Satisfiability Problems

Manindra Agrawal * Thomas Thierauf
Dept. of Computer Science Abt. Theoretische Informatik
Indian Institute of Technology Universitat Ulm
Kanpur 208016, India 89069 Ulm, Germany
manindra@iitk.ernet.in thierauf@informatik.uni-ulm.de

December 14, 2000

Abstract

We investigate the complexity of satisfiability problems that, surprisingly, (to the best of
our knowledge) have not yet been considered in the literature.

CNF-SAT, which we also denote by A-V-SAT, asks for an assignment for a given formula
that satisfies all of its clauses. While A-V -SAT is NP-complete,

e what is the complexity of @-V -SAT, where it is asked for an assignment that satisfies
an odd number of clauses?

We show that @- V -SAT can be solved by a randomized algorithm in polynomial time. The
result is extended to ®-Th-SAT, where we have a threshold instead of an or at the input

level.
MaxSAT, which we also denote by Th- V -SAT, is a generalization of CNF-SAT, and
hence NP-complete.

e What is the complexity of the analogous optimization version of DNF-SAT, an easy
problem, Th- A -SAT?

We show that Th- A -SAT is NP-complete, and the same holds for Th- & -SAT, where we
have a parity instead of an and at the input level.

1 Introduction

In a seminal paper, Cook [Coo71] showed that the satisfiability problem for Boolean formulas,
SAT, is NP-complete. From then on, SAT has been reduced to many other NP problems,
thereby showing them to be NP-complete as well (see [GJ79] for a good introduction to NP
completeness). In order to facilitate such reductions it has been useful to have the Boolean
formulas in certain normal forms or to have certain properties. We give some examples. Most
notably, the satisfiability problem for formulas in conjunctive normal form, CNF-SAT, or even
with the restriction to at most 3 literals per clause, 3-CNF-SAT, is NP-complete. Other variants

“Research done while visiting the university of Ulm, Germany. Supported in part by an Alexander von
Humboldt fellowship.
fSupported in part by DAAD, Acciones Integradas 1995, 322-Al-e-dr.

are based on 3-CNF-SAT are: Not-All-Equal-SAT [Scha78], where it is asked for a satisfying
assignment of a given 3-CNF formula that, for any clause, doesn’t set all 3 literals to 1. In
One-In-Three-SAT [SchaT78], for any clause, exactly one literal should be 1. More general,
Not-All-Equal-SAT and One-In-Three-SAT are just special cases of the class of generalized
satisfiability problems introduced by Schaefer [Scha78] (see also [GJ79], p. 260). Schaefer gives
a dichotomy theorem to classify all the properties one can impose on assignments as in the
examples above such that the satisfiabilty problem is still NP-complete. An analogous theorem
for the corresponding counting problems was recently shown in [CH96].

On the other hand, for certain other restrictions, the satisfiability problem becomes easy:
for example for Horn formulas it is solvable in polynomial time, P (in fact, it is P-complete).
2-CNF-SAT, where there are at most 2 literals per clause, can be solved nondeterministically in
logarithmic space, NL (in fact, it is NL-complete). The satisfiability problem for formulas in
disjunctive normal form, DNF-SAT, can even be solved in logarithmic space, L.

CNF-SAT asks for an assignment satisfying all of the clauses of a given formula. If not all
clauses can be satisfied, the next interesting question is how many clauses can be simultaneously
satisfied at maximum. The question of how well this optimization problem can be approximated
has attracted much interest due to the new results on probabilistically checkable proofs (PCP).
The associated decision version, MaxSAT, has as input a CNF formula F' and a number k; we
are then asked whether there is some assignment satisfying at least k clauses of F. It is clear
that MaxSAT is as least as difficult as CNF-SAT, and hence is NP-complete. An interesting
point however is that the MaxSAT problem for 2-CNF-SAT, call it 2-MaxSAT, is NP-complete
as well, even though 2-CNF-SAT is in P [GJS76] (see also [Pap94], Theorem 9.2).

The switch from CNF-SAT to MaxSAT can also be seen as follows. Adapting terminology
from circuit theory, we call a CNF formula also a and-over-or formula, or having an and-gate over
an or-gate. Correspondingly, CNF-SAT is also denoted by A-V -SAT. Now consider MaxSAT.
This is obtained from A-V -SAT by exchanging the and-gate at the output by a threshold-gate,
i.e., MaxSAT = Th- V -SAT.

Let us now analogously replace the or-gate of DNF formulas by a threshold-gate. That is,
we ask for the complexity of Th- A -SAT. Although we have derived the problem from an easy
one, namely DNF-SAT, we show in Section 3 that Th- A -SAT is NP-complete.

In this paper we also consider satisfiability problems where in addition to threshold gates we
allow parity gates. For example, replacing the and-gate of CNF formulas by a parity-gate, we
are asking for assignments satisfying an odd number of clauses of a given formula. In Section 2
we show that @-V -SAT can be solved by a randomized Las Vegas type algorithm in polynomial
time, in symbols: @- V -SAT € RP. Our technique is to arithmetize such formulas which leads
to multilinear polynomials over GF(2). Considering these polynomials in a small extension field,
GF(2°), we can then apply the Schwartz-Zippel Theorem to solve the problem by a probabilistic
zero test. If one exchanges the remaining or-gate by a more general threshold-gate, an odd
number of threshold gates has to be 1 in order to satisfy a parity-over-threshold formula. By
extending the algorithm for &- V -SAT, we show that &-Th-SAT is still in RP. Moreover, our
algorithm can be extended to work even for ®@-Th-SAT with weighted threshold gates. This has
a nice interpretation in terms of a integer linear programming problem where it is just required
to satisfy an odd number of inequalities instead of all.

Since we are using 4 operations, namely {A, V, Th, @}, there are 16 ways of building depth two

formulas. However, for most these, the complexity of the corresponding satisfiability problem is
easy to see. For example, as for DNF-SAT, having an or at the output level makes the problem
trivial. If we take twice the same operation, then clearly A- A-SAT, V-V -SAT, and &- @ -SAT
are in P. For Th-Th-SAT, note that and and or are specific threshold operations. Therefore
Th-Th-SAT is at least as difficult as CNF-SAT, and hence is NP-complete. For the same reason
this holds also for Th-V-SAT and A-Th-SAT. To keep track for the reader: we classified already
10 of the 16 satisfiability problems in this paragraph.

The complexity of the remaining 6 is not as obvious. We partition them in 2 groups according
to the type of operation at the output level. In Section 2 we show that &- A -SAT, &- V -SAT,
and @-Th-SAT can be solved by a randomized Las Vegas type algorithm in polynomial time.
Therefore these problems are unlikely to be NP-complete. In Section 3, we show that A-@-SAT
can be solved in polynomial time, while Th- & -SAT and Th- A -SAT are NP-complete.

2 Parity at the Output

In CNF-SAT we are seeking for an assignment that satisfies all the clauses of a formula. Re-
placing the and-gate by a parity-gate, we ask for an assignment that satisfies an odd number
of clauses. Note first that one can do complements with parity by adding a 1 to its inputs,
namely &(z1,...,z,) +1=&(1,21,...,2,). Hence, using de Morgan’s laws, we can transform
a parity-over-or formula into an equivalent parity-over-and formula and vice versa. Therefore,
@- V -SAT is many-one equivalent to &- A -SAT. Next observe that we can arithmitize any
parity-over-and formula F(z1,...,z,). Namely, F' corresponds to a polynomial pp(z1,...,z,)
over GF(2), where parity is interpreted as addition and and as multiplication. An occurence of
a variable x; in F' is kept as z; in pp, and a negated variable T; is replaced by (1 + ;). Clearly,
we have

Fed N-SAT <— pr#0.

Remark 2.1 #P [Val79a] is the class of counting problems, where one wants to compute the
number of solutions of NP problems. For all the known NP-complete problems, the corre-
sponding counting version is #P-complete. This gives rise to the conjecture that if a counting
problem is not #P-complete, then its decision version should not be NP-complete. Note how-
ever that the counting version of an easy problem can be #P-complete as well. An example is
DNF-SAT [Val79b].

Ehrenfeucht and Karpinski [EK89] have considered the problem of counting the number of
zeros of multivariate polynomials over GF(2), like pr from above. They have shown that it is
#P-complete. Hence we cannot conclude anything from this result for the complexity of the
decision version.

Polynomial pf is given as a sum of terms, where each term is a product of the form xz;, - - - x;, -
(1+xj5) - (1 +xj). In order to test whether pp is the zero-polynomial, we can multiply out
each term and write prp as a sum of monoms. Then pp is the zero-polynomial if and only in
this process all resulting (intermediate) monoms cancel each other. Note however, that the term
above results in 2/ monoms, so that the above procedure works in polynomial time only for

[= O(log|F|). In particular, for k- & - A-SAT, where any clause has at most k literals, we have

Proposition 2.2 k-&® - A -SAT € P, for any k > 0.

In the case that [is unbounded, no polynomial-time algorithm is known. Below we give
a randomized polynomial-time algorithm for @- A -SAT. As a consequence, ®- A -SAT is very
unlikely to be NP-complete.

Schwartz [Schw80] and Zippel [Zip79] give efficient algorithms that probabilistically check
whether a multivariate polynomial is all zero. Below, we state a variant of their main theorem for
multilinear polynomials that was implicitely shown by Blum, Chandra, and Wegman [BCW80].
An explicit statement, generalized to arbitrary multivariate polynomials can be found in [IM83].

Theorem 2.3 [BCW80, Schw80, Zip79, IM83] Let p(z1,...,z,) be a multilinear polyno-
mial over a field F that is not the zero polynomial. Let S C F with |S| > 1. Then there are at
least (|S| — 1)™ points (a1,...,a,) € S™ such that p(ay,...,a,) #0.

The standard way to apply the theorem for a zero test is quite obvious: fix a large enough
subset S of F, for example, ||S|| = 2n. Now, for a randomly chosen point (r1,...,r,) € S™ we
have p(ri,...,m,) # 0 with probability greater than ((||S]| — 1)/||SIN"™ = (1 — (1/2n))™ > 1/2,
when p # 0.

However, we cannot directly apply the theorem that way in our case because, for F = GF(2),
there are just 2 elements in F. The trick now is to work in a small extension field of GF(2)
instead. This method is mentioned by Ibarra and Moran [IM83] and also used for example by
Grigoriev et.al. [GKS90] in a slightly different setting (to interpolate sparse polynomials).

Theorem 2.4 ©- A -SAT € RP.

Proof. Let F(xy,...,x,) be a &- A-SAT formula and let pp(z1,...,z,) be the corresponding
polynomial over GF(2) as defined above. Note that pg is multilinear. Define s = [log2n]
and consider GF(2%). Let pp(x1,...,2,) denote the extension of pp over GF(2%), so that pp
and pr agree on GF(2)". Suppose pp is not the zero polynomial. Applying Theorem 2.3 with
S = GF(2), we get that pp, and hence pp, have a nonzero point in GF(2). Hence we can
conclude that pp is the zero polynomial over GF(2) if and only if pp is the zero polynomial over
GF(2%).

In order to evaluate pr at a point in GF(2%), we need an irreducible polynomial ¢(z) €
GF(2)[z] of degree s. (See for example [vdWae70] for background.) Then GF(2°) is isomorphic
to GF(2)[z]/¢(x). Note that there are only 2°t! = 4n polynomials of degree s in GF(2)[z].
Berlekamp [Ber70] showed that irreducibility of a polynomial can be checked in polynomial
time. Therefore, by cycling through all possible polynomials, one can find an irreducible one in
polynomial time.

Now we can apply Theorem 2.3 with S = GF(2°). If pp is not the zero polynomial, we will
detect it with probability greater than 1/2. O

Next we consider @-Th-SAT which is a generalization of the just solved &- A -SAT problem.
That is, in each clause, there has to be achieved a certain threshold value of 1’s for the clause to
be true. The question is whether there is an assignment satisfying an odd number of threshold
clauses.

The first idea might be to try a similar approach as for &- A -SAT, where we interpreted a
parity-over-and formula as a (compactly written) polynomial over GF(2). The important point
was that we could efficiently evaluate such a polynomial at any given point in an appropriate
extension field. However, in the case of a parity-over-threshold formula we do not even have such
a compact description of the polynomial. Again it is easy to see that the straight forward method
of transforming the formula into a polynomial as a sum of monoms might lead to exponentially
many (intermediate) monoms: consider a threshold formula F' = Thj(z1,...,z,) that evaluates
to 1 if at least k of its n inputs are 1’s. The corresponding polynomial pr over GF(2) has the
following form.

Pr = 2”: Z H:ESH(xt+1).

i=k SC{1,..,n} SES &S
lISl1=¢
n

") monoms, each consisting of n terms of the form z; or 1 + ;.

We conclude that we can handle pp efficiently if n — k is constant. Since we are dealing with

Hence pp consists of Y7 F (

parity-over-threshold formulas, we can use the parity for negation. Hence, a similar argument as
above works when the threshold % is bounded by a constant. In particular, we have an efficient
algorithm if the fan-in of the threshold gate is bounded.

Proposition 2.5 k-® -Th-SAT € P, for any k > 0.

In the general case, the crucial observation is that we can evaluate the polynomial associated
with a parity-over-threshold formula F' without having a compact explicit way of writing it: F
itself can be used to evaluate pr by dynamic programming. Then we can continue as in the
proof of Theorem 2.4.

Theorem 2.6 ®-Th-SAT € RP.

Proof. Consider the threshold formula Th}(z1,...,z,) that evaluates to 1 if at least k of its n
inputs are 1’s. Let ¢}'(z1,...,2,) be the polynomial over GF(2) that represents Thj}. We have
the following recurrence relation for 1 < k < n.

(@) = B T (@1, Bpmt) + (L= @) - 0 (@1, Bpm). (1)

The base cases are tf(ml,...,ml) =gy -2 and th(zy,..., 1) = 1, for [= 1,...,n. Therefore,
to evaluate t} over GF(2) at a given point, we can use dynamic programming: we simply have
to fill out a table with at most n(k + 1) = O(n?) entries.

Now, let F'(z1,...2,) be a parity-over-threshold formula having m threshold clauses. We can
write the polynomial pp representing F' over GF(2) as follows.

m
pF(xla-" 7$n) = Zﬂ;b
=1

where each polynomial tzz has some n; literals as input. We can evaluate pp over GF(2) at a
given point by evaluating each of the tZ; as described above and then adding up all the values
obtained. Now we can proceed as in Theorem 2.4. O

Remark 2.7 @&- A -SAT and &-Th-SAT can be decided efficiently even in parallel. That is,
we have in fact shown that these two problems are in RNC. For @- A -SAT this is immediate
from our algorithm (note that testing irreducibilty in small fields is in NC?). For ®-Th-SAT ,
there is a dynamic programming step which might not be parallelizable. However, in our case,
the specific table we have to fill out according to equation (1) can be seen as a arithmetic circuit
of degree n over GF(2). Miller, Ramachandran, and Kaltofen [MRK88] have shown that such
circuits can be evaluated in NC?2.

Remark 2.8 When we take modulo m gates instead of parity gates, all we need for the above
algorithms to work correctly is that the formulas have some associated polynomial over some
field. Therefore, we have Mod(m)-Th-SAT € RP for any prime power m. For m not being a
prime power, the complexity of Mod(m)- A -SAT and Mod(m)-Th-SAT remains open.

Finally, we show that Theorem 2.6 can be generalized to weighted threshold gates with
polynomially bounded weights. This yields a randomized algorithm to solve the parity version
of Integer Linear Programming in polynomial time.

Consider a weighted threshold gate

wixry + -+ wpr, >k,

where wy, ..., wy are integer weights. Let wt}(z1,...,2,) be the polynomial over GF(2) that
represents the weighted threshold gate. Observe that we still have a recurrence relation analogous
to equation (1). Namely, let N be the sum of the negative weights and P be the sum of the
positive weights. For N < k < P

WL (L1, Ty) = Ty - wtz;bn(xl, s Tp1) F (L= zp) - wt? (g, 2 1),
The base cases are wth(z1,...,Zn) = Y1 - - Yn, where y; = x; if w; > 0, and y; = 1 —x; otherwise,

and wt (z1,...,2,) = 1. Let W = N+ P = [[(wi,...,wy)|1. To evaluate ¢} over GF(2) we
have to fill out a table with at most O(nWW) entries. This can be done in polynomial time
when W is polynomially bounded. It follows that &-Th-SAT is in RP even with polynomially
bounded threshold gates.

Now consider the Integer Linear Programming problem, ILP: given a m X n matrix A and
a m vector b, is there a n vector z such that Az > b, where A, b, and = are over the integers?
ILP, and even 0-1-ILP, where z is required to be a zero-one vector, is NP-complete [Kar72].
For 0-1-ILP, note that each row in Az > b can be seen as a weighted threshold gate as above.
By the preceeding discussion we conclude that the parity version of 0-1-ILP, call it odd-0-1-ILP,
that asks for a zero-one vector z such that an odd number of the conditions is satisfied, is in
RP.

Corollary 2.9 odd-0-1-ILP with polynomially bounded weights is in RP.

Clearly, Remark 2.7 and 2.8 apply to weighted ®&-Th-SAT and odd-0-1-ILP as well.

3 Threshold at the Output

We start by considering A- @ -SAT. Given a and-over-parity formula F', we are seeking for an
assignment such that in all the parity clauses an odd number of literals has value one. This
can be seen as a set of linear equations over GF(2) that have to be satisfied simultaneously.
Therefore A- @ -SAT can be solved in polynomial time, in fact in NC2.

Proposition 3.1 A-@ -SAT € P.

Remark 3.2 The approach via linear equations over GF(2) gives not only an efficient way to
decide N-® -SAT but even to count the number of solutions in polynomial time. This contrasts
with the fact that the counting version of DNF-SAT is #P-complete [Val79b].

Next we generalize to threshold-over-parity formulas. In the above setting of linear equations,
we ask, for some threshold value k, whether some k-subset of the equations is simultaneously
satisfiable. In contrast to the case where all equations have to be fullfilled, there is no polynomial-
time algorithm known for this generalization. We show below that the problem is in fact NP-
complete. Before doing so, we argue that the problem is easy for certain threshold values k£ that
depend on the number of clauses a formula has.

Consider a formula F' € Th-@-SAT and assume that no constants are fed into the threshold
gate. We make a random assignment to the variables, that is, each variable is assigned inde-
pendently a value 0 or 1 with equal probability. Then we expect a variable to have value 1
with probability 1/2. Also, for a clause C =1; @ --- ® I, we have E(C evaluates to 1) = 1/2.
Because of the linearity of the expectation, a random assignment is expected to satisfy 1/2 of
the clauses. Therefore there also exist such an assignment. We conlude that the problem is
trivial for thresholds up to 1/2. However, Th- & -SAT is NP-complete for thresholds (strictly)
between 1/2 and 1.

Theorem 3.3 Th-® -SAT is NP-complete.

Proof. We reduce 3-CNF-SAT to Th- & -SAT. Consider a clause C = [y V Iy VI3 of a given
3-CNF formula F, for literals I, l2, I3. From C' we define the following sequence of 7 formulas

S(C) — (lla l23 l33
Ldl, Ll lbdls,
Lhelols)-

Let a be an assignment to the literals. Observe that when a does not satisfy C, then none of
the formulas of S(C') is satisfied. On the other hand, if a satisfies C, then exactly four formulas
of S(C) are satisfied, no matter which of the literals of C are satisfied by a.

Let formula F' have m clauses. We construct a threshold-over-parity formula G as follows:
for each clause C of F', we put all formulas from S(C') as input to the threshold-gate of G which
therefore has fan-in 7m. It follows that if an assignment « satisfies F', then exactly 4m inputs of
the threshold-gate are on when a is given as input to G. If a does not satisfies F', then at most
4(m — 1) inputs of the threshold-gate are on.

Thus, with a 4m threshold-gate on top, G is satisfiable if and only if F' is satisfiable. In fact,
by the above discussion, we could even use a 4m equality-gate. O

Remark 3.4 If we use modulo m gates instead of parity gates, note first that Th-Mod(m)-SAT
s clearly NP-complete for m > 3, since in that case, the modulo m-gate behaves like an or-
gate on clauses with 3 literals. So the only interesting case that remains is when m = 3: for a
clause C consisting of the literals 1, l2, I3, we consider the following sequence of 15 formulas.

SC) = (i, I I3
Iy, la, I3,
201 + 1o, 210 + 13, 21y +13,
201 + 1o, 210 + 13, 21y +13,
200 + 1o+ 13, 114+ 219+ 13, 1 + 15+ 23),

where + denotes addition in GF(3), i.e., according to the modulo 3-gate. Now, if clause C is
not satisfied by an assignment, then none of the formulas of S(C) have value 1. On the other
hand, if an assignment satisfies C, then exactly 9 formulas from S(C) have value 1. Then we
can continue in the same way as in the proof of Theorem 3.3. It follows that Th-Mod(3)-SAT
is NP-complete.

Note that this result also follows from the NP-completeness of 2-MaxSAT [GJS76], because
again, a modulo 3-gate works like an or-gate on clauses with 2 literals.

Finally, we consider the satisfiability problem when the or-gate of a DNF formula is replaced
by a threshold-gate. Although DNF-SAT can be solved in logarithmic space, Th- A-SAT is again
a hard problem.

Theorem 3.5 Th- A -SAT is NP-complete.

Proof. We reduce 3-CNF-SAT to Th-A-SAT. Consider a clause C' = [; VIs Vi3 of a given 3-CNF
formula F, for literals [y, ls, I3. There are seven assignments that satisfy C': if assignment a
satisfies C, then «a satisfies exactly one of the following formula from the following sequence.

Zl/\lQ/\lg, l1/\i2/\l3, l1/\l2/\i3,
Zl /\ZQ/\lg, Zl/\lQ/\Zg, l1/\i2/\i3)

Let formula F have m clauses. To construct a threshold-over-And formula G, take a threshold-
gate with fan-in 7m. We put, for each clause C' of F', the corresponding seven formulas S(C')
as inputs to the threshold-gate. It follows that if an assignment a satisfies F', then exactly m
inputs of the threshold-gate are on when a is given as input to G. If a does not satisfies F', then
at most m — 1 inputs of the threshold-gate are on.

Thus, with a m threshold- (or equality-) gate on top, G is satisfiable if and only if F is
satisfiable. O

4 Open Problems

What is the complexity of Mod(m)-A-SAT and Mod(m)-Th-SAT, when m is not a prime power?

Acknowledgments

We want to thank V Vinay, who originated this research by asking for the complexity of &- V
-SAT. Discussions with Lance Fortnow yielded Proposition 2.2 as a first step. He also helped in
Theorem 2.6. Finally, we want to thank Marek Karpinski for very useful hints to the literature,
and Jin-yi Cai for helpful discussions.

References

[Ber70] E. Berlekamp. Factoring Polynomials over Large Finite Fields. Mathematics of Com-
putation 24(111), 713-735, 1970.

[BCW80] M. Blum, A. Chandra, M. Wegman. Equivalence of free Boolean graphs can be decided
probabilistically in polynomial time. Information Processing Letters 10(2), 80-82, 1980.

[C95] N. Creignou. A Dichotomy Theorem for Maximum Generalized Satisfiabilty Problems.
Journal of Computer and System Sciences 51, 511-522, 1995.

[CH96] N. Creignou and M. Hermann. Complexity of Generalized Satisfiabilty Counting Prob-
lems. Information and Computation 125, 1-12, 1996.

[CooT1] S. Cook. The Complexity of Theorem-Proving Procedures. In 3rd ACM Symposium on
Theory of Computing (STOC), 151-158, 1971.

[EK89] A. Ehrenfeucht and M. Karpinski. The Computational Complexity of (XOR,AND)-
Counting Problems. Technical Report at Universitdt Bonn, Germany, 1989.

[GJ79] M. Garey and D. Johnson. Computers and Intractability. A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York, 1979.

[GJS76] M. Garey, D. Johnson, and L. Stockmeyer. Some Simplified NP-complete graph prob-
lems. Theoretical Computer Science 1, 237-267, 1976.

[GKS90] D. Grigoriev, M. Karpinski, and M. Singer. Fast Parallel Algorithms for Sparse Multi-
variate Polynomial Interpolation over Finite Fields. SIAM Journal on Computing 19(6),
1059-1063, 1990.

[HU79] J. Hopcroft, J. Ullman. Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, 1979.

[IM83] O. Ibarra and S. Moran. Probabilistic Algorithms for Deciding Equivalence of Straight-
Line Programs. Journal of the ACM 30(1), 217-228, 1983.

Kar72] R. Karp. Reducibility Among Combinatorial Problems. In R. Miller and J. Thatcher
g
(eds.), Complezity of Computer Computations, 85-104, 1972, Plenum Press, New York.

[MRKS88] G. Miller, V. Ramachandran, and E. Kaltofen. Efficient Parallel Evaluation of
Straight-Line Code and Arithmetic Circuits. STAM Journal on Computing 17(4), 687-
695, 1988.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley 1994.

[Scha78] T. Schaefer. The Complexity of Satisfiability Problems. In 10th ACM Symposium on
Theory of Computing (STOC), 216-226, 1978.

[Schw80] J. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities.
Journal of the ACM 27(4), 701-717, 1980.

[Val79a] L. Valiant. The Complexity of Computing the Permanent. Theoretical Computer Sci-
ence 8, 189-201, 1979.

[Val79b] L. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM Journal
on Computing 8(3), 410-421, 1979.

[vdWae70] B. van der Waerden. Algebra 1 und 2. Heidelberger Taschenbiicher 1970.

[Zip79] R. Zippel. Probabilistic Algorithms for Sparse Polynomials. In Proceedings of EU-
ROSAM 79, Springer Verlag, Lecture Notes in Computer Sience 72, 1979.

10

