
Satis�ability Problems

Manindra Agrawal �

Dept� of Computer Science

Indian Institute of Technology

Kanpur ������� India

manindra�iitk	ernet	in

Thomas Thierauf y

Abt� Theoretische Informatik

Universit
at Ulm

����� Ulm� Germany

thierauf�informatik	uni�ulm	de

December �
� ����

Abstract

We investigate the complexity of satis�ability problems that� surprisingly� �to the best of

our knowledge� have not yet been considered in the literature�

CNF�SAT� which we also denote by ��� �SAT� asks for an assignment for a given formula

that satis�es all of its clauses� While �� � �SAT is NP�complete�

� what is the complexity of ��� �SAT� where it is asked for an assignment that satis�es

an odd number of clauses�

We show that ��� �SAT can be solved by a randomized algorithm in polynomial time� The

result is extended to ��Th�SAT� where we have a threshold instead of an or at the input

level�

MaxSAT� which we also denote by Th� � �SAT� is a generalization of CNF�SAT� and

hence NP�complete�

� What is the complexity of the analogous optimization version of DNF�SAT� an easy

problem� Th� � �SAT�

We show that Th� � �SAT is NP�complete� and the same holds for Th� � �SAT� where we

have a parity instead of an and at the input level�

� Introduction

In a seminal paper� Cook �Coo��� showed that the satis�ability problem for Boolean formulas�

SAT� is NP	complete� From then on� SAT has been reduced to many other NP problems�

thereby showing them to be NP	complete as well 
see �GJ��� for a good introduction to NP

completeness�� In order to facilitate such reductions it has been useful to have the Boolean

formulas in certain normal forms or to have certain properties� We give some examples� Most

notably� the satis�ability problem for formulas in conjunctive normal form� CNF	SAT� or even

with the restriction to at most 
 literals per clause� 
	CNF	SAT� isNP	complete� Other variants

�Research done while visiting the university of Ulm� Germany� Supported in part by an Alexander von

Humboldt fellowship�
ySupported in part by DAAD� Acciones Integradas ����� ���	AI	e	dr�

�



are based on 
	CNF	SAT are� Not	All	Equal	SAT �Scha���� where it is asked for a satisfying

assignment of a given 
	CNF formula that� for any clause� doesn�t set all 
 literals to �� In

One	In	Three	SAT �Scha���� for any clause� exactly one literal should be �� More general�

Not	All	Equal	SAT and One	In	Three	SAT are just special cases of the class of generalized

satis�ability problems introduced by Schaefer �Scha��� 
see also �GJ���� p� ����� Schaefer gives

a dichotomy theorem to classify all the properties one can impose on assignments as in the

examples above such that the satis�abilty problem is still NP	complete� An analogous theorem

for the corresponding counting problems was recently shown in �CH����

On the other hand� for certain other restrictions� the satis�ability problem becomes easy�

for example for Horn formulas it is solvable in polynomial time� P 
in fact� it is P	complete��

�	CNF	SAT� where there are at most � literals per clause� can be solved nondeterministically in

logarithmic space� NL 
in fact� it is NL	complete�� The satis�ability problem for formulas in

disjunctive normal form� DNF	SAT� can even be solved in logarithmic space� L�

CNF	SAT asks for an assignment satisfying all of the clauses of a given formula� If not all

clauses can be satis�ed� the next interesting question is how many clauses can be simultaneously

satis�ed at maximum� The question of how well this optimization problem can be approximated

has attracted much interest due to the new results on probabilistically checkable proofs 
PCP��

The associated decision version� MaxSAT� has as input a CNF formula F and a number k� we

are then asked whether there is some assignment satisfying at least k clauses of F � It is clear

that MaxSAT is as least as di�cult as CNF	SAT� and hence is NP	complete� An interesting

point however is that the MaxSAT problem for �	CNF	SAT� call it �	MaxSAT� is NP	complete

as well� even though �	CNF	SAT is in P �GJS��� 
see also �Pap���� Theorem �����

The switch from CNF	SAT to MaxSAT can also be seen as follows� Adapting terminology

from circuit theory� we call a CNF formula also a and�over�or formula� or having an and�gate over

an or�gate� Correspondingly� CNF	SAT is also denoted by �	 � 	SAT� Now consider MaxSAT�

This is obtained from �	 � 	SAT by exchanging the and	gate at the output by a threshold	gate�

i�e�� MaxSAT � Th	 � 	SAT�

Let us now analogously replace the or	gate of DNF formulas by a threshold	gate� That is�

we ask for the complexity of Th	 � 	SAT� Although we have derived the problem from an easy

one� namely DNF	SAT� we show in Section 
 that Th	 � 	SAT is NP	complete�

In this paper we also consider satis�ability problems where in addition to threshold gates we

allow parity gates� For example� replacing the and	gate of CNF formulas by a parity	gate� we

are asking for assignments satisfying an odd number of clauses of a given formula� In Section �

we show that �	� 	SAT can be solved by a randomized Las Vegas type algorithm in polynomial

time� in symbols� �	 � 	SAT � RP� Our technique is to arithmetize such formulas which leads

to multilinear polynomials over GF
��� Considering these polynomials in a small extension �eld�

GF
�s�� we can then apply the Schwartz	Zippel Theorem to solve the problem by a probabilistic

zero test� If one exchanges the remaining or	gate by a more general threshold	gate� an odd

number of threshold gates has to be � in order to satisfy a parity	over	threshold formula� By

extending the algorithm for �	 � 	SAT� we show that �	Th	SAT is still in RP� Moreover� our

algorithm can be extended to work even for �	Th	SAT with weighted threshold gates� This has

a nice interpretation in terms of a integer linear programming problem where it is just required

to satisfy an odd number of inequalities instead of all�

Since we are using � operations� namely f����Th��g� there are �� ways of building depth two

�



formulas� However� for most these� the complexity of the corresponding satis�ability problem is

easy to see� For example� as for DNF	SAT� having an or at the output level makes the problem

trivial� If we take twice the same operation� then clearly �	 � 	SAT� �	 � 	SAT� and �	� 	SAT

are in P� For Th	Th	SAT� note that and and or are speci�c threshold operations� Therefore

Th	Th	SAT is at least as di�cult as CNF	SAT� and hence is NP	complete� For the same reason

this holds also for Th	� 	SAT and �	Th	SAT� To keep track for the reader� we classi�ed already

�� of the �� satis�ability problems in this paragraph�

The complexity of the remaining � is not as obvious� We partition them in � groups according

to the type of operation at the output level� In Section � we show that �	 � 	SAT� �	 � 	SAT�

and �	Th	SAT can be solved by a randomized Las Vegas type algorithm in polynomial time�

Therefore these problems are unlikely to be NP	complete� In Section 
� we show that �	� 	SAT

can be solved in polynomial time� while Th	� 	SAT and Th	 � 	SAT are NP	complete�

� Parity at the Output

In CNF	SAT we are seeking for an assignment that satis�es all the clauses of a formula� Re	

placing the and	gate by a parity	gate� we ask for an assignment that satis�es an odd number

of clauses� Note �rst that one can do complements with parity by adding a � to its inputs�

namely �
x�� � � � � xn� � � � �
�� x�� � � � � xn�� Hence� using de Morgan�s laws� we can transform

a parity	over	or formula into an equivalent parity	over	and formula and vice versa� Therefore�

�	 � 	SAT is many	one equivalent to �	 � 	SAT� Next observe that we can arithmitize any

parity	over	and formula F 
x�� � � � � xn�� Namely� F corresponds to a polynomial pF 
x�� � � � � xn�

over GF
��� where parity is interpreted as addition and and as multiplication� An occurence of

a variable xi in F is kept as xi in pF � and a negated variable xi is replaced by 
� � xi�� Clearly�

we have

F � �	 � 	SAT �� pF �� ��

Remark ��� �P �Val��a� is the class of counting problems� where one wants to compute the

number of solutions of NP problems� For all the known NP�complete problems� the corre�

sponding counting version is �P�complete� This gives rise to the conjecture that if a counting

problem is not �P�complete� then its decision version should not be NP�complete� Note how�

ever that the counting version of an easy problem can be �P�complete as well� An example is

DNF	SAT �Val��b��

Ehrenfeucht and Karpinski �EK	�� have considered the problem of counting the number of

zeros of multivariate polynomials over GF
��� like pF from above� They have shown that it is

�P�complete� Hence we cannot conclude anything from this result for the complexity of the

decision version�

Polynomial pF is given as a sum of terms� where each term is a product of the form xi� � � � xik �


� � xj�� � � � 
� � xjl�� In order to test whether pF is the zero	polynomial� we can multiply out

each term and write pF as a sum of monoms� Then pF is the zero	polynomial if and only in

this process all resulting 
intermediate� monoms cancel each other� Note however� that the term

above results in �l monoms� so that the above procedure works in polynomial time only for

l � O
log jF j�� In particular� for k	� 	� 	SAT� where any clause has at most k literals� we have






Proposition ��� k�� � � �SAT � P� for any k � ��

In the case that l is unbounded� no polynomial	time algorithm is known� Below we give

a randomized polynomial	time algorithm for �	 � 	SAT� As a consequence� �	 � 	SAT is very

unlikely to be NP	complete�

Schwartz �Schw��� and Zippel �Zip��� give e�cient algorithms that probabilistically check

whether a multivariate polynomial is all zero� Below� we state a variant of their main theorem for

multilinear polynomials that was implicitely shown by Blum� Chandra� and Wegman �BCW����

An explicit statement� generalized to arbitrary multivariate polynomials can be found in �IM�
��

Theorem ��� �BCW��	 Schw��	 Zip
�	 IM��� Let p
x�� � � � � xn� be a multilinear polyno�

mial over a 
eld F that is not the zero polynomial� Let S 	 F with jSj � �� Then there are at

least 
jSj 
 ��n points 
a�� � � � � an� � Sn such that p
a�� � � � � an� �� ��

The standard way to apply the theorem for a zero test is quite obvious� �x a large enough

subset S of F� for example� kSk � �n� Now� for a randomly chosen point 
r�� � � � � rn� � Sn we

have p
r�� � � � � rn� �� � with probability greater than 

kSk 
 ���kSk�n � 
� 
 
���n��n � ����

when p �� ��

However� we cannot directly apply the theorem that way in our case because� for F � GF
���

there are just � elements in F� The trick now is to work in a small extension �eld of GF
��

instead� This method is mentioned by Ibarra and Moran �IM�
� and also used for example by

Grigoriev et�al� �GKS��� in a slightly di�erent setting 
to interpolate sparse polynomials��

Theorem ��
 �� � �SAT � RP�

Proof� Let F 
x�� � � � � xn� be a �	 � 	SAT formula and let pF 
x�� � � � � xn� be the corresponding

polynomial over GF
�� as de�ned above� Note that pF is multilinear� De�ne s � dlog �ne

and consider GF
�s�� Let bpF 
x�� � � � � xn� denote the extension of pF over GF
�s�� so that bpF
and pF agree on GF
��n� Suppose bpF is not the zero polynomial� Applying Theorem ��
 with

S � GF
��� we get that bpF � and hence pF � have a nonzero point in GF
��� Hence we can

conclude that pF is the zero polynomial over GF
�� if and only if bpF is the zero polynomial over

GF
�s��

In order to evaluate bpF at a point in GF
�s�� we need an irreducible polynomial �
x� �

GF
���x� of degree s� 
See for example �vdWae��� for background�� Then GF
�s� is isomorphic

to GF
���x���
x�� Note that there are only �s�� � �n polynomials of degree s in GF
���x��

Berlekamp �Ber��� showed that irreducibility of a polynomial can be checked in polynomial

time� Therefore� by cycling through all possible polynomials� one can �nd an irreducible one in

polynomial time�

Now we can apply Theorem ��
 with S � GF
�s�� If bpF is not the zero polynomial� we will

detect it with probability greater than ���� �

Next we consider �	Th	SAT which is a generalization of the just solved �	� 	SAT problem�

That is� in each clause� there has to be achieved a certain threshold value of ��s for the clause to

be true� The question is whether there is an assignment satisfying an odd number of threshold

clauses�

�



The �rst idea might be to try a similar approach as for �	 � 	SAT� where we interpreted a

parity	over	and formula as a 
compactly written� polynomial over GF
��� The important point

was that we could e�ciently evaluate such a polynomial at any given point in an appropriate

extension �eld� However� in the case of a parity	over	threshold formula we do not even have such

a compact description of the polynomial� Again it is easy to see that the straight forward method

of transforming the formula into a polynomial as a sum of monoms might lead to exponentially

many 
intermediate� monoms� consider a threshold formula F � Thnk
x�� � � � � xn� that evaluates

to � if at least k of its n inputs are ��s� The corresponding polynomial pF over GF
�� has the

following form�

pF �
nX

i�k

X
S�f������ng
kSk�i

Y
s�S

xs
Y
t��S


xt � ���

Hence pF consists of
Pn�k

i��

�n
i

�
monoms� each consisting of n terms of the form xj or � � xj�

We conclude that we can handle pF e�ciently if n 
 k is constant� Since we are dealing with

parity	over	threshold formulas� we can use the parity for negation� Hence� a similar argument as

above works when the threshold k is bounded by a constant� In particular� we have an e�cient

algorithm if the fan	in of the threshold gate is bounded�

Proposition ��� k�� �Th�SAT � P� for any k � ��

In the general case� the crucial observation is that we can evaluate the polynomial associated

with a parity	over	threshold formula F without having a compact explicit way of writing it� F

itself can be used to evaluate pF by dynamic programming � Then we can continue as in the

proof of Theorem ����

Theorem ��� ��Th�SAT � RP�

Proof� Consider the threshold formula Thnk
x�� � � � � xn� that evaluates to � if at least k of its n

inputs are ��s� Let tnk
x�� � � � � xn� be the polynomial over GF
�� that represents Thnk � We have

the following recurrence relation for � � k � n�

tnk
x�� � � � � xn� � xn � t
n��
k��
x�� � � � � xn��� � 
�
 xn� � t

n��
k 
x�� � � � � xn���� 
��

The base cases are tll
x�� � � � � xl� � x� � � � xl and tl�
x�� � � � � xl� � �� for l � �� � � � � n� Therefore�

to evaluate tnk over GF
�� at a given point� we can use dynamic programming� we simply have

to �ll out a table with at most n
k � �� � O
n�� entries�

Now� let F 
x�� � � � xn� be a parity	over	threshold formula having m threshold clauses� We can

write the polynomial pF representing F over GF
�� as follows�

pF 
x�� � � � � xn� �
mX
i��

tniki �

where each polynomial tniki has some ni literals as input� We can evaluate pF over GF
�� at a

given point by evaluating each of the tniki as described above and then adding up all the values

obtained� Now we can proceed as in Theorem ���� �

�



Remark ��
 �� � �SAT and ��Th�SAT can be decided e�ciently even in parallel� That is�

we have in fact shown that these two problems are in RNC� For �� � �SAT this is immediate

from our algorithm �note that testing irreducibilty in small 
elds is in NC�
� For ��Th�SAT �

there is a dynamic programming step which might not be parallelizable� However� in our case�

the speci
c table we have to 
ll out according to equation ��
 can be seen as a arithmetic circuit

of degree n over GF
��� Miller� Ramachandran� and Kaltofen �MRK		� have shown that such

circuits can be evaluated in NC��

Remark ��� When we take modulo m gates instead of parity gates� all we need for the above

algorithms to work correctly is that the formulas have some associated polynomial over some

�eld� Therefore� we have Mod
m��Th�SAT � RP for any prime power m� For m not being a

prime power� the complexity of Mod
m�� � �SAT and Mod
m��Th�SAT remains open�

Finally� we show that Theorem ��� can be generalized to weighted threshold gates with

polynomially bounded weights� This yields a randomized algorithm to solve the parity version

of Integer Linear Programming in polynomial time�

Consider a weighted threshold gate

w�x� � � � �� wnxn � k�

where w�� � � � � wn are integer weights� Let wtnk
x�� � � � � xn� be the polynomial over GF
�� that

represents the weighted threshold gate� Observe that we still have a recurrence relation analogous

to equation 
��� Namely� let N be the sum of the negative weights and P be the sum of the

positive weights� For N � k � P

wtnk 
x�� � � � � xn� � xn � wt
n��
k�wn


x�� � � � � xn��� � 
�
 xn� � wt
n��
k 
x�� � � � � xn����

The base cases are wtnP 
x�� � � � � xn� � y� � � � yn� where yi � xi if wi � �� and yi � �
xi otherwise�

and wtnN 
x�� � � � � xn� � �� Let W � N � P � k
w�� � � � � wn�k�� To evaluate tnk over GF
�� we

have to �ll out a table with at most O
nW � entries� This can be done in polynomial time

when W is polynomially bounded� It follows that �	Th	SAT is in RP even with polynomially

bounded threshold gates�

Now consider the Integer Linear Programming problem� ILP � given a m 
 n matrix A and

a m vector b� is there a n vector x such that Ax � b� where A� b� and x are over the integers�

ILP� and even �	�	ILP� where x is required to be a zero	one vector� is NP	complete �Kar����

For �	�	ILP� note that each row in Ax � b can be seen as a weighted threshold gate as above�

By the preceeding discussion we conclude that the parity version of �	�	ILP� call it odd	�	�	ILP�

that asks for a zero	one vector x such that an odd number of the conditions is satis�ed� is in

RP�

Corollary ��� odd	�	�	ILP with polynomially bounded weights is in RP�

Clearly� Remark ��� and ��� apply to weighted �	Th	SAT and odd	�	�	ILP as well�

�



� Threshold at the Output

We start by considering �	 � 	SAT� Given a and	over	parity formula F � we are seeking for an

assignment such that in all the parity clauses an odd number of literals has value one� This

can be seen as a set of linear equations over GF
�� that have to be satis�ed simultaneously�

Therefore �	� 	SAT can be solved in polynomial time� in fact in NC��

Proposition ��� ��� �SAT � P�

Remark ��� The approach via linear equations over GF
�� gives not only an e�cient way to

decide ��� �SAT but even to count the number of solutions in polynomial time� This contrasts

with the fact that the counting version of DNF	SAT is �P�complete �Val��b��

Next we generalize to threshold	over	parity formulas� In the above setting of linear equations�

we ask� for some threshold value k� whether some k	subset of the equations is simultaneously

satis�able� In contrast to the case where all equations have to be full�lled� there is no polynomial	

time algorithm known for this generalization� We show below that the problem is in fact NP	

complete� Before doing so� we argue that the problem is easy for certain threshold values k that

depend on the number of clauses a formula has�

Consider a formula F � Th	� 	SAT and assume that no constants are fed into the threshold

gate� We make a random assignment to the variables� that is� each variable is assigned inde	

pendently a value � or � with equal probability� Then we expect a variable to have value �

with probability ���� Also� for a clause C � l� � � � � � lk� we have E
C evaluates to �� � ����

Because of the linearity of the expectation� a random assignment is expected to satisfy ��� of

the clauses� Therefore there also exist such an assignment� We conlude that the problem is

trivial for thresholds up to ���� However� Th	� 	SAT is NP	complete for thresholds 
strictly�

between ��� and ��

Theorem ��� Th�� �SAT is NP�complete�

Proof� We reduce 
	CNF	SAT to Th	 � 	SAT� Consider a clause C � l� � l� � l� of a given


	CNF formula F � for literals l�� l�� l�� From C we de�ne the following sequence of � formulas

S
C� � 
 l�� l�� l��

l� � l�� l� � l�� l� � l��

l� � l� � l� ��

Let a be an assignment to the literals� Observe that when a does not satisfy C� then none of

the formulas of S
C� is satis�ed� On the other hand� if a satis�es C� then exactly four formulas

of S
C� are satis�ed� no matter which of the literals of C are satis�ed by a�

Let formula F have m clauses� We construct a threshold	over	parity formula G as follows�

for each clause C of F � we put all formulas from S
C� as input to the threshold	gate of G which

therefore has fan	in �m� It follows that if an assignment a satis�es F � then exactly �m inputs of

the threshold	gate are on when a is given as input to G� If a does not satis�es F � then at most

�
m
 �� inputs of the threshold	gate are on�

Thus� with a �m threshold	gate on top� G is satis�able if and only if F is satis�able� In fact�

by the above discussion� we could even use a �m equality	gate� �

�



Remark ��
 If we use modulo m gates instead of parity gates� note 
rst that Th�Mod
m��SAT

is clearly NP�complete for m � 
� since in that case� the modulo m�gate behaves like an or�

gate on clauses with � literals� So the only interesting case that remains is when m � 
� for a

clause C consisting of the literals l�� l�� l�� we consider the following sequence of �� formulas�

S
C� � 
 l�� l�� l��

l�� l�� l��

�l� � l�� �l� � l�� �l� � l��

�l� � l�� �l� � l�� �l� � l��

�l� � l� � l�� l� � �l� � l�� l� � l� � �l� ��

where � denotes addition in GF

�� i�e�� according to the modulo 
�gate� Now� if clause C is

not satis
ed by an assignment� then none of the formulas of S
C� have value �� On the other

hand� if an assignment satis
es C� then exactly � formulas from S
C� have value �� Then we

can continue in the same way as in the proof of Theorem ���� It follows that Th�Mod

��SAT

is NP�complete�

Note that this result also follows from the NP�completeness of ��MaxSAT �GJS���� because

again� a modulo 
�gate works like an or�gate on clauses with � literals�

Finally� we consider the satis�ability problem when the or	gate of a DNF formula is replaced

by a threshold	gate� Although DNF	SAT can be solved in logarithmic space� Th	� 	SAT is again

a hard problem�

Theorem ��� Th� � �SAT is NP�complete�

Proof� We reduce 
	CNF	SAT to Th	�	SAT� Consider a clause C � l�� l�� l� of a given 
	CNF

formula F � for literals l�� l�� l�� There are seven assignments that satisfy C� if assignment a

satis�es C� then a satis�es exactly one of the following formula from the following sequence�

S
C� � 
 l� � l� � l��

l� � l� � l�� l� � l� � l�� l� � l� � l��

l� � l� � l�� l� � l� � l�� l� � l� � l� ��

Let formula F havem clauses� To construct a threshold	over	And formula G� take a threshold	

gate with fan	in �m� We put� for each clause C of F � the corresponding seven formulas S
C�

as inputs to the threshold	gate� It follows that if an assignment a satis�es F � then exactly m

inputs of the threshold	gate are on when a is given as input to G� If a does not satis�es F � then

at most m
 � inputs of the threshold	gate are on�

Thus� with a m threshold	 
or equality	� gate on top� G is satis�able if and only if F is

satis�able� �

� Open Problems

What is the complexity of Mod
m�	�	SAT and Mod
m�	Th	SAT� whenm is not a prime power�

�



Acknowledgments

We want to thank V Vinay� who originated this research by asking for the complexity of �	 �

	SAT� Discussions with Lance Fortnow yielded Proposition ��� as a �rst step� He also helped in

Theorem ���� Finally� we want to thank Marek Karpinski for very useful hints to the literature�

and Jin	yi Cai for helpful discussions�

References

�Ber��� E� Berlekamp� Factoring Polynomials over Large Finite Fields� Mathematics of Com�

putation ������
� ��
	�
�� �����

�BCW��� M� Blum� A� Chandra� M� Wegman� Equivalence of free Boolean graphs can be decided

probabilistically in polynomial time� Information Processing Letters ����
� ��	��� �����

�C��� N� Creignou� A Dichotomy Theorem for Maximum Generalized Satis�abilty Problems�

Journal of Computer and System Sciences �� � ���	���� �����

�CH��� N� Creignou and M� Hermann� Complexity of Generalized Satis�abilty Counting Prob	

lems� Information and Computation ��� � �	��� �����

�Coo��� S� Cook� The Complexity of Theorem	Proving Procedures� In �rd ACM Symposium on

Theory of Computing �STOC
� �������� �����

�EK��� A� Ehrenfeucht and M� Karpinski� The Computational Complexity of 
XOR�AND�	

Counting Problems� Technical Report at Universit�at Bonn� Germany� �����

�GJ��� M� Garey and D� Johnson� Computers and Intractability� A Guide to the Theory of

NP�Completeness� W�H� Freeman and Company� New York� �����

�GJS��� M� Garey� D� Johnson� and L� Stockmeyer� Some Simpli�ed NP	complete graph prob	

lems� Theoretical Computer Science � � �
�	���� �����

�GKS��� D� Grigoriev� M� Karpinski� and M� Singer� Fast Parallel Algorithms for Sparse Multi	

variate Polynomial Interpolation over Finite Fields� SIAM Journal on Computing ����
�

����	���
� �����

�HU��� J� Hopcroft� J� Ullman� Introduction to Automata Theory� Languages� and Computa	

tion� Addison	Wesley� �����

�IM�
� O� Ibarra and S� Moran� Probabilistic Algorithms for Deciding Equivalence of Straight	

Line Programs� Journal of the ACM ����
� ���	���� ���
�

�Kar��� R� Karp� Reducibility Among Combinatorial Problems� In R� Miller and J� Thatcher


eds��� Complexity of Computer Computations� ��	���� ����� Plenum Press� New York�

�MRK��� G� Miller� V� Ramachandran� and E� Kaltofen� E�cient Parallel Evaluation of

Straight	Line Code and Arithmetic Circuits� SIAM Journal on Computing ����
� ���	

���� �����

�



�Pap��� C� Papadimitriou� Computational Complexity � Addison	Wesley �����

�Scha��� T� Schaefer� The Complexity of Satis�ability Problems� In ��th ACM Symposium on

Theory of Computing �STOC
� ���	���� �����

�Schw��� J� Schwartz� Fast Probabilistic Algorithms for Veri�cation of Polynomial Identities�

Journal of the ACM ����
� ���	���� �����

�Val��a� L� Valiant� The Complexity of Computing the Permanent� Theoretical Computer Sci�

ence 	 � ���	���� �����

�Val��b� L� Valiant� The Complexity of Enumeration and Reliability Problems� SIAM Journal

on Computing 	��
� ���	���� �����

�vdWae��� B� van der Waerden� Algebra � und �� Heidelberger Taschenb�ucher �����

�Zip��� R� Zippel� Probabilistic Algorithms for Sparse Polynomials� In Proceedings of EU�

ROSAM �� � Springer Verlag� Lecture Notes in Computer Sience ��� �����

��


