An Introduction to TkGofer

Ton Vullinghs, Wolfram Schulte, Thilo Schwinn

Spring 1996
Universitat Ulm
Fakultat fir Informatik
Germany

Contents

1 Introduction
1.1 Starting TkGofer
1.2 The First TkGofer Program
1.3 Notation e
1.3.1 Gofer o
1.3.2 NuWeb e
1.4 What About Tk?
1.5 Overview e e e e
2 Concepts
2.1 The GUI Monad e
2.2 Starting the Eventloop L
2.3 Creating Widgets e
2.4 The TkGofer Widget Hierarchy
2.4.1 The Implementation Hierarchy
2.4.2 The User Hierarchy
2.5 Combining Widgets L
3 Introducing Widgets
3.1 Windows and Labels
3.2 MesSSsages . . . oL ...
3.3 Buttons
3.3.1 Commandbuttons
3.3.2 Checkbuttons e
3.3.3 Configuring Widgets L
3.3.4 Sequentialization of Actionso
3.3.5 Radiobuttons
3.4 Entries
3.4.1 Typed Contents e e e
3.4.2 Reading and Writing Arbitrary Values
3.4.3 State and GUI: The Calculator
3.5 Scales
3.6 Listboxes e
3.7 Scrolling Widgets e
3.8 Editors and Menubars
3.8.1 The Editor
3.8.2 Menus and Menuitemso
3.83 Marks e
3.84 Tags
3.9 Canvas and Canvas Items

= W Wi~ -

0~~~ oo Ut N

11

12
13
13
14
14
15
15
16
17
17
19
20
21
21
23
23
24
25
26
26

2

An Introduction to TkGofer

3.10 Drawing a Histogram e

Defining New Widgets

4.1 The Prompt Widget
4.1.1 Creating the Prompt Widget
4.1.2 Configuring New Widgets

4.2 The Indicator Widget L e

Signatures of the tk.prelude

5.1 Start and Quit L e e e e
5.2 User Classes and Instances
5.3 TopLevel items e
5.4 Window Items
55 Menultems L
5.6 Canvas Items e e e e
5.7 User Defined Events e
5.8 Widget Combinators and Layout Functions
5.9 Monads and Variables
5.10 Miscellaneouso
5.11 Composing Widgets e
Bibliography

Index

29

29
29
30
31

35

35
35
39
40
41
41
42
42
42
42
42

46

47

Preface

This report is an introduction to TkGofer. TkGofer is a library of functions for writing graphical
user interfaces (GUIs) in the pure functional programming language Gofer. The library provides a
convenient, abstract and high-level way to write window-oriented applications. The implementation
rests on modern concepts like monads and constructor classes.

The main goal of this report is to illustrate the way in which you write GUIs in TkGofer. All
the provided widgets are introduced and explained by a set of illustrating examples. The last part
of this manual lists the signatures of the user functions of the GUI library.

TkGofer is freely available. For more information please contact ton@informatik.uni-ulm.de

Acknowledgments Several people have contributed their ideas and suggestions. Special thanks
to Daniel Tuijnman, who designed and implemented substantial parts of earlier versions of the
library. Furthermore we thank Erik Meijer and Klaus Achatz for their encouraging and helpful
comments.

Chapter 1 Introduction

Functional programming languages offer many advantages to programmers. Using functional lan-
guages often results in faster development times and shorter code compared with imperative lan-
guages. Furthermore, reasoning about and reusing programs is easier. Recent research in the
field of functional programming resulted in new concepts such as monads to tame the imperative
aspects of I/O and state [Wad90], and constructor classes to deal with higher order polymorphism
[Jon95].

Today, the specification of graphical user interfaces (GUISs) is an essential part of any realization
of interactive systems. To avoid multi-paradigm programming, it is an obvious idea to incorporate
GUI programming in functional languages. Due to intrinsic state-based properties of GUIs, mo-
nads are an obvious and natural choice for their implementation. Other people already presented
alternative solutions to this problem, see for example [AvGP93, CH93, NR95].

This document describes the TkGofer GUI Library, an extension of the functional language
Gofer, based on the graphical user interface toolkit Tcl/Tk. The main goal of the document is to
explain how to to write programs in TkGofer and to give a brief description of the implementation
of the system. Since all the GUI functions are abstractions of Tcl/Tk procedure calls, it is useful
but not necessary to know a little about Tk. The best way to get some insight in the ins and outs
of Tcl/Tk is by reading John Ousterhout’s book ‘Tcl and the Tk Toolkit’, published by Addison
Wesley in 1994. For a good introduction to functional programming we refer to [BW89]. The
release notes and reference manual included in the standard Gofer distribution will tell you all the
details about functional programming in Gofer [Jon93a, Jon93b].

1.1 Starting TkGofer

The TkGofer interpreter looks and behaves exactly the same as the standard gofer interpreter.
TkGofer starts with loading the file tk.prelude. It is an extension of the cc.prelude and contains
all the standard definitions you will need to write GUI programs in Gofer. You can start TkGofer
by entering tkgofer, after which your display will show something like:

Gofer Version 2.30a Copyright (c) Mark P Jones 1991-1994
Reading script file "tk.prelude":

Gofer session for:
tk.prelude
Type :7 for help

2 An Introduction to TkGofer

The command :7 will give you an overview of the available interpreter commands.

1.2 The First TkGofer Program

Figure 1.1 shows one of the simplest applications you may possibly write in TkGofer. It shows an
entry and a button widget. The entry displays an integer. The value of this integer is incremented
when the button is pressed.

[] Counter

|25

Increment.

Figure 1.1: A simple adder

The program below shows all you have to write in TkGofer to implement the counter. Simply
type ‘adder’ to let the example run.

adder :: I0 ()
adder = start (

window [title "Counter"] “bind® \w ->
entry [initValue 0] w *bind® \e ->
button [text "Increment", command (incr e)] w “bind> \b ->
pack (e "=~ b)

)

incr :: Entry Int -> GUI ()
incr e = getValue e “bind® (\x -> setValue e (x+1))

The function adder implements the user interface of the application. It creates a window, and
two window items. The items are combined horizontally, using the combinator ~-~. This means
that the label and the entry are placed above each other and are aligned in length. The function
bind combines two monadic actions.

The function incr defines the event that happens when we press the button. The actual value
of the entry field is read, incremented and written back to the display.

1.3 Notation

1.3.1 Gofer

All programs are written in Gofer. GUI datatypes and functions are defined in the tk.prelude,
Most of the GUI-functions have a monadic type, i.e., they return a value of type GUI a. To bind
together monadic functions, you may use the functions bind and result. We prefer however a
more readable style, using the Gofer do-notation.

Using the do-notation we can rewrite the previous example in the following way:

adder :: I0 ()

Introduction 3

adder = start $
do w <- window [title "Counter"]
e <- entry [initValue 0] w
b <- button [text "Increment", command (incr e)] w
pack (e "=~ b)

incr :: Entry Int -> GUI ()
incr e = do x <- getValue e ; setValue e (x+1)

To avoid nested bracketing in large expressions we will often use the $ operator for infix function
application. $ is right associative and has the lowest precedence.

($) :: (@a->Db) ->a->b
f$x=1Fx

1.3.2 NuWeb

This document is written using NuWeb [BR89]. NuWeb is a very simple literate programming
environment that works with any programming language and IATRX. Using NuWeb it is possible
to write documentation for multiple program source files in a single document. It runs very quickly
and has some nice features for generating HTML-pages and index-tables.

All the examples included in this document are executable in TkGofer. They are automatically
extracted from this document if you run NuWeb.

1.4 What About Tk?

Since Gofer essentially serves as a generator for Tcl/Tk statements, it might be interesting to take
a look at the generated code. For this purpose, we added the command line toggle x. Simply type
the interpreter command :set +x and rerun the previous example. Your output will look like the
following;:

[Initialize Tk (4.1 or higher)]
window .QO
wm title .@0 "Counter"
entry .@0.01
.@0.@1 configure -textvariable ".@Q0.@1"
set svar0 O
global .@0.@1 ;set .@0.Q1 $svarO
button .@0.0@2
.@0.02 configure -text "Increment"
.@0.02 configure -command {doEvent 0}
frame .00.01f
pack .@0.@1f -in .@O0
raise .0@0.0Q1f
pack .Q@0.@1 -in .@0.@1f -si top -fi x
raise .0@0.01
pack .@0.@2 -in .@0.@1f -si top -fi x
raise .00.02

[Tk is waiting for an event...]

This listing is the exact Tcl/Tk code Gofer sends to the Tcl interpreter. Especially if you are
writing extensions to the library, or if an unexpected Tk error occurs, you can debug the generated
code in this way. You can reset the toggle by :set -x.

4 An Introduction to TkGofer

1.5 Overview

The rest of this document describes the main concepts of writing graphical user interfaces in Gofer.
In Chap. 2 we will discuss some general principles of GUI programming in TkGofer. Important
aspects like creating and combining widgets are explained. Furthermore, we sketch the role of the
GUI monad and we explain the TkGofer type and constructor classes.

Readers mainly interested in GUI programming may want to skip directly to Chap. 3. In this
chapter, all the standard widgets are introduced and explained on the basis of some illustrating
examples.

Type and constructor classes make it possible to write extensions to the standard library. How
to write new widgets is described in Chap. 4.

Finally, the last chapter serves as a reference manual to TkGofer. In this chapter we give all
the signatures of the user-functions of the tk.prelude.

Chapter 2 Concepts

This chapter explains the main concepts of functional GUI programming using TkGofer. For
a detailed discussion of the implementation of TkGofer we refer to [Sch96, VSS96b, VTS95].
Significant parts of TkGofer rest on advanced concepts like monads and higher order polymor-
phism. We therefore assume that you already have some knowledge about monadic program-
ming and type and constructor classes. Detailed discussions about these topics can be found in
[Jon95, LPJ95, PJTW93, Wad90, Wad95].

2.1 The GUI Monad

The most important datatype of TkGofer is the GUI monad. The monad is implemented as a
combination of the state reader monad and the I0 monad [JD93]. Values of type GUI a represent
actions that have some side effect on the user interface and return a value of type a. The type GUI
() represents all void actions; i.e., actions which only have a side effect and do not return a proper
value.

For example the function incr (see the example in Sect. 1.2) has type Entry Int -> GUI ().
It reads a value and updates the entry field, but does not return a value. An example of a non-void
action is the function button :: [Conf Button] -> Window -> GUI Button. It constructs a
button widget and returns an identifier for this button.

Two frequently used monadic functions are seqs and binds. seqgs ‘executes’ a list of void
actions. binds ‘executes’ a list of non-void actions and returns a list of results. The function void
throws away the result of a monadic action, thus performing a cast fromm a tom ().

seqs :: Monad m => [m O] ->m O
binds :: Monad m => [m a] -> m [al
void :: Monad m => m a -> m ()

Monads can be used to implement lazy state threads, too [LPJ94, LPJ95]. We use them to store
global data. A mutable variable is manipulated with the functions:

newState :: a -> GUI (Var a) -- create a variable
readState :: Var a -> GUI a -- read a variable

writeState :: Var a -> a —> GUI () -- write a variable
modState :: Var a => (a -> a) -> GUI () -- read/apply/write

Applications of mutable variables are given in Sect. 3.4.3 and 3.8.

6 An Introduction to TkGofer

2.2 Starting the Eventloop

In Gofer an interactive (monadic) program must have type I0(). All GUI applications begin with
the function start. This function initializes the communication with Tcl/Tk and sets up the
eventloop. The eventloop can be interrupted using Ctrl-C or the function quit.

start :: GUI O -> I0 O
quit :: GUI ()

The argument of start denotes the first action to perform. Typically, this first action will create
the user interface.

2.3 Creating Widgets

The basic building blocks of a graphical user interface are widgets. A widget is a graphical en-
tity with a particular appearance and behaviour. We distinguish between four kinds of widgets:
toplevel-, window-, menu- and canvas-widgets. Widgets of kind toplevel serve as containers for
other widgets. Examples are windows and menus. Window-widgets, like buttons and labels, may
appear on a window. Menu-widgets may occur in a pull-down or pop-up menu. Examples are
buttons and separators. Canvas-widgets like rectangles and circles, may be placed on a canvas.

The different widget kinds are identified by the data constructors T, W, M and C. Normally,
these constructors are hidden using type synonyms. For example, the type Button is defined by:

data Button0O = ButtonO
W ButtonO

type Button

The constructor W defines the button as a window item. All other widgets are defined in the same
way. For each widget, the library offers a construction function, e.g.:

window :: [Conf Window] -> GUI Window

entry :: [Conf (Entry a)] -> Window -> GUI (Entry a)

cascade :: [Conf Cascade] -> Menu -> GUI Cascade

cline :: (Int,Int) -> (Int,Int) -> [Conf CLine] -> Canvas -> GUI CLine

Defining the external outline of individual widgets is done by giving appropriate values for the
configuration options. Examples are the color of a widget, a displayed text or the dimensions of a
widget. The possible configuration options are widget specific (see also Sect. 3.3.3). To constraint
options to a specific class of widgets we introduce a hierarchy of type and constructor classes
[Jon95, VSS96a]. We explain the widget hierarchy in Sect. 2.4.

The exact behaviour of toplevel widgets, window widgets, menu widgets and canvas widgets,
is explained in the examples in Chap. 3.

2.4 The TkGofer Widget Hierarchy

Although a lot of differences between widgets exist, most properties that widgets may have are
shared by some widgets or even by all widgets, e.g., the way in which they have to be accessed or
the way in which we have to specify their outline. Type and constructor classes are used to express
the common characteristics of a set of widgets.

Concepts 7

2.4.1 The Implementation Hierarchy

As said before, we distinguish between four kinds of widgets: toplevel-, window-, menu- and canvas-
widgets. To exploit the similarities among the widgets of a certain kind, the classes TopLevel,
WindowItem, Menultem and CanvasItem are introduced. All widgets are instances of the class
Widget. The program below shows class definitions for Widget, WindowItem and MenuItem:

class Widget a

class WindowItem a

instance Widget (W a) => WindowItem (W a)
class Menultem a

instance Widget (M a) => MenuIltem (M a)

The functions defined in these classes deal with implementation aspects, like the generation of
widgets, and are not further discussed here. The constructed hierarchy is called the implementation
hierarchy (see Fig. 2.1).

TopLevel WindowItem MenuItem CanvasItem

Widget

Figure 2.1: The TkGofer implementation hierarchy

2.4.2 The User Hierarchy

On top of the implementation hierarchy, we build other classes which are more oriented towards
the application programmer. This leads to a hierarchy of classes as depicted in Fig. 2.2.

The basic class is called HasConfigs. In this class we define functions that apply to every
widget, e.g., the function cset to update the configuration of a widget.

class Widget w => HasConfigs w where
cset it w > Conf w -> GUI ()

All other classes in the hierarchy are specializations of HasConfigs. HasCommand, for example,
includes all widgets that additionally may be configured with a command. A typical instance is
the datatype Button.

class HasText w => HasCommand w where
command :: GUI () -> Conf w
invoke :: w —> GUI ()

An example of a constructor class is the class HasInput. In this class we group widgets that
can handle user input. Instances are for example entry fields and texts (single and multiple line
input). Widgets in this class are parameterized over the type of their input. This type should
be an instance of the class GUIValue in which parse and unparse functions are defined to display
values on the screen (see also Sect. 3.4.2). The class HasInput is listed below:

class (HasConfigs (¢ (w v)), GUIValue v) => HasInput ¢ w v where
getValue :: ¢ (w v) -> GUI v

8 An Introduction to TkGofer

HasIndicator

‘ HasCommand

‘ HasHeight

‘ Haspad ‘

l

‘ HasText ‘ ‘ HasWidth ‘ ‘ HasScroll

‘ HasAnchor

HasPosition

HasInput

HasFillColor

HasForeground|

‘ HasBorder

HasBackground|

HasConfigs
Widget

Figure 2.2: The TkGofer user hierarchy

setValue :: ¢ (w v) -> v => GUL ()
updValue :: (v -> v) -> ¢ (w v) -> GUL ()
updValue f x = do i <- getValue x; setValue x (f i)

The class has three parameters: the constructor c ranges over the possible widget kinds (T, W, M,
or C); w ranges over the constructors for widgets having an input value of type v.

A complete overview of all the classes and their member functions is given in Chap. 5. In
Chap. 4 we will explain how to extend the widget hierarchy and how we can define new widgets.

2.5 Combining Widgets

Window widgets can be composed vertically and horizontally using layout combinators and func-
tions. Our basic combinators are

(<€), (*7) :: (WindowItem (W a),WindowItem (W b)) => W a -> W b -> Frame

These combinators are associative and have the following meaning;:

e v << w places widget w to the right of widget v;

e v °~ w places widget w below widget v.

The resulting new widget is called the father of v and w.

With every widget we can associate an inherited and an occupied area. The inherited area is the
area a widget gets from its father. The occupied area is actually used for displaying information,
and is always a centered subarea of the inherited one.

Initially, the occupied and inherited area equal the minimal dimensions needed by the widget to
display its information. After combination with some other widget, the occupied area of the father

Concepts 9

is minimal again. His concatenated sons are placed in the left uppermost corner of his occupied
area. If widget v is bigger than widget w, the inherited area of v will equal its occupied area, and
the inherited area of w will equal the rest of the occupied area of the father.

The fill functions make a widget occupy its inherited area either horizontally (£i11X) or verti-
cally (£111Y). The expand function makes a widget claim from its father all occupied area that is
not inherited by one of his (other) sons. flexible is just an abbreviation for £i11XY . expand.

f£illX, £illY, fillXY, expand, flexible :: WindowItem (W a) => W a -> Frame

In Fig. 2.3 we see three possible layout situations after application of (variants of) the combinators
and fill functions. In the first picture, A and B are composed horizontally. Together they are
combined vertically with C. In the second one, we let A << B and C occupy their inherited area in
a horizontal direction. As a result of this, the father of A and B grows over the full length of C. In
the third one, we let A and B grow vertically.

A B

| ¢ I c I
{(A<<B)*C (A<<By~-~C (A<|<B)~C

Figure 2.3: Layout combinators and fill functions

In Fig. 2.4 we show the result of expanding widgets. In the first picture, we let A claim and
take the area of its father. Likewise, in the second one, this area is claimed and taken by B. Finally,
in the last picture, the area is claimed, taken and divided by both A and B.

A B) B A B

c C c
(eX A<+<B)~-~C (A<+<exB)~-"C (A <"+ B)~-~C

Figure 2.4: Layout combinators and expand functions

In these examples, ex abbreviates expand. The additional (associative) combinators combine
the principles of sizing and positioning:

(<), (k*<), (k=<), (K[<), (k#<), (x=<), (<*|<), (<*+<),
™), Cx), =7, 1), C+), Cx=7), C*[7), (C*+7)
(WindowItem (W a), WindowItem (W b)) => W a -> W b -> Frame

These combinators apply the same layout function on both arguments. For example ~-~ places two
widgets above each other and aligns them in length, <|< place them next to each other, aligned in
height. + is just the combination of | and -. Finally, * applies an expand operation on the right
and left operand.

10 An Introduction to TkGofer

Chapter 3 Introducing Widgets

This chapter demonstrates the main techniques of writing GUIs in TkGofer. Similar to John
Ousterhout’s tour of the Tk Widgets ([Ous94], Chap. 16) we will briefly present the implemented
widgets and describe how to create, configure and display them.

All the widgets are presented on the basis of some clarifying examples. To test the examples,
you can read the generated files in the Gofer interpreter or simply load the project file demo.p.
This project automatically includes the files:

label.gs
button.gs
message.gs
checkbutton.gs
setget.gs
radio.gs
scale.gs
entry.gs
entry_short.gs
calc.gs
listbox.gs
scrollbar.gs
octdec.gs
edit.gs
canvas.gs
histo.gs

All demos start with the name ex_filename (filename without the .gs extension). We proceed
from the trivial ‘Hello world’ to more sophisticated programs like a desk calculator and a text
editor.

3.1 Windows and Labels

Let’s start with the famous ‘hello world’ example (see Fig. 3.1).

‘Hello world’ actually displays two widgets — a window and a label. In TkGofer, the implementation
of this GUI looks like:

ex_label :: I0 ()

11

12 An Introduction to TkGofer

hello wrorid

|r1| My Example
I|

Figure 3.1: Hello World!

ex_label = start $
do w <- window [title "My Example"]
1 <- label [text "hello world", background "yellow", width 25] w
pack 1

A user interface may contain one or more windows. The window widget serves as a container for
other widgets. The library offers functions to open, close and configure windows. The function
window creates and opens (displays) a new window. It takes a list of configuration options as
argument. In the above example, we configured the title of the window with the string “My
Example”. The actual position of the window is determined by the window manager of Tcl/Tk,
or by the configuration options of the window.

The second widget is the label widget. A label is a widget that displays a string or a bitmap.
The configuration options define the exact value of this string or bitmap. Other valid configuration
options are for example the widget’s background color or its dimensions. The last argument of the
function label refers to the window in which the label has to be displayed.

Finally, the function pack displays the label. In general, pack is used to combine and display
widgets that have to appear in the same window.

Since a combination of window and pack will occur very frequently in your programs, the
prelude offers the function openWindow as an abbreviation for this. It takes a list of configuration
options as argument. and a function which creates window widgets of type W a. closeWindow
removes a window from your display.

openWindow :: [Conf Window] -> (Window -> GUI (W a)) -> GUL ()
closeWindow :: Window -> GUI ()

Using this function, the example can be rewritten in a shorter way:

hello = (start . openWindow [title "My Example"])
(label [text "hello world", background "yellow", width 25])

3.2 Messages

Message widgets are similar to labels except that they display multiline strings. A message au-
tomatically breaks a long string up into lines. The configuration function aspect controls the
width/height ratio for the displayed text. Furthermore, with the function justify, we can center
a text, or position it to the right or to the left.

ex_message :: I0 ()
ex_message = start $
do w <- window [title "What’s the message?"]
ms <- binds
[message [text msg, aspect (75%i), justify pos] w
| pos <- ["left","center", "right"], i <- [1..3]
]
pack (matrix 3 ms)
where msg = "the message widget displays and formats a text"

Introducing Widgets

13

This example also demonstrates the function matrix. This layout function takes a number of
columns and a list of widgets as its arguments and composes them in a row major fashion. Since
the second argument is a list of widgets, all widgets must be of the same kind.

[

What’s the message?

the
message
widget
displays
and
formats a
text

the
messagje
widget
displays
and
formats a
text

the
message
widget
displays
and
formats a
text

th% m:ssage the message
widge: - >
displays and widget displays

formats a text and fonmats a text

the message

witget the message

widget displays

displays and
formats a text 2nd formats a text
e me\:;la%i the message
displays 3,.., widget displays
formats a text 2" formats a text

Figure 3.2: Several variations of aspect and justify

Build on matrix are the layout functions horizontal and vertical:

horizontal xs = matrix (length xs) xs

vertical xs = matrix 1 xs

3.3 Buttons

In this section standard commandbuttons are introduced. Another variation are radiobuttons and
checkbuttons. They have the same characteristics as commandbuttons, but additionally have some

‘dynamic’ feature.

3.3.1 Commandbuttons

Figure 3.3 shows an extension to the ‘hello world’ example. We added a button widget. A button
is very similar to a label, except that it responds to the mouse. If the user moves the mouse
pointer over the button, the button lights up to indicate that something will happen if the left
mouse button is pressed — if a command option is specified, the argument of the function command

is executed.

| My Example2
h

ello wordld press me |
1

Figure 3.3: Adding a button

This argument has to be a void action, i.e., a function of type GUI (). In the extended ‘hello
world’ application, the program quits if the user presses the button.

ex_button :: I0 ()

14 An Introduction to TkGofer

ex_button = start $
do w <- window [title "My Example2"]
1 <- label [text "hello world", background "yellow"] w
b <- button [text "press me", command quit] w
pack (1 << b)

3.3.2 Checkbuttons

Checkbuttons have a binary state (true or false) which is set or unset, each time the user presses
the button. Using the function setValue the user may give this widget a specific value, or, by
using getValue, read the actual value of the button state. The following example illustrates the
use of checkbuttons:

ex_checkbutton :: I0 ()
ex_checkbutton = start $
do w <- window [title "Check this out!"]
11 <- label [text "The moon is made of cheese"] w
cbl <- checkbutton [text "Press me", indicatorOn False
, indicatorColor '"green", background "red"
1w
cb2 <- checkbutton [text "Wrong", width 8] w
cset cb2 (command (pressed cb2))
pack (cbl "=~ (11 << cb2))

pressed :: Checkbutton -> GUI ()
pressed c =
do b <- getValue c
cset ¢ (text (if b then "Right" else "Wrong"))

=] Check this out!

The moon is made of cheese | Right
| L

Figure 3.4: Checkbuttons

The first checkbutton (cbl) defines a red checkbutton, whose color changes to green when
we press it (indicatorColor "green"). The function indicatorOn specifies that either a small
indicator or the relief of the button (sunken or raised) informs us about the state of the button
(indicatorOn True is default).

The second checkbutton (cb2) responds on a mouse event by calling the function pressed.
pressed reads the state of the checkbutton and changes the text of the button correspondingly.

3.3.3 Configuring Widgets

Changing and reading the configuration options of already generated widgets is done using the
functions cset and cget, respectively. Both functions take a widget and a configuration function
as argument. cset and cget have the following signature:

cset :: HasConfigs a => a -> Conf a -> GUI ()
cget :: (HasConfigs a, GUIValue b) => a -> (b -> Conf a) -> GUI b

Configuration options are parameterized over the set of types they may apply on. For exam-
ple the function justify, which is only allowed for message-widgets, has type String -> Conf

Introducing Widgets 15

Message, whereas the function background has the restricted polymorphic type HasBackground a
=> String -> Conf a. This means that background s is a valid option for all widgets that are an
instance of the class HasBackground. An example of cset and cget is the following ‘reverse-button’
function:

ex_setget :: ID ()
ex_setget = start $

do w <- window []

b <- button [text "hello"] w
cset b (command (rev b))
pack b
where
rev b = do x <- cget b text; cset b (text (reverse x))

After pressing the button, the displayed text is reversed.

3.3.4 Sequentialization of Actions

A drawback of monadic programming is that it enforces a strong sequentialization of actions. In
the previous program for example, we first generate a button, and then we apply the function
cset. The obvious reason for this is that we cannot use the variable b before it is generated. There
are however some tricks to solve the problem in some special situations.

Consider the function self, defined by:

self :: (a->a->b) ->a->b
self f a = (f a) a

Since configuration options essentially are functions from widgets to options, we can apply self
to abbreviate the sequence

x <- widget [] w; cset x (c x)
by

x <- widget [self (\x -> c x) 1 w

self takes the generated widget as an argument for the configuration option. Applied to the
cset_cget example we get:

b <- button [text "hello", self (command . rev)]

3.3.5 Radiobuttons

Radiobutton widgets are used to select one of several mutually exclusive options. The buttons are
controlled by one (abstract) widget — the radio. For radiobuttons and radios, the same operations
are defined as for checkbuttons.

The next example (see Fig. 3.5) shows the use of radios and radiobuttons. The program
simulates a very primitive trafficlight protocol.

ex_radio :: I0 ()
ex_radio = start $
do w <- window []
(1s1, rl) <- traffic w
(1s2, r2) <- traffic w
seqs (control 1lsl rl r2 ++ control 1s2 r2 rl)
pack (vertical 1sl << vertical 1s2)
where
traffic w =
do bs <- binds [radiobutton [indicatorColor c] w

16 An Introduction to TkGofer

| ¢ <= ["red", "yellow", "green"]
]

r <- radio [initValue 1] bs

result (bs, r)

control 1s i j =
[cset b (command $ do x <- getValue i; setValue j (2-x)) | b <- 1s]

No N

<< ¢la

b
N
+

! =

Figure 3.5: A small trafficlight controller

The function radio takes a list of radiobuttons as parameter and returns a controller for the
group of buttons. The functions setValue and getValue are used to address the buttons of a
radio. setValue takes an integer value, corresponding to the position of the radiobutton to set.
Likewise, getValue returns the position of the actual selected button.

The function traffic creates one trafficlight. It returns a list of three buttons and the radio to
control them. Initially, both trafficlights are yellow (initValue 1). The function control assigns
a command to every button, which guarantees the exclusiveness of the two trafficlights.

3.4 Entries

An entry widget allows the user to type in and edit a one-line string. This string may represent
any displayable type in a TkGofer program. Entries have some dynamic contents. Since entries
are an instance of same class (viz. HasInput) as radio- and checkbuttons we may access them
again using getValue and setValue.

The next example (see Fig. 3.6) implements a simple adder. When the user presses the enter
button, the value of the entry field is increased.

ex_entry :: I0 ()
ex_entry = start $
do w <- window []
e <~ entry [initValue 0] w
cset e (on return $ do x <- getValue e; setValue e (x+1))
pack e

rﬂ Mo Name
h

Figure 3.6: A simple adder

This example demonstrates the use of user defined events (on .. do ..). They correspond

Introducing Widgets 17

to ‘bindings’ in Tcl/Tk. The first argument is some key or mouse event, the second argument
defines the function that is called if the event occurs.

The function initValue initializes the contents of the entry. By the way, if you do not like
writing your applications using the do-notation, you might like to write the previous example in
‘dutch’ style:

ex_entry_short :: ID ()
ex_entry_short =
(start . openWindow [])
(entry [self $ on return . updValue (1+), initValue 0])

updValue is an abbreviation for reading a value, applying a function to it, and writing the resulting
value.

3.4.1 Typed Contents

An important feature of entry widgets (and also of other widgets with input) is the fact that
they are typed over their contents. Entries, displaying integers, have type Entry Int. Entries
displaying booleans have type Entry Bool, etc. If we want to assign a string to an integer input
field, we get the following error message:

setValue e "hello"

*** expression : setValue e "hello"
*** term toe
***x type : W (Entry0 Int)

*x*x does not match : a (b [Char])

W (Entry0 Int) is the derived type for e. W (Entry0 a) may be abbreviated by the type synonym
Entry a.

Remember that gofer needs enough information to derive the exact type of a widget. The
following program cannot be typed correctly:

type_error = start $
do w <- window []
e <- entry []1 w
pack e

ERROR "entry_error.gs" (line 1): Unresolved top-level overloading
*** Binding : type_error

x*%x Inferred type : I0 O

**+* Dutstanding context : Widget W (Entry0 _26)

To solve this problem we can explicitly type the widget, for example by replacing the last line by:

pack (e :: Entry Int)

or we can give some hints by providing an initial value for the entry field. In most applications
however, a widget occurs within a special context — this context determines the type of the widget.

3.4.2 Reading and Writing Arbitrary Values
The previous section showed that some widgets are parameterized over their contents of some type
a. Values of type a are printed on your display and can be read (user-input).

Since Tcl/Tk only deals with strings, we have to convert every displayed type in our application
to string. Likewise, we have to parse strings if we want to use the input. The class GUIValue defines

18 An Introduction to TkGofer

parse and unparse functions for any value that may be displayed at the GUI. If parsing fails we
open a standard error dialog.

The following example shows a decimal-octal converter after entering an invalid input value
(see Fig. 3.7).

Input Error

T] Convert € Invalid Oct String: 49

49

Figure 3.7: A decimal octal converter

We define Octal as an instance of the class GUIValue. We have to write an instance for
the functions tk_defaultValue and tk_convert. tk_defaultValue denotes the value we have to
return in case an input error occurs. tk_convert specifies the parse routine for the type Oct.
Unparsing is defined by the function show as a default. Therefore, we have to write an instance of
the class Text for the type Oct.

data Oct = Oct Int

instance GUIValue Oct where
tk_defaultValue = Oct O
tk_convert s | all (flip elem "01234567") s = Tk_0k (Oct (numval s))

tk_convert s | otherwise = Tk_Err ("Invalid Oct String: " ++ s)
instance Text Oct where
showsPrec d (Oct x) = shows x

The application itself consists of two entry fields. The first entry has type Entry Int, the second
one Entry Oct. Each time a value is entered in the decimal entry field the octal one displays the
converted value and vice versa.

ex_octdec = (start . openWindow [title "Convert"]) conv where
conv w =
do (f1,el) <- input w "dec"
(f2,e2) <- input w "oct"
doconv (\n -> Oct (fromTo 10 8 n)) el e2
doconv (\(Oct n) -> fromTo 8 10 n) e2 el
result (f1 << £2)

input w s =
do 1 <- label [text s] w
e <- entry [width 9] w
result ((1 "=~ e),e)

doconv f a b =
cset a (on return (do {x <- getValue a; setValue b (f x)1}))

fromTo n m = foldr (\a b -> b*n + a) 0 . digits m
where digits j n = map ("mod* j) ((takeWhile (>0) . iterate (“div® j)) n)

Introducing Widgets 19

3.4.3 State and GUI: The Calculator

Another demonstration of entries and buttons is the desk-calculator example. This example shows
how to deal with a global state. So far, we only met examples that did not use a global state.
Actions only had some (local) side-effect on the GUI. In this example, we will need actions that
use mutable variables (cf 2.1).

F 7] Calculator

48

(el e Rl RO

el e TN e
< oo oo

Figure 3.8: The calculator

Take a look at Fig. 3.8 and imagine what should happen if the user presses the button ‘+’. The
calculator has to read the actual value of the display and apply ‘+’ to it. The calculator has to
keep this accumulator function in its memory, till the user has entered a new number and pressed
another operator key.

Since every command has the type GUI (), we cannot return the updated ‘memory’ as the
result of a button press. The simplest way to solve this problem is to use mutable variables. We
implement the calculator’s memory by a mutable variable which contains the displayed value and
the value of the accumulator function. The definition of the calculator state and GUI is given
below.

type CalcState = (Int, Int -> Int)

ex_calc :: I0 ()
ex_calc = start $
do st <- newState (0, id)
w <- windowDefault [title "Calculator"] [font "12x24"]
c <- calc st w
pack c

calc :: Var CalcState -> Window -> GUI Frame
calc st w =
let disp = entry [relief "sunken", width 12, initValue 0] w

keys e = map (cmd e) ["1, °27, “37, “+7,
’4’, ’5’, ’6’, ’_’,
’7’, ’8’, ’9’, ’*’,
rCr’ ror’ r=r’ r/r
]

cmd e ¢ = button [text [c], command (next e (action c)), width 2] w

next e f = do (disp, accu) <- readState st
let (disp”,accu’) = f (disp, accu)
setValue e disp”
writeState st (disp”,accu”)

20 An Introduction to TkGofer

action “C” (d,a) = (0, id)

action ‘=" (d,a) = (a d, const (a d))

action ¢ (d,a) | isDigit ¢ = (10%d + ord ¢ - ord 0", a)
| otherwise = (0, ((char2op c).a) d)

char2op “+° = (+)
char2op "= = (-)
char2op “*° = (*)
char2op “/° = \x y -> if y == 0 then 99999999 else x “div" y

in do e <- disp
k <- binds (keys e)
result (e “-" matrix 4 k)

The function calc initializes the state and opens the window. The function windowDefault applies
the second list of configuration options to every widget in the GUI.

The user interface is built using an entry widget and a matrix of buttons for the keypad.
Whenever the user presses a digit, it is displayed and the value component of the state is updated.
When an operator is pressed, the display is reset and the accumulator function is modified. After
pressing the ‘=’ button, the calculator evaluates the accumulator function.

3.5 Scales

A scale widget is a widget that displays an integer value and allows users to edit this value by
dragging a slider. We have two functions to generate scales, hscale for horizontal scales and vscale
for vertical scales. The range of values for the scale is specified by the function scaleRange. To
display tickmarks next to a scale, we use tickInterval.

If the command option is specified, each time the value of the scale changes, the command is
executed. The example below (see Fig. 3.9) shows the use of scales.

r'ﬂ small scale application _
speed (m/s)
14
| R

0 10 20 30 40 S50 60O 70 @80 90

tme (s)

distance (m)
76

0 10 20 30 40 50 60O 70 &0 90

Figure 3.9: Calculating the total time

The two scales represent an indicator for speed and distance. When the user moves the sca-
les, the values are increased or decreased. The corresponding trip duration is recalculated and
displayed.

ex_scale :: I0 O
ex_scale = start $
do w <- window [title "small scale application"]

Introducing Widgets 21

sl <- makeScale '"speed (m/s)" w
s2 <- makeScale "distance (m)" w
11 <- label [text "time (s) "] w
12 <- label [width 10, relief "ridge"] w
setCommands sl s2 12
pack ((s1 ~-7 s2) <[|< (11 <*-< 12))
where
makeScale lab win =
hscale [scaleRange (0, 99)
, tickInterval 10
, text lab
, height 400
] win
setCommands sl s2 12 =
let slide = do v <- getValue sl
d <- getValue s2
cset 12 ((text . take 4 . time d) v)
time 4 0 = "0.0"
time d v = show ((fromInteger d / fromInteger v) :: Float)
in do cset s1 (command slide)
cset s2 (command slide)

3.6 Listboxes

A listbox is a widget that displays a collection of elements and allows the user to select one or
more of them. Also listboxes are parameterized over the type of their contents.

The example shows two listboxes (see Fig. 3.10). The left one displays strings, the right one
displays integers. In the right listbox we have marked four elements.
ex_listbox :: ID ()
ex_listbox = start $
do w <- window []
11 <- label [text "Strings"] w
12 <- label [text "Integers"] w
1bl <- listbox [initValue (part 3 [‘A".."Z°1)] w
1b2 <- listbox [initValue [1..8], multipleSelect True] w
pack ((11 °-~ 1b1) << (12 °-~ 1b2))
where part n = map (take n) . takeWhile (not . null) . iterate (drop n)

The type checker will derive that 1b1l has type Listbox [String] and 1b2 has type Listbox
[Int].

To switch between the two select modi (single select, to select only one element from the list
and multiple select to select a set of elements) we use the function multipleSelect. Selections
are made using the mouse. To select two or more non-consecutive elements, we can use the control
key to fix the first selections.

3.7 Scrolling Widgets

Scrollbars control the view in other widgets. Therefore, a scrollbar is always associated with another
widget. Scrollbars can be generated by the functions vscroll and hscroll. Both functions have
the same signature. The first argument is a list of configuration options and the second argument
refers to the widget to scroll.

22 An Introduction to TkGofer

a =] No Name
Strngs Integers

ABC
DEF
GHI
JKL
MNO
PQR
STU
W
YZ

o= M M|) M-

Figure 3.10: Two listbozes, the right one with four marked elements

r 7] select

Jefferson T

I - | ¥

Jefierson 1] |

£ R

Figure 3.11: Scrolling and selecting

Figure 3.11 shows a listbox and an entry. Both widgets are associated with a scrollbar. If the
user selects a value in the listbox, the value is automatically displayed in the entry field.

ex_scrollbar :: I0 ()
ex_scrollbar = start $
do w <- window [title "select"]
(e,f1) <- scrollEntry w
(1,f2) <- scrolllListbox w
cset e (on return (readEntry 1 e))
cset 1 (on (doubleClick 1) (writeEntry 1 e))

focus e
pack (f2 ~-" f1)
where

scrollEntry w =
do e <- entry [initValue ""] w
s <- hscroll [] e
result (e, e "=~ s)
scrollListbox w =
do 1 <- listbox [] w
sl <- hscroll [1 1
s2 <- vscroll [] 1
result (1, (1 ~-" s1) <|< s2)

Introducing Widgets 23

readEntry 1 e =
do x <- getValue e
putEnd 1 [x]
writeEntry 1 e =
do [x] <- getSelection 1
[a] <- getFromTo 1 x x
setValue e a

The application focus e sets the input focus to the entry widget e. This ensures that all keystroke
events will arrive at the entry field.

The function writeEntry shows some other features of listboxes (and editors, as we will see in
the next section). To read the positions of the actual selected items, we use getSelection. To read
the actual values of the elements on these positions we use the function getFromTo. getFromTo
takes two positions as its arguments and returns all the elements within this range.

3.8 Editors and Menubars

The Edit widget displays one or more lines of texts and allows you to edit the text. Many default
key- and mouse-bindings exist to browse a text (e.g. cursor keys). Since Editors and Listboxes
both belong to the same class, we may use the same functions to access and modify the contents
of the widget.

Two more advanced techniques that deal with texts are provided as well: marks and tags.

=] Write 1!
hle Edit Style

Widgets At

The basic building blocks of a graphical user
interface are widgets. A widget is anything
that may appear on your graphical display, like
buttons, labels, windows and menus.

In this chapter we will describe how to create
and display widgets and how vwidgets

can be combined to structure the layout of a
graphical user interface.

Every standard widget sapported by TkGofer, is
introduced by showing its application by a small

evamnle]
i

Figure 3.12:

We discuss the edit widget on the basis of a small editor example (see 3.12). Simultaneously,
we will introduce the menu widget.

3.8.1 The Editor

We want to develop a small editor, with variable fonts and a simple cut-copy-paste buffer. To
realize this, we will need a global state again. The editor state is a mutable variable, containing
the contents of the buffer and the actual fontsize.

type State = Var (String,Int) -- buffer, fontsize

24 An Introduction to TkGofer

ex_edit :: I0 ()
ex_edit = start $ do
st <- newState ("",18)
w <- window [title "Write !'!"]
e <- edit [width 40, height 15, wrap True,
background "white", font "times-romani8"] w
s <- vscroll [] e
f <- frame [borderWidth 4] (flexible e <|< s)
bs <- menubar
[("File", fileM e), ("Edit", editM e st), ("Style", styleM e st)] w
pack (flexible (horizontal bs ~-" flexible f))

The GUI consists of two main elements, a menubar and the edit-window. An edit-widget specific
function is the function wrap; it determines whether a text should be broken into lines of words or
lines of characters.

We use the frame widget to group and configure the edit widget and a scrollbar. Normally,
widget-combinators generate frames and configure them with a default list of options. However,
if we want to configure a frame explicitly, we may use the function frame. The function menubar
is defined in the next section, It returns a list of menubuttons. We pack all the menubuttons
horizontally using the function horizontal.

3.8.2 Menus and Menuitems

The menu widget can be used to implement pulldown menus, cascading menus and pop-up menus.
A menu is a toplevel widget that contains a number of menu-items, arranged in a column. Possible
items are buttons, radiobuttons, checkbuttons and cascade-menubuttons. They behave exactly
the same as the corresponding window items. Furthermore, the separator widget just displays a
horizontal line for decoration.

A pulldown menu is a menubutton with an associated menu. When the user presses the menu
button, the menu is posted directly underneath the button.

The general pattern for creating pulldown menus is the following:

mb <- menubutton configs window -— create menubutton
m <- menu configs mb -— create associated menu
bl <- mbutton configs m -- create menu items

b2 <- mbutton configs m -=

pack mb -- display menubutton

Notice that menu items are not packed. They are automatically displayed if the menu is posted.
They are displayed in the order in which they were created.

A menubar is a vertical bar of menubuttons. The next code-fragment of the editor example
shows a possible definition for the function menubar. It takes a list of tuples of strings and menu-
items and associates every list of menu-items with a menubutton.

menubar :: [(String, Menu -> [GUI ()])] -> Window -> GUI [Menubutton]
menubar xs w =
let (ss,fs) = unzip xs
in do bs <- binds [menubutton [text s] w | s <- ss]
ms <- binds [menu [] b | b <~ bs]
(segs . concat) [f m | (f,m) <- zip fs ms]
result bs

cmd :: (String, GUI ()) -> Menu -> GUI ()
cmd (s,c) m = void (mbutton [text s, command c] m)

Introducing Widgets 25

fileM :: Edit -> Menu -> [GUI ()]

fileM e m =
[cmd s m | s <- [("New", doNew), ("Quit", doQuit)]]
where doNew = warning "Really Clear?" (setValue e "")

doQuit = warning "Really Quit?" quit

The function cmd creates a commandbutton menuitem. This button behaves exactly the same as
the standard button widget. Since we do not have to refer to this widget any longer, we apply the
function void to nullify the resulting widget.

The first pulldown menu of the editor is implemented by fileM. It creates two menu items, i.e.,
a new and a quit button. Both commands buttons open a warning dialog if they are pressed.

warning :: String -> GUI () -> GUL ()
warning msg yes = do
w <- windowDefault [title "Warning"][font "helvetical8"]
m <- message [text msg, relief "ridge"] w
bl <- button [text " Yes ", command (closeWindow w “seq” yes)] w

b2 <- button [text " No " , command (closeWindow w)] w
f <- frame [borderWidth 2, relief "ridge"] (bl << b2)
focus b2

pack (m "“*+~ f)

The second argument of the warning dialog is the action to perform if the Yes-button is pressed.
If the user presses the No-button, the dialog is closed.

3.8.3 Marks

Text operations often refer to some particular place in the text. For example an append action
refers to the end-position of the actual input, whereas an insert action refers to the actual cursor
position. Using marks we can read the actual value of the mouse cursor (mouseMark), the insertion
cursor (insMark) and the end of the text (endMark). The function getMark reads the actual value
of the mark, setMark updates this value.

In the definition of doPaste we find an application of marks; we want to paste the text at the
actual cursor position.

editM :: Edit -> State -> Menu -> [GUI ()]
editM e st m =
cset e (onXY (click 3) (\xy -> popup xy m))
[cmd s m | s <= [("cut", doCut), ("copy", doCopy), ("paste", doPaste)]]
where doCut = selectionExists e ==> do
([p,ql,t) <- getMarkedPart e
delFromTo e p q
modState st (\(_,i) -> (t,i))
doCopy = do
(_,t) <- getMarkedPart e
modState st (\(_,i) -> (t,i))
doPaste = do
(t,_) <- readState st
p <- getMark e insMark
putPos e p t

selectionExists :: Edit -> GUI Bool
selectionExists e = do

ps <- getSelection e

result (ps /= [1)

26 An Introduction to TkGofer

The edit menu contains three command buttons to cut, copy and paste pieces of text. The
corresponding actions read and write the cut copy paste buffer. The first line of the body of
the function doEdit defines an extra mouse binding for the edit-window. When the user presses
the right mouse button, the cut-copy-paste menu is popped up directly underneath the mouse
cursor. The second line actually defines the menu-items.

In the definition of doCut we see an application of the assert operator ==>. It takes a (monadic)
conditional action as it first operand and only evaluates its second argument if the condition
evaluates to true:

(==>) :: GUI Bool -> GUI () -> GUI ()

(In fact, this is almost the same as the monadic if operation does [Jon93b], but since we cannot
define a zero operation for the GUI monad, we redefined this operation).

The function selectionExists uses the library function getSelection. It returns the range
of the actual selection.

3.8.4 Tags

Tags are used to change the appearance of a particular piece of text, e.g., change its color or font.
A tag represents a piece of text, identified by a list of positions that may be configured just like
any other widget. The library offers operations for creating and deleting tags (tag, putEndTag,
putPosTag and delTag). Furthermore, since a text fragment can be a part of more than one tag,
an operation lowerTag exists, to modify the stacking order of tags.

In the editor-example, we use tags to change the font of a marked text part. The function setf
first checks whether a selection exists or not, and if so, it will read the coordinates of the marked
part and create a tag for this range with the desired font and fontsize.

styleM :: Edit -> State -> Menu -> [GUI ()]
styleM e st m = fonts ++ [void (separator m), subm]
where fonts =
[cmd (s ,setf ("times-"++s)) m | s <- ["roman", "bold", "italic"]]
subm = do
mb <- cascade [text "font size"]l m
m <- menu [] mb
bs <- binds [mradiobutton
[text (show n), command (modState st (\(t,_) -> (t,n)))]l m
| n <- [8,10..24]]
void (radio [] bs)
setf s = selectionExists e ==> do
(ps,_) <- getMarkedPart e
(_,n) <- readState st
void (tag ps [font (s++show n)] e)

getMarkedPart :: Edit -> GUI ([(Int,Int)],String)
getMarkedPart e = do
ps <- getSelection e
case ps of [a,b] -> do tx <- getFromTo e a b
result (ps,tx)
otherwise -> result ([]1,"")

3.9 Canvas and Canvas Items

A canvas is a widget that displays a drawing surface on which you can place various items. TkGofer
currently supports rectangles, ovals, lines, texts and bitmaps. To display canvas items, we first

Introducing Widgets 27

have to create a canvas. Every canvas item takes the canvas it should appear on as parameter.

If a canvas item is created, it is automatically displayed at the position specified in the first
parameters. Items can be manipulated by changing the configuration options and coordinates.

e Move It!

hello woHd

Figure 3.13:

The example (see Fig. 3.13) shows how to create and modify canvas items.

ex_canvas :: I0 ()
ex_canvas = start $ do
do w <- window [title "Move It!"]
c <- canvas [background "white", width 200, height 200] w

r <- crect (10,10) (50,50) opts c

1 <~ cline (70,70) (120,120) opts c

o <- coval (150,150) (200,200) opts c

t <- ctext (10,130) [text "hello world", movelt, raiselIt] c
pack c

opts :: HasFillColor (C a) => [Conf (C a)]
opts = [penWidth 3, penColor "red", fillColor "yellow", movelt, raiselt]

movelt :: HasCoords (C a) => Conf (C a)
movelt = self (onxy (motion 1) . movelIt’) where
movelt” w (x,y) =
do ((x7,y"):ys) <- getCoords w
moveObject w (x - x7, y -y")

raiselt :: HasCoords (C a) => Conf (C a)
raiseIt = self (on (click 1) . raiseObject)

The function moveIt is called if we want to drag an item to another position. The function raiselt
puts an item on top of another item if two items overlap.

3.10 Drawing a Histogram

We conclude the description of the standard TkGofer widget set with a small example to illustrate
the expressive power of functional GUI programming. It combines a small GUI and a function to
calculate a histogram for some given list of integers.

28 An Introduction to TkGofer

ex_histo :: I0 O
ex_histo = start $ do
w <- window [title "Histogram"]
c <- canvas [width (xmax +10), height (ymax + 10)] w
e <- entry [self (on return . draw c)] w
pack (c "=~ e)

draw :: Canvas -> Entry String -> GUI ()
draw c e = do
clearCanvas c
v <- getValue e
seqs [(void . crect (x1,y1l) (x2,y2) [fillColor "cyan"]) c
| (x1,y1,x2,y2) <~ (bars . map numval . words) v

]
bars :: [Int] -> [(Int,Int,Int,Int)]
bars bs =
let yunit = fromInteger ymax / fromInteger (maximum bs)
xunit = xmax / length bs

hght i = ymax + 5 - truncate (fromInteger i * yunit)
in [(x+5, hght y, x+xunit+3, ymax) | (x,y) <- zip [0,xunit..] bs]

150
ymax = 100

Xmax

J_'L| Histogram

i

|2454381EE1D|

Figure 3.14:

If the user presses the enter key, the numbers displayed in the entry field are converted to
integers and displayed as rectangles.

Chapter 4 Defining New Widgets

Very often, a user interface is composed of building blocks, which are reused a number of times. In
this chapter we describe the steps you should take, to write new widgets as a combination of other,
more primitive widgets. The examples in this chapter are automatically loaded after loading the
project newwidgets.p. The project includes:

prompt.gs
indic.gs

4.1 The Prompt Widget

The combination of an entry field and a label is typical for many input dialogues (see Fig. 4.1).
Therefore, we would like to extend the library with the composed widget Prompt.

7 Registration Form

Hame: |H|:|hin Hood

E- Mail: |rhnnd@nak.fnrest

ITEI:I

Figure 4.1: Three input masks

4.1.1 Creating the Prompt Widget

First, we define a new datatype for inputfields. The components of the prompt widget are repre-
sented by a tuple of a label and a widget. The prompt widget is parameterized over the type of its
input since its entry component is parameterized. The type Prompt is a synonym for the window
item W Prompt0. Additionally we define two selection functions for the new widget.

data PromptO v = Prompt (Entry v, Label)
type Prompt v = W (PromptO v)

29

30 An Introduction to TkGofer

<

promptE :: Prompt v -> Entry
promptE p = let Prompt (e,l)

getWidget p in e

promptL :: Prompt v -> Label
promptL p = let Prompt (e,l)

getWidget p in 1
The exact representation of window items is irrelevant for us. We use the function getWidget to
select the widget part of a window item.

Next, we define the construction function for Prompt. This function defines the exact layout of
the widget.

prompt :: HasConfigs (Prompt a) => [Conf (Prompt a)] -> Window -> GUI (Prompt a)
prompt cs w =
do 1 <- label [] w
e <- entry [1 w
composeWidget (Prompt (e,1)) (1 << e) cs

The function composeWidget actually creates and configures the widget. It has the following
signature:

composeWidget :: (WindowItem (W w), WindowItem (W v), HasConfigs (W w))
=>w -> W v -> [Conf (Ww)] ->GUI (W w)

Next, we define Prompt as an instance of the class WindowItem.

instance WindowItem (Prompt v)

Now, we have to define Prompt as an instance of the desired classes in the user hierarchy (cf.
Sect. 2.4).

4.1.2 Configuring New Widgets

How does configuring work for prompt widgets? We have to make sure that the configuration
options are correctly distributed over the components of the composed widget. This is done by
giving a suitable redefinition of the function cset:

instance HasConfigs (Entry v) => HasConfigs (Prompt v) where

cset w ¢ =
case (c w) of
(Tk_Text s) -> cset (promptL w) (const (Tk_Text s))
(Tk_InitValue x) -> cset (promptE w) (const (Tk_InitValue x))
otherwise -> do cset (promptE w) (const (c w))

cset (promptL w) (const (c w))
onArgs e s a = onArgs e s a . promptE

We apply the configuration function c to the widget w, so we get the actual constructor for the
configuration option. Using pattern matching, we may now decide whether to apply an option on
the label part, the entry part, or on both parts.

In our application, the configuration option Text now acts on the label part, InitValue on
the entry part and all other options on both parts of the prompt widget. Of course, we have to
redefine cget in a similar way, if we want to read configuration options as well.

Finally, we define Prompt as an instance of HasText and HasInput:

instance HasText (Prompt v)

instance HasInput W Entry0 v => HasInput W PromptO v where
getValue = getValue . promptE
setValue = setValue . promptE

Defining New Widgets 31

All the functionality offered for labels and entries, is automatically available for prompt widgets
as well. An application of the prompt widget is the simple adder.

ex_prompt :: ID ()
ex_prompt = start $
do w <- window [title "Simple Adder 2"]
i <- prompt [text "Press the return key"
, initValue O, self $ on return . updValue (+1)] w
pack i

| Simple Adder 2

Press the retum key |14| |
L, |

Figure 4.2: The prompt widget

In the tk.prelude an implementation of the prompt widget exists under the name input.

4.2 The Indicator Widget

This example shows a more complicated example of a composed widget. We want to develop
a indicator widget, i.e., a widget, displaying a bar that informs us about some percentage (see
Fig. 4.3).

rifj Percentage i
——] g4y |

Figure 4.3: The indicator widget

The indicator widget has four components, two rectangle widgets that inform us about the status
of the indicator, a canvas widget to contain the rectangles and a label to display the percentage.
Furthermore, we use a mutable variable to represent the state of the widget. The state is determined
by the position of the indicator. This position depends on the actual size of the widget. Therefore,
also the actual size is a component of the widget state.

The corresponding datatypes and selection functions are:

type IndState = Var (Int,Int,Int) -- value, width, height
type IndGUI = (Canvas, Label, CRect, CRect) -- canvas, border, indicator
data IndicatorO0 a = Indicator IndGUI IndState a

type Indicator W (Indicator0O Int)
canl :: Indicator -> Canvas
canl i = let (Indicator (c,_,_,_)

_) = getWidget i in ¢

labI :: Indicator -> Label

32 An Introduction to TkGofer

labIl i = let (Indicator (_,1,_,_) _ _) = getWidget i in 1
borI :: Indicator -> CRect

borI i = let (Indicator (_,_,b,_) _ _) = getWidget i in b
recIl :: Indicator -> CRect

recI i = let (Indicator (_,_,_,r) _ _) = getWidget i in r
statel :: Indicator -> IndState

statel 1 = let (Indicator _ st _)

getWidget i in st

The type Indicator0 is parameterized over the type of it contents so we can define it as an instance
of the class HasInput. Since indicator values are always integers, we instantiate this type variable
with Int.

The construction function indicator first generates a canvas, a label and two rectangles. The
actual size of the rectangles is specified by the width and height configuration options.

indicator :: [Conf Indicator] -> Window -> GUI (Indicator)
indicator cs w =
let defaults = [height 20, width 100, foreground "red"]
in
do ¢ <- canvas [] w
1 <- label [width 4, text "O0%"] w
i <= crect (0,0) (0,0) [1 ¢
j <= crect (0,0) (0,0) [¢
st <- newState (0,20,100)
composeWidget (Indicator (c,1,i,j) st 0) (c<|<1l) (defaults ++ cs)

The next step is to define Indicator as an instance of the class WindowItem and HasConfigs. The
function cset distributes the configuration options over the several components of the widget. If
we want to modify the width or height of the widget, we have to update the widget state.

instance WindowItem Indicator

instance HasConfigs Indicator where

cset w c =
case (c w) of
Tk_Height h -> newheight w h
Tk_Width h -> newwidth w h

Tk_Foreground r -> cset (recI w) (fillColor r)
Tk_Background r -> do cset (labI w) (background r)

cset (canI w) (background r)

cset (canI w) (highlightBackground r)

Tk_Font f -> cset (labI w) (font f)
otherwise -> cset (canI w) (const (c w))
where

newheight ind v =
do (i,x,y) <- readState (statel ind)
writeState (statel ind) (i,x,v)
let ratio = (fromInteger x / 100.0) * fromInteger i
setCoords (borI ind) [(3,3), (x+7,v+3)]
setCoords (recI ind) [(5,5), (5+truncate ratio,5+(v-4))]
cset (canI ind) (height (v+4))

newwidth ind v =
do (i,x,y) <- readState (statel ind)
writeState (statel ind) (i,v,y)
let ratio = (fromInteger v / 100.0) * fromInteger i

Defining New Widgets 33

setCoords (borI ind) [(3,3), (v+7,y+3)]
setCoords (recI ind) [(5,5), (5+truncate ratio,5+(y-4))]
cset (canI ind) (width (v+8))

The function background changes the background of both widgets. By changing the highlight-
Background as well, the widgets really look like ‘one’ widget.

In HasConfigs we defined how to handle configuration options. We still have to define Indicator
as an instance of the classes that define the desired options:

instance HasBackground Indicator
instance HasForeground Indicator

instance HasBorder Indicator
instance HasWidth Indicator
instance HasHeight Indicator

Finally, we define Indicator as an instance of the class HasInput. getValue reads the value
directly from the widget state. setValue writes the new value to the widget state and changes the
layout of the indicator-rectangle.

instance HasInput W IndicatorO Int where
getValue w = do (i,_,_) <- readState (statel w)
result i

setValue w i =
do (v,x,y) <- readState (statel w)
writeState (stateI w) (i,x,y)
let newx = truncate ((fromInteger x / 100.0) * fromInteger i)
setCoords (recI w) [(5,5), (5+newx,5+(y-4))]
cset (labI w) (text (show i ++ "%"))

The following example shows an application of the indicator widget. A scaler widget is used to
control the indicator. If we move the scaler, the indicator changes correspondingly.

ex_indic :: I0 (O
ex_indic = start $
do w <- window []

i <- indicator [height 10, width 200, background "white"] w
e <- hscale [scaleRange (0,100), height 200] w
let cmd = do x <- getValue e; setValue i x
cset e (command cmd)
pack (1 "~ e)

34 An Introduction to TkGofer

Chapter 5 Signatures of the tk.prelude

This chapter lists the signatures of the user functions of the tk.prelude. For the exact implemen-
tation of these functions we refer to [VSS96b].

5.1 Start and Quit

start
quit

:: GUI () -> I0 QO
t: GUI O

5.2 User Classes and Instances

class Widget w => HasConfigs w where

cset
cget
csets
on
onXY
onxy
onArgs

instance
instance
instance
instance
instance
instance
instance

it w => Conf w -> GUI ()
:: GUIValue v => w -> (v -> Conf w) -> GUI v

w -> [Conf w] -> GUI ()
:: TkEvent -> GUI () -> Conf w
: TkEvent -> ((Int,Int) -> GUI ()) -> Conf w -- relative to screen
: TkEvent -> ((Int,Int) -> GUI ()) -> Conf w -- relative to widget
:: TkEvent -> String -> ([String]l -> GUI ()) -> Conf w

-- see tk-substitution patterns for valid strings

Widget a => HasConfigs a

TopLevel (T a) => HasConfigs (T a)
Widget (W a) => HasConfigs (W a)
MenuItem (M a) => HasConfigs (M a)
CanvasItem (C a) => HasConfigs (C a)

HasConfigs (Entry a) => HasConfigs (Input a)
HasConfigs Tag

class HasConfigs w => HasBackground w where
background :: String -> Conf w

instance

-- see local rgb.txt file for valid color names

HasBackground Window

35

36 An Introduction to TkGofer

instance HasBackground Menu

instance HasBackground Frame

instance HasBackground Scrollbar

instance HasBackground Canvas

instance HasBackground CText

instance HasForeground a => HasBackground a

class HasBackground w => HasForeground w where
foreground :: String -> Conf w
font :: String -> Conf w
-- execute “xlsfonts” for list of valid fonts

instance HasForeground Menu

instance HasForeground (Entry a)
instance HasForeground Edit

instance HasForeground (Listbox a)
instance HasForeground CText

instance HasForeground CBitmap
instance HasText a => HasForeground a

class HasBackground w => HasBorder w where
borderWidth :: Int -> Conf w
cursor :: String -> Conf w -- see local cursorfont.h
relief :: String -> Conf w
-- valid options are sunken, ridge, flat, raised or groove

instance HasBorder Menu
instance HasWidth a => HasBorder a

class HasBorder w => HasWidth w where

width :: Int -> Conf w
highlightBackground :: String -> Conf w
highlightColor :: String -> Conf w
highlightThickness :: Int -> Conf w
focus irow => GUI ()
takeFocus :: Bool -> Conf w

instance HasWidth Scrollbar

instance HasWidth Message

instance HasWidth (Entry a)

instance HasWidth (Entry a) => HasWidth (Input a)
instance HasHeight a => HasWidth a

class HasWidth w => HasHeight w where
height :: Int -> Conf w

instance HasHeight Window
instance HasHeight Frame
instance HasHeight Label
instance HasHeight Canvas
instance HasHeight Scale

Signatures of the tk.prelude

instance HasHeight Edit
instance HasHeight (Listbox a)
instance HasHeight Button
instance HasHeight Radiobutton
instance HasHeight Menubutton
instance HasHeight Checkbutton
instance HasHeight (Input a)

class HasWidth w => HasPad w where
padx :: Int -> Conf w
pady :: Int -> Conf w

instance HasPad Label
instance HasPad Message
instance HasPad Edit
instance HasPad Button
instance HasPad Radiobutton
instance HasPad Menubutton
instance HasPad Checkbutton

class HasForeground w => HasAnchor w where
anchor :: String -> Conf w -- n, ne, se, s, sw, W, nw, center
justify :: String -> Conf w -- left, right, center

instance HasAnchor Label
instance HasAnchor Message
instance HasAnchor Button
instance HasAnchor Radiobutton
instance HasAnchor Menubutton
instance HasAnchor Checkbutton
instance HasAnchor CText
instance HasAnchor CBitmap

class HasCommand w => HasIndicator w where
indicatorColor :: String -> Conf w
indicatorOn :: Bool -> Conf w

instance HasIndicator Radiobutton
instance HasIndicator MRadiobutton
instance HasIndicator Checkbutton
instance HasIndicator CheckbuttonM

class HasCoords a => HasCoords a where

moveObject :: a => (Int, Int) -> GUL O
removeObject :: a -> GULI ()

lowerObject a -> GUI ()

raiseObject a -> GUI ()

getCoords a => GUI [(Int,Int)]
setCoords a -> [(Int,Int)] -> GUI ()

instance CanvasItem (C a) => HasCoords (C a)

37

38

An Introduction to TkGofer

class HasCoords a => HasFillColor a where

penWidth :: Int ->
penColor :: String
fillColor :: String

instance HasFillColor
instance HasFillColor
instance HasFillColor

Conf a
-> Conf a
-> Conf a

COval
CLine

CRectangl

class HasBorder w => HasScroll w

instance HasScroll Canvas
instance HasScroll (Entry a)
instance HasScroll Edit
instance HasScroll (Listbox a)

class (HasConfigs (c (w v)), GUIValue

getValue :: ¢ (w v) -> GUI v

setValue :: c (w
updValue :: c (w
initValue :: v ->
readOnly :: Bool

instance HasInput T
instance HasInput W
instance HasInput W
instance HasInput W

v) => v => GUI ()
v) > (v > v) ->
Conf (c (w v))
-> Conf (c

RadioO Int
Scale0 a
Entry0 a
(Edit0 (Int,Int))
instance HasPosition Listbox0O Int [al
instance Widget (a (CheckbuttonO b)) => HasInput a CheckbuttonO b
instance HasInput W Entry0 a => HasInput W InputO a

(w v))

v) => HasInput ¢ w v where

GUI (O

[Char]
=> HasInput W (ListboxO Int) [al

class (HasInput W (w p) v, GUIValue p, Position p)
=> HasPosition w p v where

putBegin

putEnd

putPos

getFromTo
getSize
delFromTo
setYView
getSelection
setSelection
selectBackground
selectForeground
selectBorderWidth

W
W
W
W
W
W
W
W
W

(w
(w
(w
(w
(w
(w
(w
(w
(w

‘o' o ‘v 'v oo oo

v))
v))
v))
v))
v))
v))
v))
v))
v))

String -> Conf
String -> Conf
Int -> Conf (W

v -> GUI ()

v => GUI ()

p —> v -> GUI ()
P->p~->GUIL v
GUI p

P->p ->GUI ()
Int -> GUI ()
GUI [p]

[p] -> GUI ()

W (wp W)

W (wp w)
(wpw)

instance HasPosition EditO (Int,Int) [Char]
instance HasPosition Listbox0O Int [a]

class HasForeground w => HasText w where

text
bitmap

underline

instance
instance
instance
instance
instance
instance
instance
instance

Signatures of the tk.prelude

String -> Conf w
String -> Conf w -- bitmap file name

HasText
HasText
HasText
HasText
HasText
HasText
HasText

Int -> Conf w

Label
Message
Scale
Tag
CText
CBitmap
(Input a)

HasCommand a => HasText a

class HasText w => HasCommand w where

command :: GUI () -> Conf w

active :: Bool -> Conf w

activeBackground :: String -> Conf w

activeForeground :: String -> Conf w

invoke rw > GUI ()
instance HasCommand Scale

instance
instance
instance
instance
instance

HasCommand Button

HasCommand ButtonM

HasCommand Menubutton

HasCommand MenubuttonM
HasIndicator a => HasCommand a

data OkOrErr a = Tk_Ok a | Tk_Err String

class (Text g) => GUIValue g where
tk_convert :
tk_defaultValue g
tk_toGUI
tk_fromGUI

: String -> OkOrErr g

11 g —-> String
:: String -> GUI g

5.3 TopLevel items

type Window = T WindowO

window

windowDefault
closeWindow

openWindow
openDefault

pack

packDefault

title

winSize

winPosition

type Menu = T MenuO

menu

[Conf Window] -> GUI Window
[Conf Window] -> [Conf Default] -> GUI Window
: Window -> GUI ()
[Conf Window] -> (Window -> GUI (W w)) -> GUI ()
[Conf Window] -> [Conf Default] ->
(Window -> GUI (W w)) -> GUI ()
:: Wa —> GUI ()
:: W a -> [Conf Default] -> GUI ()
String -> Conf Window
(Int,Int) -> Conf Window
(Int,Int) -> Conf Window

: HasConfigs (c MenubuttonO)

39

40

5.4

An Introduction to TkGofer

=> [Conf Menu] -> ¢ MenubuttonO0 -> GUI Menu

menuDefault :: HasConfigs (c MenubuttonO)
=> [Conf Menu] -> [Conf Default] -> c¢ MenubuttonO -> GUI Menu
popup :: (Int, Int) -> Menu -> GUI ()

type Radio = T (RadioO Int)
radio :: (HasConfigs (c RadiobuttonO))
=> [Conf Radio] -> [c RadiobuttonO0] -> GUI Radio

Window Items

type Frame = W FrameO

frame :: WindowItem (W a) => W a -> [Conf Frame] -> GUI Frame

type Scrollbar = W Scrollbar0

scrollbar :: [Conf Scrollbar] -> Window -> GUI Scrollbar
hscroll :: HasScroll (W w)

=> [Conf Scrollbar] -> W w -> GUI Scrollbar
vscroll :: HasScroll (W w)

=> [Conf Scrollbar] -> W w -> GUI Scrollbar

type Label = W LabelO

label :: [Conf Label] -> Window -> GUI Label

type Message = W MessageO
message :: [Conf Message] -> Window -> GUI Message
aspect :: Int -> Conf Message

type Canvas = W CanvasO

canvas :: [Conf Canvas] -> Window -> GUI Canvas
scrollRegion :: (Int,Int) -> Conf Canvas
clearCanvas :: Canvas -> GUI ()

type Scale = W (Scale0 Int)

vscale :: [Conf Scale] -> Window -> GUI Scale
hscale :: [Conf Scale] -> Window -> GUI Scale
scaleRange :: (Int,Int) -> Conf Scale
sliderLength :: Int -> Conf Scale

tickInterval :: Int -> Conf Scale

troughColor :: String -> Conf Scale

type Entry a = W (Entry0 a)
entry :: HasConfigs (Entry a)
=> [Conf (Entry a)] -> Window -> GUI (Entry a)

type Edit = W (Edit0 (Int,Int) [Char])
edit :: [Conf Edit] -> Window -> GUI Edit
wrap :: Bool -> Conf Edit

data Mark = Mark String

setMark
getMark

type Tag = Tag0d ()
tag ..
putPosTag
putEndTag
delTag
tagRange
lowerTag

:: Edit -> (Int,Int) -> GUI Mark
:: Edit -> Mark -> GUI (Int,Int)

[(Int,Int)] -> [Conf Tag] -> Edit -> GUI Tag

: Edit -> (Int,Int) -> String -> [Conf Tag] -> GUI Tag
: Edit -> String -> [Conf Tag] -> GUI Tag

:: Tag —> GUI ()

:: Tag -> GUI [(Int,Int)]

:: Tag —> GUI ()

2.5

5.6

Signatures of the tk.prelude

type Listbox a = W (Listbox0O Int a)
listbox :: HasConfigs (Listbox a)
=> [Conf (Listbox a)] -> Window -> GUI (Listbox a)
multipleSelect :: Bool -> Conf (Listbox a)

type Button = W ButtonO
button :: [Conf Button] -> Window -> GUI Button

type Radiobutton = W RadiobuttonO
radiobutton :: [Conf Radiobutton] -> Window -> GUI Radiobutton

type Menubutton = W MenubuttonO
menubutton :: [Conf Menubutton] -> Window -> GUI Menubutton

type Checkbutton = W CheckbuttonO
checkbutton :: [Conf Checkbutton] -> Window -> GUI Checkbutton

Menu Items

type MButton = M ButtonO
mbutton :: [Conf MButton] -> Menu -> GUI MButton

type MRadiobutton = M RadiobuttonO

mradiobutton :: [Conf MRadiobutton] -> Menu -> GUI MRadiobutton
type Cascade = M MenubuttonO
cascade :: [Conf Cascade] -> Menu -> GUI Cascade

type MCheckbutton = M CheckbuttonO
mcheckbutton :: [Conf MCheckbutton] -> Menu -> GUI MCheckbutton

type Separator = M Separator0
separator :: Menu -> GUI Separator

Canvas Items

type COval = C OvalO
coval :: (Int,Int) -> (Int,Int) -> [Conf COval] -> Canvas -> GUI CDval

type CLine = C LineO
cline :: (Int,Int) -> (Int,Int) -> [Conf CLine] -> Canvas -> GUI CLine

type CRect = C RectO
crect :: (Int,Int) -> (Int,Int) ->
[Conf CRectangle] -> Canvas -> GUI CRectangle

type CText = C CTextO
ctext :: (Int,Int) -> [Conf CText] -> Canvas -> GUI CText

type CBitmap = C CBitmapO
cbitmap :: (Int,Int) -> [Conf CBitmap] -> Canvas -> GUI CBitmap

/1

42 An Introduction to TkGofer

5.7 User Defined Events

key :: String -> TkEvent
click, doubleClick, motion :: Int -> TkEvent
return :: TkEvent

cursorUp, cursorDown, cursorLeft, cursorRight :: TkEvent

5.8 Widget Combinators and Layout Functions

infixl 7 <<, <<, <-<, <|<, <+<, <k-<, <k|<, <xk+<
infixl 6 =7, “%~, =", T[T, T+7, “k=", “k|7, “x+”
(<), (k*<), (£-<),(K]<), (k+<),(x*x=<), (<*]|<), (<*+<)
(WindowItem (W a),WindowItem (W b)) => W a -> W b -> Frame
Cx),), =), CI),C+), Cx=7), (Cx[™), (C*+7)
(WindowItem (W a),WindowItem (W b)) => W a -> W b -> Frame

matrix :: WindowItem (W a) => Int -> [W a] -> Frame
horizontal, vertical :: WindowItem (W a) => [W a] -> Frame

£illX, fillY, fillXY :: WindowItem (W a) => W a -> Frame
expand,flexible :: WindowItem (W a) => W a -> Frame

5.9 Monads and Variables

infixr 1 ==

(==>) :: GUI Bool -> GUI () -> GUI ()
doneM :: Monad m =>m ()

seq :: Monad m =>ma->mb->mb
void :: GUIL a => GUI ()

seqs :: Monad m => [m (O] ->m ()
binds :: Monad m => [m a] -> m [a]
newState :: a -> GUI (Var a)

readState :: Var a -> GUI a

writeState :: Var a -> a —> GUI ()
modState :: Var a => (a -> a) -> GUI ()

5.10 Miscellaneous

self it (@a->a->b) >a—>b

rgh :: Int -> Int -> Int -> String
numval :: String -> Int

startClock :: Int -> GUI () -> GUI ClockId
stopClock :: ClockId -> GUI ()

updateTask :: GULI ()

5.11 Composing Widgets

composeWidget :: (WindowItem (W w), WindowItem (W v), HasConfigs (W w))
=>w ->Wv -> [Conf (Ww)]l -> GUI (W w)

Signatures of the tk.prelude 43

input :: HasConfigs (Input v)
=> [Conf (Input v)] -> Window -> GUI (Input v)
inputE :: Input v -> Entry v

inputL :: Input v -> Label

44 An Introduction to TkGofer

Bibliography

[AvGP93] P.M. Achten, J.H.G. van Groningen, and M.J. Plasmeijer. High-level specification of

[BR89)

[BWS9]

[CHO3]

[HS95]

[JD93]

[TMO95]

[Jon93a]

[Jon93b]

[Jon95)

[LPJ94]

[LPJ95]

[NRO5]

[Ous94]
[PIWO3]

I/O in functional languages. In Glasgow Workshop on Functional Programming 1992.
Springer Verlag, 1993.

P. Briggs and J. Ramsdell. NuwWeb Version 0.87b: A Simple Literate Programming
Tool, 1989. available by ftp from ftp.dante.de.

R. Bird and Ph. Wadler. Introduction to Functional Programming. Prentice Hall Inter-
national, 1989.

M. Carlsson and Th. Hallgren. Fudgets — graphical user interfaces and I/O in lazy
functional languages. Licentiate Thesis, May 1993.

M. Hermenegildo and S.D. Swierstra, editors. Programming Languages: Implementa-
tions, Logics and Programs. 7th International Symposium, PLILP 95, volume 982 of
Lecture Notes in Computer Science. Springer-Verlag, September 1995.

M.P. Jones and L. Duponcheel. Composing monads. Research Report
YALEU/DCS/RR-1004, Yale University, December 1993.

J. Jeuring and E. Meijer, editors. Advanced Functional Programming. First Internatio-
nal Spring School on Advanced Functional Programming Techniques, Bastad, Sweden,
May 1995, volume 925 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

M.P. Jones. An introduction to Gofer (draft), 1993. Included as part of the standard
Gofer distribution.

M.P. Jones. Release notes for Gofer 2.28, 1993. Included as part of the standard Gofer
distribution.

M.P. Jones. Functional programming with overloading and higher-order polymorphism.
In Jeuring and Meijer [JM95], pages 97-136.

J. Launchbury and S.L. Peyton Jones. Lazy functional state threads. Technical report,
University of Glasgow, November 1994.

J. Launchbury and S.L Peyton Jones. State in haskell. Lisp and Symbolic Computation,
(8):293-341, 1995.

R. Noble and C. Runciman. Gadgets: Lazy functional components for graphical user
interfaces. In Hermenegildo and Swierstra [HS95], pages 321-340.

J.K. Ousterhout. Tcl and the Tk toolkit. Addison Wesley, 1994.

S.L. Peyton Jones and Ph. Wadler. Imperative functional programming. In Proc. 20th
ACM Symposium on Principles of Programming Languages, Charlotte, North Carolina,
January 1993.

15

46 An Introduction to TkGofer

[Sch96] T. Schwinn. Funktionale implementierung grafischer benutzeroberflichen. Master’s
thesis, Universitat Ulm, Fakultit fiir Informatik, 1996. in German.

[VSS96a] T. Vullinghs, W. Schulte, and T. Schwinn. The design of a functional gui library using
constructor classes. In Perspectives of System Informatics, Novosibirsk, 1996.

[VSS96b] T. Vullinghs, T. Schwinn, and W. Schulte. Tkgofer: Implementation notes and reference
manual. Technical report, Universitdt Ulm, Fakultit fiir Informatik, 1996. to appear.

[VTS95] T. Vullinghs, D. Tuijnman, and W. Schulte. Lightweight GUIs for functional program-
ming. In Hermenegildo and Swierstra [HS95], pages 341-356.

[Wad90] Ph. Wadler. Comprehending monads. In Proc. 1990 ACM Conference on Lisp and
Functional Programming, 1990.

[Wad95] Ph. Wadler. Monads for functional programming. In Jeuring and Meijer [JM95], pages
24-52.

Index

$: 2b, 3a, 3b, 1lc, 12c, 13b, 14a, 15af, 16, 17ac, 19,
20, 21, 22, 23b, 27ab, 31a, 33c.

<x+<: 9b, 42b.

<*-<: 9b, 20, 42b.

<*<: 9b, 42b.

<x[<: 9b, 42b.

<+<: 9b, 42b.

<-<: 9b, 42b.

<<: 8, 9b, 13b, 14a, 15f, 18c, 25a, 30a, 42b.

<|<: 9b, 20, 21, 22, 23b, 32a, 42b.

==>: 25b, 26ab, 42c.

active: 39a.

activeBackground: 39a.

activeForeground: 39a.

anchor: 37b.

aspect: 12c, 40e.

background: 1lc, 12b, 13b, 14a, 23b, 27a, 32b, 33c,
35¢.

binds: 5a, 12c¢, 15f, 19, 24b, 26b, 42c.

bitmap: 38e.

borderWidth: 23b, 25a, 36b.

Button: 6b, 36d, 37ab, 39a, 41b.

button: 2ab, 3b, 11a, 13b, 15ae, 19, 25a, 41b.

C: 6b, 19, 27a, 35b, 37d, 41g

Canvas: 6¢, 27b, 31d, 35c, 36d, 38b, 40f, 41g.

canvas: 1la, 27ab, 31d, 32a, 40f.

Cascade: 6c, 41f.

cascade: 6¢, 26b, 41f.

CBitmap: 36a, 37b, 38e, 41g.

cbitmap: 41g. T

cget: 14b, 15a, 35b.

Checkbutton: 14a, 36d, 37abc, 41le.

checkbutton: 1la, 14a, 4le.

clearCanvas: 27b, 40f.

click: 25b, 27a, 42a.

CLine: 6c¢c, 38a, 41g.

cline: 6c¢c, 27a, Eg

closeWindow: 12?,2521, 39c.

command: 2ab, 3b, Tc, 13b, 14a, 15aef, 19, 20, 24b,
25a, 26b, 33c, 39a.

composeWidget: 30ab, 32a, 42e.

Conf: 6c¢, Thc, 12a, 14b, 27a, 30ab, 32a, 35bc, 36abcd,
37abc, 38acde, 39acd, 40abcdefghi, 41abcdefg,
42e.

COval: 38a, 41g.

coval: 27a, m

CRect: 31d, 41g.

crect: 27ab, 32a, 41g.

cset: 7h, 14ab, 15acf, 16, 18c, 20, 22, 25b, 30d, 32b,
33bc, 35b.

csets: 35b.

CText: 35c, 36a, 37b, 38e, 41g.

ctext: 27a, 41g. T

cursor: 36b.

cursorDown: 42a.

cursorLeft: 42a.

cursorRight: 42a.

cursorUp: 42a.

delFromTo: 25b, 38d.

delTag: 40i.

doneM: 42c.

doubleClick: 22, 42a.

Edit: 23b, 24b, 25b, 26b, 36ad, 37a, 38b, 40i.

Entry: 2ab, 6¢c, 17e, 27b, 29c, 30d, 35b, 36ac, 38D,
40h, 42e.

entry: 2ab, 3b, 6¢c, 11a, 16, 17ac, 18¢c, 19, 22, 27b,
30a, 40h.

expand: 9a, 42b.

fillColor: 27ab, 32b, 38a.

£il1X: 9a, 42b.

£i11XY: 9a, 42b.

£il11Y: 9a, 42b.

flexible: 9a, 23b, 42b.

focus: 22, 25a, 36¢.

font: 19, 23b, 25a, 26b, 32b, 36a.

foreground: 32a, 36a.

frame: 3b, 23b, 25a, 40b.

getCoords: 27a, 37d.

getFromTo: 22, 26b, 38d.

getMark: 25b, 40i.

getSelection: 22, 25b, 26b, 38d.

getSize: 38d.

getValue: 2ab, 7d, 14a, 15f, 16, 18c, 20, 22, 27b,
30e, 33bc, 38c.

GUIValue: 7d, 14b, 18ab, 35b, 38cd, 39b.

HasAnchor: 37b.

HasBackground: 33a, 35¢c, 36ab.

HasBorder: 33a, 36b, 36¢, 38b.

HasCommand: 7c, 37c, 38e, 39a.

HasConfigs: 7bd, 14b, 30abd, 31c, 32b, 35b, 35c,
38¢, 39d, 40ah, 41a, 42e.

HasCoords: 27a, 37d, 38a.

HasFillColor: 27a, 38a.

HasForeground: 33a, 35c, 36a, 37b, 38e.

HasHeight: 33a, 36¢c, 36d.

HasIndicator: 37c, 39a.

47

48 An Introduction to TkGofer

HasInput: 7d, 29b, 30e, 31c, 33b, 38c, 38d.

HasPad: 37a.

HasPosition: 38c, 38d.

HasScroll: 38b, 40c.

HasText: 7c, 29b, 30e, 36a, 38e, 39a.

HasWidth: 33a, 36b, 36¢, 36d, 37a.

height: 20, 23b, 27ab, 31d, 32ab, 33c, 36d.

highlightBackground: 32b, 36c.

highlightColor: 36c¢.

highlightThickness: 36c.

horizontal: 13a, 23b, 42b.

hscale: 20, 33c, 40g.

hscroll: 22, 40c.

Indicator: 31d, 32ab, 33a.

indicator: 31d, 32a, 33c.

indicatorColor: 14a, 15f, 37c.

indicatorOn: 14a, 37c.

initValue: 2ab, 15f, 16, 17a, 19, 21, 22, 31a, 38c.

input: 18c, 42e.

inputE: 42e.

inputL: 42e.

invoke: 7c, 39a.

justify: 12c, 37b.

key: 3la, 42a.

Label: 29c, 31d, 36d, 37ab, 38e, 40d, 42e.

label: 1lac, 12b, 13b, 14a, 18c, 20, 21, 30a, 32a,
40d.

Listbox: 36ad, 38b, 41a.

listbox: 1la, 21, 22, 41a.

lowerObject: 37d.

lowerTag: 40i.

M: 6b, 7a, 35b, 41f.

Mark: 1, 40i.

matrix: 12c, 13a, 19, 42b.

MButton: 41f.

mbutton: 24ab, 41f.

MCheckbutton: 41f.

mcheckbutton: 41f.

Menu: 6¢, 24b, 25b, 26b, 35c, 36ab, 39d, 41f.

menu: 24ab, 26b, 39d.

Menubutton: 24b, 36d, 37ab, 39a, 41d.

menubutton: 24ab, 41d.

menuDefault: 39d.

MenuItem: 7a, 35b.

Message: 36¢, 37ab, 38e, 40e.

message: lla, 12c, 25a, 40e.

modState: 5b, 25b, 26b, 42c.

motion: 27a, 42a.

MRadiobutton: 37c, 41f.

mradiobutton: 26b, 41f.

multipleSelect: 21, 4la.

newState: 5b, 19, 23b, 32a, 42c.

numval: 18b, 27b, 42d.

on: 16, 17a, 18c, 22, 27ab, 31a, 35b, 38d.

onArgs: 30d, 35b.

onXY: 25b, 35b.

onxy: 27a, 35b.

openDefault: 39c.

openWindow: 12ab, 17a, 18c, 39c.

pack: 2ab, 3b, 11c, 12c, 13b, 14a, 15af, 16, 17ce, 19,
20, 21, 22, 23b, 24a, 25a, 27ab, 31a, 33c, 39c.

packDefault: 39c.

padx: 37a.

pady: 37a.

penColor: 27a, 38a.

penWidth: 27a, 38a.

popup: 25b, 39d.

Prompt: 29b, 29c, 30acde.

prompt: 29a, 30a, 3la.

putBegin: 38d.

putEnd: 22, 38d.

putEndTag: 40i.

putPos: 25b, 38d.

putPosTag: 40i.

quit: 6a, 13b, 24b, 35a.

Radio: 40a.

radio: 1la, 15f, 26b, 40a.

Radiobutton: 36d, 37abc, 4lc.

radiobutton: 15f, 41c.

raiseObject: 27a, 37d.

readOnly: 38c.

readState: 5b, 19, 25b, 26b, 32b, 33b, 42c.

relief: 19, 20, 25a, 36b.

removeObject: 37d.

return: 16, 17a, 18c, 22, 27b, 31a, 42a.

rgb: 35c, 42d.

Scale: 36d, 38e, 39a, 40g.

Scrollbar: 35c, 36c, 40c.

scrollbar: 1la, 40c.

scrollRegion: 40f.

selectBackground: 38d.

selectBorderWidth: 38d.

selectForeground: 38d.

self: 15bde, 17a, 27ab, 31a, 42d.

Separator: 41f.

separator: 26b, 41f.

seq: 2ba, 42c.

seqs: ba, 15f, 24b, 27b, 42c.

setCoords: 32b, 33b, 37d.

setMark: 40i.

setSelection: 38d.

setValue: 2ab, 7d, 15f, 16, 17b, 18c, 19, 22, 24b,
30e, 33bc, 38c.

setYView: 38d.

sliderLength: 40g.

start: 2ab, 6a, 11c, 12bc, 13b, 14a, 15af, 16, 17ac,
18c, 19, 20, 21, 22, 23b, 27ab, 31a, 33c, 35a.

startClock: 42d.

stopClock: 42d.

T: 6b, 35b, 38c, 39cd, 40a.

Tag: 35b, 38e, 40i.

tag: 26b, 40i.

tagRange: 40i.

takeFocus: 36¢.

text: 2ab, 3b, 1lc, 12bc, 13b, 14a, 15ae, 18c, 19,
20, 21, 24b, 25a, 26b, 27a, 31a, 32a, 33b, 38e.

tickInterval: 20, 40g.

title: 2ab, 3b, 1lc, 12bc, 13b, 14a, 18c, 19, 20, 22,
23b, 25a, 27ab, 31a, 39c.

troughColor: 40g.

underline: &?

updateTask: 42d.

updValue: 7d, 17a, 3la, 38c.

vertical: 13a, 15f, 42b.

void: ba, 24b, 26b, 27b, 42c.

vscale: 40g.

vscroll: 22, 23b, 40c.

W: 6b, Ta, 8, 9ab, 12a, 17bd, 29¢, 30be, 31d, 33b,
35b, 38cd, 39c, 40bcdefghi, 41abcde, 42be.

Widget: 7a, 7b, 17d, 35b, 38c.

width: 1lc, 12b, 14a, 18¢, 19, 20, 23b, 27ab, 31d,
32ab, 33c, 36¢.

Window: 6c¢, 12a, 19, 24b, 30a, 32a, 35c, 36d, 39c,
40cdefghi, 41abcde, 42e.

window: 2ab, 3b, 6¢c, 11lc, 12¢, 13b, 14a, 15af, 16,
17c, 20, 21, 22, 23b, 24a, 27ab, 31a, 33c, 39c.

windowDefault: 19, 25a, 39c.

WindowItem: 7a, 8, 9ab, 29b, 30bc, 32b, 40b, 42be.

winPosition: 39c.

winSize: 39c.

wrap: 23b, 40i.

writeState: 5b, 19, 32b, 33b, 42c.

“*+7: 9b, 25a, 42b.

“x=": 9b, 42b.

“x~: 9b, 42b.

“x| " 9b, 42b.

“+7: 9b, 42b.

~=~: 2ab, 9b, 14a, 18c, 19, 20, 21, 22, 23b, 27b, 42b.

~~: 8, 9b, 33c, 42b.

~|~: 9b, 42b.

Signatures of the tk.prelude

49

