
� O� � Note that � is a ground right�hand side �cf� de�nition of the
splitting transformation relation�� The sharing transformation steps applied to N in the
derivation N ��share�M N� may only rename variables of ground right�hand sides� Thus�
the rule l� � � � where l � l�� if root�l� is a ground function� or root�l� � root�l��� if root�l�
is a register function� � � � ����� and � is a renaming of variables in Z� is in the set of
rules of N� and Cut�� ��
� O� � Hence� there is a macro tree transducer N� with register
functions such that N� �split�M N�� By similar comparisons as in the proofs of the local
con�uence of the two transformation relations it holds that nf��share�M � N�� � N �� �

��

��� Tupling

In the previous section we have introduced a transformation relation which allows to avoid the
recomputation of values caused by equal function calls in a right�hand side� But also function
calls with di�erent ground functions at their root� but the same list of arguments can cause the
e�ect that during a computation equal function calls arise which have to be evaluated� Note
that by such function calls with the same list of arguments also multiple traversals of common
inputs take place�

Consider� e�g�� the part of the calling graph of lift�
�
��� ��� ��� �� on the basis of the rules
of N� of Example ���� which is shown in Figure �	�

���

��

���

lift������� ��� ��� ��

extr��� �����lift����� ��� ��

��������������������
���������������������

��������������������
��������������������

��������������������
���������������������

��������������������
��������������������

��������������������
���������������������

��������������������
��������������������

��������������������
� ���

���

���

extr��� �����

lift��������� ��� ��� ��� ��

extr������� ��� ��� ��

lift����� ��� ��extr�������� �� lift��� z��

Figure �	� Part of a calling graph of ground functions�

We show a method to tuple ground function calls with di�erent ground functions at their
root� but the same list of arguments� as� e�g�� extr�t�� t�� and lift�t�� t��� Before starting with
the formal details� let us discuss this tupling informally�

The idea of the tupling is to create a new function which is a tuple of these functions with the
same list of arguments� such that multiple traversals of common inputs are avoided� This idea
on its own is not new� it is proposed in many other papers �cf�� e�g�� �PP��� CH��
�� What is new
is the algorithmical way in which this is done� For the created tuple function� new rules have to
be de�ned as follows� for every input symbol
� the right�hand sides of the rules of the simple
functions from which the tuple function is build� are combined by a comb�symbol� For the sake
of simplicity� we combine the rules of the original macro tree transducer� Taking the rules of a
macro tree transducer with register functions where for every simple function register functions
occurs� we would have to take care of a lot of technical details by merging the right�hand side
of the register rules in an appropriate way�

With the described procedure the calling graph of Figure �	 is changed to the calling graph
in Figure ���

lift����� ��� �� lift��� lift����� ��� ��� lift����� ��� ��

��������������������
��������������������

��������������������
���������������������

��������������������
��������������������

��������������������
���������������������

��������������������
��������������������

��������������������
���������������������

��������������������
� ��

��

��

���

���

���

lift��������� ��� ��� ��� ��

�lift� extr�������� ��� ��� �� extr��� �����

extr��� ����� extr�������� ��

Figure ��� Part of a calling graph of ground functions�

��

Examining the tupling more carefully� we observe that the following three steps have to be
executed�

�� We consider a right�hand side of a rule of a macro tree transducer with register functions
and determine if there are candidates which can be tupled� Note that this requires that the
right�hand side%s root is labeled by a register function and the candidates occur directly
under this function �with the same argumentation as in Section ����� These candidates
are replaced by a new function which is the tuple of the simple functions�

�� By step ���� the rank of the register function at the root shrinks� Hence� the rule for the
register function has to be adapted in its left�hand side and in its right�hand side�

�� New rules have to be created for the new function symbol�

Before de�ning the tupling transformation relation� we de�ne under which conditions a right�
hand side of a macro tree transducer with register functions is called ready for tupling�

De�nition ���� Let N � �FS�#�"� R� be a macro tree transducer with register functions and
let l� � be a rule in R with root��� � reg�FS�� Let � be in arglist��� and � � F gr

call���� De�ne
F ��� �� � f�� j �� is in arglist���� �� � F gr

call���� �
�
� �� and arglist��� � arglist����g� If

F ��� ��
� O� � then we say that � is ready for tupling the set F ��� �� � f�g of ground function
calls� �

Note that only right�hand sides can be ready for tupling S� of which the root is labeled by a
register function� Also note that� if � is ready for tupling S� then the cardinality of S is at least
�� Finally note that � can be ready for tupling several di�erent sets of ground function calls�
Let� e�g�� f�
�x��� y��� � with � � hf�
� �i�x�� y�� f�x�� y��� g�x�� y��� g�x��
�y���� f�x��
�y����
be a rule of a macro tree transducer with register functions� Then � is ready for tupling
ff�x�� y��� g�x�� y��g and � is ready for tupling ff�x��
�y���� g�x��
�y���g�

De�nition ���� Let M be a macro tree transducer� The tupling transformation relation with
respect to M is the binary relation �tuple�M� N
N de�ned as follows� Let N � �FS�#�"� R�
and N � be two macro tree transducers with register functions� Then N �tuple�M N � i� the
following conditions hold�

� N and M are semantically equivalent�

� There is a rule l� � �� in R such that �� is ready for tupling the set S of ground function
calls and N is not ready for sharing in l� � ���

� N � � �FS��#�"�� R�� where the components FS�� "�� and R� are constructed by the
algorithm TUPLE which is shown in the following box� The algorithm receives as input
N � M � l� � ��� and S� �

�

Algorithm TUPLE�

Let FS�� R�� and "� be program variables�

Input� macro tree transducer N � �FS�#�"� R� with register functions�
macro tree transducer M � �sim�FS��#�"M � RM ��
rule l� � �� � R�
set S of ground function calls in ���

Output� FS�� "�� R�

Initialization� Let FS� �� FS� R� �� R� and "� �� "�

Let �� � hf�
� ii� x� y� ��� � � � � �r� with hf�
� ii � reg�FS��k�n�r� for some k� n 	 	 and r � 	�
Let S � f�p� � � � � � �pmg where p�� � � � � pm � �r
 and w�l�o�g� p� 	 � � � 	 pm�
Let� for every � � �m
� �p� � f
���� ��� � � � � �v� and let fnew � �f�� � � � � fm��
Furthermore� let l� � �� be the rule in R where l� � hf�
� ii� x� y� u�� � � � � ur��
Perform the following three steps COMB� ADAPT� and NEW �in this order��

COMB� De�ne � �� � hf�
� ii� x� y� ���� � � � � �
�
r�� with r� � r �m� �� and

����� � � � � �
�
r�� � delpos����� � � � � �p���� �

�
p�
� �p���� � � � � �r�� �p�� � � � � pm��

with ��p� � fnew���� ��� � � � � �v��

FS� �� �FS� � fhf�
� iig�k�n�r�� � fhf�
� ii�k�n�r
��� fnewg

R� �� �R� � fl� � ��g� � fl� � � ��g

ADAPT� De�ne l�� � hf�
� ii� x� y� u��� � � � � u
�
r�� and

�u��� � � � � u
�
r�� � delpos��u�� � � � � up���� up�� � up���� � � � � ur�� �p�� � � � � pm��

with u�p� � combm�zp� � � � � � zpm��

"� �� "� � fcomb
�m�
m g

R� �� �R� � fl� � ��g� � fl�� � ��g

NEW� if fnew �� FS then

R� �� R� � ffnew���x�� � � � � xq�� y�� � � � � yv�� combm��f��
� � � � � �fm�
� j
for every � � #�q� with q 	 	g

�

�& Note that �fi�
 is the right�hand side of the �fi� ���ground rule in RM �&�

By executing such a tupling� equal ground function calls can arise on the right�hand sides of
the new rules� Therewith applying �tuple�M to a macro tree transducer with register functions
enables us often to apply �split�M and �share�M even if this was not possible before�

Example ���� Let us consider the macro tree transducer N� with register functions of Example
����� The right�hand side �lift�� of the �lift�
��ground rule has the form

hf�
� �i�x�� x�� y�� lift�x�� y��� extr�x��
�y���� extr�x�� y����

In this right�hand side there are two function calls with the same argument list �x�� y��� namely
lift�x�� y�� and extr�x�� y��� Hence� �lift�� is ready for tupling the set flift�x�� y��� extr�x�� y��g
of ground function calls�

��

Since N� was constructed by applications of �split�M� and �share�M� starting from the ma�
cro tree transducer M� of Example ���� it holds that N� and M� are semantically equivalent�
Furthermore it holds that N� is not ready for sharing in the �lift�
��ground rule� Hence�
N� �tuple�M� N� and N� is the macro tree transducer �FS��#��"�� R�� with register functions
de�ned as follows�

� FS� � flift���� hlift�
� �i���� �lift� extr����� extr���� hextr�
� �i���g

� "� � f
���� comb
���
� �
���� ����g

� R� is the set of rules as shown in Figure ���

Note that N� is irreducible with respect to �tuple�M� �

lift	�� y�
 � y�
lift	�	x�� x�
� y�
 � hlift� �� �i	x�� x�� y�� 	lift� extr
	x�� y�
� extr	x�� �	y�

hlift� �� �i	x�� x�� y�� comb�	z�� z�
� z�
 � �	z�� �	z�� z�

	lift� extr
	�� y�
 � comb�	y�� �

	lift� extr
	�	x�� x�
� y�
 � comb�	�	lift	x�� y�
� �	extr	x� � �	y�

� extr	x�� y�

�

�	lift	x�� lift	x�� y�

� lift	x�� y�

extr	�� y�
 � �
extr	�	x�� x�
� y�
 � hextr� �� �i	x�� x�� y�� lift	x�� y�

hextr� �� �i	x�� x�� y�� z�
 � �	lift	x�� z�
� z�

Figure ��� Rules of the macro tree transducer N� with register functions�

Let us show a part of the derivation by
cbv
�N
 of the function call t � lift�
�
�
��� ��� ��� ��� ��

which is well�known from earlier derivation examples� The result is computed in �
 steps� In

comparison to this derivation� the length of the derivation of t by
cbv
�N� was �� �cf� Example

������ Note that during the
cbv
�N
�derivation of t� function calls occur which were avoided in

the derivations of the macro tree transducers with register functions N� and N�� Hence� N� is
sometimes better than N��

�

�

� �

�

�

� �

�

� �

�

��

lift

� �

cbv
�N�

hlift� �� �i

	lift� extr
 extr

�

� �

� � �

�

�

��

�

comb�

�

�

extr

lift

�

extr

�

� � lift

lift lift

�

� �� �
� �� ���

��

� �

�� �

hlift� �� �i

�

�

�

�

�

cbv
�N�

�

But there can also syntax�directed expressions found such that N� is sometimes better than

N�� Consider� e�g�� the derivations of the function call � � lift�
��� ��� �� by
cbv
�N� and

cbv
�N
 �

lift�
��� ��� ��
cbv
�N� hlift�
� �i��� �� �� lift��� ��� extr���
����� extr��� ���
cbv
�N�

�
hlift�
� �i��� �� �� �� �� ��

cbv
�N�
���
��� ���

The corresponding
cbv
�N
�derivation has the following form�

lift�
��� ��� ��
cbv
�N
 hlift�
� �i��� �� �� �lift� extr���� ��� extr���
�����
cbv
�N

�
hlift�
� �i��� �� �� comb���� ��� ��

cbv
�N

���
��� ���

The normalform of � is computed in � steps by
cbv
�N� and in � steps by

cbv
�N
 �

This phenomenon is due to the construction of the rules for the tuple functions� the con�
struction is based on the right�hand side of the macro tree transducer M�� �

For the above mentioned reason� if N �tuple�M N �� then statements about the e�ciency of N
with respect to N � are not possible�

Let us determine some properties of �tuple�M �

Remark ���� Let N � �FS�#�"� R� and N � � �FS��#�"�� R�� be macro tree transducers with
register functions and let M be a macro tree transducer such that N �tuple�M N ��

�� There is exactly one rule l� � in R such that l� � � is in R� and �
� � �� There is exactly
one set S of ground function calls such that � is ready for tupling S and � � is not ready
for tupling S� The rule l� � is called in S tupled rule of N and N ��

�� For this set S it holds that card�S� 	 ��

�� Either card�FS� � card�FS�� or card�FS� � card�FS��� ��

�� If card�FS� � card�FS��� then card�R� � card�R���

�� If card�FS� � card�FS�� � �� then card�R� 	 card�R��� More precisely� card�R�� �
card�R� � card�#��

�� Let l� � �� be the rule in R such that �� � g� x� y� ��� � � � � �r� is ready for tupling the
set f�p� � � � � � �pmg of ground function calls with p�� � � � � pm � �r
 and p� 	 � � � 	 pm�

�	

Furthermore let l� � �� be the rule in R with root�l�� � g � root����� Then it holds that
in l� � g� x� y� u�� � � � � ur� the arguments up� � � � � � upm are variables in Z� more precisely�
�up� � � � � � upm� � �zp� � � � � � zpm�� �

As usually� we examine if the de�ned relation �tuple�M is semantic preserving� locally con�u�
ent� and terminating�

Lemma ���� Let N � �FS�#�"� R� and N � � �FS��#��"�� R�� be macro tree transducers with
register functions� If N �tuple�M N �� then

�a	 For every f � gr�FS��n��� with n 	 	� s � T h#i� t�� � � � � tn � T h"i�

�cbv�N��f� s� t�� � � � � tn� � �cbv�N
���f� s� t�� � � � � tn��

�b	 N � and M are semantically equivalent�

Proof� Let M � �FM �#M �"M � RM � be the macro tree transducer such that N �tuple�M N ��
It holds that N and M are semantically equivalent�
�a� Since the function �cbv is total� it su�ces to prove that �cbv�N� � �cbv�N

���
Before we start with the proof we make some preliminary considerations�
By de�nition of �tuple�M there exists a rule l� � �� in R such that �� is ready for tup�

ling the set S of ground function calls� and there is a rule l� � � �� in R� such that � ��
� ��
and � �� is not ready for tupling S �cf� Remark ���� ���� By de�nition� �� is of the form
hf�
� ii� x� y� ��� � � � � �r� and � �� � hf�
� ii� x� y� ���� � � � � �

�
r�� where r� 	 r� Furthermore there

is a rule hf�
� ii� x� y� u�� � � � � ur�� �� in R and a rule hf�
� ii� x� y� u��� � � � � u
�
r��� �� in R��

No other rules are changed by �tuple�M � but there may be card�#� new rules in R� which are
not in R� Let S � f�p� � � � � � �pmg where m � �� p�� � � � � pm � �r
 and p� 	 � � � 	 pm� Let� for
every � � �m
� root��p� � � f
�

By de�nition of �tuple�M it holds that

����� � � � � �
�
r�� � delpos����� � � � � �p���� �

�
p�
� �p���� � � � � �r�� �p�� � � � � pr��

and ��p� � �p� ��� �f�� � � � � fm�
�
It su�ces to prove that� for every s �
�s�� � � � � sk� � T h#i and t�� � � � � tn � T h"i� the

following two statements hold�

�� If l� � f�
�x�� � � � � xk�� y�� � � � � yn� and there is an irreducible � � T h"i such that

f�s� t�� � � � � tn�
cbv
�N

�
��

then there exists a derivation
f�s� t�� � � � � tn�

cbv
�N �

�
��

�� Let ��� � � � � �ri�� � sdExp�FS�#�"� for some ri�� 	 	� If l� � hf�
� i��i� x� y� u�� � � � � uri���
and there exists an irreducible � � sdExp�reg�FS��#�"� such that

hf�
� i� �i� s� t� ��� � � � � �ri���
cbv
�N

�
��

then there exists a derivation

hf�
� i� �i� s� t� ��� � � � � �ri���
cbv
�N �

�
��

��

Proof�

�� Let l� � f�
�x�� � � � � xk�� y�� � � � � yn�� We prove this fact by induction on the height of s�
Also here we have to start the proof with height�s� � �� because in the case height�s� � 	�
the right�hand side �� does not ful�ll the assumptions� by de�nition� no ground function
call can occur�

�i� height�s� � �� i�e�� s �
���� � � � � �k�� The
cbv
�N �derivation of f�s� t�� � � � � tn� has the

following form�

f�s� t�� � � � � tn�
cbv
�N hf�
� �i� �� t� ��� � � � � �r�
cbv
�N

�
hf�
� �i� �� t� ��� � � � � �r�

where� for every j � �r
� �j � nf�
cbv
�N � �j�

cbv
�N �����

where � � �x
��
 � � � �k

�y	�t	�� � �n

�z
��
 � � � �r

cbv
�N

�
�

The rules for nullary constructors have not been changed by �tuple�M � because there
are no function calls in the right�hand sides of these rules� Hence� it holds that

for every j � �r
� nf�
cbv
�N � �j� � nf�

cbv
�N � � �j��

Let us consider the
cbv
�N � derivation�

f�s� t�� � � � � tn�
cbv
�N � hf�
� �i� �� t� ���� � � � � �

�
r��

where by de�nition of �tuple�M and delpos for every j � �r�
� j
� p�� there is an i � �r

such that ��j � �i and ��p� � �f�� � � � � fm���d� ��� � � � � �n�� if �p� � f���d� ��� � � � � �n�
with d � �k
�

Hence� instead of having m function calls f���d� ��� � � � � �n�� � � � � fm��d� ��� � � � � �n� we
have one function call �f�� � � � � fm���d� ��� � � � � �n�� Since height��d� � 	� we have
to consider the ��f�� � � � � fm�� �d��rule of R� which was constructed by the Algorithm
TUPLE�

�f�� � � � � fm���d� y�� � � � � yn�� combm��f���d � � � � �fm��d�

where� for every i � �m
� �fi��d denotes the right�hand side of the �fi� �d��ground rule
in the macro tree transducer M � Hence by the fact that �cbv�M� � �cbv�N� it holds
that� for every i � �m
� fi��d� y�� � � � � yn� � �fi��d are rules in R� It follows directly

by the fact that
cbv
�N � is con�uent that

nf�
cbv
�N � � ��p�� � combm�nf�

cbv
�N � �p��� � � � � nf�

cbv
�N � �pm���

Hence�

hf�
� �i� �� t� ���� � � � � �
�
r��

cbv
�N �

�
hf�
� �i� �� t� ���� � � � � �

�
r��

where
����� � � � � �

�
r�� � delpos����� � � � � �p���� combm���� � � � � �pm�� �p���� � � � � �r�� �p�� � � � � pm��

��

By de�nition of �tuple�M �part ADAPT in Algorithm TUPLE� there is a rule in
R� which can be applied to the syntax�directed expression hf�
� �i� �� t� ���� � � � � �

�
r���

namely the rule hf�
� �i� x� y� u��� � � � � u
�
r��� �� and u�p� � combm�up� � � � � � upm��

hf�
� �i� �� t� ���� � � � � �
�
r��

cbv
�N �

�
������

and �comparing this derivation with the derivation by
cbv
�N � it holds that �� � ��

because

	u���

 � u
�

r
 � delpos		u��

 � up���� combm	up� �

 � upm
� up�	��

 � ur
� 	p��

 � pm

�

i�e�� the arguments of the left�hand side l� are re�ordered in the same way as the
arguments in �� and the evaluation of ��p� created the symbol combm at its root which
is consumed while the application of the rule l�� � ���

During further
cbv
�N ��derivation steps of ����� there have only function symbols to be

applied of which the rules were not changed� Hence�

�����
cbv
�

�

N � �

�ii� Let height�s� � �� i�e�� s �
�s�� � � � � sk�� We argue in the same way as in �i� except

that now for every
cbv
�N �evaluation of function calls �j there exists a

cbv
�N ��evaluation of

�j because of the induction hypothesis and because of the fact that M is semantically
equivalent to N �

�� This part of the proof is similar to ��

To prove �b� the following two conditions have to be proved�

�b�� For every f � F
�n���
M with n 	 	� s � T h#i� t�� � � � � tn � T h"M i� �cbv�M��f� s� t�� � � � � tn� �

�cbv�N
���f� s� t�� � � � � tn��

�b�� For every �f�� � � � � fm� � tup�FS��n��� for some n 	 	� s � T h#i� t�� � � � � tn � T h"Mi� if�
for every i � �m
� �cbv�M��fi� s� t�� � � � � tn� � ��� then �cbv�N���f�� � � � � fm�� s� t�� � � � � tn�� �
combm���� � � � � �m� and combm � "�m��

Condition �b�� follows directly by �a�� because FM � gr�FS��

SinceM andN are semantically equivalent �by de�nition�� it follows that for every �f�� � � � � fm� �
tup�FS� with f�� � � � � fm � sim�FS��n���� s � T h#i� t�� � � � � tn � T h"i� if

f��s� t�� � � � � tn�
cbv
�

�

M ��

���

fm�s� t�� � � � � tn�
cbv
�

�

M �m�

then
�f�� � � � � fm��s� t�� � � � � tn�

cbv
�

�

N combm���� � � � � �m�

��

With Part �a� and the fact that tup�FS� � tup�FS��� it follows that

�f�� � � � � fm��s� t�� � � � � tn�
cbv
�

�

N � combm���� � � � � �m�

By Remark ����� if tup�FS� � tup�FS��� then the statement is proved� If tup�FS�
� tup�FS���
then FS� contains exactly one tuple function more than N � Let �g�� � � � � gk� be this function� It
follows directly by construction that if

g��s� t�� � � � � tn�
cbv
�

�

M ��

���

gk�s� t�� � � � � tn�
cbv
�

�

M �k�

then
�g�� � � � � gk��s� t�� � � � � tn�

cbv
�

�

N combm���� � � � � �k��

�

Lemma ���
 The relation �tuple�M is locally con�uent�

Proof� Let N � �FS�#�"� R�� N � � �FS��#�"�� R��� and N �� � �FS���#�"��� R��� be ma�
cro tree transducers with register functions and let M be a macro tree transducer such that
N �tuple�M N � and N �tuple�M N �� and N
� N ��

We have to show that there exists a macro tree transducer N with register functions such
that N � ��tuple�M

 N and N �� ��tuple�M
 N � By de�nition it follows that there are two rules l� � ��

and l� � �� in R and two sets S and T of ground function calls such that the following conditions
hold�

� �� is ready for tupling S� �� is ready for tupling T

� if �� � ��� then S
� T

� There is a rule l� � � �� in R� such that � �� is not ready for tupling S�

� There is a rule l� � � �� in R�� such that � �� is not ready for tupling T �

Let us consider the tupling transformation relation� If� for some macro tree transducers
N� and N� with register functions� N� �tuple�M N�� then two rules of the set of rules of N�

occur modi�ed in the set of rules of N�� more precisely� the right�hand side of one rule of which
the root is labeled by a register function hf�
� ii� and the left�hand side of the another rule of
which the root is labeled by the same register function hf�
� ii� are modi�ed� Furthermore� N�

may contain some more rules of a new tuple function� These rules cannot be ready for tupling
because their right�hand sides do not contain any register function� Their construction is based
on the rules of the macro tree transducer M �

We have to distinguish the following two cases� �a� l� � �� and l� � �� are di�erent� i�e��
l�
� l� and �b� l� � �� and l� � �� are equal�

�a� Here� three cases are possible�

��

�� The rule l� � �� is in N � and the rule l� � �� is in N ��� Then �� is ready for
tupling T and �� is ready for tupling S� Hence� N � �tuple�M N � and N � contains
�in comparison with N �� the same new rules as N ��� Also N �� �tuple�M N �� and N ��

contains �in comparison with N ��� the same new rules as N �� By trivial comparison
of the executed changes to the rules it holds that N � � N �� � N �

�� The rule l� � �� is in N � and instead of the rule l� � ��� the rule l�� � �� is in
N ��� i�e�� root�l�� � root����� As before� �� is ready for tupling T and �� is ready for
tupling S� The rest of this case is similar to ��

�� Instead of the rule l� � ��� the rule l�� � �� is in N � and the rule l� � �� is in N ���
i�e�� root�l�� � root����� Compare case ��

�b� If the rules are equal� then S and T are di�erent �otherwise it would hold that N � � N ����
By de�nition it holds that S � T � O� � � �� is still ready for tupling T and � �� is ready for
tupling S �note that l� � l�� but �

�
�
� � ���� Hence� N � �tuple�M N � and N �� �tuple�M N ��� By

comparing the rules of N � and N �� it holds that N � � N �� � N � �

Lemma ���� The relation �tuple�M is noetherian�

Proof� Let N � �FS�#�"� R� be a macro tree transducer with register functions and let
M be a macro tree transducer such that M and N are semantically equivalent� For every rule
l � � in N there is a unique number k�l � �� of di�erent sets S�� � � � � Sk�l
�� such that � is
ready for tupling the set Si of ground function calls� The rules which are newly created by
the TUPLE�Algorithm are rules which have no register function calls in their right�hand sides�
Hence� no such right�hand side can be ready for tupling� Since the number of rules is �nite and
to every rule a �nite number is associated� it holds that the relation �tuple�M is noetherian� �

Lemma ���� The relation �tuple�M is con�uent and noetherian�

Proof� This result follows directly by the fact that �tuple�M is locally con�uent and noetherian
�cf� previous lemmas� and by Lemma ��� of �Hue�	
� �

Lemma ���
 Let M be a macro tree transducer�

� ��share�M � ��tuple�M � ��tuple�M � ��share�M � ��tuple�M �

�� �split�M � ��tuple�M � ��tuple�M � �split�M � ��tuple�M �

Proof� Let N � �FS�#�"� R� and N � be two macro tree transducers with register functions�

�� Let N ��share�M � ��tuple�M N �� We have to show that also N ��tuple�M � ��share�M � ��tuple�M
N � holds� If N ��tuple�M N or N ��share�M N � then the statement holds trivially� Otherwise
there are rules l� � ��� � � � � lm � �m withm 	 � inR such that� for every i � �m
� �i is ready
for tupling Si��� � � � � Si�n for some n 	 �� It holds that N is not ready for sharing in some
of these rules because this is a condition for the applicability of the tupling transformation
relation� Note that this condition makes sure that rules which are both� ready for sharing
and ready for tupling� are �rst changed by the sharing transformation relation� Let lj� �
�j� � � � � � ljk � �jk be these rules� On the one hand the tupling transformation relation

��

enables or disables no further tupling and� on the other hand� no further sharing� i�e�
N ��tuple�M N� and N� is ready for sharing� because N is ready for sharing� Hence� there
is a macro tree transducer N� with register functions such that N� �

�
share�M N�� By trivial

comparison of the changes applied to the rules it follows that nf�N���tuple�M� � N ��

Note that the sharing transformation relation may enable the applicability of the tupling
transformation relation� For this reason� only the � relation holds�

�� Let N �split�M � ��tuple�M N �� We have to show that also N ��tuple�M � �split�M � ��tuple�M N �

holds� This proof is similar to the proof of statement ��� if N ��tuple�M N � then the
statement holds trivially� The splitting transformation relation may enable but not disable
the tupling transformation�

�

��

� Transformation strategy

As explained in the introduction we want to present a method how to transform a macro tree
transducer M into a macro tree transducer N with register functions such that M and N
are semantically equivalent and N is more e�cient than M � Until now we have de�ned three
di�erent transformation relations� Now we de�ne how they have to be combined such that the
goal is reached�

De�nition ��� Let M � �FM �#�"M � RM � be a macro tree transducer� The reducing trans�
formation relation with respect to M is the binary relation �red�M� N
N de�ned as follows�
Let N � �FS�#�"� R� and N � be two macro tree transducers with register functions� It holds
that N �red�M N �� if the following conditions hold�

� M and N are semantically equivalent�

� There is a rule l � � in R such that Cut���
� O� �

Then N � is determined by the transformation N �split�M N� ��share�M N� ��tuple�M N �� �

Let us give a short example for the application of �red�M �

Example ��� Consider the macro tree transducer N� with register functions of Example ���� It
is well�known that M� �cf� Example ���� and N� are semantically equivalent� For the right�hand
side � of the �lift�
��rule of N� it holds that Cut���
� O� �cf� Example ����� By N� �red�M� N

��
it holds that N � is the result of the transformation N� �split�M� N

�
� �

�
share�M�

N ��
� ��tuple�M�

N �

for some macro tree transducers N �
� and N ��

� with register functions� By the previous Examples
���� ����� and ����� it holds that N� �split�M� N�� N� ��share�M�

N�� and N� ��tuple�M�
N��

Hence� we can choose N � � N��

Remark ��� Let N � �FS�#�"� R� be a macro tree transducer with register functions and M
be a macro tree transducer such that M and N are semantically equal�

�� If there is a macro tree transducer N � with register functions such that N �red�M N ��
then N � � �FS��#�"�� R�� with sim�FS� � sim�FS��� tup�FS� � tup�FS��� reg�FS� �
reg�FS��� and " � "��

�� If N �red�M N � with N � � �FS��#�"�� R�� and " � "�� then tup�FS� � tup�FS���

�� If there are exactly k di�erent rules l� � ��� � � � � lk � �k in R such that� for every i � �k
�
Cut��i�
� O� � then there are exactly k di�erent macro tree transducers with register
functions N�� � � � � Nk such that� for every i � �k
� N �red�M Ni� �

Lemma ��� Let M be a macro tree transducer� The following holds�

� �split�M � ��share�M � ��tuple�M � ��share�M � ��tuple�M � �split�M � ��share�M � ��tuple�M
�or equivalently� �red�M � ��share�M � ��tuple�M � �red�M	

�� �split�M � �red�M � �red�M � �red�M

Proof�

�

��

�split�M � ��share�M � ��tuple�M by Lemma ���	

� ��share�M � �split�M � ��share�M � ��tuple�M by Lemma ���� ��

� ��share�M � �split�M � ��tuple�M � ��share�M � ��tuple�M by Lemma ���� ��

� ��share�M � ��tuple�M � �split�M � ��tuple�M � ��share�M � ��tuple�M

Now we analyse the transformation relation which results from the sequence of inclu�
sions� Let N and N� be two macro tree transducers with register functions such that
N ��share�M � ��tuple�M N�� Since the tupling transformation relation does not introduce
new sharing possibilities� N� � nf�N���share�M�� Applying the transformation relation
�split�M to N� introduces exactly one rule l � � which may be ready for sharing or tup�
ling� i�e�� if N� �split�M N�� then the transformation relation ��tuple�M � ��share�M � ��tuple�M
is concentrated to this rule l � � and to the rule l� � � � such that root��� � root�l���
Note that neither �tuple�M nor �share�M introduces rules which can be ready for sharing or
tupling� By de�nition of the splitting transformation relation� it holds that � � is a ground
right�hand side� i�e�� l� � � � cannot be a shared or tupled rule� Now two cases are possible�

� If �tuple�M can be applied to N�� then l � � must be the tupled rule� By de�nition
of the sharing transformation relation� � is not ready ready for sharing �this was a
condition for the applicability of the tupling transformation relation�� No other rule
can be ready for sharing by the previous considerations� Hence� if N� ��tuple�M N��
then N� � nf�N���share�M� and �split�M � ��tuple�M � ��share�M � ��tuple�M is simpli�ed
to �split�M � ��tuple�M �

� If �tuple�M cannot be applied to N�� then �split�M � ��tuple�M � ��share�M � ��tuple�M is
simpli�ed to �split�M � ��share�M � ��tuple�M � Note that� since ��share�M is local to the
rule l � �� ��share�M is equal to �share�M � if sharing is applicable�

Altogether� the statement holds�

��

�split�M � �red�M by De�nition ���
� �split�M � �split�M � ��share�M � ��tuple�M by ��

� �split�M � ��share�M � ��tuple�M � �split�M � ��share�M � ��tuple�M by De�nition ���

� �red�M � �red�M

�

In the following� we call a �red�M �step local� if the involved �share�M and �tuple�M transforma�
tion relations only change the rules which were created by the splitting transformation relation�
Note that for such a local �red�M �step the involved sharing transformation relation is applied at
most once�

Lemma ��� If N �red�M N �� then N and N � are semantically equivalent�

Proof� This statement follows directly by the fact that �red�M is a sequence of relations for
which it is was proved that they are semantic�preserving� �

��

split�M

split�M

tuple�M

�

�split�M �N� �
�
share�M �

�split�M
�N� �

�
share�M �

�
N�N �

�
share�M � �

�
tuple�M N �

N �
� �

�
share�M � �

�
tuple�M N�

N �
� �

�
share�M � �

�
tuple�M N�

tuple�M

Figure ��� Proof of the local con�uence of �red�M �

Lemma ��
 The relation �red�M is locally con�uent�

Proof� Let N � N�� and N� be macro tree transducers with register functions such that
N �red�M N� and N �red�M N� where N�
� N�� We prove that there exists an N� such that
N� �red�M N� and N� �red�M N��

By Lemma ��� it follows that

N ��share�M � ��tuple�M � �red�M N� and

N ��share�M � ��tuple�M � �red�M N��

Since the normalforms are unique it holds that there exists a macro tree transducer N � with
register functions such that

N ��share�M � ��tuple�M N � and N � �red�M N� and N � �red�M N�

and thus �by De�nition ���� there are N �
� and N �

� such that

N � �split�M N �
� ��share�M � ��tuple�M N� and

N � �split�M N �
� ��share�M � ��tuple�M N��

It holds that N �
�
� N �

� because of N�
� N� and because of the fact that normalforms of �share�M
and �tuple�M are unique� Hence� there exist two rules l� � �� and l� � �� in N � such that
Cut����
� O� and Cut����
� O� � As we have seen in the proof of Lemma ���� the relation
��share�M � ��tuple�M is local to the rules which are constructed by splitting the rules l� � �� and
l� � ��� Hence� the rule l� � �� is still in the set of rules of N� and the rule l� � �� is still in
the set of the rules of N�� Therewith �split�M can be applied to N� and N�� i�e�� N� �split�M N�

and N� �split�M N� for some N� and N�� As before� the relation ��share�M � ��tuple�M is local to

the new constructed rules� Let N� ��share�M � ��tuple�M N�� By trivial comparison of the rules it

follows that N� ��share�M � ��tuple�M N�� Hence� the statement is proved� The proof is pictured
in Figure ��� �

Lemma ��� The relation �red�M is noetherian�

Proof� Let M � �FM �#�"M � RM � be a macro tree transducer and let N� be a macro tree
transducer with register functions which is semantically equivalent to M � Consider an arbitrary
derivation

��

N� �red�M N� �red�M N� �red�M � � � �red�M Nr �red�M Nr�� �red�M � � �
of �red�M � By Lemma ��� a sequence of �red�M �steps can be reordered as follows� ifN� �red�M N��
then N� �

�
share�M � ��tuple�M � �red�M N� and the �red�M step is local� The same holds for all

other �red�M �steps� because� for every i � 	� Ni is the normalform of Ni with respect to the
�share�M and �tuple�M transformation relation�

We observe that �tuple�M is the only transformation relation �w�r�t� the three basic transfor�
mation relations� which can introduce new rules with the property that their right�hand sides
can be splitted� In particular� these right�hand sides are combinations of right�hand sides of
the macro tree transducer M �cf� TUPLE�Algorithm� Part NEW�� However� the left�hand sides
of such new rules have tuple functions as root label and� since there are only �nitely many
permutations over the set FM and since no two rules start with the same tuple function and
input symbol� this process of adding new rules eventually stops�

For a �nite set of given rules� �split�M is noetherian� Hence� assuming that no more new rules
are added� �red�M is also noetherian� �

Lemma ��� The relation �red�M is con�uent and noetherian�

Proof� This result follows directly by the fact that �red�M is locally con�uent and noetherian
�cf� previous lemmas� and by Lemma ��� of �Hue�	
� �

De�nition ��
 Let M be a macro tree transducer� The recursive�iterative tree transducer
associated with M � denoted by rec�it�M�� is the macro tree transducer nf��red�M �M� with
register functions� �

Example ���� Let us continue our running example by showing the recursive�iterative tree
transducer associated with M� �cf� Example ����� It can be computed by the following transfor�
mation sequence�

M� �split�M� N� �share�M�� �z �
�red�M�

N �
� �split�M� N� �tuple�M�� �z �

�red�M�

N� �split�M� � �share�M� � �tuple�M�� �z �
�red�M�

rec�it�M��

where

� the macro tree transducer N� with register functions is the one from Example ��� �the
rules are shown in Figure ����

� the macro tree transducer N �
� with register functions is obtained from N� �cf� Example

����� Figure ��� as follows� the extr�rules of N �
� are equal to those of N� and the lift�rules

are the ones of N�� and

� the macro tree transducer N� with register functions can be found in Example �����

The rules of rec�it�M�� are shown in Figure ��� The following pictures Figures �� and ��

show a derivation of the well�known function call by
cbv
�rec�it�M��� It is remarkable that before

computing the results of more complex subcalls� the input tree is analyzed and with the help
of the register functions a computation plan is created� Note that this derivation only needs ��
steps�

�	

lift	�� y�
 � y�
lift	�	x�� x�
� y�
 � hlift� �� �i	x�� x�� y�� 	lift� extr
	x�� y�
�

extr	x�� �	y�

hlift� �� �i	x�� x�� y�� comb�	z�� z�
� z�
 � �	z�� �	z�� z�

	lift� extr
	�� y�
 � comb�	y�� �

	lift� extr
	�	x�� x�
� y�
 � h	lift� extr
� �� �i	x�� x�� y�� 	lift� extr
	x�� y�
�

extr	x�� �	y�

h	lift� extr
� �� �i	x�� x�� y�� comb�	z�� z�
� z�
 � comb�	�	z�� �	z�� z�

� �	lift	x�� z�
� z�

extr	�� y�
 � �
extr	�	x� � x�
� y�
 � hextr� �� �i	x�� x�� y�� lift	x�� y�

hextr� �� �i	x�� x�� y�� z�
 � �	lift	x�� z�
� z�

Figure ��� Rules of the macro tree transducer rec�it�M�� with register functions�

n by
cbv
�M�

by
cbv
�rec�it�M��

� � �
� � �
� �� �
� �� ��
���

���
���

k a	k � �
 � � � a	k � �
 � � � � k

Table �� Comparison of a derivation by
cbv
�M� and

cbv
�rec�it�M���

Consider a function call lift�s� t� with t � T h"�i and s is a tree over #� such that each
second subtree is the nullary symbol � and n denotes the number of symbols
 occurring in s�
The number of reduction steps a�n� necessary to compute the normalform of the function call
is given in Table �� As it can be seen� there is a great gain in e�ciency�

�

We make the following observation about the structure of the rules in rec�it�R��

Observation ���� Let M � �F�#�"� R� be a macro tree transducer and rec�it�M� � �rec�
it�FS��#� rec�it�"�� rec�it�R��� For every rule l � hf�
� ii� x� y� ��� � � � � �r� in rec�it�R� with
hf�
� ii � reg�FS��k�n�r� it holds that� for every j � �r
� �j is either

� in Z or

� a ground function call� �

Now we can state the following important result�

Theorem ���� Let M � �F�#�"� R� be a macro tree transducer� It holds that rec�it�M� is at
least as e�cient as M �

��

�

�

� �

�

�
�

� �

�

��

� �

lift

� �

hlift� �� �i

extr

�

�

�

cbv
�rec�it�M��

�

�

�

�

�

	lift� extr

�

�� �

hlift� �� �i

�

�

�

�

�

�

� �

� �

�

h	lift� extr
� �� �i

	lift� extr

cbv
�rec�it�M��

�

� �

extr

� �

�

Figure ��� Derivation by
cbv
�rec�it�M�� �Part ���

Proof� Since �red�M is semantic�preserving� for every
cbv
�M �derivation of a syntax�directed

expression � to a normalform �� there exists also a
cbv
�rec�it�M��derivation of � to �� It has to be

proved that the derivations by
cbv
�rec�it�M� are at most as long as the derivations by

cbv
�M �

Since �red�M is noetherian� there is an L 	 	 such that

M �red�M N� �red�M � � � �red�M NL � rec�it�M�

M is a macro tree transducer� i�e�� there are no register functions and register rules in the set
of rules of M � By de�nition� �red�M � �split�M � ��share�M � ��tuple�M and the transformation
relation �split�M introduces a new register rule into the set of rules� the splitted rule of M and
N� is replaced by two rules and only one of these rules can be changed by the transformation
relations �share�M and �tuple�M � namely the rule of which the root of the right�hand side is
labeled by a register function� The relations �share�M and �tuple�M introduce no new rules with
register functions� they only change an existing rule with a register function at the root of the
right�hand side� �tuple�M creates rules for tuple functions without register function calls�

It has been proved in Corollary ��� that� if N �split�M N �� then N is more e�cient than N ��

Every application of the splitted rule in a derivation by
cbv
�N is simulated by the application

of two rules in a derivation by
cbv
�N � � But� according to De�nition ���� a rule is only splitted

if its right�hand side contains at least two ground function calls with equal argument lists�
This condition is exactly the one which is needed for the applicability of at least one of the
transformation relations �share�M and �tuple�M � The other conditions which are neccessary� are
automatically ful�lled in this sequence of transformation steps�

In Corollary ���� it was proved that� for every macro tree transducer N with register func�
tions� the macro tree transducer N � with register functions obtained by N �share�M N �� is more
e�cient than N in the following sense� Let l � � be the shared rule of N and N �� Every

��

hlift� �� �i

�

�

extr

� �

�

� � �

cbv
�rec�it�M��

�

h	lift� extr
� �� �i

h	lift� extr
� �� �i

� �

	lift� extr

hlift� �� �i

�

� � �

�

�

cbv
�rec�it�M��

�

h	lift� extr
� �� �i

h	lift� extr
� �� �i

comb�

� �

Figure ��� Derivation by
cbv
�rec�it�M�� �Part ���

application of this rule during a derivation by
cbv
�N � needs at least one step less than a derivation

by
cbv
�N � Therewith the loss of e�ciency by the relation �split�M is compensated�
If no �share�M step can be executed� then the loss of e�ciency has to be compensated by

the relation �tuple�M � There� di�erent function calls with equal argument list are glued together
and a new function call with the same argument list arises� The rules for the new function
call are created by simply combining the right�hand sides of the rules for these functions of M �
Hence� instead of computing� e�g�� r di�erent function calls which means r applications of rules�
only one function call has to be computed with the same combined right�hand side� Altogether
there are r � � steps less if the right�hand side with register function which has arised by the
application of �split�M � has to be evaluated�

The other steps N� �red�M N�� � � � can be justi�ed as above� the splitting transformation
relation is executed exactly once and the arising rule the right�hand side of which is a register
function� is the only rule in which ground function calls in its right�hand side can be deleted or
tupled�

��

Note that it cannot be stated that� for every j � �L
� Nj is at least as e�cient as Nj�� but
in comparison with M � every Nj is at least as e�cient as M � Altogether the statement holds
with b � a� �

Theorem ���� There are in�nite many macro tree transducers M such that rec�it�M� is more
e�cient than M �

Proof� We have seen in the proof of Theorem ���� that the loss of e�ciency due to the
�split�M steps is compensated by the other transformation relations� We can formulate �ve cases
in which the compensation leads even to a more e�cient macro tree transducer with register
functions� We state that rec�it�M� is sometimes better thanM if� in the transformation fromM
into rec�it�M� by �red�M � there is at least one �red�M step such that for its constituents �share�M
and �tuple�M at least one of the following conditions holds�

�� the �red�M step contains an application of �share�M and an application of �tuple�M �

�� the �red�M step contains at least two applications of �tuple�M �

�� in the �red�M step at least one �share�M step is applied which deletes at least two function
calls�

�� the �red�M step contains a �share�M step which deletes a function call f�� � �� of which at
least one rule has a function call in its right�hand side� or

�� in the �red�M step at least one �tuple�M step is applied which tuples at least three function
calls�

The cases ����� and �� are clear from the proof of Theorem ����� Case �� needs a more
detailled explanation� Let us assume that the �red�M step contains one application of �share�M
and no applications of �tuple�M �otherwise case �� would hold�� Furthermore let us assume that
�share�M deletes only one function call f�� � �� from the argument list of a rule l� �� This means

that during a
cbv
��derivation where the rule l � � is applied� the evaluation of this function call

�where the formal parameters are replaced by concrete instances of trees� is omitted� If this
evaluation would need more than one derivation step� then the loss of e�ciency due to splitting
is overcompensated� In the case that there is an input symbol
 � # such that the �f�
��rule has
a function call in its right�hand side� an input tree can be constructed such that the evaluation of
the omitted function call needs more than one step� Hence also case �� leads to a more e�cient
macro tree transducer with register functions�

One may ask which macro tree transducers full�ll the conditions above� Obviously� at least
every macro tree transducer which has at least one rule of which the right�hand side contains
three function calls with equal argument list� There are also in�nitely many other macro tree
transducers which ful�ll the conditions above by simultaneous function calls as� e�g�� the macro
tree transducer version of the Fibonacci�function and� of course� our running example� �

Considering the transformation sequence from a macro tree transducer M to the recursive�
iterative tree transducer rec�it�M�� it can be exactly determined whether rec�it�M� is more
e�cient than M or not� The following decision algorithm accepts as input the macro tree
transducer and it yields �yes�� if rec�it�M� is more e�cient than M � and �no�� otherwise� The

��

algorithm uses the instruction �stop� which terminates the execution of the algorithm at this
spot� The terms �Case i� with i � ��
 are concerned to the �ve cases which are enumerated in
the proof of Theorem ����� The global while�statement performs a local �red�M �step� Note that
the sharing transformation relation is embedded in an if�statement instead of a while�statement�
because only local �red�M �steps are executed and such a local �red�M step contains at most one
application of �share�M �

Decision Algorithm�

Let countsh� counttup� N � and N � be program variables�

Input� macro tree transducer M � �F�#�"� R��

Output� either �yes� rec�it�M� is more e�cient than M�
or �no� rec�it�M� is not more e�cient than M�

Initialization� Let countsh �� 	� counttup �� 	� N � M �

while there is an N � such that N �split�M N � do

N �� N ��
if N is ready for sharing then

N �share�M N �� countsh �� countsh� ��
Let l� hf�
� ii� x� y� ��� � � � � �r� be the shared rule of N and N ��
if double���� � � � � �r� � �l�� � � � � lm� with m � � then

return �yes� and stop� � �& Case � &�
if double���� � � � � �r� � �l�� and l� is a function call of the form f�� � �� such that
there is an �f�
��rule of which the right�hand side contains at least one function
call then

return �yes�and stop� � �& Case � &�
N �� N ��

�

while there is a rule l� � in the set of rules of N
such that � is ready for tupling the set S of ground function calls do
N �tuple�M N �� counttup �� counttup� ��
Let l� � be the in S tupled rule of N and N �

if card�S� � �� then return �yes� and stop� � �& Case � &�
N �� N ��
if counttup � � then return �yes� and stop� � �& Case � &�

od

if counttup� countsh � � then return �yes� and stop� � �& Case � &�
counttup �� 	� countsh �� 	�

od�
return �no��

At the end of this section we present a macro tree transducer M such that rec�it�M� is not
more e�cient than M �

Example ���� Let us consider the macro tree transducer M� � �F��#��"�� R�� which is a
modi�ed version of M�� The components of M� are given as follows�

��

� F� � fli���� ex���g�

� #� � f
���� ����g�

� "� � f
����
���� ����g� and

� R� is the set of the rules which are shown in Figure �
�

Then rec�it�M�� is computed by the following transformation sequence�

M� �split�M� � �tuple�M�� �z �
�red�M�

��split�M� � �tuple�M�� �z �
�red�M�

rec�it�M��

The rules of rec�it�M�� are shown in Figure ��� For every syntax�directed expression � �

sdExp�F��#��"�� it holds that the derivations by
cbv
�rec�it�M�� and by

cbv
�M� are of equal length�

li	�� y�
 � y�
li	�	x�� x�
� y�
 � �	li	x�� y�
� �	ex	x�� �	y�

� ex	x�� y�

ex	�� y�
 � �
ex	�	x�� x�
� y�
 � li	x�� li	x�� y�

Figure �
� Rules of the macro tree transducer M��

li	�� y�
 � y�
li	�	x�� x�
� y�
 � hli� �� �i	x�� x�� y�� 	li� ex
	x�� y�
�

ex	x�� �	y�

hli� �� �i	x�� x�� y�� comb�	z�� z�
� z�
 � �	z�� �	z�� z�

	li� ex
	�� y�
 � comb�	y�� �

	li� ex
	�	x�� x�
� y�
 � h	li� ex
� �� �i	x�� x�� y�� 	li� ex
	x�� y�
�

ex	x�� �	y�

� li	x�� y�

h	li� ex
� �� �i	x�� x�� y�� comb�	z�� z�
� z�� z�
 � comb�	�	z�� �	z�� z�

� li	x�� z�

ex	�� y�
 � �
ex	�	x�� x�
� y�
 � li	x�� li	x�� y�

Figure ��� Rules of the macro tree transducer rec�it�M�� with register functions�

��

� Conclusion

We have de�ned particular classes of recursive program schemes� namely the class M of macro
tree transducers and the classN of macro tree transducers with register functions which contains
the �rst one� Our aim was to de�ne a transformation from an arbitrary macro tree transducer
into a macro tree transducer with register functions such that the resulting transducer is at
least as e�cient as the original transducer� and there exist macro tree transducers for which
the transformation even yields a macro tree transducer with register functions which is more
e�cient than the original one� As measure of e�ciency we have taken the number of call�by�
value derivation steps necessary to compute the normalform of a syntax�directed expression built
from the components of the underlying macro tree transducer�

For this purpose we have de�ned three transformation relations �split�M � �share�M � and
�tuple�M with the pleasant properties that they are semantic preserving� con�uent� and noethe�
rian� For two of these transformation relations� namely �split�M and �share�M � exact statements
about the e�ciency were proven� an application of �split�M decreases the e�ciency whereas
�share�M increases the e�ciency� For the tupling transformation relation no such statement
could be proven�

With the help of these three transformation relations a transformation from a macro tree
transducer M to a macro tree transducer rec�it�M� with register functions was de�ned such
that rec�it�M� is at least as e�cient as M � This transformation is the computation of the
normalform of M with respect to the transformation relation �red�M which is the composition
�split�M � ��share�M � ��tuple�M � It was shown that� for every macro tree transducer� this normal�
form exists�

Finally a decision algorithm was given which is able to determine whether or not� rec�it�M�
is more e�cient than M �

An important topic of this paper was to de�ne the relations as precise and easy as possible
to be able to proof all the statements we made� Hence� the transformation strategy itself is not
very e�cient and many optimations are possible to speed up the strategy and to optimize also
rec�it�M�� e�g�� the life time of the formal parameters which were saved in the argument list
of register functions no matter if they are used or not� could be examined� Another obvious
optimization would be to de�ne an ordering on the simple functions to avoid that by the tupling
transformation relation� e�g�� the tuple functions �f� g� and �g� f� arise� But these optimizations
have no e�ects to the e�ciency of rec�it�M� and only complicates the proof and the clearity of
the presentation�

At the time being we are generalizing this strategy to more powerful program schemes�

�

References

�AE
�
 P� R� J� Asveld and J� Engelfriet� Extended linear macro grammars� iteration gram�
mars� and register programs� Acta Informatica� ������!���� ��
��

�AS
�
 M�A� Auslander and H�R� Strong� Systematic recursion removal� Communications of
the ACM� ��������
!���� ��
��

�BD

 R�M� Burstall and J� Darlington� A transformation system for developing recursive
programs� Journal of the ACM� ��������!�
� ��

�

�Bir

a
 R�S� Bird� Improving programs by the introduction of recursion� Communications of
the ACM� �	��������!���� ��

�

�Bir

b
 R�S� Bird� Notes on recursion elimination� Communications of the ACM� �	�������!
���� ��

�

�Bir�	
 R�S� Bird� Tabulation techniques for recursive programs� ACM Computing Surveys�
�������	�!��
� ���	�

�Boc
�
 G�V� Bochmann� Semantic evaluation from left to right� Communications of the
ACM� �����!��� ��
��

�Boi��
 E�A� Boiten� Improving recursive functions by inverting the order of evaluation�
Science of Computer Programming� ������!�
�� �����

�BW��
 F�L� Bauer and H� W(ossner� Algorithmic language and program development� Sprin�
ger� Berlin� �����

�CF��
 B� Courcelle and P� Franchi�Zannettacci� Attribute grammars and recursive program
schemes� Theoretical Computer Science� �
����!��� and ���!��
� �����

�CH��
 W� Chin and M� Hagiya� A transformation method for dynamic�sized tabulation�
Acta Informatica� �����!���� �����

�Chi��
 W� Chin� Towards an automated tupling strategy� In
rd ACM Symposium on Partial
Evaluation and Semantics�Based Program Manipulation� pages ���!���� Kopenhagen�
����� ACM Press�

�CK��
 W� Chin and S�C� Khoo� Tupling functions with multiple recursion parameters� LNCS�

������!��	� �����

�Dij�	
 E�W� Dijkstra� Recursive programming� Numerische Mathematik� �����!���� ���	�

�DPSS

 J� Duske� R� Parchmann� M� Sedello� and J� Specht� IO�macrolanguages and attri�
buted translations� Information and Control� ����
!�	�� ��

�

�Eng�	
 J� Engelfriet� Some open questions and recent results on tree transducers and tree
languages� In R�V� Book� editor� Formal language theory� perspectives and open pro�
blems� New York� Academic Press� ���	�

��

�ES
�
 J� Engelfriet and E�M� Schmidt� IO and OI� Part I and II� J� Comput� System Sci��
��� ������!���� �
!��� ��

� ��
��

�EV��
 J� Engelfriet and H� Vogler� Macro tree transducers� J� Comput� System Sci�� ������
�!
���� august �����

�Fea��
 M�S� Feather� A system for assisting program transformation� ACM Transactions on
Programming Languages and Systems� ������!�	� �����

�Fis��
 M�J� Fischer� Grammars like macro�like productions� PhD thesis� Harvard University�
���� �see also� Proc� on �th Symp� on SWAT� pp� ���!���� ������

�HP��
 B� Ho�mann and D� Plump� Implementing term rewriting by jungle evaluation�
R�A�I�R�O� Informatique th�eorique et Applications� ���������!�
�� �����

�Hue�	
 G� Huet� Con�uent reductions� abstract properties and applications to term rewriting
systems� Journal of the ACM� �
�
�
!���� ���	�

�IK�
a
 K� Indermark and H� Klaeren� Compiling �bonacci�like recursion� SIGPLAN Notices�
����	�!�	
� ���
�

�IK�
b
 K� Indermark and H� Klaeren� E�cient implementation of structural recursion� In
LNCS ���� FCT
���� pages �	�!��
� ���
�

�IKV�	
 K� Indermark� H� Klaeren� and H� Vogler� Computational aspects of structural recur�
sion� invited lecture at STACS
��� Rouen� France� ���	�

�Kla��
 H� Klaeren� Ein algebraischer Ansatz zur Rekursionselimination� RWTH Aachen�
Fachgruppe Informatik� Ahornstr� ��� D���	�� Aachen� ����� Habilitationsschrift�

�Klo��
 J� W� Klop� Term rewriting systems� In Handbook of Logic in Computer Science�
Volume �� pages �!���� Clarendon Press� Oxford� �����

�Knu��
 D�E� Knuth� Semantics of context�free languages� Mathematical Systems Theory�
�����!���� �����

�Knu
�
 D�E� Knuth� Structured programming with go to statements� ACM Computing Sur�
veys� ��������!�	�� ��
��

�McC�	
 J� McCarthy� Recursive functions of symbolic expressions and their computation by
machine� part I� Communications of the ACM� �����!���� ���	�

�Par�	
 H�A� Partsch� Speci�cation and Transformation of Programs� a formal approach to
software development� Texts and monographs in computer science� Springer�Verlag�
Berlin� ���	�

�PK��
 R� Paige and S� Koenig� Finite di�erencing of computable expressions� ACM Tran�
sactions on Programming Languages and Systems� ������	�!���� �����

�PP��
 H� Partsch and P� Pepper� Program transformations expressed by algebraic type
manipulations� Technique et Science Informatiques� 	����
!���� �����

��

�PP��
 A� Pettorossi and M� Proietti� Rules and strategies for program transformation�
In B� M(oller� H� Partsch� and S� Schumann� editors� Formal Program Development�
IFIPTC��WG ��
 State�of�the�Art Report� LNCS
��� pages ���!�	�� �����

�Ric��
 H�G� Rice� Recursion and iteration� Communications of the ACM� ��������!����
�����

�San��a
 D� Sands� Proving the correctness of recursion�based automatic program transformati�
ons� In P� Mosses� M� Nielsen� and M� Schwartzbach� editors� Sixth International Joint
Conference on Theory and Practice of Software Development �TAPSOFT	� volume
��� of Lecture Notes in Computer Science� pages ���!���� Springer�Verlag� �����

�San��b
 D� Sands� Total correctness by local improvement in the transformation of functio�
nal programs� Technical report� DIKU� University of Copenhagen� ����� Extended
Version of �Sands�POPL %��
 �Submitted for Publication��

�SPvE��
 M�R� Sleep� M�J� Plasmeijer� and M�C�J�D� van Eekelen� editors� Term Graph Rewri�
ting� Theory and Practice� Wiley Professional Computing� �����

�Thi��a
 P� Thiemann� E�cient implementation of structural recursive programs� Technical
Report WSI������� Wilhelm Schickard�Institut f(ur Informatik� Universit(at T(ubingen�
�����

�Thi��b
 P� Thiemann� Tabulating recursive functions without descent laws� Technical Report
WSI������ Wilhelm Schickard Institut f(ur Informatik� Universit(at T(ubingen� �����

�Vog�	
 H� Vogler� Funktionale Programmierung mit primitiver Rekursion � formale Modelle
zur Reduktionssemantik� RWTH Aachen� Fachgruppe Informatik� Ahornstr� ��� D�
��	�� Aachen� ���	� Habilitationsschrift�

	

