
Formalizing Fixed�Point Theory

in PVS�

F� Bartels� A� Dold� H� Pfeifer� F� W� von Henke� H� Rue�

Abt� K�unstliche Intelligenz� Universit�at Ulm
����� Ulm� Germany

fbartels�dold�pfeifer�vhenke�ruessg�ki�informatik�uni�ulm�de

Abstract

We describe an encoding of major parts of domain theory in the PVS extension of
the simply�typed ��calculus� these encodings consist of�

� Formalizations of basic structures like partial orders and complete partial orders
�domains��

� Various domain constructions�

� Notions related to monotonic functions and continuous functions�

� Knaster�Tarski �xed�point theorems for monotonic and continuous functions�
the proof of this theorem requires Zorn	s lemma which has been derived from
Hilbert	s choice operator�

� Scott	s �xed�point induction for admissible predicates and various variations of
�xed�point induction like Park	s lemma�

Altogether
 these encodings form a conservative extension of the underlying PVS
logic
 since all developments are purely de�nitional�
Most of our proofs are straightforward transcriptions of textbook knowledge� The

purpose of this work
 however
 was not to merely reproduce textbook knowledge� To
the contrary
 our main motivation derived from our work on fully mechanized compiler
correctness proofs
 which requires a full treatment of �xed�point induction in PVS�
these requirements guided our selection of which elements of domain theory were
formalized�
A major problem of embedding mathematical theories like domain theory lies in

the fact that developing and working with those theories usually generates myriads
of applicability and type�correctness conditions� Our approach to exploiting the PVS
device of judgements to establish many applicability conditions behind the scenes leads
to a considerable reduction in the number of the conditions that actually need to be
proved�
Finally
 we exemplify the application of mechanized �xed�point induction in PVS

by a mechanized proof in the context of relating di�erent semantics of imperative
programming constructs�

�This paper appeared as the technical report UIB������ from the Universit�at Ulm� Fakult�at f�ur Infor�
matik	 This research has been funded in part by the Deutsche Forschungsgemeinschaft 
DFG� under
project �Veri�x






Contents

�� Introduction �

��� Overview � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Related Work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� A Brief Description of the PVS Speci�cation Language �

�� Formalizations �

��� Partial Orders � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Complete Partial Orders � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� CPO Constructions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Discrete pre�CPOs � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

����� Lifting � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

����� Function Domains � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


����� Predicate CPOs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


��� Monotonic Functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Continuous Functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Admissibility � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Formalization of Fixed�Point Theory � � � � � � � � � � � � � � � � � � � � � � ��

����� Fixed�Points � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Fixed�Point Theorem for Monotonic Functions � � � � � � � � � � � � ��

����� Fixed�Point Induction � � � � � � � � � � � � � � � � � � � � � � � � � � �


�� Example� Fixed	Point Induction in PVS ��

�� Conclusions ��

Appendix �


A� All Theories ��

B� Preliminaries ��

C� Partial Orders ��

D� Complete Partial Orders �


i



E� Admissibility� Monotonicity� Continuity ��

E�� Admissibility � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

E�� Monotonic Functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

E�� Continuous Functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


E�� Monotonicity
 Continuity
 and Admissibility Properties � � � � � � � � � � � � ��

F� Constructions ��

F�� Boolesche CPO � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

F�� Discrete CPOs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

F�� Flat CPOs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

F�� Function CPOs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

F�� Monotonic CPOs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

F�� Predicate CPOs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

G� Zorn
s Lemma ��

H� Fixed	Points ��

H�� De�nitions related to Fixed�Points � � � � � � � � � � � � � � � � � � � � � � � ��

H�� Fixed�Points over Monotonic Functions � � � � � � � � � � � � � � � � � � � � ��

H�� Fixed�Points over Continuous Functions � � � � � � � � � � � � � � � � � � � � ��

ii



Formalizing Fixed�Point Theory in PVS

�� Introduction

Domain theory is concerned with the existence and uniqueness of solutions of equations as
canonical least �xed�points� It forms the mathematical basis of denotational semantics for
programs
 and is used in systems like LCF �GMW�	� for reasoning about non�termination

partial functions
 and in�nite�valued data types such as lazy lists and streams�

In this paper we describe an encoding of major parts of domain theory in the
PVS �ORSvH	�� system
 a speci�cation and veri�cation tool which bases on Church�s
higher�order logic �simply�typed ��calculus�� More precisely
 our encodings consist of�

� Formalizations of basic structures like partial orders and complete partial orders
�cpo�s
 domains��

� Various domain constructions like �at cpo�s
 discrete cpo�s
 predicate cpo�s
 or func�
tion cpo�s�

� Notions related to monotonic functions and continuous functions�

� Knaster�Tarski �xed�point theorems for monotonic and continuous functions� the
proof of the �xed�point theorem for monotonic functions requires Zorn�s lemma

which has been derived from Hilbert�s choice operator�

� Scott�s �xed�point induction principle for admissible predicates and various varia�
tions of �xed�point induction like Park�s lemma�

Altogether
 these encodings form a conservative extension of the underlying PVS logic

since all developments are purely de�nitional�

Most of these encodings and proofs are straightforward transcriptions of textbook
knowledge from Loeckx and Sieber �LS���
 Winskel �Win	��
 Schmidt �Sch���
 and
Gunter �Gun	��� It was not our intention
 however
 to slavishly reproduce textbook knowl�
edge� To the contrary
 our main motivation came from the speci�c requirements of the
Veri�x project for constructing formal compiler correctness proofs that require the use of
�xed�point induction �see
 for example
 �MO	�
 DvHPR	���� these requirements guided
our selection of what parts of domain theory we formalized� We did not expect to �nd
major bugs in the textbooks developments
 since domain and �xed�point theory are well�
established mathematical �elds� However
 in the course of developing formal proofs
 we
were able to detect slight generalizations of theorems found in textbooks that streamlined
our proofs�

Another motivation for this work is to investigate the suitability of various devices of the
PVS speci�cation language like parameterized theories for encoding mathematical theories
and the use of some distinctive features of PVS like semantic subtypes and judgements�

A major problem of semantically embedding mathematical theories like domain theory
and �xed�point theory lies in the fact that both developing these theories and working
with them usually generates myriads of applicability conditions� i�e� one must prove all
the time that a certain structure is a complete partial order
 a monotonic or continuous

�



Formalizing Fixed�Point Theory in PVS

function
 or an admissible predicate� In order to reduce the number of generated applica�
bility conditions we have made heavy use of judgements
 a feature recently introduced to
PVS
 that allow additional type information to be passed to the typechecker� Instantia�
tion of a formal parameter requiring a monotonic function with a continuous function f

for example
 causes the PVS type�checker to generate the veri�cation condition that f is
monotonic� Declaration of the judgement

JUDGEMENT Continuous SUBTYPE OF Monotonic

however
 causes the type�checker to suppress this veri�cation condition
 since this fact can
now be deduced behind the scenes�

We think that the main contribution of this work is an extensive formalization of domain�
theoretic concepts to support reasoning about �xed�points that other people can use read�
ily
 or accommodate and extend it to their own purposes� Moreover
 other encodings may
bene�t from this work in the way parameterized theories and predicate subtypes are used
to formalize mathematical structures
 and in the way judgements are used to suppress
immense numbers of veri�cation conditions when working with the theory�

��� Overview

This paper is organized as follows� After comparing our encodings with work that we think
is most closely related with ours
 we give a brief overview in Section � on the PVS system
and some of its distinctive features that support encoding of mathematical structures
like domain or �xed�point theory� Section � comprises the main part of this paper
 and
includes descriptions of the PVS formalizations of complete partial orders
 monotonicity

continuity
 admissibility
 various domain constructions
 �xed�point theorems
 and �xed�
point induction� This part also contains quite a lot of PVS text
 which has sometimes been
slightly edited for presentation purposes
 especially when describing the interaction with
the prover we do not include in our presentation hypotheses and conclusions that are not
needed any more to �nish the proof� In Section � we demonstrate an application of this
mechanized �xed�point theory by proving the while�rule of the Hoare calculus from a state
transformer semantics of the while�statement� Finally
 Section � contains some concluding
remarks about the suitability of PVS for formalizing mathematical structures
 and our
encodings of domain and �xed�point theory are listed in the Appendix� the complete PVS
sources and proofs are available from the �rst or the last author upon request�

��� Related Work

The work by Agerholm �Age	�
 Age	�� and Regensburger �Reg	�
 Reg	�� is most
closely related to ours� The overall aim of their work is to combine HOL �GM	�� with
LCF �GMW�	
 Pau��� in order to take advantage of the LCF �xed�point theory for rea�
soning about arbitrary �continuous� functions and in�nite�valued data types
 and the
simple type theory of HOL which supports reasoning about �nite�valued data types and
�higher�order� primitive recursion� Since LCF only deals with continuous functions
 both

�



Formalizing Fixed�Point Theory in PVS

Agerholm and Regensburger only mechanize the �xed�point theorem and �xed�point in�
duction for continuous functions�

Agerholm �Age	�
 Age	�� describes an embedding of the LCF logic in the HOL �GM	��
theorem proving system� His basic approach is to encode domains as a pair �set�D�� ���

consisting of a carrier set set�D� and and a relation ��
 and constructions of domains by
means of functions from pairs to pairs� This choice of encoding has the consequence that
a new type discipline on domains has to be introduced� Continuous functions from a
domain set�D� to a domain set�E�
 for example
 are encoded by a HOL function f	 D


� E� Since HOL is restricted to total functions
 function f above must be determined for
elements outside set�D�� Agerholm �Age	�
 Age	�� deals with these problems by providing
syntactic notations for writing domains
 continuous functions and admissible predicates�
These are implemented by an interface and a number of syntactic�based proof functions�
Altogether
 Agorholm�s extension of HOL constitutes an integrated system where the
domain theory constructs look almost primitive to the user
 and many facts are proved
behind the scenes to support this view�

It seems to be more desirable
 however
 to prove domain�theoretic facts once and for

all and to encode these facts as type information of the underlying system� In this way

Regensburger �Reg	�
 Reg	�� extends the HOL object logic of Isabelle �Pau	�� with
domain�theoretic notions by employing Isabelle�s type class mechanism� This mechanism
permits abstracting developments over mathematical structures like partial orders and
domains� Instead of type classes
 we use the concept of predicate subtypes to parameterize
with respect to mathematical structures� for the fact that the type system of PVS does
not include Hindley�Milner style polymorphism
 we employ theory parameterization in
order to parameterize with respect to types� It is well beyond the scope of this paper to
compare type classes with predicate subtype mechanisms� but type classes seem to be
more powerful than the predicate subtype mechanism currently implemented in PVS in
that they include conventient subtype relations like �every complete partial order is a
partial order�� On the other hand
 their expressiveness is restricted
 since
 for example

dependencies between type class parameters can not be expressed�

�� A Brief Description of the PVS Speci�cation Language

The purpose of this section is to provide a brief overview of PVS
 and to introduce some
de�nitions that are used in the sequel� more details can be found in �ORSvH	���

The PVS system combines an expressive speci�cation language with an interactive proof
checker that has a reasonable amount of theorem proving capabilities� The PVS speci�ca�
tion language builds on classical typed higher�order logic with the usual base types
 bool

nat among others
 and the function type constructor �A 
� B�� The type system of PVS
is augmented with dependent types and abstract data types�

Predicates in PVS are simply elements of type bool and pred�D�
 for an arbitrary type
D
 is a notational convenience for the function type �D 
� bool�� Since sets can be deter�
mined by a property
 in the sense that the set has as elements precisely those which satisfy

�



Formalizing Fixed�Point Theory in PVS

the property
 the type set�D� is just a notational variant of pred�D� and it comprises all
sets with elements of type D�

With the notation introduced so far one can easily de�ne the �possibly in�nite� union of
a set of predicates over some type D as stated in � �

����PP� set�pred�D���� pred�D� �

LAMBDA �d� D�� EXISTS � p��PP��� p�d�	

It is not di�cult to see that above de�nition coincides with the least upper bound of
PP
 now interpreted as the set of sets over type D� In the following we also make use of
computing the image set image�f��A� of function f with respect to a subset A of D
 and
the image fset image�ff��x� of a set of functions ff at point x��

�set
image�f� �D �� R���A�set�D��� set�R� �

f y� R 
 EXISTS � x� �A��� y � f�x� g

fset
image�ff� set��D �� R����x� D�� set�R� �

f y� R 
 EXISTS � f� �ff��� f�x� � y g

Notice that these de�nitions make use of specialized set notation and that the arguments
are curried�

A distinctive feature of the PVS speci�cation language are predicate subtypes fx	A �

P�x�g� These subtypes consist of exactly those elements of type A satisfying predicate P�
Predicate subtypes are used to explicitly constrain the domain and ranges of operations
in a speci�cation and to de�ne partial functions�

In general
 type�checking with predicate subtypes is undecidable� the type�checker gener�
ates proof obligations
 so�called type correctness conditions �TCCs� in cases where type
con�icts cannot immediately be resolved� A large number of TCCs are discharged by spe�
cialized proof strategies
 and a PVS expression is not considered to be fully type�checked
unless all generated TCCs have been proved� If an expression that produces a TCC is used
many times
 the typechecker repeatedly generates the same TCC� The use of judgements

can prevent this� There are two kinds of judgements�

JUDGEMENT � HAS
TYPE �even� even �� even�

JUDGEMENT Continuous SUPTYPE
OF Monotonic

The �rst form
 a constant judgement
 asserts a closure property of 
 on the subtype of
even natural numbers� The second one
 a subtype judgement
 asserts that a given type is
a subtype of another type� The typechecker generates a TCC for each judgement to check
the validity of the assertion
 but will then use the information provided further on� Thus

many TCCs can be suppressed� For the various function images in � 
 for example
 the
following judgements proved to be most useful for our encodings�

�Given a predicate 
or set� p of type pred�D� 
or set�D��� the notation �p� is just an abbreviation for
the predicate subtype f x� D 
 p�x� g� this notational convenience is used heavily in the sequel	

�



Formalizing Fixed�Point Theory in PVS

�JUDGEMENT set
image HAS
TYPE

��D �� R� �� ��nonempty��D�� �� �nonempty��R����

JUDGEMENT fset
image HAS
TYPE

��nonempty���D �� R��� �� �D �� �nonempty��R����

PVS speci�cations are packaged as theories that can be parametric in types and constants�
A built�in prelude and loadable libraries provide standard speci�cations and proved facts
for a large number of theories�

The theory example in � 
 for example
 is parameterized with respect to a non�empty
type D
 a binary predicate �� on this type
 and an element bottom of D�

�example�D� TYPE�� le�pred��D� D��� bottom� D�� THEORY

BEGIN

ASSUMING

is
cpo � ASSUMPTION cpo��D��le� bottom�

ENDASSUMING

���

END example

Furthermore
 the semantic constraint is cpo restricts possible theory instantiations to
complete partial orders
� since
 whenever a parameterized theory is instantiated
 the PVS
type�checking mechanism generates TCCs according to the given assumptions� Instead
of using the assumption mechanism
 one could restrict possible instantiations of �� and
bottom by decorating them with corresponding predicate subtypes� It is not possible
 how�
ever
 to abstract theories with respect to a single formal parameter that can be instantiated
with complete partial orders�

In the sequel we do not always state exact theory parameterization but only use informal
descriptions such as �given the complete partial order �D� ��� bottom�
 � � � � for the
example theory in � � Moreover
 declarations of the context are given as comments where
necessary�

Finally
 we sketch some characteristics of the PVS prover� Proofs in PVS are presented
in a sequent calculus� The atomic commands of the PVS prover component include in�
duction
 quanti�er instantiation
 conditional rewriting
 simpli�cation using arithmetic and
equality decision procedures and type information
 and propositional simpli�cation� The
skosimp� command
 for example
 repeatedly introduces constants �of the form x�i� for
universal�strength quanti�ers
 and assert combines rewriting with decision procedures�
PVS has an LCF�like strategy language for combining inference steps into more powerful
proof strategies� The de�ned rule grind
 for example
 combines rewriting with quanti�er
reasoning and propositional and arithmetic decision procedures� this strategy is also the
workhorse for proving a large number of our formalization of domain theory�

�The predicate cpo� is de�ned in Section �	�	

�



Formalizing Fixed�Point Theory in PVS

�� Formalizations

This chapter describes formalizations of complete partial orders �domains�
 continuous
and monotonic functions
 some basic domain constructions
 the Knaster�Tarksi �xed�point
theorem for monotonic functions
 and various �xed�point induction principles� We start
with some preliminary development on partial orders
 since the theory of complete partial
orders rests on the concept of the least upper bound of a set�

��� Partial Orders

Given a partial order �D� ���
 an element x of type D is said to be an upper bound of the
subset A of D if d �� x for all d in A� x is said to be the least upper bound �lub� of A �in
D�
 if x is the least element of the set of all upper bounds of A in D� The notions of upper
bounds and least upper bounds are respectively formalized by the predicates ub��x� A�

and lub��x� A� in � � In addition
 the set of upper bounds and least upper bounds of A
are respectively collected in the subsets UB�A� and LUB�A� of D�

�po�D� TYPE�� ����partial
order��D���� THEORY

BEGIN

x� y� VAR D

A � VAR set�D�

ub��x� A� � bool � FORALL �a� �A��� a �� x

UB�A� � set�D� � f x� D 
 ub��x� A� g	
lub��x� A� � bool � ub��x�A� AND FORALL �y� �UB�A���� x �� y

lub
exists��A�� bool � EXISTS x� lub��x�A�

Lub
Exists � TYPE� � �lub
exists��

LUB�A�� set�D� � fx�D 
 lub��x�A� g

B� VAR Lub
Exists

lub�B�� �LUB�B�� � choose�LUB�B��

JUDGEMENT lub HAS
TYPE �B� Lub
Exists �� �UB�B���

���

END po

The least upper bound lub�B� of a subset B of D with a non�empty set LUB�B� is obtained
by choosing an arbitrary element from LUB�B� using Hilbert�s choice�operator�

The judgement in � states the obvious fact that every least upper bound is also an
upper bound� This judgement has to be stated explicitly
 since the currently implemented
judgement mechanism does not allow for judgements with free variables as in � �

�JUDGEMENT LUB�B� SUBTYPE
OF UB�B�

�



Formalizing Fixed�Point Theory in PVS

One way to circumvent this arbitrary restriction
 however
 is to declare judgements like
the one in � in a separate theory parameterized by B�

Predicate min��x� A� in � tests if x is a minimum of the set A
 and the minimums of
such a set are collected in Min�A��

�min��x� A�� bool � A�x� AND FORALL � y� �A��� y �� x IMPLIES x � y

Min�A�� set�D� � f x� D 
 min��x� A� g

Encodings of the corresponding notions of lower bounds lb
 greatest lower bounds glb
 and
maximums max� are analogous�

��� Complete Partial Orders

This section formalizes the notions of complete partial orders �domains� and domain con�
structions which are important for the mathematical description of programming lan�
guages�

The concept of a chain is crucial for the de�nition of domains� Given a partial order �D�
���
 a nonempty set S with elements of type D is called a chain �in D� if the ordering
relation �� restricted to S is linear�

�S� VAR �nonempty��D��

chain��S�� bool � FORALL �x� y� �S��� �x �� y� OR �y �� x�

Chain � TYPE � �chain��

Now we have collected all the ingredients to represent complete partial orders �cpo��

�d � VAR D

��� VAR �partial
order��D��

precpo����� � bool � FORALL �C� Chain�D������ lub
exists��D�����C�

bottom������d�� bool � FORALL �x� D�� d �� x

cpo����� d� � bool � precpo����� AND bottom������d�

pCPO� TYPE � �precpo��

CPO � TYPE � �cpo��

A partial order �D� ��� is a pre�cpo if for every chain C in D the least upper bound lub�C�

exists� If
 in addition
 the type D has a least element bottom then �D� ��� bottom� is
called a cpo �or domain�� Notice that the encodings of these concepts in � are only param�
eterized by the type D and the semantic restrictions for pre�cpo�s and cpo�s are respectively
parameterized by �� and the pair ���� bottom�� This permits de�ning the predicate sub�
type pCPO�D� comprising all partial orders �� over type D that satisfy predicate precpo�

�



Formalizing Fixed�Point Theory in PVS

and the predicate subtype CPO�D� for the pairs ���� bottom� for which predicate cpo�

holds�

Given a pre�cpo �D� ���
 the following judgement directs the type�checker to suppress
TCCs corresponding to the de�nition of pre�cpo�s�

��� D� TYPE�� ��� pCPO�D�

JUDGEMENT Chain�D� ��� SUBTYPE
OF Lub
Exists�D� ���

Similarly
 for a cpo �D� ��� bottom� one can
 for example
 show that empty sets have
lub�s
 namely the bottom element�

��� D� TYPE� ��� pCPO�D�� bottom� �bottom������

JUDGEMENT �empty��D�� SUBTYPE
OF Lub
Exists�D� ���

A simple example of a cpo is the type of Booleans equipped with implication �� and the
bottom element FALSE�

��JUDGEMENT IMPLIES HAS
TYPE �partial
order��bool��

JUDGEMENT IMPLIES HAS
TYPE pCPO�bool�

JUDGEMENT FALSE HAS
TYPE �bottom��IMPLIES��

Thus
 the pair �IMPLIES� FALSE� is of type CPO�bool��

Finally we want to express the fact that CPO is a subtype of pCPO� One possibility is to
specify the projection ordering from cpo�s into precpo�s in �� as an implicit coercion
via the CONVERSION declaration�

��ordering�cpo� CPO�� preCPO � proj
��cpo�

CONVERSION ordering

This declaration causes the PVS type�checker to implicitly coerce objects cpo of type CPO
to ordering�cpo� whenever an object of type preCPO is expected� In this way
 formal
parameters of type pCPO can be instantiated with actual parameters of type CPO�

��� CPO Constructions

In the previous sections we have introduced a number of concepts of domain theory by
their semantic de�nitions� In this section
 we introduce four example constructions on
cpo�s
 namely discrete pre�cpo�s
 �at cpo�s
 function space cpo�s
 and predicate cpo�s�

�



Formalizing Fixed�Point Theory in PVS

����� Discrete pre	CPOs

For every nonempty type D
 the pair �D� �� forms both a partial order and a pre�cpo
 the
so�called discrete pre�cpo for D� Discrete cpo�s are useful for making arbitrary PVS types
into pre�cpo�s�

��� D� TYPE� This is a Comment�

JUDGEMENT � HAS
TYPE �partial
order��D��

only
trivial
chains � LEMMA

FORALL �C� Chain�D� ���� unique��C�

JUDGEMENT � HAS
TYPE pCPO�D�

All chains in a discrete cpo are trivial
 since the unique��C� predicate from the PVS
prelude holds if and only if there is at most one element of D in the set C�

����� Lifting

Using the lifting construction one can construct a domain from an arbitrary non�empty
type by adding a bottom element�

��flat�D� TYPE��� DATATYPE

BEGIN

elem�arg� D�� elem�

bot � bot�

END flat

CONVERSION elem

Technically
 we construct a polymorphic sum type flat in �� as a non�recursive data
type with two constructors elem for injecting elements of type D and a constructor bot for
the added bottom element� The conversion declaration in �� causes the PVS type�checker
to implicitly coerce elements d of type D to elem�d� whenever an element of type flat�D�
is expected� The type flat�D�
 equipped with the partial order �� as de�ned in �� and
the constant bot
 forms a cpo�

��� D� TYPE�

���d�� d�� flat�� bool � �d� � d�� OR �d� � bot�

JUDGEMENT �� HAS
TYPE �partial
order��flat��

JUDGEMENT �� HAS
TYPE pCPO

flat
is
cpo� LEMMA cpo����� bot�

	



Formalizing Fixed�Point Theory in PVS

����� Function Domains

Let D be an arbitrary nonempty type and �R� ��� bottom� be a cpo
 then one can show
that the function type �D 
� R� equipped with the pointwise ordering also forms a cpo�
In order to make these notions precise
 we �rst de�ne pointwise orderings on functions�

Given a type D
 a partial order �R� ���
 and functions f
 g of type �D 
�R�
 f is said
to be pointwisely smaller than g if the result of applying f to some argument is always
smaller �now with respect to the ordering on the codomain R� than the result of applying
g to this very same argument�

��� D� R� TYPE�� le� �partial
order��R��

���f� g� �D �� R�� � bool � �FORALL �x� D�� le�f�x�� g�x��

JUDGEMENT �� HAS
TYPE �partial
order���D �� R���

JUDGEMENT fset
image HAS
TYPE �Chain��D �� R�� ��� �� �D �� Chain�R� le���

JUDGEMENT fset
image HAS
TYPE

�Lub
Exists��D �� R�� ��� �� �D �� Lub
Exists�R� le���

Pointwise ordering on functions �D 
� R� is a partial order if �R� ��� is a partial order�
The last two judgements in �� state that the fset image as de�ned in � preserves both
the chain property and the existence of least�upper bounds�

Now
 given a non�empty type D and a pre�cpo �R� le�
 the structure ��D 
� R�� ���

with �� the pointwise ordering on this function space can be shown to form a pre�cpo�

��� D� R� TYPE�� le� pCPO�R�

JUDGEMENT pointwise�D� R� le���� HAS
TYPE pCPO��D �� R��

If
 in addition
 the bottom element on the function space �D 
� R�
 denoted by abort

is taken to be the constant function
 that always returns the bottom element of the co�
domain cpo over type R
 then
 in addition
 the structure ��D 
� R�� ��� abort� forms
a cpo�

��� D� R� TYPE�� le� pCPO�R�� bottom� �bottom��le��

abort� �D �� R� � LAMBDA �x� D�� bottom

JUDGEMENT abort HAS
TYPE �bottom��D �� R��

����� Predicate CPOs

Predicates on some arbitrary type D are elements of type pred�D� �or set�D���

�




Formalizing Fixed�Point Theory in PVS

�����p� q� pred�D��� bool � FORALL �x� D�� p�x� IMPLIES q�x�	

bottom� pred�D� � �LAMBDA �x� D�� FALSE�

top � pred�D� � �LAMBDA �x� D�� TRUE�

���p� q� pred�D��� pred�D� � �LAMBDA �x� D�� p�x� AND q�x��

���p� q� pred�D��� pred�D� � �LAMBDA �x� D�� p�x� OR q�x��

It is straightforward to establish that �pred�D�� ��� bottom� with the partial order ��
and the bottom element as de�ned above form a cpo �actually
 a complete lattice��

The de�nition of �� in �� and the proof that �pred�D�� ��� forms a pre�cpo
 however

are super�uous
 since this proof can be �inherited� using theory import of more basic
constructions�

More precisely
 the following import de�nes the pointwise ordering �� on pred�D� and
establishes the fact that pred�bool� is a partial order �see �� ��

��IMPORTING pointwise�D� bool� IMPLIES�

The theory import in �� generates the TCC that �bool� IMPLIES� forms a partial order�
this has already been shown in �� � Further theory import of the theory described in ��

provides us with the fact that �pred�D�� ��� forms a pre�cpo� Thus
 it only remains to
show that the bottom element as de�ned in �� indeed is a bottom element�

��JUDGEMENT bottom HAS
TYPE �bottom��pointwise�D� bool� IMPLIES������

Finally
 in the case of predicates
 the least upper bound of a set of predicates PP always
exists and is given by the disjunction of all the predicates in PP �see � ��

��PP� VAR set�pred�sigma��

pred
lub� LEMMA lub�PP� � ���PP�

��� Monotonic Functions

Let poD and poR respectively be the two partial orders �D� ��� and �R� ���
� then one
de�nes the subset of monotonic functions �see �� � in the usual way� Moreover
 constant
functions are monotonic and serve as witnesses for the nonemptyness of the space of mono�
tonic functions� Another remarkable fact is expressed by the judgement for set image

in �� � It states that set image�f�
 for f monotonic
 transforms chains over the domain
D into chains over the co�domain R�

�Technically� a theory identi�er like poD is de�ned in PVS by the declaration poD� THEORY � po�D� ���

��



Formalizing Fixed�Point Theory in PVS

��� D� TYPE�� ��� �partial
order��D�� R� TYPE� ��� �partial
order��R��

monotonic��f� �D �� R��� bool �

FORALL �s��s�� D�� s� �� s� IMPLIES f�s�� �� f�s��

const
monotonic� LEMMA

FORALL �c� R�� monotonic��LAMBDA �x� D�� c�

Monotonic� TYPE� � �monotonic��

JUDGEMENT monotonic� HAS
TYPE �nonempty���D �� R���

JUDGEMENT set
image HAS
TYPE �Monotonic �� �poD�Chain �� poR�Chain��

lub
of
monotonic
func� LEMMA

FORALL �f� Monotonic� L� poD�Lub
Exists��

lub
exists��set
image�f��L�� IMPLIES

�lub�set
image�f��L�� �� f�lub�L���

The rather technical lemma lub of monotonic func in �� has been included into this
text
 since it forms a major part of the lemma le pred admissible in �� 
 which is crucial
in the proof of the �xed�point theorem for monotonic functions�

��� Continuous Functions

The subset of continuous functions in �� comprises all functions
 intuitively speaking

which are compatible with the construction of least upper bounds� More precisely
 given
two pre�cpo�s �D� le D�
 �R� le R� a function f with domain D and codomain R is said
to be continuous if for every chain C in the partial order D the least upper bound of the
image f�C� exists and if f�lub�C�� � lub�f�C���

��continuous��f� �D �� R��� bool �

FORALL �C� poD�Chain��

lub
exists��set
image�f��C�� AND f�lub�C�� � lub�set
image�f��C��

Continuous� TYPE� � �continuous��

JUDGEMENT Continuous SUBTYPE
OF Monotonic

The judgement permits using continuous functions whenever a monotonic function over
the same domain D and codomain R is expected
 and suppresses the generation of TCCs
in these cases�

Given a type D and a pre�cpo �R� ���
 the set of functions from the discrete pre�cpo �D�

�� �see �� � to the pre�cpo �R� ��� are continuous�

��� D� R� TYPE�� ��� pCPO�R�

JUDGEMENT �D �� R� SUBTYPE
OF Continuous�D� �� R� ���

Finally
 given three pre�cpo�s �A� ���
 �B� ���
 �C� ��� one can easily prove that func�
tion composition
 as de�ned polymorphically in the PVS prelude
 preserves continuity�

��



Formalizing Fixed�Point Theory in PVS

��contAB� THEORY � continuous�A� ��� B� ���

���

JUDGEMENT o HAS
TYPE

�contAB�continuous� contBC�continuous �� contAC�continuous�

Here
 continuous����� denotes an instantiation of the theory where the subset of con�
tinuous functions is de�ned� An analogous judgement about function composition holds
for partial orders A
 B
 C and monotonic functions�

��� Admissibility

Fixed�point induction �see ������ requires the concept of admissible predicates as de�ned
in �� � Moreover
 we use the concept of admissibility and some related facts for proving
the �xed�point theorem for monotonic functions in ������

Let �D� ��� be a pre�cpo and P be a predicate on D� The predicate P is called admissible
�see �� � if for every chain C the least upper bound of C satis�es P whenever all elements
of C do� admissible predicates over D are collected in the predicate subtype Admissible�

��admissible��P� pred�D��� bool �

FORALL �C� Chain�� every�P��C� IMPLIES P�lub�C��

Admissible � TYPE � �admissible��

Some su�cient conditions for admissibility are listed in �� � These kinds of theorems are
used heavily for establishing admissibility of predicates
 mainly in �xed�point induction
proofs�

��JUDGEMENT �� HAS
TYPE �Admissible� Admissible �� Admissible�

JUDGEMENT �� HAS
TYPE �Admissible� Admissible �� Admissible�

JUDGEMENT �� HAS
TYPE

�f PP� set�pred�D�� 
 every�admissible���PP�g �� Admissible�

Using the �rst two judgements above
 the type�checker is able to deduce
 for example

admissibility of P �� �Q �� R� �� Q from the admissibility of P
 Q
 and R automatically�
The last judgement in �� states that arbitrary
 possibly in�nite conjunctions of admissible
predicates are admissible�

The lemma continuous admissible implies that statements about continuity are admis�
sible for the pointwise function cpo� here �D� ��� and �R� ��� are pre�cpo�s�

��



Formalizing Fixed�Point Theory in PVS

��� D� TYPE�� ��� pCPO�D�� R � TYPE�� ��� pCPO�R�

continuous
admissible� LEMMA

admissible���D��R�� pointwise�����continuous��

cont
pred
admissible� LEMMA

FORALL �f� Continuous� P� Admissible�R� �����

admissible��D� ����LAMBDA d� P�f�d���

le
pred
admissible� LEMMA

FORALL � f� Continuous� g� Monotonic��

admissible��D� ����LAMBDA d� f�d� �� g�d��

The last two lemmas in �� state su�cient conditions for admissibility predicates involving
continuous functions� Notice that lemma le pred admissible in �� is a slight general�
ization � at least for the case n � � � of Theorem ���� on p� �� in �LS���
 since Loeckx
and Sieber require both f and g to be continuous� This generalization is actually needed
in our proof of the �xed�point theorem in ������

Moreover
 for a type D and a cpo �D� ��� bottom�
 the monotonic� predicate is admis�
sible�

��� D� TYPE�� ��� �partial
order��D���

� R� TYPE�� ��� pCPO�R�� bottom� �bottom��R������

monotonic
admissible� LEMMA

admissible���D �� R�� pointwise�����monotonic��

Using this result it is not di�cult
 for example
 to show that the monotonic functions with
pointwise ordering and the function always returning bottom form a cpo�

��� Formalization of Fixed	Point Theory

��
�� Fixed	Points

Let �D� ��� be a partial order and f of type �D 
� D� be some function� one says x of
type D is the least �xed�point of f if x � f�x� and
 whenever y � f�y�
 one has x �� y�
the set predicate least fixpoint��f� in �� formalizes this notion and the type LFP�f�
comprises all least �xed points of f� Whenever the set of least �xed�points for a function
f is nonempty
 we say that the �xed�point for this function exists�

��



Formalizing Fixed�Point Theory in PVS

��� D� TYPE�� ��� �partial
order��D��

x� y� VAR D	

f� VAR �D �� D�

fixpoint��f��x�� bool � �f�x� � x�

least
fixpoint��f��x� � bool �

fixpoint��f��x� AND FORALL y� fixpoint��f��y� IMPLIES x �� y

least
fix
unique� LEMMA unique��least
fixpoint��f��

mu
exists��f�� bool � nonempty��least
fixpoint��f��

LFP�f� � TYPE � �least
fixpoint��f��

Mu
Exists � TYPE � �mu
exists��

lfp
singleton � COROLLARY

FORALL �f� Mu
Exists�� singleton��least
fixpoint��f��

mu�f� Mu
Exists�� LFP�f� � choose�least
fixpoint��f��

Lemma least fix unique in �� states that least �xed�points are unique
 and the proof
of this lemma uses the fact that �� is antisymmetric �since it is a partial order��

In the case of continuous functions f it is straightforward to characterize the least �xed�
point as the least upper bound of the set obtained by repeatedly applying f to the least
element of its domain� Here
 however
 we want to deal with arbitrary functions f for which
the least �xed�point
 denoted by mu�f�
 exists� Thus
 we restrict the domain of mu to the
predicate subtype Mu Exists
 and the de�nition of mu�f� involves Hilbert�s ��operator to
choose an arbitrary value from the �nonempty� set of least �xed�points for f��

From the de�nitions in �� it is straightforward to prove that every least �xed�point of f
is equal to mu�f� and the well�known �xed�point equality f�mu�f�� � mu�f��

��mu
rew � LEMMA least
fixpoint��f��x� IMPLIES x � mu�f�

mu
is
fixpoint� LEMMA FORALL �f� Mu
Exists�� f�mu�f�� � mu�f�

These lemmas are proved by repeatedly unfolding de�nitions� in addition
 the proof of
mu rew also requires the lemma lfp singleton from �� �

��
�� Fixed	Point Theorem for Monotonic Functions

The key result for reasoning about �xed�points is the celebrated Knaster�Tarski �xed�point
theorem� The theorem by Knaster �Kna��� applied only to power sets and Tarski �Tar���
generalized it to complete lattices� In this section
 we describe a mechanized proof of the
Knaster�Tarski theorem for monotonic functions on cpo�s� this presentation closely follows
the proof outline given in �Ber	���

�choose�S� �nonempty��D���� �S� � epsilon�S� is de�ned in the PVS prelude	

��



Formalizing Fixed�Point Theory in PVS

If �D� ��� bottom� is a cpo then the Knaster�Tarski �xed�point theorem states that the
least �xed�point exists for monotonic functions
 which in our terminology reads as follows�

��� D� TYPE�� �� � pCPO�D�� bottom � �bottom������

JUDGEMENT Monotonic SUBTYPE
OF Mu
Exists

This judgement generates a type�correctness condition
 that is closer to mathematical
practice�

��FORALL �f� Monotonic�� mu
exists��f�

The proof of the Knaster�Tarski �xed�point theorem for monotonic functions is much
harder than the one for continuous functions
 and involves the use of the following variant
of Zorn�s lemma�

��� D� TYPE�� ��� partial
order��D�

IMPORTING po�D� ���

A� VAR �nonempty��D��

C� VAR Chain

Zorns
lemma� LEMMA

�FORALL C� subset��C� A� IMPLIES nonempty��D��intersection�A� UB�C����

IMPLIES nonempty��D��Max�A��

Informally
 Lemma zorn in �� states� if every chain
 restricted to elements of some
nonempty set S with elements in D
 has an upper bound in S then S possesses a max�
imal element� Zorn�s lemma can be shown to be equivalent to the Axiom of Choice� Our
proof of Zorn�s lemma in the PVS logic
 however
 uses Hilbert�s ��operator
 which is
equivalent to the Axiom of Choice��

Furthermore
 the main notion in the following proof of the �xed�point theorem is that
of f�closed sets� These sets are required to contain the bottom element
 they must be
admissible�
 and whenever y is in such a set then f�y� is also in this set� This leads to the
de�nition of f�closed subsets S of D by the predicate closed��f��S�in �� �

��f� VAR Monotonic	 S� VAR set�D�

step
closed��f��S�� bool � �FORALL �y� �S��� S�f�y���

closed��f��S�� bool �

contains��bottom��S� AND step
closed��f��S� AND admissible��S�

�Our encodings for the proof of Zorn�s lemma are listed in Appendix G� and the complete proof of Zorn�s
lemma from the ��operator can be obtained from the �rst or the last author upon request	

�Here� the argument to admissible� 
see �� � is interpreted as a set over D	

��



Formalizing Fixed�Point Theory in PVS

Now we have collected all the ingredients to describe the proof of the �xed�point the�
orem �� for monotonic functions� This proof de�nes the least �xed�point of f as the
maximum of the smallest f�closed set� Following �Ber	��
 the proof is split intro three
parts�

First
 we de�ne the smallest f�closed set
 denoted by the de�nition X�f� in �� �

��X�f�� set�D� � ���closed��f��

JUDGEMENT X HAS
TYPE �Monotonic �� �contains��bottom���

JUDGEMENT X HAS
TYPE �f� Monotonic �� �step
closed��f���

JUDGEMENT X HAS
TYPE �Monotonic �� Admissible�

X
is
closed � LEMMA closed��f��X�f��

X
is
least
closed� LEMMA closed��f��S� IMPLIES subset��X�f�� S�

The proofs of the TCCs corresponding to the contains��bottom� and step closed judge�
ments in �� are trivial
 and admissibility of X�f� is proved by skolemization
 unfolding
of the de�nition X
 and use of lemma adm and inf in Appendix E���� These steps result
in the following trivial subgoal�

��������

��	 every
admissible��D� 
���
closed�
f����

In addition
 X is closed in �� follows directly from these judgements and
X is least closed is proved automatically �using grind��

��u�f�� D � choose�Max�X�f���

JUDGEMENT u HAS
TYPE �f� Monotonic �� �Max�D� ����X�f����

JUDGEMENT u HAS
TYPE �f� Monotonic �� �X�f���

The least �xed�point of f is de�ned in �� as an arbitrary maximum element of X�f��
For the semantic constraint on possible arguments to choose
 u�f� is only well�de�ned
if there is a maximum element in X�f�
 and consequently
 the type�checker generates the
proof obligation nonempty��D��Max�X�f���� Application of Zorn�s lemma �see �� � and
introduction of type information for X�f��� �see �� � yields the following subgoal�

���	 admissible��D� 
��
X
f����

���� subset�
C��� X
f����

��������

��	 nonempty��D�
intersection
X
f���� UB
C�����

Using the de�nition of admissible �see �� �
 this subgoal reduces to��

�Lemma adm and inf corresponds to the last judgement in �� 	
�Using the fact that every�P��S� is equivalent to subset��S� P�	

��



Formalizing Fixed�Point Theory in PVS

���	 X
f���
lub
C����

���� subset�
C��� X
f����

��������

��� nonempty��D�
intersection
X
f���� UB
C�����

For the �rst assumption
 lub�C��� is an element of X�f���
 and we can reduce the original
goal
 using some more unfolds on de�nitions
 to the following simple fact about least upper
bounds�

��������

��	 ub�
lub
C���� C���

This concludes the proof of the applicability condition nonempty��D��Max�X�f��� and

consequently
 the de�nition of u�f� in �� is well�de�ned� it remains to show that u�f�
indeed is the least �xed�point of f� In the second part of this proof of the �xed�point
theorem
 it is shown that u�f� is a �xed�point of f
 and the third part �nishes the proof
by showing that u�f� is the least �xed�point of f�

In order to show that u�f� is a �xed�point
 one de�nes the set E�f� of f�expanded elements
in �� 
 and shows that this set is f�closed�

��E�f�� set�D� � f x� D
 x �� f�x� g

E
is
closed � LEMMA closed��f��E�f��

Obviously
 bottom is in E�f� and the proof of the second condition for f�closedness involves
monotonicity of f� both conditions are proved automatically with grind� Furthermore

admissibility follows directly from rewriting with le pred admissible �see �� � and a
lemma const continuous expressing the continuity of the function returning a constant
value �see Appendix E���� Notice that the latter fact is needed to establish the applicability
condition of le pred admissible when instantiated with the identity function�

Since X�f� is the smallest f�closed set and E�f� is f�closed
 the set X�f� is a subset of
E�f�� Thus
 u�f� is a member of E�f� and consequently u�f� �� f�u�f��� On the other
hand
 since f�u�f�� is also in X�f�
 it follows from the maximality property of u�f� that
f�u�f�� is not strictly larger than u�f�� Thus
 u�f� is a �xed�point of f�

��u
is
fixed
point� LEMMA fixpoint��f��u�f��

Skolemization
 introduction of type information for u�f��� and X�f��� reduces the lemma
above to proving the following subgoal�

���� X
f���
f��
u
f�����

���� X
f���
u
f����

���� FORALL 
y� 
X
f������ u
f��� 
� y IMPLIES u
f��� � y

��������

��� 
f��
u
f���� � u
f����

��



Formalizing Fixed�Point Theory in PVS

More speci�cally
 introduction of type information for u�f��� yields
 for the judge�
ments in �� 
 the hypotheses �
�� and �
��
 and introduction of type information for
X�f��� yields
 after some trivial manipulations
 the hypothesis �
��� Now
 instantiation
of y in hypothesis �
�� with f���u�f����
 use of the facts E is closed �see �� � and
X is least closed �see �� �
 instantiation of the quanti�ers y with f���u�f����
 and
propositional reasoning leaves us to prove�

���� subset�
X
f���� E
f����

���� X
f���
u
f����

��������

��� u
f��� 
� f��
u
f����

From the de�nition of E it is immediate that this goal holds
 since u�f��� is an element of
X�f��� and X�f��� is a subset of E�f���� PVS discharges this proof obligation without
any further interaction�

In the third part of our proof of the �xed�point theorem it remains to show that u�f� is
the least �xed�point of f� We �rst de�ne the set V�x� of elements smaller or equal to x

and show that this set is f�closed provided x is a �xed�point of f�

��V�x�� set�D� � fy� D 
 y �� xg

V
is
closed� LEMMA fixpoint��f��x� IMPLIES closed��f��V�x��

u
is
least
fixpoint� LEMMA least
fixpoint��f��u�f��

JUDGEMENT u HAS
TYPE �f� Monotonic �� LFP�f��

KnasterTarski� THEOREM

mu
exists��f�

JUDGEMENT Monotonic SUBTYPE
OF Mu
Exists

The only non�trivial part of the f�closedness proof of V�x� involves admissibility of V�x��
This can be shown using le pred admissible �see �� � instantiated with the identity
function and the constant function
 since both functions are continuous� Thus
 rewrit�
ing with these facts establishes the admissibility condition for V�x�� Finally
 lemma
u is least fixpoint in �� requires u�f��� �� y�� for an arbitrary �xed�point y���
Since V�x� is f�closed �Lemma V is closed in �� � and X�f��� is the smallest f�closed
set �Lemma V is least closed�
 this reduces to the trivial goal�

���� subset�
X
f���� V
y����

��������

��� u
f��� 
� y��

This �nishes the proof of u is least fixpoint and
 consequently
 of the Knaster�Tarski
�xed�point theorem� Furthermore
 using lemma mu rew �see �� �
 one concludes that the
de�nitions for mu�f� in �� and u�f� in �� coincide for monotonic functions f�

��mu
char� LEMMA mu�f� � u�f�

�	



Formalizing Fixed�Point Theory in PVS

��
�� Fixed	Point Induction

Let �D� ��� bottom� be a cpo and P be an admissible predicate
 then �xed�point induc�
tion is stated as follows�

��f� VAR Monotonic	 P� VAR Admissible

fp
induction
mono� THEOREM

�P�bottom� AND �FORALL x� P�x� IMPLIES P�f�x����

IMPLIES P�mu�f��

From the hypotheses it is clear that the set of elements for which P holds is f�closed� i�e�
closed��f��P� holds� Thus
 using the lemmas X is least closed �see �� � and mu char

�see �� � one is reduced to show�

���	 subset�
X
f���� P���

��������

��� P��
u
f����

This trivially �nishes the proof
 since u�f��� is a member of X�f��� according to the last
judgement in �� � consequently
 a call to the strategy grind �nishes the proof�

The �xed�point induction principle can be given a somewhat shorter formulation for a
common special case�

��park� LEMMA f�x� �� x IMPLIES mu�f� �� x

The proof of Park�s Lemma follows from �xed�point induction instantiated with the pred�
icate �LAMBDA y	 y �� x�
 and the proof of admissibility of this predicate is analogous
to the admissibility proof for establishing lemma V is closed in �� �

The following variant of �xed�point induction has also proved to be useful in many cases�

��P� Var Admissible

fp
induction
mono
le� LEMMA

�P�bottom� AND FORALL x� P�x� AND x �� f�x� IMPLIES P�f�x���

IMPLIES P�mu�f��

It is proved by applying fp induction mono to the predicate P �� E�f� and admissi�
bility of this predicate follows from adm and in �� 
 le pred admissible in �� 
 and
identity continuous in Appendix E���

Finally
 whenever the argument function
 say g
 of �xed�point induction is not only mono�
tonic but also continuous
 one can prove
 in the usual way
 the following specialization of
the �xed�point induction principle for monototonic functions�

�




Formalizing Fixed�Point Theory in PVS

��� D� TYPE�� ��� pCPO�D�� bottom� �bottom������

g� VAR Continuous

fp
induction
cont� THEOREM

FORALL �P� Admissible��

�P�bottom�

� �FORALL �i� nat�� P�iterate�g� i��bottom��

IMPLIES P�iterate�g� i � ���bottom����

IMPLIES

P�mu�g��

For a full account of �xed�points and �xed�point induction for continuous functions see
the theory fixpoints cont in Appendix H���

�� Example� Fixed	Point Induction in PVS

In the previous section
 we showed how to embed a considerable fragment of domain and
�xed�point theory� This embedding has been used
 for example
 to encode the semantics
of simple imperative programming constructs based on state transitions
 and to derive the
well�known Hoare calculus rules �PDvHR	��� In this chapter we shall consider a simple
example to illustrate the use of �xed�point induction in the PVS prover� Other mechanized
�xed�point induction proofs in the context of program semantics and compiler correctness
proofs are described in �PDvHR	�
 DvHPR	���

First
 we review some notions of the mechanized semantics described in �PDvHR	��� There

the notion of state transformers srel provides the basis for the denotational semantics of
statements for a given state type sigma�

��srel� TYPE � �sigma �� set�sigma��

The partial ordering on srel is obtained by importing the theory pointwise �see �� �� The
partial ordering on the range of srel is set inclusion
 which is itself de�ned by instantiating
pointwise�

��IMPORTING pointwise�sigma� bool� ���

IMPORTING pointwise�sigma� set�sigma�� pointwise�sigma�bool��������

Notice that the theory imports above generate proof obligations corresponding to the
semantic requirements on actual theory parameters of the theory pointwise� Thus
 we
have to show that both �bool� ��� and �set�sigma�� pointwise�sigma�bool��������

form partial orders� The �rst conditions follows from �� and the second one from �� and
from �� �

The state transformer mapping every state to the empty set is the least element with
respect to �� and is called abort�

��



Formalizing Fixed�Point Theory in PVS

��abort � srel � LAMBDA �s�sigma�� emptyset

JUDGEMENT �� HAS
TYPE pCPO�srel�

JUDGEMENT abort HAS
TYPE �bottom�srel������

Since every type sigma forms a discrete pre�cpo �see �� � and sets together with set
inclusion are a cpo �see �� �
 functions of type srel can shown to be continuous using the
results in �� � Moreover
 �srel� ��� abort� is a cpo�

Given these de�nitions
 one can easily de�ne state transformers for some simple imperative
programming statements� for example� in �� �

��f� g� X� VAR srel

b � VAR set�sigma�

skip � srel � LAMBDA s� singleton�s�	

���f� g� � srel � LAMBDA s� image�g� f�s��	

IF�b� f� g�� srel � LAMBDA s� IF b�s� THEN f�s� ELSE g�s� ENDIF	

PSI�b� f� � �srel �� srel� �

LAMBDA X� IF b THEN f �� X ELSE skip ENDIF	

while�b� f�� srel � mu�PSI�b� f��	

It is straightforward to prove the following monotonicity result about the while�functional
PSI de�ned above �for a proof of a related statement see �PDvHR	����

��JUDGEMENT PSI HAS
TYPE �set�sigma�� srel �� Monotonic�

For purpose of illustration we choose the derivation of Hoare�s while rule from the deno�
tational semantics given in �� � Hoare�triple ���p� f� q� �see �� � hold if the image of
the function f with respect to precondition p is included in the postcondition q�

��p� q� VAR pred�sigma�

f � VAR srel


��p� f� q�� bool � �image�f� p� �� q�

h� VAR srel

while
rule� LEMMA


��p �� b� h� p�

IMPLIES


��p� while�b� h�� p �� NOT�b��

By unfolding the de�nition of the while statement in �� and propositional reasoning
 the
while rule of the Hoare calculus in �� is restated as the following sequent of the PVS
sequent calculus�	

	Remember that proofs in PVS are presented in a sequent calculus where antecedents and succedents
are respectively numbered by negative and positive numbers	

��



Formalizing Fixed�Point Theory in PVS

while�rule �

���� ��
p�� �� b��� h��� p���

��������

��	 ��
p��� mu
PSI
b��� h����� p�� �� NOT
b����

This while rule is proved using �xed�point induction� Thus
 we use the theorem
fp induction mono from �� and instantiate its formal parameter P with

LAMBDA� 
F� srel�� ��
p��� F� p�� �� NOT
b����

Application of �xed�point induction
 followed by propositional reasoning and introduction
of Skolem variables
 yields the � subgoals in �� � Notice that the monotonicity judgement
of PSI in �� causes the prover to suppress a subgoal corresponding to the monotonicity
of the functional PSI�b��� h����

��while
rule���

f��g 
��p�� �� b��� h��� p���


�������

f�g 
��p��� abort� p�� �� NOT�b����

while
rule���

f��g 
��p��� x��� p�� �� NOT�b����

���� 
��p�� �� b��� h��� p���


�������

f�g 
��p��� �IF b�� THEN h�� �� x�� ELSE skip ENDIF�� p�� �� NOT�b����

while
rule�� �TCC��


�������

f�g admissible��LAMBDA �F� srel�� 
��p��� F� p�� �� NOT�b�����

Subgoals while rule�� and while rule�� in �� respectively correspond to the induction
base and induction step of the �xed�point induction rule� these subgoals are proved with
less than �� interactions as easy as unfolding of de�nitions and propositional reasoning�

Furthermore
 since the conclusion P�mu�f�� of the �xed�point induction rule in �� is
constrained to admissible predicates P by means of predicate subtypes
 an additional sub�
goal
 a so�called type correctness condition �TCC�
 while rule�� is generated� The proof
of admissibility requires two additional lemmas and less than �

 mostly straightforward

user interactions� The critical idea in this proof is to characterize the least upper bound
of chains C�� as follows�

lub
C��� � LAMBDA 
s� sigma�� ��
fset image
C���
s��

This is possible
 since the chain C�� is a set of set functions
 and the least upper bound
of the set of function set images is simply the union of these sets�

��



Formalizing Fixed�Point Theory in PVS


� Conclusions

A PVS formalization of central concepts of domain theory
 including complete partial
orders
 various domain constructions
 monotonic and continuous functions
 the �xed�point
theorem for monotonic functions
 and various �xed�point induction theorems
 have been
described in this paper� These encodings make heavy use of parameterized theories to
encode mathematical structures and features of the PVS type system like judgements to
suppress a multitude of veri�cation conditions�

Since it is not possible to encode in PVS mathematical structures like cpo�s directly as
a type
 we used the mechanism of theory parameterization to parameterize developments
with respect to mathematical structures� Moreover
 it is possible to represent functor�
like constructions of domains by means of parameterizing theories� Although the lack of
parameterizing with respect to mathematical structures as a single object does not put
any insurmountable constraints in principle
 in practice parameter lists of theories and
instantiations tend to become unnaturally long and di�cult to survey� this is especially
true when extending parameterized theories with other parameterized theories �see
 for
example
 �� �

Another characteristics of our encodings is the consequent use of predicate subtypes and
judgements� this drastically simpli�es proofs
 since many applicability conditions are de�
duced behind the scenes� On the other hand
 we also experienced
 besides some imper�
fections of the current implementation
 some conceptual shortcomings of the judgement
mechanism in PVS� Most importantly
 an extension of the current judgement mechanism
that permits for free variables in judgement declarations has the potential to considerably
streamline our domain and �xed�point theory encodings��
 Furthermore
 declaration of
judgements like ��abort� ��� has type CPO�D�� or
 even more interestingly
 �CPO�D� is
a subtype of pCPO�D�� are currently not possible�

In the course of this work it became evident that the modeling of mathematical structures
as a single type leads to more natural and elegant encodings
 and that the use of behind the
scene inference mechanism lead to simpli�ed mechanized proofs that correspond closely to
the ones found in textbooks� These are exactly the kinds of features that have recently been
added to the Typelab �vHLP�	�� system� The language ofTypelab permits representing
mathematical structures as types and abstracting over these types� Furthermore
 its behind
the scenes reasoning mechanism bases on the concept of subsumption in terminological
logics �SLW	��
 and aims at arranging mathematical entities and components such as
conceptual vocabulary or parameterized speci�cation in a taxonomy�

Although our encodings of �xed�point induction form a conservative extension �in fact
 a
de�nitional extension� of the underlying PVS theory
 and consequently do not strengthen
this logic
 they permit natural formalization of many proofs by mixing �xed�point induc�
tion with inductions already built�in to PVS like structural induction and well�founded
induction� Mixing various induction principles was needed
 for example
 in the correctness
proof of the linearization step �DvHPR	�� of a compiler� there
 the overall strategy to
prove linearization is by means of �xed�point induction
 and the subgoal corresponding to
the induction step is proved by structural induction on the construction of the abstract

�
According to Owre �Owr��� this extension is going to be included in future versions	

��



Formalizing Fixed�Point Theory in PVS

data type representing basic block graphs� Other uses of this formalization of �xed�point
theory are reported in �PDvHR	�
 DvHPR	���

So far we have restricted ourselves to only using pre�de�ned PVS strategies for applying
�xed�point induction� It does not seem too di�cult
 however
 to further automate �xed�
point induction proofs by developing a specialized strategy that tries to automatically
apply �xed�point induction
 prove the predicate at hand to be admissible based on the basis
of derived su�cient conditions
 and to prove the remaining subgoals using a combination
of other high�level proof strategies�

While our main emphasis so far has been on using this embedding on �xed�point theory for
compiler correctness proofs
 it is evident that this encoding can be accommodated to sup�
port reasoning about non�termination
 partial functions
 arbitrary recursive �computable�
functions
 and in�nite values of recursive domains�

References

�Age	�� S� Agerholm� A HOL Basis for Reasoning about Functional Programs� Brics
report series
 Department of Computer Science
 University of Aarhus
 Den�
mark
 �		��

�Age	�� S� Agerholm� LCF Examples in HOL� The Computer Journal
 �����
 �		��

�Ber	�� R� Berghammer� Theoretische Grundlagen von Programmiersprachen und
Programmentwicklung� Lecture Notes
 �		��

�DvHPR	�� A� Dold
 F�W� von Henke
 H� Pfeifer
 and H� Rue�� Generic Speci�cation
of Correct Compilation� Ulmer Informatik�Berichte 	����
 Universit�at Ulm

December �		��

�GM	�� M�J�C Gordon and T�F� Melham� Introduction to HOL � A Theorem Proving

Environment for Higher�Order Logic� Cambridge University Press
 �		��

�GMW�	� M� J� Gordon
 A� J� R� Milner
 and C� P� Wadsworth� Edinburgh LCF� a

Mechanized Logic of Computation
 volume �� of Lecture Notes in Computer

Science� Springer�Verlag
 Berlin
 �	�	�

�Gun	�� C�A� Gunter� Semantics of Programming Languages� Structures and Tech�

niques� Foundations of Computing Series� The MIT Press
 �		��

�Kna��� B� Knaster� Un Th�eor eme sur les fonctions d�ensembles� Annales de la Soci�
ete�e Polonaise de Mathematique
 ���������
 �	���

�LS��� J� Loeckx and K� Sieber� The Foundations of Program Veri�cation� Series in
Computer Science� Wiley�Teubner
 second edition
 �	���

�MO	�� M� M�uller�Olm� Modular Compiler Veri�cation� PhD thesis
 Christian Al�
brechts Universit�at zu Kiel
 �		��

��



Formalizing Fixed�Point Theory in PVS

�ORSvH	�� S� Owre
 J� Rushby
 N� Shankar
 and F� von Henke� Formal Veri�cation
for Fault�Tolerant Architectures� Prolegomena to the Design of PVS� IEEE
Transactions on Software Engineering
 �������
�����
 February �		��

�Owr	�� S� Owre� Personal Communication
 �		��

�Pau��� Paulson� Logic and Computation� Interactive Proof with Cambridge LCF�
Number � in Cambride Tracts in Theoretical Computer Science� Cambridge
University Press
 �	���

�Pau	�� L�C� Paulson� Isabelle� A Generic Theorem Prover� Number ��� in Lecture
Notes in Computer Science� Springer�Verlag
 �		��

�PDvHR	�� H� Pfeifer
 A� Dold
 F�W� von Henke
 and H� Rue�� Mechanized Semantics
of Simple Imperative Programming Constructs� Ulmer Informatik�Berichte
	����
 Universit�at Ulm
 December �		��

�Reg	�� F� Regensburger� HOLCF� Eine konservative Erweiterung von HOL um LCF�
PhD thesis
 Technische Universit�at M�unchen
 �		��

�Reg	�� F� Regensburger� HOLCF� Higher Order Logic of Computable Functions� In
T�E� Schubert
 P�J� Windley
 and J� Alves�Foss
 editors
 Higher Order Logic

Theorem Proving and Its Application �HOL��	
 Lecture Notes in Computer
Science
 pages �	���
�� Springer�Verlag
 �		��

�Sch��� D� A� Schmidt� Denotational Semantics� Wm� C� Brown Publishers
 Dubuque

Iowa
 �	���

�SLW	�� M� Strecker
 M� Luther
 and M� Wagner� Mathematical Concepts� A Type�
Theoretic Approach� In 
� European Conference on Arti�cial Intelligence

�ECAI��
	� Workshop on Representation of Mathematical Knowledge
 �		��

�Tar��� A� Tarski� A Lattice�Theoretic Fixpoint Theorem and its Applications� Pa�
ci�c Journal of Mathematics
 �������
	
 �	���

�vHLP�	�� F�W� von Henke
 M� Luther
 H� Pfeifer
 H� Rue�
 D� Schwier
 M� Strecker

and M� Wagner� The typelab speci�cation and veri�cation environment�
In M� Nivat M� Wirsing
 editor
 Proceedings AMAST��

 pages �
���
��
Springer LNCS ��
�
 �		��

�Win	�� G� Winskel� The Formal Semantics of Programming Languages� Foundations
of Computing Series� MIT Press
 Cambridge
 Massachusetts
 �		��

��



Formalizing Fixed�Point Theory in PVS

Appendix� PVS Source Files

��



Formalizing Fixed�Point Theory in PVS

��



Formalizing Fixed�Point Theory in PVS

A� All Theories

all
theories� THEORY

BEGIN

� �� Preliminaries

IMPORTING misc� set
rewrite� function
notation

� �� Partial Orders� CPOs

IMPORTING po
rewrite� po� po
lems� po
restrict

IMPORTING cpo
defs� precpo� cpo� precpo
lems� cpo
lems

� �� Monotonicity� Continuity� Admissibility

IMPORTING monotonic� continuous� admissible

IMPORTING composition
po� composition
precpo

IMPORTING precpo
automorphism� precpo
restrict

� �� Domain Constructions

IMPORTING bool
cpo� flat
cpo� discrete
cpo

IMPORTING pointwise� function
cpo� function
precpo� dcpo
to
precpo

IMPORTING predicate
lems� predicates� predicate
cpo

IMPORTING monotonic
cpo

� �� Zorn�s lemma

IMPORTING initial
segments� zorn� zorn�

� �� Fixedpoints� Existence� Induction

IMPORTING fixpoints� fixpoints
mono� fixpoints
cont

END all
theories

B� Preliminaries

Miscellaneous

misc�D� TYPE��� THEORY

BEGIN

S� S�� S�� VAR set�D�

every
equiv
subset� LEMMA

every�S���S�� � subset��S�� S��

x� VAR D

�	



Formalizing Fixed�Point Theory in PVS

singleton��S� � bool � � fehlt in PVS prelude

exists�� x� member�x� S�

contains��x��S�� bool � S�x�

IMPORTING epsilons

select�S� �singleton���� �S� � epsilon�S�

END misc

Properties about Sets

set
rewrite�T� TYPE �� THEORY

BEGIN

� Theory designed for rewriting with set properties

P� Q� R� VAR set�T�

x � VAR T

nonempty
rew� LEMMA P�x� IMPLIES nonempty��P�

union
empty�� LEMMA union�emptyset� P� � P

union
empty�� LEMMA union�P� emptyset� � P

union
empty�� LEMMA empty��Q� IMPLIES union�P� Q� � P

union
empty�� LEMMA empty��P� IMPLIES union�P� Q� � Q

JUDGEMENT union HAS
TYPE

��nonempty��T��� set�T� �� �nonempty��T���

JUDGEMENT union HAS
TYPE

�set�T�� �nonempty��T�� �� �nonempty��T���

distr
union
intersection�� LEMMA

union�intersection�P� Q�� intersection�P� R��

� intersection�P� union�Q� R��

distr
union
intersection�� LEMMA

union�intersection�Q� P�� intersection� P� R��

� intersection�P� union�Q� R��

distr
union
intersection�� LEMMA

union�intersection�P� Q�� intersection�R� P��

� intersection�P� union� Q� R��

distr
union
intersection�� LEMMA

union�intersection�Q� P�� intersection�R� P��

� intersection�P� union�Q� R��

intersection
subset�
l� LEMMA subset��intersection�P� Q�� P�

intersection
subset�
r� LEMMA subset��intersection�P� Q�� Q�

intersection
subset�
l� LEMMA

subset��P� Q� IMPLIES intersection�P� Q� � P

�




Formalizing Fixed�Point Theory in PVS

intersection
subset�
r� LEMMA

subset��Q� P� IMPLIES intersection�P� Q� � Q

nonempty
add� LEMMA nonempty��add�x� P��

S � VAR sequence�T�

p � VAR pred�T�

seq
to
set� S� sequence�T��� set�T� �

� x 
 EXISTS �n� nat�� x � S�n��

JUDGEMENT seq
to
set HAS
TYPE �sequence�T� �� �nonempty��T���

seq
to
set
every� LEMMA

every�p��seq
to
set� S�� � every�p�� S�

� �� Big Union�

PP� VAR set�set�T��

union�PP�� set�T� � LAMBDA x� EXISTS �P� �PP��� P�x�

union
inf
subset� LEMMA

member�P� PP� IMPLIES subset��P� union�PP��

unique
singleton� LEMMA

FORALL �p� �nonempty��T����

unique��p� IMPLIES p � singleton�T��choose�p��

singleton
unique� LEMMA

unique��singleton�x��

JUDGEMENT singleton HAS
TYPE �T �� �unique��T���

strict
subset
of
unique� LEMMA

FORALL �P� �unique��T����

strict
subset��Q� P� IMPLIES empty��Q�

difference
singleton� LEMMA

NOT�P�x�� IMPLIES

difference�add�x� P�� P� � singleton�x�

strict
subset
elem� LEMMA

strict
subset��Q� P� IMPLIES

EXISTS x� �P�x� AND NOT�Q�x���

END set
rewrite

��



Formalizing Fixed�Point Theory in PVS

Image of Functions

function
notation�D� R� TYPE��� THEORY

BEGIN

e � VAR R

d � VAR D

f � VAR �D �� R�

K � VAR set�D�

S � VAR set��D �� R��

P � VAR PRED�R�

� �� The image of a function�set at one point�

fset
image�S�� � D �� set�R�� �

�LAMBDA d� � e� R 
 EXISTS �f� �S��� f�d� � e��

CONVERSION fset
image

fset
image
nonempty� LEMMA

nonempty���D �� R���S� IMPLIES nonempty��R��S�d��

JUDGEMENT fset
image HAS
TYPE

��nonempty���D �� R��� �� �D �� �nonempty��R����

fset
image
elem� LEMMA

S�f� IMPLIES S�d��f�d��

� �� Set Image

set
image�f�� �set� D� �� set� R�� �

�LAMBDA �M� set�D��� � e� R 
 EXISTS �d� �M��� e � f�d���

CONVERSION set
image

setimage
image� LEMMA

set
image�f��K� � image�f� K�

set
image
nonempty� LEMMA

nonempty��D��K� IMPLIES nonempty��R��f�K��

JUDGEMENT set
image HAS
TYPE

��D �� R� �� ��nonempty��D�� �� �nonempty��R����

set
image
elem� LEMMA K�d� IMPLIES f�K��f�d��	

set
image
forall� LEMMA

�FORALL �e� �set
image�f��K���� P�e��

IFF �FORALL �d� �K��� P�f�d���

END function
notation

��



Formalizing Fixed�Point Theory in PVS

C� Partial Orders

Some Rewrites

po
rewrite�D� TYPE�� ��� �partial
order��D���� THEORY

BEGIN

x� y� z� VAR D

is
reflexive � LEMMA x �� x

is
antisymmetric� LEMMA x �� y AND y �� x IMPLIES x � y

is
transitive � LEMMA x �� y AND y �� z IMPLIES x �� z

END po
rewrite

Partial Orders

po�D� TYPE�� ��� �partial
order��D���� THEORY

BEGIN

IMPORTING po
rewrite� D� ���

x� y� VAR D

A � VAR set�D�

� �� Upper and lower bounds

ub��x� A�� bool � �FORALL �a� �A��� a �� x�	

lb��x� A�� bool � �FORALL �a� �A��� x �� a�	

UB�A�� set�D� � � x� D 
 ub��x� A� �	

LB�A�� set�D� � � x� D 
 lb��x� A� �	

lub��x� A�� bool � ub��x�A� AND FORALL �y� �UB�A���� x �� y

glb��x� A�� bool � lb��x�A� AND FORALL �y� �LB�A���� y �� x

lub
exists��A�� bool � EXISTS x� lub��x�A�

glb
exists��A�� bool � EXISTS x� glb��x�A�

singleton
lub � LEMMA lub��x� singleton�x��

singleton
lub
exists� LEMMA lub
exists��singleton�x��

lub
exists
nonempty � LEMMA nonempty��set�D��� lub
exists��

� JUDGEMENT lub
exists� HAS
TYPE �nonempty��set�D���

Lub
Exists � TYPE � �lub
exists��

Glb
Exists � TYPE � �glb
exists��

LUB�A� � set�D� � �x�D 
 lub��x�A� �

GLB�A� � set�D� � �x�D 
 glb��x�A� �

lub�B�Lub
Exists� � D � choose�LUB�B��

glb�B�Glb
Exists� � D � choose�GLB�B��

� JUDGEMENT lub HAS
TYPE �B� Lub
Exists �� �LUB�B���

��



Formalizing Fixed�Point Theory in PVS

� �� properties of lubs and glbs

lub
unique � LEMMA lub
exists��A� IMPLIES unique��LUB�A��

lub
of
singleton� LEMMA lub�singleton�x�� � x

� �� Maximal and minimal elements

min��x� A�� bool � A�x� AND FORALL � y� �A��� y �� x IMPLIES y � x

max��x� A�� bool � A�x� AND FORALL � y� �A��� x �� y IMPLIES y � x

Min�A�� set�D� � � x� D 
 min��x� A� �

Max�A�� set�D� � � x� D 
 max��x� A� �

� �� Chains

chain��A�� bool � nonempty��A� AND

FORALL �x� y� �A��� �x �� y� OR �y �� x�

Chain � TYPE � �chain��

JUDGEMENT Chain SUBTYPE
OF �nonempty��D��

� �� Least Elements

least
element��x� A�� bool � A�x� AND lb��x� A�

least
elem
is
min� LEMMA least
element��x� A� IMPLIES min��x� A�

END po

Lemmas on Partial Orders

po
lems�D� TYPE�� ����partial
order��D���� THEORY

BEGIN

IMPORTING po�D� ���� set
rewrite�D�� function
notation

x� y� z� b � VAR D

A� K � VAR set�D�

L � VAR Lub
Exists

S � VAR Chain

upper
bound
every� LEMMA ub��x� A� � every�LAMBDA y� y �� x��A�

upper
bound
add � LEMMA ub��b� add�x� A�� IMPLIES ub��b� A�

upper
bound
trans� LEMMA ub��x� A� AND x �� y IMPLIES ub��y� A�

lub
def � LEMMA lub��lub�L�� L�

lub
is
least � LEMMA lub�L� �� x IFF ub��x� L�

lub
is
ub � LEMMA FORALL �x� �L��� x �� lub�L�

lub
exists
rew � LEMMA lub��b� A� IMPLIES lub
exists��A�

lub
rew � LEMMA lub��b� A� IMPLIES lub�A� � b

union
bound � LEMMA ub��x� union�A� K�� IMPLIES ub��x� A�

lub
smaller
lub � LEMMA ub��b� add�x� L�� IMPLIES lub�L� �� b

��



Formalizing Fixed�Point Theory in PVS

lub
union
bound� LEMMA

ub��lub�L�� A� IMPLIES lub��lub�L�� union�A� L��

lub
union
bound
exists� LEMMA

ub��lub�L�� A� IMPLIES lub
exists��union�A� L��

lub
union
bound
rew� LEMMA

ub��lub�L�� A� IMPLIES lub�union�A� L�� � lub�L�

lub
add� LEMMA x �� lub�L� IMPLIES lub��lub�L�� add�x� L��

lub
add
exists� LEMMA x �� lub�L� IMPLIES lub
exists��add�x� L��

lub
add
rew� LEMMA x �� lub�L� IMPLIES lub�add�x� L�� � lub�L�

singleton
chain� LEMMA chain��singleton�x��

JUDGEMENT singleton HAS
TYPE �D �� Chain�

chain
add� LEMMA ub��x� S� IMPLIES chain��add�x� S��

� a different definition �which can also be found elsewhere��

� chain�� S� sequence�D��� bool � FORALL � n� nat�� S�n���S�n���

� is shown to be stronger�

seq
ascends� LEMMA

FORALL �S� sequence�D���

�FORALL �n� nat�� S�n� �� S�n���� IMPLIES ascends��S� ���

chain
seq� LEMMA

FORALL �S� sequence�D���

ascends��S� ��� IMPLIES chain�� seq
to
set�S��

union
chain
l� LEMMA

FORALL �P� �nonempty��D��� Q� set�D���

chain��union� P� Q�� IMPLIES chain��P�

union
chain
r� LEMMA

FORALL �P� set�D�� Q� �nonempty��D����

chain��union�P� Q�� IMPLIES chain��Q�

union
chain� LEMMA

FORALL �P� Q� �nonempty��D����

chain��union�P� Q�� IMPLIES �chain��P� AND chain��Q��

SS� VAR �nonempty��set�D���

union
chain
inf� LEMMA

�every�chain���SS� AND

FORALL �S�� S�� �SS��� subset��S�� S�� OR subset��S�� S���

IMPLIES

chain��union�SS��

PP� VAR set�set�D��

union
bound�� LEMMA

ub��b� union�PP�� IFF FORALL �P� �PP��� ub��b� P�

��



Formalizing Fixed�Point Theory in PVS

lub
bound� LEMMA

every�lub
exists���PP� IMPLIES

�ub��b� set
image�lub��PP�� IFF FORALL �P� �PP��� ub��b� P��

lub
combine� LEMMA

every�lub
exists���PP� IMPLIES

�lub��b� union�PP�� IFF lub��b� set
image�lub��PP���

lub
combine
rewrite� LEMMA

FORALL PP�

�every�lub
exists���PP� AND

�lub
exists��union�PP�� OR lub
exists��set
image�lub��PP����

IMPLIES

lub�union�PP�� � lub�set
image�lub��PP��

lower
set
bound� LEMMA

FORALL �Q� R� Lub
Exists��

�FORALL �x� �Q��� EXISTS �y� �R��� x �� y�

IMPLIES lub�Q� �� lub�R�

least
element
singleton� LEMMA

least
element��x� singleton�x��

END po
lems

Restriction of Partial Orders

po
restrict�

T � TYPE��

le� �partial
order��T���

S� TYPE� FROM T

�� THEORY

BEGIN

�� � �partial
order��S�� �

LAMBDA �s�� s�� S�� le�s�� s��

IMPORTING po
lems�T� le�� po
lems�S� ���

subtype
chain� LEMMA

FORALL �C� Chain�S� ����� chain��T� le��C�

JUDGEMENT extend�T� S� bool� FALSE�

HAS
TYPE �Chain�S� ��� �� Chain�T� le��

subtype
lub� LEMMA

FORALL �M� set�S�� l� S��

lub��T� le��l� M� IMPLIES lub��S� ����l� M�

END po
restrict

��



Formalizing Fixed�Point Theory in PVS

D� Complete Partial Orders

Basic De�nitions

cpo
defs�D� TYPE��� THEORY

BEGIN

IMPORTING po

b � VAR D

�� � VAR �partial
order��D��

bottom������b�� bool �

FORALL �x�D�� b �� x

precpo������ bool �

FORALL �C� Chain�D������ lub
exists��D�����C�

pCPO� TYPE � �precpo��

cpo�����b� � bool �

precpo����� AND bottom������b�

CPO� TYPE � �cpo��

END cpo
defs

Judgement�s� for Pre	CPOs

precpo�

D�TYPE�� �IMPORTING cpo
defs�D��

��� pCPO�D�

�� THEORY

BEGIN

IMPORTING po
lems� D� ���

K� VAR Chain

chains
bound� LEMMA lub
exists�� K�

JUDGEMENT Chain SUBTYPE
OF �lub
exists��

END precpo

Judgement�s� for CPOs

cpo�

D � TYPE�� �IMPORTING cpo
defs�D��

le � pCPO�D��

bottom� D

�� THEORY

BEGIN

��



Formalizing Fixed�Point Theory in PVS

ASSUMING

bottom
def� ASSUMPTION bottom��le��bottom�

ENDASSUMING

IMPORTING precpo
lems�D� le�

b � VAR D

A � VAR set�D�

is
bottom� LEMMA le�bottom� b�

lub
of
empty
exists� LEMMA

empty��A� IMPLIES lub
exists��A�

JUDGEMENT �empty��D�� SUBTYPE
OF Lub
Exists

END cpo

Lemmas on pre	CPOs

precpo
lems�

D � TYPE�� �IMPORTING cpo
defs�D��

��� pCPO�D�

�� THEORY

BEGIN

IMPORTING precpo�D� ���

chain
union
lub� LEMMA

FORALL �P� Q� �nonempty��D����

chain��union�P� Q�� IMPLIES

�lub�union�P� Q�� � lub�P� OR lub�union�P� Q�� � lub�Q��

END precpo
lems

Lemmas on CPOs

cpo
lems�

D � TYPE�� �IMPORTING cpo
defs�D��

�� � pCPO�D��

bottom� �bottom��D������

�� THEORY

BEGIN

IMPORTING cpo�D� ��� bottom�

chain
union
lub� LEMMA

FORALL �P� Q� set�D���

chain�� union�P� Q�� IMPLIES

�lub�union�P� Q�� � lub�P� OR lub�union�P� Q�� � lub�Q��

END cpo
lems

��



Formalizing Fixed�Point Theory in PVS

E� Admissibility� Monotonicity� Continuity

E�� Admissibility

admissible�

D � TYPE�� �IMPORTING cpo
defs�D��

��� pCPO�D�

�� THEORY

BEGIN

IMPORTING precpo
lems�D� ���� predicates�D��

predicate
lems� D�

admissible��P� pred�D��� bool �

FORALL �C� Chain�� every�P��C� IMPLIES P�lub�C��

Admissible� TYPE� � �admissible��

P� Q� VAR Admissible

PP � VAR set�pred�D��

x � VAR D

adm
and � LEMMA admissible��P �� Q�

adm
or � LEMMA admissible��P �� Q�

adm
and
inf� LEMMA

every�admissible���PP� IMPLIES admissible�����PP��

JUDGEMENT �� HAS
TYPE �Admissible� Admissible �� Admissible�

JUDGEMENT �� HAS
TYPE �Admissible� Admissible �� Admissible�

JUDGEMENT �� HAS
TYPE

�� PP� set�pred�D�� 
 every�admissible���PP�� �� Admissible�

END admissible

E�� Monotonic Functions

monotonic�

D � TYPE�� le
D � �partial
order��D���

R � TYPE�� le
R � �partial
order��R��

� � THEORY

BEGIN

poD � THEORY � po�D� le
D�

poR � THEORY � po�R� le
R�

IMPORTING function
notation�D� R�

IMPORTING po
lems�D� le
D�

IMPORTING po
lems�R� le
R�

s�s��s� � VAR D

t � VAR R

�	



Formalizing Fixed�Point Theory in PVS

f � VAR �D �� R�

monotonic��f�� bool �

FORALL s��s�� le
D�s��s�� IMPLIES le
R�f�s���f�s���

const
monotonic � LEMMA monotonic��LAMBDA s� t�

monotonic
nonempty� LEMMA nonempty�� monotonic��

Monotonic� TYPE� � �monotonic�monotonic��

� JUDGEMENT monotonic� HAS
TYPE �nonempty���D��R���

image
preserves
chains� LEMMA

FORALL �K� poD�Chain� f� Monotonic��

chain�� set
image�f�� K��

� JUDGEMENT set
image HAS
TYPE

� �Monotonic �� �poD�Chain �� poR�Chain��

lub
of
monotonic
func� LEMMA

FORALL �f� Monotonic� L� poD�Lub
Exists��

lub
exists��set
image�f��L�� IMPLIES

le
R�lub�set
image�f��L��� f�lub�L���

END monotonic

E�� Continuous Functions

continuous ��IMPORTING cpo
defs�

D � TYPE�� le
D � pCPO�D��

R � TYPE�� le
R � pCPO�R�

�� THEORY

BEGIN

IMPORTING function
precpo�D� R� le
R�� monotonic�D� le
D� R� le
R��

precpo
lems�D� le
D�� precpo
lems�R� le
R��

admissible

d � VAR D

e � VAR R

f � VAR �D �� R�

C � VAR poD�Chain

continuous��f� � bool �

FORALL C�

lub
exists��set
image�f��C��

� �f�lub�C�� � lub�set
image�f��C���

� Identity Function as witness

const�e�� �D �� R� � �LAMBDA d� e�

const
continuous� LEMMA continuous��LAMBDA d� e�

continuous
nonempty� LEMMA nonempty��continuous��

�




Formalizing Fixed�Point Theory in PVS

Continuous� TYPE� � �continuous��

JUDGEMENT const HAS
TYPE �R �� Continuous�

� �� Every Continuous Function is Monotonic

continuity
monotonicity� LEMMA

FORALL �f� Continuous�� monotonic��f�

JUDGEMENT Continuous SUBTYPE
OF Monotonic

continuous
rew� LEMMA

FORALL �f� Continuous� C��

f�lub�C�� � lub�set
image�f��C��

� �� The continuity predicate is admissible

continuous
admissible� LEMMA

admissible���D �� R�� pointwise�����continuous��

� �� Admissible predicates�

cont
pred
admissible� LEMMA

FORALL �f� Continuous� P� Admissible�R� le
R���

admissible��D� le
D��LAMBDA d� P�f�d���

le
pred
admissible� LEMMA

FORALL �f� Continuous� g� Monotonic��

admissible��D� le
D��LAMBDA d� le
R�f�d�� g�d���

le�f� Continuous� g� Monotonic�� pred�D� �

LAMBDA d� le
R�f�d�� g�d��

JUDGEMENT le HAS
TYPE

�Continuous� Monotonic �� Admissible�D� le
D��

END continuous

E�� Monotonicity
 Continuity
 and Admissibility Properties

Facts about Automorphisms on pre	CPOs

precpo
automorphism� �IMPORTING cpo
defs�

D � TYPE��

�� � pCPO�D�

�� THEORY

BEGIN

IMPORTING continuous�D� ��� D� ���� pointwise�D� D� ���

x � VAR D

M � VAR set�D�

��



Formalizing Fixed�Point Theory in PVS

identity
image� LEMMA set
image�lambda x� x��M� � M

identity
continuous� LEMMA

continuous��LAMBDA x� x�

JUDGEMENT id�D� HAS
TYPE Continuous

END precpo
automorphism

Restriction of pre	CPOs

precpo
restrict�

T � TYPE�� �IMPORTING cpo
defs�

le� pCPO�T��

P � �nonempty��T��

�� THEORY

BEGIN

IMPORTING po
restrict�T� le� �P��� admissible�T� le�

sub
precpo� LEMMA

admissible��P� IMPLIES precpo���P���po
restrict����

END precpo
restrict

F� Constructions

F�� Boolesche CPO

bool
cpo� THEORY

BEGIN

IMPORTING cpo
defs�bool�

JUDGEMENT �� HAS
TYPE �partial
order��bool��

JUDGEMENT �� HAS
TYPE pCPO

JUDGEMENT false HAS
TYPE �bottom������

IMPORTING cpo� bool� ��� false�

END bool
cpo

��



Formalizing Fixed�Point Theory in PVS

F�� Discrete CPOs

discrete
cpo�D� TYPE�� � THEORY

BEGIN

IMPORTING cpo
defs�D�

x�y � VAR D	

discrete
is
po� LEMMA partial
order��D����

JUDGEMENT � HAS
TYPE �partial
order��D��

IMPORTING po
lems�D� ��

only
trivial
chains � LEMMA

FORALL �C�Chain�D� ���� unique��C�

discrete
is
precpo� LEMMA precpo��D����

JUDGEMENT � HAS
TYPE pCPO�D�

IMPORTING precpo�D� ��

END discrete
cpo

F�� Flat CPOs

flat
cpo�D� TYPE��� THEORY

BEGIN

flat� DATATYPE

BEGIN

elem�arg� D�� elem�

bot� bot�

END flat

CONVERSION elem

IMPORTING cpo
defs�flat�

d� d�� d�� VAR flat

flat
order�d�� d��� bool � �d� � d�� OR bot��d��

flat
is
po � LEMMA partial
order��flat��flat
order�

flat
is
precpo� LEMMA precpo��flat
order�

flat
is
cpo � LEMMA cpo��flat
order� bot�

JUDGEMENT flat
order HAS
TYPE �partial
order��flat��

JUDGEMENT flat
order HAS
TYPE pCPO

IMPORTING cpo�flat
cpo�flat� flat
cpo�flat
order� flat
cpo�bot�

END flat
cpo

��



Formalizing Fixed�Point Theory in PVS

F�� Function CPOs

Pointwise Ordering of Functions

pointwise�D� R� TYPE�� le� �partial
order��R���� THEORY

BEGIN

IMPORTING po
lems� R� le�

IMPORTING function
notation� D� R�

d � VAR D

e � VAR R

f�g � VAR �D �� R�

S � VAR set��D��R��

���f� g� � bool � FORALL �x� D�� le�f�x�� g�x��

pointwise
is
po� LEMMA partial
order���D �� R������

JUDGEMENT �� HAS
TYPE �partial
order���D �� R���

IMPORTING po
lems� �D �� R�� ���

chain
pointwise� LEMMA

FORALL �S� Chain��D �� R�� �����

chain��fset
image�S��d��

JUDGEMENT fset
image HAS
TYPE

�Chain��D �� R����� �� �D �� Chain�R� le���

func
lub
lem� LEMMA

FORALL �S� Lub
Exists��D �� R�������

FORALL d� lub��lub�S��d�� fset
image�S��d��

func
lub
lem�� LEMMA

FORALL S� �FORALL d� lub
exists��fset
image�S��d���

IMPLIES lub��LAMBDA d� lub�fset
image�S��d��� S�

func
lubs� LEMMA

lub
exists��S� IFF �FORALL d� lub
exists��fset
image�S��d���

JUDGEMENT fset
image HAS
TYPE

�Lub
Exists��D �� R����� �� �D �� Lub
Exists�R� le���

func
lub
is� LEMMA

FORALL �S� Lub
Exists��D �� R�� �����

�LAMBDA d� lub�fset
image�S��d��� � lub�S�

END pointwise

��



Formalizing Fixed�Point Theory in PVS

Construction of Function Space pre	CPOs

function
precpo�

D � TYPE��

R � TYPE�� �IMPORTING cpo
defs�R��

le
R� pCPO

�� THEORY

BEGIN

IMPORTING pointwise�D� R� le
R�� precpo
lems�R� le
R��

cpo
defs��D �� R��

functions
form
precpo� LEMMA precpo��pointwise����

JUDGEMENT pointwise��� HAS
TYPE pCPO��D �� R��

IMPORTING precpo��D �� R�� ���

END function
precpo

Construction of Function Space CPOs

function
cpo�

D � TYPE��

R � TYPE�� �IMPORTING cpo
defs�R��

le
R � pCPO�R��

bottom� R

� � THEORY

BEGIN

ASSUMING

bottom
def� ASSUMPTION bottom��le
R��bottom�

ENDASSUMING

IMPORTING function
precpo�D� R� le
R�

IMPORTING cpo� R� le
R� bottom�

bottom
func� �D �� R� � LAMBDA �s� D�� bottom

bottom
func
is
bottom� LEMMA

bottom��pointwise�����bottom
func�

functions
form
cpo� LEMMA cpo��pointwise���� bottom
func�

IMPORTING cpo��D �� R�� pointwise���� bottom
func�

END function
cpo

��



Formalizing Fixed�Point Theory in PVS

Discrete CPOs to pre	CPOs

dcpo
to
precpo�D� R� TYPE�� �IMPORTING precpo� leR � pCPO�R��� THEORY

BEGIN

IMPORTING po� discrete
cpo�D�� continuous�D� �� R� leR�

f�g � VAR �D �� R�

s��s� � VAR D

discrete
func
continuous� LEMMA continuous��f�

JUDGEMENT �D �� R� SUBTYPE
OF Continuous

END dcpo
to
precpo

F�� Monotonic CPOs

monotonic
cpo�

D � TYPE��

leD � �partial
order��D���

R � TYPE�� �IMPORTING cpo
defs�R��

leR � pCPO�R��

bottom� R

�� THEORY

BEGIN

ASSUMING

bottom
def� ASSUMPTION

FORALL �t� R�� leR�bottom� t�

ENDASSUMING

IMPORTING monotonic�D� leD� R� leR�

IMPORTING function
cpo�D� R� leR� bottom�

IMPORTING cpo
defs�Monotonic�

IMPORTING precpo
restrict��D �� R��

pointwise���� monotonic�monotonic��

IMPORTING admissible��D �� R�� ���

monotonic
admissible� LEMMA

admissible���D��R�� ����monotonic��

monotonic
forms
cpo� LEMMA

cpo��Monotonic��po
restrict���� bottom
func�

END monotonic
cpo

��



Formalizing Fixed�Point Theory in PVS

F�� Predicate CPOs

Lifting of Boolean Connectives

predicates�D� TYPE��� THEORY

BEGIN

s � VAR D

p�q�b � VAR pred�D�	 S� VAR set�D�

TRUE �pred�D� � LAMBDA s� TRUE	

FALSE �pred�D� � LAMBDA s� FALSE	

NOT�p� �pred�D� � LAMBDA s� NOT�p�s��	

���p� q� �pred�D� � LAMBDA s� p�s� AND q�s�	

���p� q� �pred�D� � LAMBDA s� p�s� OR q�s�	

���p� q� �pred�D� � LAMBDA s� p�s� IMPLIES q�s�	

����p� q��pred�D� � LAMBDA s� p�s� IFF q�s�	

���PP� set�pred�D���� pred�D� � LAMBDA s� FORALL �p� �PP��� p�s�	

���PP� set�pred�D���� pred�D� � LAMBDA s� EXISTS �p� �PP��� p�s�	

IF�b� p� q�� pred�D� � �LAMBDA s� IF b�s� THEN p�s� ELSE q�s� ENDIF�	

select�p��S�� set�D� � � s� �S� 
 p�s� �

every
select� LEMMA every�p��select�p��S��

END predicates

Facts about Liftings of Boolean Connectives

predicate
lems�D� TYPE��� THEORY

BEGIN

IMPORTING predicates�D�

S � VAR set�D�

P� Q� VAR pred�D�

every
select� LEMMA every�P��select�P��S��

select
every� LEMMA select�P��S� � S IFF every�P��S�

every
and� LEMMA

every�P �� Q��S� IFF �every�P��S� AND every�Q��S��

every
or � LEMMA

every�P �� Q��S� IFF union�select�P��S�� select�Q��S�� � S

END predicate
lems

��



Formalizing Fixed�Point Theory in PVS

Construction of Predicate CPOs

predicate
cpo�D� TYPE��� THEORY

BEGIN

� �� Booleans with implication form a cpo�

IMPORTING cpo
defs� predicates�D�� bool
cpo

bottom� pred�D� � FALSE	

top � pred�D� � TRUE

� �� Ordering on predicates�

� �� the next IMPORT defines a partial order �� on predicates as

� �� p �� q ���� FORALL s� p�s� IMPLIES q�s�

IMPORTING pointwise�D� bool� ���

� �� Predicates are functions from a type �i�e� a discrete cpo� D

� �� into a cpo� viz� bool� hence predicates with �� form a cpo�

IMPORTING dcpo
to
precpo�D� bool� ���

bottom
pred� LEMMA

bottom���D �� bool���pointwise�D� bool� ��������bottom�

IMPORTING cpo�pred�D�� ��� bottom�

PP� VAR set�pred�D��

IMPORTING po�pred�D�� ���

pred
lub � LEMMA lub�����PP�� PP�

pred
lub
exists� LEMMA lub
exists��PP�

pred
lub
is � LEMMA lub�PP� � ���PP�

END predicate
cpo

G� Zorn�s Lemma

Basic Facts about Initial Segments

initial
segments�

D � TYPE��

�� � �partial
order��D��

�� THEORY

BEGIN

IMPORTING po
lems� D� ���

C � VAR Chain

��



Formalizing Fixed�Point Theory in PVS

x � VAR D

A � VAR set�D�

AA� VAR set�set�D��

� �� Initial Segments �uncommonly without the empty set�

initial
segment��C��A�� bool �

nonempty��A�

� subset��A� C�

� FORALL �x� �A�� y� �C��� y �� x IMPLIES A�y�

iseg
is
chain� LEMMA

initial
segment��C��A� IMPLIES chain��A�

isegs
subset� LEMMA

FORALL �S�� S�� �initial
segment��C����

subset��S�� S�� OR subset��S�� S��

iseg
of
isegs� LEMMA

FORALL �S�� S�� �initial
segment��C����

initial
segment��S���S�� OR initial
segment��S���S��

least
element
is
iseg� LEMMA

least
element��x� C�

IMPLIES initial
segment�� C�� singleton� x��

iseg
union� LEMMA

nonempty��AA� AND every�initial
segment��C���AA�

IMPLIES initial
segment��C��union�AA��

iseg
expand� LEMMA

FORALL �S� Chain� T� �initial
segment��S��� x� D��

least
element�� x� difference�S� T��

IMPLIES initial
segment��S�� add�x� T��

� �� Proper Initial Segments

proper
initial
segment��C��A�� bool �

initial
segment��C��A� AND C �� A

� JUDGEMENT �proper
initial
segment��C�� SUBTYPE
OF �initial
segment��C��

proper
iseg
add� LEMMA

ub��x� C� AND proper
initial
segment��add�x�C���A�

IMPLIES initial
segment��C��A�

proper
iseg
subset� LEMMA

proper
initial
segment��C��A�

IMPLIES strict
subset��A� C�

proper
iseg
leaves
bound� LEMMA

proper
initial
segment��C��A� IMPLIES

EXISTS �x� �C��� �ub��x� A� AND not�A�x���

END initial
segments

�	



Formalizing Fixed�Point Theory in PVS

Zorn
s Lemma

zorn�D� TYPE�� ��� �partial
order��D���� THEORY

BEGIN

ASSUMING

IMPORTING po
lems�D� ���

C � VAR Chain

bound
exists� ASSUMPTION nonempty��D��UB�C��

ENDASSUMING

IMPORTING initial
segments�D� ���

x � VAR D

A � VAR set�D�

AA� VAR set�set�D��

Max�x�� bool � FORALL �y� D�� x �� y IMPLIES x � y

open
chain��A�� bool �

chain��A� AND empty��D��intersection�A� Max��

Open
Chain� TYPE � �open
chain��

proper
iseg
no
max� LEMMA

proper
initial
segment��C��A� IMPLIES open
chain��A�

� For PVS�versions to come�

� JUDGEMENT �proper
initial
segment��C�� SUBTYPE
OF Open
Chain

S� VAR Open
Chain

open
chain
bounded� LEMMA

EXISTS �x� �complement�S���� ub��x� S�

extern
bounds�S�� �nonempty��D�� � difference�UB�S�� S�

phi�S�� �extern
bounds�S�� � choose�extern
bounds�S��

phi
is
ub � LEMMA ub��phi�S�� S�

phi
not
elem � LEMMA NOT S�phi�S��

add
phi
is
chain� LEMMA chain��add�phi�S�� S��

p � D

CC � set�set�D�� �

� C� Chain 
 least
element�� p� C� AND

FORALL �T� �proper
initial
segment��C����

least
element��phi�T�� difference�C� T���

CC
contains
p� LEMMA CC� singleton�p��

�




Formalizing Fixed�Point Theory in PVS

CC
nonempty � LEMMA nonempty��CC�

� JUDGEMENT CC HAS
TYPE �nonempty��set�D���

S�� S�� VAR �CC�

CC
contains
chains� LEMMA chain�� S��

JUDGEMENT �CC� SUBTYPE
OF Chain

R�S�� S��� �nonempty��D�� �

union�intersection�initial
segment��S���

initial
segment��S����

R
is
iseg�� LEMMA initial
segment��S���R�S�� S���

R
is
iseg�� LEMMA initial
segment��S���R�S�� S���

R
equals
one
arg� LEMMA

S� � R�S�� S�� OR S� � R�S�� S��

CC
iseg� LEMMA

FORALL �S�� S�� �CC���

initial
segment��S���S�� OR initial
segment��S���S��

CC
union
is
chain� LEMMA chain��union�CC��

U� Chain � union�CC�

CC
members
U � LEMMA FORALL �S� �CC��� initial
segment��U��S�

CC
contains
U� LEMMA member�U� CC�

zorn
orig� LEMMA nonempty��Max�

END zorn

Variant of Zorn
s Lemma

zorn��D� TYPE�� ��� �partial
order��D���� THEORY

BEGIN

IMPORTING po�D����� zorn� po
restrict

A � VAR �nonempty��D��

C � VAR Chain

Zorns
lemma� LEMMA

�FORALL C� subset��C� A� IMPLIES nonempty��D��intersection�A� UB�C����

IMPLIES nonempty��D��Max�A��

END zorn�

��



Formalizing Fixed�Point Theory in PVS

H� Fixed	Points

H�� De�nitions related to Fixed	Points

fixpoints�D� TYPE�� ��� �partial
order��D���� THEORY

BEGIN

IMPORTING po�D� ���� misc�D�

x� y� VAR D

f � VAR �D �� D�

fixpoint��f��x�� bool � �f�x� � x�

least
fixpoint��f��x� � bool �

fixpoint��f��x�

� �FORALL y� fixpoint��f��y� IMPLIES x �� y�

mu
exists��f�� bool � nonempty��least
fixpoint��f��

LFP�f� � TYPE � �least
fixpoint��f��

Mu
Exists� TYPE � �mu
exists��

least
fix
unique� LEMMA unique��least
fixpoint��f��

lfp
singleton � COROLLARY

FORALL �f� Mu
Exists�� singleton��least
fixpoint��f��

mu�f� Mu
Exists�� LFP�f� � choose�least
fixpoint��f��

mu
exists
rew � LEMMA least
fixpoint��f��x� IMPLIES mu
exists��f�

mu
rew � LEMMA least
fixpoint��f��x� IMPLIES x � mu�f�

mu
is
fixpoint� LEMMA FORALL �f� Mu
Exists�� f�mu�f�� � mu�f�

END fixpoints

H�� Fixed	Points over Monotonic Functions

fixpoints
mono�

D � TYPE�� �IMPORTING cpo
defs�D��

�� � pCPO�D��

bottom � �bottom������

�� THEORY

BEGIN

IMPORTING cpo�D� ��� bottom�� precpo
automorphism�D� ����

fixpoints�D� ���� admissible�D� ����

zorn��D� ���� misc�D�

x� y � VAR D

f � VAR Monotonic

S � VAR set�D�

��



Formalizing Fixed�Point Theory in PVS

step
closed��f��S�� bool � �FORALL �y� �S��� S�f�y���

closed��f��S�� bool �

contains��bottom��S� AND step
closed��f��S� AND admissible��S�

� �� Part I� definining a fixed point u

X�f�� set�D� � ���closed��f��

JUDGEMENT X HAS
TYPE �Monotonic �� �contains��bottom���

JUDGEMENT X HAS
TYPE �f� Monotonic �� �step
closed��f���

JUDGEMENT X HAS
TYPE �Monotonic �� Admissible�

JUDGEMENT X HAS
TYPE �Monotonic �� �nonempty��D���

X
is
closed � LEMMA closed��f��X�f��

X
is
least
closed� LEMMA closed��f��S� IMPLIES subset��X�f�� S�

X
has
max � LEMMA nonempty��D��Max�X�f���

� Uses Zorn�s Lemma

u�f�� D � choose�D��Max�X�f���

JUDGEMENT u HAS
TYPE �f� Monotonic �� �Max�D� ����X�f����

JUDGEMENT u HAS
TYPE �f� Monotonic �� �X�f���

� �� Part II� u is indeed a fixed point

E�f�� set�D� � �x� D
 x �� f�x��

E
is
closed � LEMMA closed��f��E�f��

u
is
fixpoint� LEMMA fixpoint��f��u�f��

� �� Part III� u is smallest fixed point

V�x�� set�D� � � y�D 
 y �� x �

V
is
closed� LEMMA fixpoint��f��x� IMPLIES closed��f��V�x��

u
is
least
fixpoint� LEMMA least
fixpoint��f��u�f��

JUDGEMENT u HAS
TYPE �f� Monotonic �� LFP�f��

KnasterTarski� THEOREM

mu
exists��f�

JUDGEMENT Monotonic SUBTYPE
OF Mu
Exists

� �� Characterisation of Fixed Point

mu
char� LEMMA mu�f� � u�f�

� �� Fixed�Point Induction

P� VAR Admissible

��



Formalizing Fixed�Point Theory in PVS

fp
induction
mono� THEOREM

�P�bottom� AND �FORALL x� P�x� IMPLIES P�f�x����

IMPLIES P�mu�f��

� �� Park�s Lemma

park� LEMMA f�x� �� x IMPLIES mu�f� �� x

� �� Another Variant of Fixed�Point Induction

E
is
admissible� LEMMA admissible��E�f��

fp
induction
mono
le� LEMMA

�P�bottom�

� �FORALL x� P�x� AND x �� f�x� IMPLIES P�f�x����

IMPLIES

P�mu�f��

END fixpoints
mono

H�� Fixed	Points over Continuous Functions

fixpoints
cont�

D � TYPE�� �IMPORTING cpo
defs�D��

�� � pCPO�D��

bottom� �bottom������

�� THEORY

BEGIN

IMPORTING cpo� D� ��� bottom�� fixpoints
mono�D� ��� bottom��

po
lems�D� ���

n� VAR nat

d� VAR D

f� VAR Monotonic

g� VAR Continuous

� � x� D 
 EXISTS �n� nat�� x � iterate�f� n��bottom��

bottom
iterations�f�� Chain�D� ��� �

seq
to
set�LAMBDA n� iterate�f� n��bottom��

image
of
bi� LEMMA

add�bottom� set
image�f��bottom
iterations�f���

� bottom
iterations�f�

lub
of
bi
is
fixpoint� LEMMA

fixpoint��g��lub�bottom
iterations�g���

fixpoint
upper
bound� LEMMA

fixpoint��f��d� IMPLIES ub��d� bottom
iterations�f��

fixpoint
theorem� THEOREM

mu�g� � lub�bottom
iterations�g��

��



Formalizing Fixed�Point Theory in PVS

� �� Fixed point induction for continuous functions

IMPORTING admissible�D� ���

fp
induction
cont� THEOREM

FORALL �P� Admissible��

� P�bottom�

� �FORALL �i� nat�� P�iterate�g� i��bottom��

IMPLIES P�iterate�g� i � ���bottom����

IMPLIES P�mu�g��

END fixpoints
cont

��


