
Generic Compilation Schemes for Simple Programming Constructs

Generic Compilation Schemes for Simple

Programming Constructs�

A� Dold� F� W� von Henke� H� Pfeifer� H� Rue�

Fakult�at f�ur Informatik

Universit�at Ulm

D������ Ulm� Germany

fdold�vhenke�pfeifer�ruessg�informatik�uni�ulm�de

revised version of technical report

Ulmer Informatik�Berichte No� �����

January ��	 ����

In this paper we present a hierarchy of veri�ed generic theories for
compiling standard imperative language constructs using the speci�
�cation and veri�cation system PVS� The hierarchy consists of spec�
i�cations for compiling assignments� control structures� and proce�
dures into linearized assembly code� The speci�cations are generic
in the sense that they abstract from concrete source and target lan�
guages� they specify an abstract compilation pattern which can be
instantiated� Since each of these patterns can be formalized and
veri�ed separately� the veri�cation task is broken into small man�
ageable steps� A further modularization and reduction of complex�
ity is achieved by splitting the compilation of control structures into
three steps� control structures are �rst translated into a structure of
blocks� then the blocks are linearized by introducing jump instruc�
tions� and �nally� the procedures are linearized� Applicability of the
generic theories to speci�c compilation processes is demonstrated by
means of two simple examples�

�This research has been funded in part by the Deutsche Forschungsgemeinschaft �DFG� under project
�Veri�x�

Contents

� Introduction �

� Basic Concepts �

� Compilation Structure �

� Generic Interpreter for Linear Code �

� Generic Compilation of Simple Statements ��

	 Compiling Control Structures into Basic Block Graphs ��

��	 Control Structures � 	

��� Basic Blocks � 	�

��� Compilation � 	

 Linearization of Basic Block Graphs ��

��	 Linear Target Code with Jumps ��

��� Compilation ��

����	 Proof of linearization correct� �

����� Proof of linearization correct� ��

� Implementation of Procedures ��

��	 Introduction of a Return Instruction �

��� Linearization of Procedures and Main Program � � � � � � � � � � � � � � � � ��

� Speci�c Compilation Processes ��

�	 A Stack Machine Compilation �

�� Compilation into a One�Address Machine � � � � � � � � � � � � � � � � � � �
�

�� Conclusion ��

i

ii

Generic Compilation Schemes for Simple Programming Constructs

� Introduction

Veri�cation of compiler correctness is a much�studied area� Many di�erent approaches
have been taken� usually with mechanized support to manage the complexity of speci�ca�
tions and proofs �e�g�� ���
�����	��	���	������ Most of these studies address the veri�cation
of a speci�c compiler for a particular language� furthermore� speci�cations and proofs tend
to be monolithic and lacking modular structure� As a consequence� it is di�cult� if not im�
possible� to reuse parts of those speci�cations and proofs in similar veri�cation tasks� On
the other hand� both the compilation of standard constructs of imperative programming
languages and the corresponding correctness proof usually follow a scheme that di�ers at
most in small details among languages� For instance� the compilation of the assignment
statement x �� e typically involves generating code for the evaluation of the expression e�
followed by generating code for storing the computed value at the location denoted by x�
The correctness of the latter process is independent of the structure and compilation of
expressions� it depends only on the correctness of the code for evaluating and providing
the expression�s value� By separating concerns� abstracting from irrelevant details and
concentrating on the essence of compilation steps� generic compilation patterns can be
identi�ed� formalized and veri�ed� Ideally� if a su�ciently rich set of such generic theories
for the compilation of di�erent language constructs is available� a veri�ed code generator
for speci�c source and target languages can then be obtained by suitable composition and
instantiation of existing pieces�

In this paper we present steps in the direction of developing such generic compiling the�
ories� Speci�cally� we develop generic compilation patterns for elementary constructs of
procedural languages� including

� simple statements� i�e� assignments�

� the standard control structures� sequencing� conditionals� loops� and

� �parameterless� procedures�

The theories form a kind of generic hierarchy in that the latter theory builds on the
existence� but not the details� of the former� this actually results in a reduction of the
overall veri�cation e�ort�

The formal development has been carried out with the assistance of the speci�cation
and veri�cation system PVS �	�� 	��� PVS is particularly suitable for the task because
it provides the necessary constructs for specifying parameterized theories� including con�
straining assumptions on parameters� The compilation theories presented in this paper
are parameterized by source and target language and� as needed� by the compilation of
constructs lower in the hierarchy� the assumptions on parameters are stated in such a
manner that abstract compilation theorems can be derived� When a parameterized the�
ory is instantiated� the PVS system takes care of generating the veri�cation conditions
required to demonstrate that the assumptions on parameters are satis�ed� Then� for a
speci�c source and target language a complete correctness proof can be established by
combining the abstract compilation theorems�

	

Generic Compilation Schemes for Simple Programming Constructs

The remainder of this paper is organized as follows� the following subsection summarizes
work most closely related to our approach� Then a brief description of the PVS system
is given� Section � presents the basic concepts needed in this paper� Section � gives
an overview of the complete compilation structure and the hierarchy of PVS theories for
compiling the imperative language constructs� In the following sections these theories are
then described in greater detail� In Section
 a generic speci�cation of an operational
semantics of linear code based on the single e�ects of the instruction set is presented�
Section � deals with the compilation of simple statements� i�e� assignments� Section ��
�� and � are concerned with the compilation of standard control structures� First� the
translation into a basic block structure is outlined� and then we focus on the linearization
phase and �nally� procedures are linearized� To illustrate the application of the generic
theories to speci�c compilation processes� compilation of a simple imperative language
into code of a stack machine and a one�address machine is presented in section � Finally�
Section 	� contains a short summary and an outlook� All theorems� lemmas and proof
obligations have been completely proved� PVS theories and proof scripts may be obtained
from the �rst author upon request�

Related Work

P� Curzon ��� veri�es the compilation of a structured assembly language� Vista� into code
for the VIPER microprocessor using the HOL system� Vista is a low�level language in�
cluding arithmetic operators which correspond directly to those available on the target
architecture� The speci�cations of the languages are generic only in the sense that they
abstract from the speci�c word size� and the set of arithmetic and comparison operations
available on the target machine�

P� Windley ���� uses a generic microprocessor speci�cation in the context of microproces�
sor veri�cation� he abstracts from the state and e�ects of individual instructions and
provides a de�nition of an interpreter and various correctness predicates relating the dif�
ferent microprocessor levels� His generic interpreter is related to our generic speci�cation
for interpreting linear machine code as described in Section
�

The modularization aspect of compiler veri�cation has been considered by M�uller�Olm �	
��
who deals with verifying the compilation process of an imperative real�time language
into transputer code� Modularization is achieved by a stepwise derivation of increasingly
abstract views of transputer behavior starting from a base model� The di�erent levels then
permit separate treatment of particular aspects� This approach� which can be adapted
to other target architectures� is concerned with di�erent abstraction levels for the target
machine� this is in contrast to the approach presented here� which focuses on separating
the compilation of di�erent language constructs�

In �	��� M�uller�Olm considers the translation of control structures of a simple while lan�
guage into linear machine code with relative jumps� Starting from a denotational seman�
tics of while programs and an operational machine semantics� the machine semantics is
characterized denotationally and then the equivalence of source and target semantics is
established� Proofs are carried out without any mechanical support� Our proof of the
linearization step presented in Section � is similar to these ideas�

�

Generic Compilation Schemes for Simple Programming Constructs

A Brief Description of PVS

This section provides a brief overview of PVS� For more details consult �	��	���

The PVS system combines an expressive speci�cation language with an interactive proof
checker that has a reasonable amount of theorem proving capabilities� The PVS speci�
�cation language builds on classical typed higher�order logic with the usual base types�
bool� nat� rational� real� among others� and the function type constructor �A �� B��
The type system of PVS is augmented with dependent types and abstract data types � A
distinctive feature of the PVS speci�cation language are predicate subtypes � the subtype
fx�A 	 P
x�g consists of exactly those elements of type A satisfying predicate P� Predi�
cate subtypes are used� for instance� for explicitly constraining the domains and ranges of
operations in a speci�cation and to de�ne partial functions�

Predicates in PVS are elements of type bool� and pred�A� is a notational convenience for
the function type �A �� bool�� Sets are identi�ed with their characteristic predicates�
and thus the expressions pred�A� and set�A� are interchangeable� For a predicate P of
type pred�A�� the notation
P� is just an abbreviation for the predicate subtype fx�A 	

P
x�g�

In general� type�checking with predicate subtypes is undecidable� the type�checker gener�
ates proof obligations� so�called type correctness conditions �TCCs� in cases where type
con�icts cannot immediately be resolved� A large number of TCCs are discharged by spe�
cialized proof strategies� and a PVS expression is not considered to be fully type�checked
unless all generated TCCs have been proved�

Proofs in PVS are presented in a sequent calculus� The atomic commands of the
PVS prover component include induction� quanti�er instantiation� automatic conditional
rewriting� simpli�cation using arithmetic and equality decision procedures and type infor�
mation� and propositional simpli�cation using binary decision diagrams� The SKOSIMP�

command� for example� repeatedly introduces constants of the form xi for universal�
strength quanti�ers� and ASSERT combines rewriting with decision procedures�

Finally� PVS has an LCF�like strategy language for combining inference steps into more
powerful proof strategies� The strategy GRIND� for example� combines rewriting with
propositional simpli�cation using BDDs and decision procedures� The most comprehensive
strategies manage to generate proofs fully automatically�

� Basic Concepts

In this section we summarize the basic concepts needed in this paper� The �rst two
subsections are based on �	� 	��� where a more comprehensive treatment can be found�

Fixed�Point Theory

De�ning the semantics of loops requires �xed�point theory� In �	� we have developed a
comprehensive formalization of domain and �xed�point theory in PVS� including formal�

�

Generic Compilation Schemes for Simple Programming Constructs

izations of complete partial orders� notions related to monotonic and continuous functions�
Knaster�Tarski �xed�point theorems for monotonic functions and Scott�s �xed�point induc�
tion for admissible predicates and monotonic functions� We state the �xed�point induction
theorems used in this paper�

A partial order �� over D is a pre�cpo over D if for every chain in D the least upper bound
exists� If� in addition� the type D has a least element bottom then the pair
��� bottom�

is called a complete partial order �cpo��

�� d� VAR CPO�D�

fp�induction�mono� THEOREM

LET ���	 bottom
 � d IN

FORALL�f� Monotonic���	 ��
	 P� Admissible���

�

�P�bottom
 AND �FORALL�x� D
� P�x
 IMPLIES P�f�x

IMPLIES P�mu���
�f

fp�induction�mono�le� LEMMA

LET ���	 bottom
 � d IN

FORALL�f� Monotonic���	 ��
	 P� Admissible���

�

�P�bottom
 AND �FORALL �x� D
� P�x
 AND x �� f�x
 IMPLIES P�f�x

IMPLIES P�mu���
�f

park� LEMMA f�x
 �� x IMPLIES mu�f
 �� x

A special case of �xed�point induction is Park�s lemma� which is useful for proving that
something contains a least �xed point�

The de�nition of the least �xed�point operator mu makes use of the predicate subtype
concept of PVS by restricting the operator to only those functions for which the least �xed
point exists� Hence� typechecking an expression containing operator mu� PVS generates a
corresponding TCC�

�fixpoint��f
�x
� bool � �f�x
 � x

lfp����
�f
�x
 � bool � fixpoint��f
�x

� �FORALL y� fixpoint��f
�y
 IMPLIES x �� y

lfp�exists����
�f
� bool � nonempty��lfp����
�f

LFP���	 f
 � TYPE � �lfp����
�f

LFP�Exists���
� TYPE � �lfp�exists����

mu���
�f� LFP�Exists���

� LFP���	 f
 � choose�lfp����
�f

mu�is�fixpoint� LEMMA FORALL �f� LFP�Exists���

�

f�mu���
�f

 � mu���
�f

mu�d
�f� Monotonic����d
	 ���d

� LFP����d
	 f
 � choose�lfp�����d

�f

Monotonic functions mapping into a cpo always have least �xed�points � known as the
Knaster�Tarski theorem�

Generic Compilation Schemes for Simple Programming Constructs

�KnasterTarski� THEOREM LET �� � ���d
 IN

FORALL�f� Monotonic���	 ��

� lfp�exists����
�f

State Transformers

Semantic de�nitions presented in this paper are expressed as state transformers which are
modeled as relations� A relation R � A�B is represented as a function mapping elements
of type A to a set of elements of type B� Partial functions can be de�ned as a subtype
of relations by restricting the range to sets with at most one element� The following
de�nitions are taken from the library of PVS theories for specifying the semantics of
imperative language constructs �	���

	� A	B � TYPE

Relation � TYPE � �A � set�B��

srel � TYPE � Relation

deterministic��S�set�B�
 � bool � empty��S
 OR singleton��S

PartialFunction � TYPE � �A � �deterministic�
�

strans � TYPE � PartialFunction

A cpo over srel can be de�ned using the cpo function constructor ��� the predicate cpo
Pred�B�� and the discrete cpo over type A� the partial ordering is denoted by ��� and the
bottom element is called abort�

srel � CPO��A � set�B��� � �discrete�A� �� Pred�B�

�� � preCPO�srel� � ����srel

abort � Bottom�srel����
 � �bottom�srel

State transformers for imperative language constructs can be de�ned easily using these
de�nitions� In the sequel let sigma denote the type of states on which programs operate�
Sequential composition of two state transformers f and g� denoted by f �� g is de�ned by
relational composition� Sequencing is monotonic in both arguments� and the composition
of two deterministic state transformers is deterministic�

�image�R�srel	 S�set�sigma�
 � set�sigma� �

f y�sigma � EXISTS �s��S

� member�y	R�s

 g

���f	 g
 � srel � LAMBDA �s�sigma
� image�g	f�s

The semantics of a conditional is obtained by lifting the boolean IF�expression��

�IF�b�pred�sigma�	 f	g�srel
 � srel �

LAMBDA �s�sigma
� IF b�s
 THEN f�s
 ELSE g�s
 ENDIF

�Note that IF is overloaded here In PVS� for expression IF�b	f	g
 the convenient notation IF b THEN

f ELSE g ENDIF can be used

�

Generic Compilation Schemes for Simple Programming Constructs

Object SemanticsSource Semantics

Source Syntax Object Syntaxcompiler specification

 compare

Figure 	� Compiler Speci�cation Correctness

The semantics of loops is de�ned as usual as the least �xed point of a functional describing
one iteration of the while�loop� The identity state transformer skip is modeled as a
function mapping a state s to the singleton set fsg�

�while�b�pred�sigma�	 f�srel
 � srel �

mu�srel
�LAMBDA �x�srel
� IF b THEN f �� x ELSE skip ENDIF

In �	�� we have proved that state transformers ��� IF and while are deterministic if
applied to deterministic state transformers�

In the correctness proof of the linearization step presented in Section �� we will make use
of the following transfer lemma�

�F	G � VAR fF� � �srel � srel� � monotonic����	��
�F�
g
x	y � VAR srel

transfer � LEMMA

�FORALL x� �F�x
 �� y
 � G�x �� y

IMPLIES mu�srel
�F
 �� y � mu�srel
�G

Notion of Correctness

The correctness of a compiler speci�cation is generally understood as the commutativity
of a kind of diagram as given in Fig� 	� Correctness is established by comparing the
semantics of source programs and their compilations� As noticed� for example� by Chirica
and Martin ���� this is only one aspect of compiler correctness� Another important aspect
is the correctness of compiler implementation with respect to the speci�cation� In this
paper we concentrate on the correctness of compiler speci�cations�

There are many di�erent possibilities to de�ne the compare relation in Fig� 	� The de�n�
ition used in this paper and in the Veri�x project preserves partial correctness of source
programs� It is claimed to be useful for verifying realistic compilation processes since it
takes into account the �nite resource limitations of real hardware� It allows the target ma�
chine program to fail if� for example� a memory or arithmetic over�ow occurs� However�

�

Generic Compilation Schemes for Simple Programming Constructs

MState MState

SState SStatesource_sem(cmd)

 target_sem(code)

statemap statemap

Figure �� Compiler Speci�cation Correctness �re�ned�

whenever the execution of the compiled program produces a regular result� this result
must correspond to the one produced by the source program� A more detailed discussion
concerning this notion of correctness can be found in ����

More precisely� let Statement denote the type of abstract source syntax �statements��
source sem its semantics given as a partial function on source states SState� Let further
Code denote the type of target code� and target sem its semantics given as a partial
function on target states MState� In general� target states are di�erent from source states�
thus� we suppose that a mapping statemap from target states to source states �� is
provided�

��Statement � TYPE	

SState � TYPE	

source�sem � �Statement � PartialFunction�SState	SState��	

Code � TYPE	

MState � TYPE	

target�sem � �Code � PartialFunction�MState	MState��	

statemap � �MState � SState�

Then a generic notion of correctness in the sense of preservation of partial program cor�
rectness can be de�ned by predicate pp correctness in �� � It is illustrated in Fig� �
which can be seen as an instance of the general correctness diagram in Fig� 	 since it gives
a concrete de�nition of the compare relation� Informally� the predicate states that the
target language semantics is contained in the source language semantics with respect to
statemap�

��� notion of correctness

pp�correctness�cmd�Statement
�code�Code
 � bool �

FORALL �start	final�MState
�

target�sem�code
�start
�final

IMPLIES

source�sem�cmd
�statemap�start

�statemap�final

�

Generic Compilation Schemes for Simple Programming Constructs

� Compilation Structure

Figure � illustrates the modular generic compilation of standard language constructs for
imperative languages� expressions� simple statements �i�e� assignments�� control struc�
tures� and procedures�

Simple Statements

Expressions

Linear Code without Jumps

Machine Instructions

Basic Blocks
Procedures + Procedures + Linear Code

with JumpsLinear Code Control Structures
Procedures +

Figure �� Generic Compilation Structure for Imperative Languages

On the lowest level in the hierarchy expressions are supposed to be compiled into linear
machine code� i�e� code which does not contain branching instructions� The speci�cation
of the target machine is generic in the sense that it abstracts from the concrete instruction
set and internal structure of the machine state� It is described in more details in the next
section� In this paper we are not developing a generic theory for expression compilation�
this will be considered in a future paper� However� in section compilation of expressions
into code of a stack machine and a one�address machine is described in details�

On the next higher level� compilation of simple statements is considered� Given a compi�
lation function for expressions and assumptions about its correctness� the compilation of
simple statements� i�e� assignments� need not take into account the structure of expres�
sions or their compilation� All that is needed is a function providing access to the result
of expression evaluation and an assumption that the accessed value is the correctly com�
puted result� The theory specifying the compilation of simple statements is parameterized
accordingly� This compilation step is described in more details in Section ��

Similarly� the compilation of control structures �sequential composition� conditionals and
loops� and procedures builds on compilation functions for expressions and simple state�
ments� its correctness again depends on assumptions about the correctness of those compi�
lation functions� For implementing control structures� branching instructions on the target
architecture are required� It is convenient to split this compilation task into three steps�
First� control structures are compiled into basic blocks� In a basic block graph the nodes
consist of linear code sequences� and the edges represent the �ow of control between these

�

Generic Compilation Schemes for Simple Programming Constructs

blocks� A basic block is assigned to each procedure� Basic blocks preserve the semantics of
control structures� In a second step� basic blocks are then linearized by implementing the
edges by the insertion of relative jumps� It has turned out that the introduction of such an
intermediate language drastically simpli�es the proof e�ort� in contrast to a direct trans�
lation of source statements into linear code with jumps� In addition� this step corresponds
to a standard compilation phase in existing compilers� Linear machine code with relative
conditional and unconditional jumps is assigned to each procedure� Finally� the procedure
bodies and the main program are linearly ordered and jump tables are introduced�

� Generic Interpreter for Linear Code

In this section a generic theory specifying the semantics of linear code �without jumps�
for an �arbitrary� architecture is presented� In Figure � this PVS theory appears as the
rightmost lower box�

��simple�interpreter �Instr � TYPE	

MState � TYPE�	

�IMPORTING relation�MState	MState�

effect � �Instr � PartialFunction�MState	MState��

� � THEORY

BEGIN

� programs are lists of instructions

Code � TYPE � list�Instr�

c	l	k � VAR Code

� concatenation of code sequences

���l	k
 � Code � append�l	k

� basic block interpreter

interprete�c
 � RECURSIVE srel �

CASES c OF

null � skip	

cons�i	r
 � effect�i
 �� interprete�r

ENDCASES

MEASURE length�c

interprete�deterministic � LEMMA

FORALL �s�MState
� deterministic��interprete�c
�s

���

END simple�interpreter

Theory simple interpreter � �� � abstracts from the speci�c instruction set� and the
internal structure of the machine state �i�e� registers� memory� �ags�� and de�nes an
operational semantics of linear code based on the single e�ects of the machine instruc�
tions given as a theory parameter� A deterministic state transformer effect is used

Generic Compilation Schemes for Simple Programming Constructs

for this purpose specifying the semantics of each machine instruction� The semantics
of linear code sequences is then de�ned by a state transformer interprete� Lemma
interprete deterministic states that interprete is a deterministic state transformer�
It can easily be proved using structural induction on the construction of lists� Note that
the �� operator� denoting sequential composition of state transformers� is overloaded here
to de�ne concatenation of code sequences�

� Generic Compilation of Simple Statements

This section describes the generic speci�cation and veri�cation of simple statement com�
pilation� A simple statement is given by an assignment of kind x �� e� The generic
compilation pattern consists of generating code for expression e and storing the value into
a location for x� Therefore this compilation step can be speci�ed with respect to the
compilation of expressions� For specifying and proving correct this compilation step a set
of parameters is required� They are grouped into parameters used for source and target
language and the compilation process� Their meaning is given by a set of assumptions� In
the following we describe the purpose of these parameters in more details�

Identi�ers and expressions in assignments are represented by elements of type Ident and
Expr� respectively� The concrete nature of expressions is irrelevant for this step� The
semantics of expressions is assumed to be given by an evaluation function eval which takes
an expression and an environment� a mapping from identi�ers to values� as arguments and
yields the value of the expression�

��� ��� source ����������

Ident � TYPE�	

Expr � TYPE�	

SrcValue � TYPE�	

eval � �Expr � ��Ident � SrcValue� � SrcValue��

We suppose that simple statements are compiled into linear jump free code� Therefore�
the semantics of target code can be de�ned using the generic interpreter for linear code�
theory simple interpreter �� is imported�

�	� ��� target ����������

Instr � TYPE�	

MState � TYPE�	

effect � �Instr � PartialFunction�MState	MState��

IMPORTING simple�interpreter�Instr	MState	effect�

Additional parameters for the target language are required in order to specify access on
target values and the memory� A parameter output is used abstracting from the speci�c
value passing mechanism of expression values on the target architecture� i�e� the way how
values on the target machine can be accessed� A stack machine� for example� accesses
the value from the top of the stack� and in a one�address machine the value is accessed

	�

Generic Compilation Schemes for Simple Programming Constructs

by reading the content of the accumulator� while a register machine reads the content
of a speci�c register assigned by a register allocator� Another possibility is to store the
expression value in memory and to access a speci�c memory cell� Here� type parameter T
stands for the type of registers or memory addresses� For stack machines and accumulator
machines this parameter is not required and can be instantiated with� for example� a unit
type� see section � for examples� Values can generally be accessed only in those states in
which output gives a de�ned value� as characterized by the predicate outputdefd�� For
example� accessing a value in a stack machine requires the stack to be nonempty�

�
� access of target values

TarValue � TYPE�	

T � TYPE�	

outputdefd� � �T � pred�MState��	

output � �t�T � �ms��outputdefd��t

 � TarValue��

Parameter Addr abstracts from the type of memory addresses� and the target memory is
given as a mapping from target addresses to target values� In addition� a function STORE

is used for specifying the target code sequence for storing values provided at a speci�c
location �of type T� at a speci�c memory address� Its meaning is speci�ed by assumption
interprete store� Informally this assumption states that if the interpretation of the
store code starting in a state start ends in a state final� then the memory is updated
at the speci�c address with the value provided by output�

��� ��� memory ������������

Addr � TYPE�	

STORE � �T	 Addr � list�Instr��	

Mem � �MState � �Addr � TarValue��

interprete�store � ASSUMPTION

FORALL �rn�T	 a�Addr	 start	 final�MState
�

interprete�STORE�rn	a

�start
�final

IMPLIES

outputdefd��rn
�start

IMPLIES

Mem�final
 � Mem�start
 WITH ��a
 �� output�rn
�start
�

Consider now the parameters used for specifying the compilation step� Compilation re�
quires that source values are represented on the target architecture� Since realistic ma�
chines have restricted resources in general not all source language values are representable
on the target architecture� For example� if the domain of source values is the set of
integers� only a subset can be represented on a real target architecture� A predicate
representable� is introduced for this purpose� We assume that a bijective function
valmap is given mapping target values to representable source values�

Source language identi�ers have to be mapped onto memory addresses� For this purpose�
a function idmap is introduced� In addition� target states have to be related to source
states �statemap�

		

Generic Compilation Schemes for Simple Programming Constructs

��� ��� compilation ���

representable� � pred�SrcValue�	

valmap � �bijective��TarValue	 �representable�
�
	

idmap � �Ident � Addr�	

statemap � �MState � SState�

The meaning of these parameters is speci�ed by two assumptions�

��statemap�and�memory � ASSUMPTION

FORALL �ms�	ms��MState	 id	id��Ident	 v��TarValue
�

Mem�ms�
 � Mem�ms�
 WITH ��idmap�id

 �� v�� � id� �� id

IMPLIES statemap�ms�
�id�
 � statemap�ms�
�id�

symtab�and�memory � ASSUMPTION

FORALL �ms�MState	 id�Ident
�

valmap�Mem�ms
�idmap�id

 � statemap�ms
�id

� Assumption statemap and memory expresses the fact that memory updates at vari�
able addresses do not change the values of other variables with respect to statemap�

� Assumption symtab and memory states the relation between idmap and the state
map� the contents of the memory address associated with an identi�er corresponds
to the value of the identi�er with respect to valmap�

Finally� we assume that a compilation function compileExprmapping expressions to code
sequences is given� Additionally� this compilation function must provide the location on
the target machine from which the expression�s value is accessible� This location is �x
for stack machines and accumulator machines� since the value is always accessed from
the stack and accumulator� respectively� However� for other machines the value can be
accessed from a speci�c register or memory cell�

� compiling function for expressions

compileExpr � �Expr � ��deterministic��list�Instr��
	 T��

All what is assumed for this function is that it is correct in the sense of preservation of
partial program correctness�

��expression�compilation�correct � ASSUMPTION

FORALL �e�Expr
�

LET �c�set	 resnr
 � compileExpr�e
 IN

FORALL �c� �c�set

	 �start	final�MState
�

interprete�c
�start
�final
 IMPLIES

outputdefd��resnr
�final
 AND

valmap�output�resnr
�final

 � eval�e
�statemap�start

 AND

statemap�final
 � statemap�start

Informally� this states that whenever the target machine stops in a state after interpreting
the code c the value of expression e can be accessed using output with respect to valmap

	�

Generic Compilation Schemes for Simple Programming Constructs

and statemap� In addition� expression evaluation on the target machine must not have
any e�ect on the corresponding source states�

Based on these parameters the compilation of assignments can be speci�ed� First� syntax
and semantics of simple statements have to be de�ned� Syntax and semantics of sim�
ple statements are given by type SimpleStatement and deterministic state transformer
ss meaning� respectively� Semantics of an assignment is de�ned as usual� assign
x�e�

updates the current state by assigning the value of e to identi�er x�

��� syntax of simple statements

SimpleStatement � DATATYPE

BEGIN

assign�ass�var�Ident	 ass�exp�Expr
 � assign�

END SimpleStatement

� semantics of simple statements

ss�meaning�cmd�SimpleStatement
 � PartialFunction�SState	SState� �

LAMBDA �ss�SState
�

CASES cmd OF

assign�id	e
 � singleton�ss WITH ��id
 �� eval�e
�ss
�

ENDCASES

Partial function compile SimpleStmt then de�nes the compilation of simple statements�
First� the expression is compiled using compileExpr then the value is stored at an address
provided by idmap�

��� compilation of simple statements

compile�simpleStmt�cmd�SimpleStatement
 � �deterministic��Code�
 �

CASES cmd OF

assign�id	e
 � LET �c�set	 rn
 � compileExpr�e
 IN

c�set �� singleton�STORE�rn	 idmap�id

ENDCASES

For stating the correctness of this step �in the sense of partial program correctness� the
generic notion of correctness presented in Section �� �� is instantiated�

� ��� import generic notion of correctness ���

IMPORTING correct�SimpleStatement	 SState	 meaning	 Code	 MState	 interprete	 statemap�

Thus� one has to prove

��simple�statement�comp�correct � THEOREM

FORALL �cmd�SimpleStatement	 c�Code
�

compile�simpleStmt�cmd
�c
 IMPLIES pp�correctness�cmd
�c

The proof of this theorem is by unfolding de�nitions� rewriting the assumptions� and
applying propositional simpli�cation�

	�

Generic Compilation Schemes for Simple Programming Constructs

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

SEQ-BLOCK

SEQUENCE IF WHILE ASSIGNMENT CALL

CONTROL STRUCTURES

CALL

WHILE-BLOCK CALL-BLOCKIF-BLOCK SIMPLE-BLOCK

Figure
� Compilation of Statements into Basic Block Graph

� Compiling Control Structures into Basic Block Graphs

As stated in Section �� the compilation of control structures is carried out in three steps�
�rst� they are translated into a basic block structure� then that structure is linearized� and
�nally the procedures are implemented� In the next subsection we �rst present syntax and
semantics of control structures �statements�� Then we focus on basic blocks which have
the same structure as statements but are de�ned on target language code� Finally� the
compilation of control structures into basic blocks is outlined and proved correct�

Figure
 illustrates this compilation step�

��� Control Structures

Consider the speci�cation of source language control structures including simple state�
ments� sequential composition� conditional� loop and �parameterless� procedures� The
speci�cation is parameterized with respect to the type and semantics of boolean expres�
sions given by BExp and eval respectively� and the type and semantics of simple statements
given by SimpleStatement� the type of procedure identi�er PId� and the deterministic
state transformer ss meaning� respectively�

	

Generic Compilation Schemes for Simple Programming Constructs

��BExp � TYPE	

SState � TYPE�	

PId � TYPE�	

eval � �BExp � �SState � bool��	

SimpleStatement � TYPE	

ss�meaning � �SimpleStatement � PartialFunction�SState	SState�

The abstract syntax of control structures can then be de�ned in the obvious way using an
abstract datatype Statement�

�	� syntax of control structures

Statement � DATATYPE

BEGIN

simple stat�get simple stat�SimpleStatement
 � simple stat�

seq�first	second�Statement
 � seq�

itef�ifcnd� BExp	 then�part	 else�part� Statement
 � itef�

while�whilecnd� BExp	 while�body� Statement
 � while�

call�p�name�PId
 � call�

END Statement

Semantics of control structures is de�ned inductively in � �
 ��

�
� semantics of control structures

meaning�c
�env
 � RECURSIVE srel �

CASES c OF

simple�stat�si
 � ss�meaning�si
	

seq�c�	c�
 � meaning�c�
�env
 �� meaning�c�
�env
	

itef�b	c�	c�
 � IF eval�b
 THEN meaning�c�
�env
 ELSE meaning�c�
�env
 ENDIF	

while�b	c�
 � while�eval�b
	 meaning�c�
�env

	

call�i
 � env�i

ENDCASES

MEASURE c BY ��

Semantics of the conditional and while statement are de�ned using state transformers IF
and while� respectively �see Section �� � � � �� Procedure environments map procedure
identi�ers to state transformers� Environments build a cpo which is constructed using the
cpo constructor ���

����� procedure environments	 cpo	 � Ident� TYPE�

environment�TYPE � �Ident � srel�

env�th� THEORY � FP�exponent�Ident	srel�

env�cpo � CPO��Ident � srel�� � �discrete�Ident� �� srel

� �� � preCPO�environment� � ����env�cpo

bottom�Bottom�environment����
 � �bottom�env�cpo

The semantics of procedure declaration is de�ned by instantiating a generic PVS theory
decl for procedure declaration� The theory is parameterized with respect to the syntax
and semantics of statements� and the type of identi�ers�

	�

Generic Compilation Schemes for Simple Programming Constructs

����� parameters of theory decl

statement�TYPE�	 � syntax of statements

Ident� TYPE�	 � procedure identifier

sigma	tau�TYPE�	 � types for state transformers

�IMPORTING env�Ident	sigma	tau�
 � definition of environments

C� �statement � �environment � srel�� � semantics of statements

Since the theory de�nes the environment for procedure declarations by a least �xed�point
of a monotonic functional� the state transformer for statements is required to be monotonic
with respect to the environment�

����� assumption for the parameters

monotonic�prop � ASSUMPTION env� �� env� IMPLIES C�stat
�env�
 �� C�stat
�env�

The monotonic functional updating the environment is given by

��decl�sem�d��Ident � statement�
 � �environment � environment� �

LAMBDA env� LAMBDA i� C�d�i

�env

decl�sem�monotonic� LEMMA monotonic��environment	environment����	��
�decl�sem�d

Finally� the semantics of declarations is de�ned as the least �xed�point �over the en�
vironment cpo� of functional decl sem� according to the Knaster�Tarski theorem this
�xed�point exists�

��D�d
� environment � mu�env�cpo
�decl�sem�d

We utilize the generic theory to de�ne the semantics of procedure declarations for our
source language� The meaning of a source program consisting of procedure declarations
and a main program is de�ned by the meaning of the main program in the constructed
procedure environment�

����� semantics of procedure declarations

declsource� THEORY � decl�statement	 PId	 SState	 SState	 meaning�

source�program � TYPE � �� decls � �PId � statement�	

main � statement ��

��� semantics of source programs

P�p�source�program
� srel � meaning�main�p

�D�decls�p

��� Basic Blocks

For de�ning syntax and semantics of basic blocks the parameters in �� are used where the
�rst four are used to specify the instruction set and its semantics� the generic interpreter
theory simple interpreter is imported � �� �� In addition� an access function for boolean
values on the target machine is required� Such a boolean value is usually accessed by

	�

Generic Compilation Schemes for Simple Programming Constructs

testing a speci�c �ag which is set according to the result of the last executed operation�
Here� we suppose that a boolean output function is given� Note� that the output function
does only depend on the current machine state� i�e� the boolean value is accessed from a
constant target location �speci�c �ag� accumulator� top of stack etc�� Again� a predicate
�outputdefd�� is introduced denoting the set of states in which an access is possible�
Additionally� a function read speci�es the state transition carried out when accessing a
value using output� For example� in a stack machine a value is accessed by reading the
stack�s top element followed by a pop operation� In a register machine� parameter read
would be instantiated to the identity function on states�

����� parameterization of basic block graphs

Instr � TYPE	

MState � TYPE�	

PId � TYPE�	

effect � �Instr � PartialFunction�MState	MState��	

outputdefd� � pred�MState�	

output � ��outputdefd�
 � bool�	

read � ��outputdefd�
 � MState�

A basic block graph is de�ned in �� using an abstract datatype with �ve constructors
each representing one speci�c control structure� A basic block graph is assigned to each
procedure�

��� syntax of basic blocks

bb�graph � DATATYPE

BEGIN

simple�block�code�seq � Code
 � simple�block�

seq�block�fst	scd � bb�graph
 � seq�block�

if�block�if�cnd	 thn	 els � bb�graph
 � if�block�

while�block�while�cnd	 body � bb�graph
 � while�block�

call�block�pid�PId
 � call�block�

END bb�graph

In particular�

� a simple block consists of a linear code sequence�

� a sequential block consists of two subblocks�

� a conditional block consists of three subblocks� one block representing the condition�
and two blocks denoting the true and false block� respectively�

� a while block consists of a condition block and a block denoting the body of the
loop�

� a call block consists of the single call statement�

The �nodes� of the graph are given by the di�erent block constructors� whereas the �edges�
are given by the semantics� It is de�ned by a �deterministic� state transformer bb ip

de�ned on machine states�

	�

Generic Compilation Schemes for Simple Programming Constructs

�	��� semantics of basic blocks ���

bb�ip�g
�env
� RECURSIVE srel �

CASES g OF

simple�block�p
 � interprete�p
	

seq�block�b�	b�
 � bb�ip�b�
�env
 �� bb�ip�b�
�env
	

if�block�c	t	e
 � IF bb�ip�c
�env
 THEN bb�ip�t
�env
 ELSE bb�ip�e
�env
 ENDIF	

while�block�c	bd
 � while�bb�ip�c
�env
	 bb�ip�bd
�env

	

call�block�i
 � env�i

ENDCASES

MEASURE g BY ��

More speci�cally� the semantics of simple blocks is de�ned using interprete which de�nes
the semantics of linear code sequences as given in theory simple interpreter� Sequential
blocks are interpreted by relational composition ���� of the semantics of the two subblocks�
The semantics of the if�block re�ects the semantics of a conditional statement� It is given
by relational composition of the semantics of the condition subblock and a branch state
transformer fork which branches to the �rst or second subblock depending whether the
output is true or false in a speci�c state in which a value can be accessed� If the output
is not de�ned in this state function fork returns the empty set�

�
� state transformer fork

fork�f	g
 � srel �

� LAMBDA ms� IF outputdefd��ms
 THEN

IF output�ms
 THEN f�read�ms

ELSE g�read�ms

ENDIF

ELSE emptyset�sigma�

ENDIF

IF�st�	st�	st�
 � srel � st� �� fork�st�	st�

Semantics of the while�block is given by the least �xed point mu of a functional while which
has exactly the same structure as the corresponding source language state transformer�

��� state transformer while

while�st�	st�
� srel �

mu�srel
�LAMBDA �h�srel
� IF st� THEN st� �� h ELSE skip ENDIF

It has to be proved that state transformer bb ip is deterministic� This has to be established
for each case in the de�nition of bb ip� For the �rst case this is trivial since we already
have proved that interprete is deterministic� For the second case a lemma from the
library can be utilized which states that deterministic state transformers are closed under
composition� Deterministic state transformers are also closed under IF since they are
closed under compositionality� For proving closure under while �xed�point induction
for monotonic functions is required� The proof follows exactly the one given in �	�� for
while strans closed�

For de�ning the semantics of procedure declarations� the generic theory decl is instan�
tiated� A basic block program consists of procedure declarations mapping identi�ers to
basic block graphs� and a main basic block graph�

	�

Generic Compilation Schemes for Simple Programming Constructs

��bb�program� TYPE � �� pd� �PId � bb�graph�	 main�block� bb�graph ��

decltarget� THEORY � decl�bb�graph	 PId	 MState	 MState	 bb�ip�

BS�bp�bb�program
� srel � bb�ip�main�block�bp

�D�pd�bp

The following useful lemma states the characteristic behavior of the while block which
corresponds to the behavior of the while statement�

��bb�ip�while�block�unfold � LEMMA

bb�ip�while�block�w�cnd	 w�body

�env
 �

IF bb�ip�w�cnd
�env

THEN bb�ip�w�body
�env
 �� bb�ip�while�block�w�cnd	 w�body

�env

ELSE skip

ENDIF

��� Compilation

Compilation of �abstract� source programs into basic block programs can be speci�ed with
respect to expression compilation and simple statement compilation� More speci�cally� the
PVS theory specifying this compilation step abstracts from

� the syntax and semantics of �boolean� expressions�

� the syntax and semantics of simple statements�

� the instruction set and internal structure of the machine state�

� the value access function output and the corresponding access state transition read�

� the state map �statemap��

� the compilation of both �boolean� expressions compileBExpr and simple statements
given as deterministic state transformers�

The parameters must satisfy the following assumptions�

� Both boolean expression compilation and simple statement compilation must be
correct in the sense of preservation of partial correctness�

� The read function must have no e�ect on the corresponding source states with respect
to statemap�

Partial function compileStmt� sketched in �� de�nes the compilation of control structures
into the block structure� Not surprisingly� each control structure is compiled into the
corresponding basic block� For example� a conditional itef
b�c��c�� is compiled into
a if block where the boolean expression b is compiled into a simple block consisting of
the code sequence which is the result of applying compileBExpr to b� A call statement is
translated into a call block�

	

Generic Compilation Schemes for Simple Programming Constructs

��� compilation of control structures into basic blocks

compileStmt�cmd�Statement
 � RECURSIVE �deterministic��bb�graph�
 �

CASES cmd OF

����

itef�b	c�	c�
 �

LET g� � compileBExpr�b
 IN

IF empty��Code��g�
 THEN emptyset�bb�graph�

ELSE

LET g� � compileStmt�c�
 IN

IF empty��bb�graph��g�
 THEN emptyset�bb�graph�

ELSE LET g� � compileStmt�c�
 IN

IF empty��bb�graph��g�
 THEN emptyset�bb�graph�

ELSE

singleton�bb�graph��if�block�simple�block�choose�g�

	

choose�g�
	choose�g�

ENDIF

ENDIF

ENDIF	

���

ENDCASES

MEASURE cmd BY ��

Correctness of this compilation step is stated by

	�correctness� THEOREM

compile�defined��p
 AND

BS�compile�p

�start
�final

IMPLIES P�p
�statemap�start

�statemap�final

Whenever the compilation of a program is de�ned �predicate compile defined��� and the
meaning of the compiled program is de�ned in some �nal state� then also the semantics of
the source program is de�ned in the corresponding source states �preservation of partial
correctness��

In order to prove this conjecture� an auxiliary property is established stating correctness
of statement compilation�

	���� auxiliary property for correctness proof

cr��p
�rho
 � bool �

FORALL cmd	g�

FORALL start	final�

compileStmt�cmd
�g
 AND

bb�ip�g
�rho
�start
�final

IMPLIES

meaning�cmd
�D�decls�p

�statemap�start

�statemap�final

��� auxiliary property for cr�	 same as cr� but constant cmd

cr�aux�p
�rho
�cmd
� bool �

FORALL g�

FORALL start	final�

compileStmt�cmd
�g
 AND

bb�ip�g
�rho
�start
�final

IMPLIES

meaning�cmd
�D�decls�p

�statemap�start

�statemap�final

��

Generic Compilation Schemes for Simple Programming Constructs

Then the main goal to prove is the fact that for all �non�empty� compilations of procedures�
property cr� holds in the procedure environment generated for the compiled procedure
declarations�

	���� compilation of each procedure body is defined

procbodies�defined��p
 � bool � FORALL i� not�empty��compileStmt�decls�p
�i

��� corresponding total function

compile�decls�p��procbodies�defined�

 � �PId � bb�graph� �

LAMBDA i� choose�compileStmt�decls�p
�i

��� main conjecture

cc� THEOREM procbodies�defined��p
 IMPLIES cr��p
�D�compile�decls�p

The main conjecture cc is by �xed�point induction over the procedure environment� The
base case for the �bottom� environment is trivial and automatically proved by grind�
Admissibility is by characterizing the least upper bound of a chain C of environments as
the function mapping an identi�er and a state to the union of all images of the functions
in the chain C�

The induction step of this �xed�point induction is by structural induction on the structure
of statements� To modularize the proof� for each step� separate compilation theorems have
been introduced�

	���� compilation theorems for statements ���

simple�c � VAR SimpleStatement

cmd	cmd�	cmd� � VAR Statement

g	g�	g� � VAR bb�graph

b � VAR BExp

c � VAR Code

rho � VAR environment�PId	 MState	 MState�

p � VAR source�program

simple�correct � THEOREM cr�aux�p
�rho
�simple�stat�simple�c

sq�correct � THEOREM

cr�aux�p
�rho
�cmd�
 � cr�aux�p
�rho
�cmd�

IMPLIES cr�aux�p
�rho
�seq�cmd�	cmd�

if�correct � THEOREM

cr�aux�p
�rho
�cmd�
 � cr�aux�p
�rho
�cmd�

IMPLIES cr�aux�p
�rho
�itef�b	cmd�	cmd�

wh�correct � THEOREM

cr�aux�p
�rho
�cmd
 IMPLIES cr�aux�p
�rho
�while�b	cmd

call�correct� THEOREM

cr��p
�rho
 AND procbodies�defined��p

IMPLIES cr�aux�p
�decl�sem�compile�decls�p

�rho

�call�i

The proof of the �rst theorem is by expanding de�nitions and using the assumption about
the correctness of simple statement compilation� The second theorem which states the

�	

Generic Compilation Schemes for Simple Programming Constructs

correctness of sequential composition compilation is straightforward� The proof of the
third theorem uses the assumption stating the correctness of expression compilation and
the assumption about read� Here� the most interesting theorem is the compilation theorem
for the while statement� It is proved using park�s lemma for monotonic functions� Finally�
the call lemma requires some characteristic properties about �xed�points�

� Linearization of Basic Block Graphs

So far� statements have been compiled into basic blocks where the structure is preserved
and a basic block is assigned to each procedure� The next step is to implement the control
structure� i�e� to linearly order the subblocks of a basic block by introducing relative
jumps� In the next subsection the �abstract� linear target code is extended by relative
jump instructions and subroutine calls� and an operational semantics is de�ned� Then
linearization of blocks is speci�ed and proved correct�

��� Linear Target Code with Jumps

A new datatype MInstr � 		 � is de�ned which extends a simple linear instruction sequence
�lin code
p�� as de�ned in theory simple interpreter by unconditional �jmp�� condi�
tional jumps �jmc�� and call of subroutines� i�e� machine instructions are built from linear
code sequences and jumps�

		� code sequences with jumps

MInstr � DATATYPE

BEGIN

lin code�get ins � Code
 � lc�

jmp�jp adr�int
 � jmp�

jmc�jc adr�int
 � jmc�

jsr�jsr adr�PId
 � jsr�

END MInstr

A linear machine program is assigned to each procedure identi�er�

linear code � TYPE� � list�MInstr�

machine�program� TYPE � �� sdecls��PId � linear�code�	 main�linear�code ��

The semantics of linear code with jumps is based on the semantics of simple linear code
�without jumps�� Since jumps and jump subroutines have been introduced the abstract
machine state given as an uninterpreted type MState has to be extended� An additional
abstract stack structure is introduced to model subroutine calls and returns� Each stack
entry consists of a tuple of linear code �denoting the body of the current procedure��
and a �local� program counter which points to the machine instruction within the current
procedure body� The extended machine state is called a con�guration�

��

Generic Compilation Schemes for Simple Programming Constructs

	
��� machine configurations

Conf � TYPE � �MState	 Stack��linear�code	 int���

An operational semantics for this machine is based on con�guration transformations� First�
a one�step con�guration transformation is de�ned by the deterministic state transformer
eff in 	� specifying the e�ects of each instruction of type MInstr�

	�eff�mp
�c�	c�
 � bool �

LET �ms�	 s�
 � c�	 �ms�	 s�
 � c� IN

IF empty��s�
 THEN false

ELSE

LET t � top�s�
	 code � proj���t
	 n � proj���t
 IN

IF �n � length�code
 OR n � �
 THEN �s� � pop�s�
 AND ms� � ms�

ELSE

CASES nth�code	 n �
 OF

lin�code�p
 � interprete�p
�ms�
�ms�
 � s� � push��code	 n � �
	 pop�s�

	

jmp�i
 � ms� � ms� � s� � push��code	 n � i
	 pop�s�

	

jmc�i
 � IF outputdefd��ms�
 THEN

IF output�ms�
 THEN

ms� � read�ms�
 � s� � push��code	 n � �
	 pop�s�

ELSE

ms� � read�ms�
 � s� � push��code	 n � i
	 pop�s�

ENDIF

ELSE false

ENDIF	

jsr�i
 � ms� � ms� �

s� � push��sdecls�mp
�i
	 �
	 push��code	 n��
	 pop�s�

ENDCASES

ENDIF

ENDIF

Informally� the instructions have the following e�ects�

� there is no con�guration transition if the current stack is empty

� if the program pointer points outside the current procedure body then the current
procedure body is popped from the stack �return�

� lin code
p� changes the current state by interpreting the linear code p using the
function interprete and increments the program counter�

� jmp
i� updates the current program counter

� jmc
i� changes the state using function read and updates the program counter
according to the output value provided that such a value can be accessed

� jsr
i� increments the current program pointer �return address�� pushes the body
of the called procedure onto the stack� and sets the pointer to the �rst instruction
of the body�

��

Generic Compilation Schemes for Simple Programming Constructs

The operational semantics of a linear code program is then given by repeatedly applying
the above transition from a start con�guration� This process may end in a �nal con�g�
uration where the stack is empty �the program terminates�� In PVS� this semantics can
be represented by a relation M in 	� where RTC
eff
mp�� is the re�exive and transitive
closure of eff
mp�� Note that typechecking an inductively de�ned relation such as RTC
generates a corresponding induction principle� In the following� let RTC induction denote
the induction principle for RTC�

	�M�mp
�s��Stack
�ms��MState
�ms��MState
 � bool �

RTC�eff�mp

��ms�	 s�
	 ��ms�	 empty

Since relation eff is deterministic� it can be proved using RTC induction� that M is also
deterministic and hence is a partial function�

Based on the closure of eff the semantics of a complete machine program is de�ned by
a deterministic state transformer Ip on MState �the interpreter�� The program mp is
�executed� from start �i�e� main is pushed onto the stack� and the program counter is set
to 	�� Note that Ip is a state transformer on MState and does not depend on the program
counter�

	���� interpreter for machine programs

Ip�mp
 � strans � M�mp
�push��main�mp
	 �
	 empty

We state some simple consequences �laws� of this semantic de�nition which are convenient
when proving the correctness of the linearization step�

� The machine behaves like skip when started with an empty stack�

	�law�identity � COROLLARY M�mp
�empty
 � skip

� If the current instruction is lin code
p� then the total behavior can be described
by relationally composing the interpretation of p using interprete with the com�
putation starting at the instruction directly following p�

�law�linear�code � COROLLARY

�n �� �
 � �length�u
 �� n
 � nth�u	 n �
 � lin�code�p

IMPLIES

M�mp
�push��u	 n
	 a

 � �interprete�p
 �� M�mp
�push��u	 n � �
	 a

law�linear�code�� LEMMA

M�mp
�push��u �� �� lin�code�p
 �
 �� v	 � � length�u

	 a

 �

interprete�p
 �� M�mp
�push��u �� �� lin�code�p
 �
 �� v	 � � length�u

	 a

� Analogously there are laws for unconditional jumps

�

Generic Compilation Schemes for Simple Programming Constructs

�law�jmp � COROLLARY

�n �� �
 � �length�u
 �� n
 � nth�u	 n �
 � jmp�i

IMPLIES M�mp
�push��u	 n
	 a

 � M�mp
�push��u	 n � i
	 a

law�jmp� � COROLLARY

M�mp
�push��u �� �� jmp�i
 �
 �� v	 � � length�u

	 a

 �

M�mp
�push��u �� �� jmp�i
 �
 �� v	 � � length�u
 � i
	 a

� conditional jumps using semantic function fork� �see �
 �

�law�jmc � COROLLARY

�n �� �
 � �length�u
 �� n
 � nth�u	 n �
 � jmc�i

IMPLIES

M�mp
�push��u	 n
	 a

 �

fork�M�mp
�push��u	 n � �
	 a

	 M�mp
�push��u	 n � i
	 a

law�jmc� � COROLLARY

M�mp
�push��u �� �� jmc�i
 �
 �� v	 � � length�u

	 a

 �

fork�M�mp
�push��u �� �� jmc�i
 �
 �� v	 � � length�u

	 a

	

M�mp
�push��u �� �� jmc�i
 �
 �� v	 � � length�u
 � i
	 a

� jump subroutine� and

�law�jsr � COROLLARY

�n �� �
 � �length�u
 �� n
 � nth�u	 n �
 � jsr�k

IMPLIES

M�mp
�push��u	 n
	 a

 � M�mp
�push��sdecls�mp
�k
	 �
	 push��u	 n � �
	 a

law�jsr�� COROLLARY

M�mp
�push��u �� �� jsr�k
 �
 �� v	 � � length�u

	 a

 �

M�mp
�push��sdecls�mp
�k
	 �
	 push��u �� �� jsr�k
 �
 �� v	 � � length�u

	 a

� return from a subroutine �note that there is no explicit return instruction�

	return�law� COROLLAR �n � �
 OR �n � length�u

IMPLIES M�mp
�push��u	 n
	 a

 � M�mp
�a

��� Compilation

Consider now the compilation process from basic block graphs into linear code with jumps
as illustrated by Fig� � and speci�ed by function lin in

 �

��

Generic Compilation Schemes for Simple Programming Constructs

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

C

E

C

T

E

JMC

JMP

C

 B

C

JMC

B

JMP

F

S

F

S

T

CALL

JSR

Figure �� Linearization of Basic Blocks

��

Generic Compilation Schemes for Simple Programming Constructs

� linearization of basic blocks

lin�g�bb�graph
 � RECURSIVE linear�code �

CASES g OF

simple�block�p
 � �� lin�code�p
 �
	

seq�block�b�	b�
 � lin�b�
 �� lin�b�
	

if�block�c	t	e
 � LET bb � lin�c
	 l� � lin�t
	 l� � lin�e
 IN

�bb ��

�� jmc�length�l�
 � �
 �
 ��

l� ��

�� jmp�length�l�
 � �
 �
 ��

l�
	

while�block�c	b
 � LET bb � lin�c
	 l � lin�b
 IN

�bb ��

�� jmc�length�l
 � �
 �
 ��

l ��

�� jmp��length�l
 � length�bb
 � �

 �

	

call�block�k
 � �� jsr�k
 �

ENDCASES

MEASURE g BY ��

��� compilation of basic block programs

cp�p�bb�program
� machine�program �

�� sdecls �� LAMBDA �i�PId
� lin�pd�p
�i

	 main �� lin�main�block�p

 �

Informally this means� a simple block consisting of code sequence p is translated into
a lin code
p� instruction� sequential blocks are linearized by recursively linearizing the
subblocks and composing the resulting code sequences� For the if�block and while�block
there are several possibilities to linearly order the subblocks� For the if�block we have
selected the sequential order if cnd� thn� els by introducing a conditional jump after
the code for if cnd block and an unconditional jump to the end of the sequence after
the code for thn� The linearization of the while�block consists of linearizing both the
while cnd and body subblock together with a conditional jump and an unconditional
jump back to the beginning of the sequence� Finally� a call block is tranlated into a
corresponding jump subroutine instruction�

The correctness of this compilation step is stated by the following theorem and is illustrated
in Fig� �� an instance of the diagram in Fig� �� Since both the semantics of basic blocks and
machine programs are de�ned by state transformers on MState source and target language
states correspond� ID denotes the identity on MState� Here� semantic equivalence is
established� the semantics of a block program g is equal to the semantics of the associated
machine program�

linearization�correct � THEOREM FORALL �p� bb�program
� Ip�cp�p

 � BS�p

We split the proof of linearization correct into two parts� we show

� linearization�correct� � THEOREM Ip�cp�p

 �� BS�p

� linearization�correct� � THEOREM BS�p
 �� Ip�cp�p

��

Generic Compilation Schemes for Simple Programming Constructs

MState

MState

MState

MState

ID ID

BS(p)

Ip(cp(p))

Figure �� Correctness of Linearization Step

denotational semanticsdenotational semantics

operational semantics

N = mu(psi)bb_ip

M

Figure �� Denotational Characterization of Machine Semantics

��

Generic Compilation Schemes for Simple Programming Constructs

���� Proof of linearization correct�

Consider �rst linearization correct�� The principle idea of the proof is to derive a
denotational characterization of the �operational� machine semantics as the least �xed�
point of a functional psi and then to apply �xed�point induction� Fig� � illustrates the
proof idea�

A Denotational Machine Semantics

Note� that the semantics of machine programs �the interpreter� Ip is de�ned using relation
M 	� � A denotational characterization N of M is accomplished by showing that M is the
smallest function satisfying the characteristic laws in 	� �
	 �

ind�type � TYPE � �machine�program � �Stack � srel��

� h � VAR ind�type

psi�h
�mp
�cf
� srel �

IF empty��cf
 THEN skip

ELSE

LET t � top�cf
	 code � proj���t
	 n � proj���t
 IN

IF �n � � OR n � length�code

 THEN h�mp
�pop�cf

 � return

ELSE

CASES nth�code	 n �
 OF

lin�code�p
� interprete�p
 �� h�mp
�push��code	 n � �
	 pop�cf

	

jmp�i
� h�mp
�push��code	 n � i
	 pop�cf

	

jmc�i
� fork�h�mp
�push��code	 n � �
	 pop�cf

	

h�mp
�push��code	 n � i
	 pop�cf

	

jsr�k
� h�mp
�push��sdecls�mp
�k
	 �
	 push��code	 n � �
	 pop�cf

ENDCASES

ENDIF

ENDIF

psi�monotonic� LEMMA monotonic��ind�type	ind�type����	��
�psi

To de�ne the least �xed�point of psi� a cpo over ind type has to be de�ned� This is done
by repeatedly using the cpo constructor ���

conf�th� THEORY � FP�exponent�Stack	srel�

conf�cpo � CPO��Stack � srel�� � �discrete�Stack� �� srel

ind�th� THEORY � FP�exponent�machine�program	 �Stack � srel��

ind�cpo� CPO��machine�program � �Stack � srel��� �

�discrete�machine�program� �� conf�cpo

� �� � preCPO�ind�type� � ����ind�cpo

bottom�Bottom�ind�type����
 � �bottom�ind�cpo

��� denotational semantics N

N� ind�type � mu�ind�cpo
�psi

The existence of the least �xed�point of psi is proved using psi monotonic and
KnasterTarski�

�

Generic Compilation Schemes for Simple Programming Constructs

We have to establish the equivalence of the operational and denotational machine seman�
tics
� �

�sem�equivalence � THEOREM N � M

Again� the proof is split into two parts�

N�leq�M� LEMMA N �� M

M�leq�N� LEMMA M �� N

Since psi is the smallest function satisfying the characteristic laws of M� M is a �xed�point
of psi
� �

�M�is�fp� LEMMA psi�M
 � M

The proof of
� is by a case analysis and using the laws 	� �
	 �

For the other direction we show that con�guration transitions are correctly re�ected by
the denotational semantics� First� this is proved for a one�step transition
� � The proof
is by a case analysis on the type of instruction and unfolding de�nitions�

�eff�den�correct � LEMMA

eff�mp
��ms�	s�
	 �ms�	s�

IMPLIES N�mp
�s�
�ms�
 � N�mp
�s�
�ms�

Then� analogously� a n�step transition produces the same e�ect for N
� � This is proved
by rule induction using RTC induction and eff den correct�

�RTC�eff�den�correct � LEMMA

RTC�eff�mp

��ms�	s�
	 �ms�	s�

IMPLIES N�mp
�s�
�ms�
 � N�mp
�s�
�ms�

We are now able to proceed with the proof of linearization correct�� In order to
establish this proof a stronger property is used� This is necessary because when proving
the induction step for sequential blocks one cannot generally conclude that the program
counter points at the beginning of the second part after the �rst part is evaluated� The
idea is to introduce a code context u�v around the program of interest �� �

��prop�p�bb�program
�h�ind�type
 � bool �

FORALL g� FORALL a	u	v�

h�cp�p

�push��u �� lin�g
 �� v	 � � length�u

	 a

�� bb�ip�g
�D�pd�p

 ��

h�cp�p

�push��u �� lin�g
 �� v	 � � length�u
 � length�lin�g

	 a

��� auxiliary property

prop��p�bb�program
�h�ind�type
�g
 � bool �

FORALL a	u	v�

h�cp�p

�push��u �� lin�g
 �� v	 � � length�u

	 a

�� bb�ip�g
�D�pd�p

 ��

h�cp�p

�push��u �� lin�g
 �� v	 � � length�u
 � length�lin�g

	 a

��

Generic Compilation Schemes for Simple Programming Constructs

Informally� this property states that if program u �� m �� v �the body of the current
procedure� is executed with the �rst instruction of m where m is the result of the lineariza�
tion step then the behavior corresponds to the state transformer given by the semantics
of graph g composed with the state transformer given by the machine program semantics
starting the machine program at the �rst instruction of v� The main challenge is therefore
to show that for all block graphs g theorem �� holds�

��correct� LEMMA FORALL p� prop�p
�N

From this theorem� the main conjecture linearization correct� can easily be derived
by instantiating the empty code sequence for the context u and v� the main program for
g� the empty stack for a� and applying law identity 	� �

Since N is de�ned as the least �xed�point of functional psi the proof of �� is established
using �xed�point induction� Here� we use the induction principle fp induction mono le�
see � �

One has to prove

� the admissibility of our conjecture�

��prop�admissible� LEMMA

admissible��ind�type��PROJ���ind�cpo

�LAMBDA h� FORALL p� prop�p
�h

As in the admissibility proof sketched in Section �� the proof idea here is to charac�
terize the least upper bound of chain C of functions of type ind type as the function
mapping a linear program� an integer� and a state to the union of all images of the
functions in the chain C�

� the induction base� �trivial�� and

� the induction step

The induction step is proved by structural induction on the construction of basic block
graphs g� Trying to keep the proof e�ort manageable separate theorems for each block
constructor have been established in �� � Using these compilation theorems the proof of
the induction step is accomplished easily�

�	

Generic Compilation Schemes for Simple Programming Constructs

����� compilation theorems ���

correct�si�lin� � LEMMA

h �� psi�h
 IMPLIES prop��p
�psi�h

�simple�block�c

correct�seq�lin� � LEMMA

prop��p
�psi�h

�b�
 � prop��p
�psi�h

�b�

IMPLIES prop��p
�psi�h

�seq�block�b�	b�

correct�itef�lin� � LEMMA

prop��p
�psi�h

�b�
 � prop��p
�psi�h

�b�
 � prop��p
�psi�h

�b�
 � h �� psi�h

IMPLIES prop��p
�psi�h

�if�block�b�	b�	b�

correct�while�lin� � LEMMA

prop��p
�psi�h

�b�
 � prop��p
�psi�h

�b�
 �

prop��p
�h
�while�block�b�	b�

 � h �� psi�h

IMPLIES prop��p
�psi�h

�while�block�b�	b�

correct�call�lin�� LEMMA

prop��p
�h
�pd�p
�i

 � h �� psi�h

IMPLIES prop��p
�psi�h

�call�block�i

The proofs of the compilation theorems are by unfolding of de�nitions and rewriting using
some monotonicity and associativity properties for sequential composition� The proofs of
the �rst two lemmas are relatively easy to accomplish� the proofs consist of approximately
	� PVS proof steps� The proofs of the if�block and while�block theorems require more
e�ort �approx� �� interactions� since a lot of monotonicity properties have to be exploited�

���� Proof of linearization correct�

For this proof the operational semantics M is used directly� As above� we prove a stronger
property by adding a code context u� v around the code of interest �	 �

�	prop�p�bb�program
�rho�environment
 � bool �

FORALL �g�bb�graph
� FORALL �a�Stack
	 �u	v�linear�code
�

bb�ip�g
�rho
 ��

M�cp�p

�push��u �� lin�g
 �� v	 � � length�u
 � length�lin�g

	 a

�� M�cp�p

�push��u �� lin�g
 �� v	 � � length�u

	 a

prop�aux�p
�rho
�g
� bool �

FORALL �a�Stack
	 �u	v�linear�code
�

bb�ip�g
�rho
 ��

M�cp�p

�push��u �� lin�g
 �� v	 � � length�u
 � length�lin�g

	 a

�� M�cp�p

�push��u �� lin�g
 �� v	 � � length�u

	 a

One has to prove

�
main�obligation� � THEOREM FORALL p� prop�p
�D�pd�p

The proof is by �xed�point induction on the procedure environment� Note that the dec�
laration semantics D is de�ned as a least �xed�point� Again� the induction base is trivial�

��

Generic Compilation Schemes for Simple Programming Constructs

Admissibility of the property is proved as above� The induction step is by structural
induction on g� and compilation theorems have been introduced in �� �

����� compilation theorems ���

correct�si�lin� � LEMMA prop�aux�p
�rho
�simple�block�q

correct�seq�lin� � LEMMA

prop�aux�p
�rho
�b�
 � prop�aux�p
�rho
�b�

IMPLIES prop�aux�p
�rho
�seq�block�b�	b�

correct�itef�lin� � LEMMA

prop�aux�p
�rho
�b�
 � prop�aux�p
�rho
�b�
 � prop�aux�p
�rho
�b�

IMPLIES prop�aux�p
�rho
�if�block�b�	b�	b�

correct�while�lin� � LEMMA

prop�aux�p
�rho
�b�
 � prop�aux�p
�rho
�b�

IMPLIES prop�aux�p
�rho
�while�block�b�	b�

correct�call�lin�� LEMMA

prop�p
�rho
 IMPLIES prop�aux�p
�decl�sem�pd�p

�rho

�call�block�i

The proofs of the �rst three compilation lemmas are relatively easy to accomplish using
the characteristic laws for M and some monotonicity properties for sequential composition
and fork� The while theorem requires the transfer lemma � � and park�s lemma�

Using main obligation� �
 � instantiating the empty code sequence for u and v in �	 �
the main program for g� the empty stack for a� and applying law identity 	� �nishes
the proof of linearization correct� and we are done�

	 Implementation of Procedures

Upto now� an �abstract� machine program consists of procedures and a main program
where the procedure bodies and main program consist of linear code �with jumps and
subroutine calls��

p� � c� � � � � pn � cn � main

The semantics is de�ned using a stack of tuples consisting of a linear code �denoting
the body of the called subroutine� and local program pointer� In this compilation step�
procedures are linearized and the semantics makes use of jump tables instead of abstract
stacks� The step is carried out in two phases �re�nement steps��

� �rst� an explicit return instruction is introduced� and the �abstract� machine is
re�ned�

p� � c� � ret � � � � � pn � cn � ret � main � ret

��

Generic Compilation Schemes for Simple Programming Constructs

StateA StateA

StateB StateB

eff_A

eff_B

invar? invar?

Figure �� One�Step Simulation

� then� the procedures and main program are linearly ordered� and the �abstract�
machine is again re�ned�

c� � ret � c� � ret � � � � � cn � ret �main � ret

	�� Introduction of a Return Instruction

A slightly modi�ed abstract machine is speci�ed where an additional return instruction
is introduced� We do not repeat all de�nitions here since they are exactly the same as
described in section ��	� We therefore concentrate on the di�erences�

����� additional return instruction

MInstr � DATATYPE

BEGIN

lin�code�get�ins � Code
 � lc�

jmp�jp�adr�int
 � jmp�

jmc�jc�adr�int
 � jmc�

jsr�jsr�adr�PId
 � jsr�

ret � ret�

END MInstr

However� the con�guration one�step semantics eff is more restricted for the new machine�
In case� the current program pointer points somewhere outside the actual procedure body�
there is no successor state� Hence� the modi�ed abstract machine is a re�nement of the
old one�

A mapping is de�ned from the abstract machine to the modi�ed abstract machine� Each
instruction is compiled one�to�one to its corresponding instruction on the modi�ed ma�
chine� At the end of a procedure body and the main program� a return instruction is
introduced�

To establish correctness of this compilation step� a classical simulation proof for abstract
machines is required� First� the correspondence of a single step is proved �Fig� ���

�

Generic Compilation Schemes for Simple Programming Constructs

invar � e�B�compile�mp�� � e�A�mp� � invar

Then� by rule induction� one can prove that this holds also for the re�exive� transitive clo�
sure� Here� the invariant between abstract and concrete states is given by a correspondence
of the stacks� and equality of the abstract states �of type MState��

��� invariant between abstract and concrete states

eq�stack�mp
�s�	s�
 � RECURSIVE bool �

depth�s�
 � depth�s�
 AND

�not�empty��s�

 IMPLIES

proj���top�s�

 � proj���top�s�

 AND

proj���top�s�

 � compileProc�proj���top�s�

 AND

eq�stack�mp
�pop�s�
	 pop�s�

MEASURE depth�s�

invar��mp
�c��l��Conf	 c��l��Conf
� bool �

proj���c�
 � proj���c�
 AND eq�stack�mp
�proj���c�
	 proj���c�

The correspondence of the single e�ects eff is stated by

effect�simul� LEMMA

invar��mp
�a�	b�
 AND

eff�compile�mp

�b�	b�

IMPLIES EXISTS a�� eff�mp
�a�	a�
 AND invar��mp
�a�	b�

The proof is not di�cult but lengthy since there are many cases to consider� Using rule
induction the correspondence for the re�exive� transitive closure can be proved�

tc�simul�� LEMMA

RTC�eff�compile�mp

�b�	b�
 AND invar��mp
�a�	b�

IMPLIES EXISTS a�� RTC�eff�mp

�a�	a�
 � invar��mp
�a�	b�

tc�simul� LEMMA

RTC�eff�compile�mp

��ms�	 s�
	 ��ms�	 empty

 AND

invar��mp
��ms�	 s�
	 �ms�	 s�

IMPLIES RTC�eff�mp

��ms�	 s�
	 ��ms�	 empty

Finally� one can conclude that the modi�ed machine is a re�nement of the old one�

machine�simulation� THEOREM Ip�compile�mp

�ms�
�ms�
 IMPLIES Ip�mp
�ms�
�ms�

	�� Linearization of Procedures and Main Program

The �nal step is to linearize the procedures and the main program� This is realized� by

� introducing an additional jump table for start and �nal procedure addresses� and
the start and �nal address of the main program

��

Generic Compilation Schemes for Simple Programming Constructs

� changing the con�gurations�

� �old� con�gurations use stacks of tuples of actual procedure and local program
pointer�

� the modi�ed con�gurations use stacks of triples of start� �nal and return ad�
dresses of the actual procedure and a global program pointer

����� machine programs

mprg� TYPE �

�� program�linear�code	 stab� jumptable	 ftab� jumptable	 start� nat	 final�nat ��

��� configurations

Conf � TYPE � �MState	 Stack��� startadr� nat	 finaladr�nat	 retadr�nat ���	 int�

The single�step con�guration semantics is as follows�

��eff�mp
�c�	c�
 � bool � LET �ms�	 s�	 pc�
 � c�	 �ms�	 s�	 pc�
 � c� IN

IF empty��s�
 THEN false

ELSE

IF �pc� �� finaladr�top�s�

 OR

pc� � startadr�top�s�

 OR pc� �� length�program�mp

 THEN false

ELSE CASES nth�program�mp
	 pc�
 OF

lin�code�p
 � interprete�p
�ms�
�ms�
 � s� � s� � pc� � pc� � �	

jmp�i
 � ms� � ms� � s� � s� � pc� � pc� � i	

jmc�i
 � IF outputdefd��ms�
 THEN

IF output�ms�
 THEN

ms� � read�ms�
 � s� � s� � pc� � pc� � �

ELSE

ms� � read�ms�
 � s� � s� � pc� � pc� � i

ENDIF

ELSE false

ENDIF	

jsr�j
 � LET newtop � �� startadr �� stab�mp
�j
	

finaladr �� ftab�mp
�j
	

retadr �� pc� � � �

IN

ms� � ms� � s� � push�newtop	 s�
 � pc� � stab�mp
�j
	

ret � IF empty��s�
 THEN false

ELSE ms� � ms� � s� � pop�s�
 � pc� � retadr�top�s�

ENDIF

ENDCASES

ENDIF

ENDIF

M is de�ned as the re�exive� transitive closure of eff such that the �nal stack is empty�

��M�mp
�s�
�pc�
�ms�
�ms�
 � bool �

EXISTS pc�� RTC�eff�mp

��ms�	 s�	 pc�
	 �ms�	 empty	 pc�

The semantics of machine programs is then de�ned by the interpreter Ip�

��

Generic Compilation Schemes for Simple Programming Constructs

��starttop�mp
 � stackelem �

�� startadr �� start�mp
	

finaladr �� final�mp
	

retadr �� � �

Ip�mp
 � strans � M�mp
�push�starttop�mp
	 empty

�start�mp

The translation of machine programs is as follows�

� instructions are translated one�to�one�

� the body codes of the procedures are concatenated� and the main program is ap�
pended at the end

� start and �nal addresses of the procedures are calculated

� start and �nal addresses of the main program are calculated

To establish correctness� one has to deal with the calculation of sublists� For this purpose�
a function for list extraction together with a set of properties has been established�

����� extraction function

��� extract�x
�i	j
 � x�i ��� x��j�
 for j � i and i � length�x

extract�l�list�T�
�i	j�nat
� RECURSIVE list�T� �

IF �j �� i OR i �� length�l

 THEN null�T�

ELSE cons�nth�l	 i
	 extract�l
�i � �	 j

ENDIF

MEASURE IF j �� i THEN j i ELSE � ENDIF

extract�p�� LEMMA �m �� length�x

 IMPLIES extract�append�x	y

�n	m
 � extract�x
�n	m

���

The invariant between abstract and concrete con�gurations requires that

� abstract states MState are equal

� global and local program pointer refer to the same instruction� and

� abstract and concrete stacks correspond

Correspondence on the stacks is speci�ed by the predicate�

��

Generic Compilation Schemes for Simple Programming Constructs

��eq�stack�mp
�s�	s�
 � RECURSIVE bool �

depth�s�
 � depth�s�
 AND

�not�empty��s�

 IMPLIES

not�empty��s�

 AND LET �mc	 pc�
 � top�s�
 IN

startadr�top�s�

 � length�program�compile�mp

 AND

finaladr�top�s�

 �� length�program�compile�mp

 AND

extract�program�compile�mp

��startadr�top�s�

	 finaladr�top�s�

 �

compileC�mc
 AND

� not�empty��pop�s�

 IMPLIES

�not�empty��pop�s�

 AND

proj���top�pop�s�

 � startadr�top�pop�s�

 � retadr�top�s�

 � �

 AND

eq�stack�mp
�pop�s�
	 pop�s�

MEASURE depth�s�

The invariant is given by

�	invar��mp
�c��lc��Conf	 c��lc��Conf
� bool �

proj���c�
 � proj���c�
 AND ��� abstract states �MState
 are equal

�not�empty��proj���c�

 IMPLIES ��� pc�s correspond

not�empty��proj���c�

AND startadr�top�proj���c�

 � proj���top�proj���c�

 � proj���c�
 � �
 AND

eq�stack�mp
�proj���c�
	 proj���c�

 ��� stacks correspond

The proof obligations are the same as presented in the last subsection� First� one�step
correspondence has to be established� then� by rule induction� the correctness of the
closures is proved� The �nal result is that the modi�ed machine is a re�nement of the
�old� one�

�
��� main result

machine�simulation� LEMMA Ip�compile�mp

�ms�
�ms�
 IMPLIES Ip�mp
�ms�
�ms�

 Speci�c Compilation Processes

In order to illustrate the applicability of the generic compilation theories two speci�c
compilation processes are presented� In particular� we describe the compilation of a simple
imperative language consisting of expressions and statements into code of a

� stack machine� and a

� one�address accumulator machine�

We start with de�ning syntax and semantics of our simple imperative language� For
de�ning syntax and semantics of expressions the parameters in �� are used abstracting
from the concrete type of expression values and from the available set of unary and binary
operators�

��

Generic Compilation Schemes for Simple Programming Constructs

��� parameters used for specifying the source language

VarId � TYPE	

PId � TYPE�	

Value � TYPE	

Unop � TYPE	

Binop � TYPE	

MUnop � �Unop � �Value � Value��	

MBinop � �Binop � �Value	Value � Value��

Value denotes the type of source values� VarId the type of identi�ers� �Unop� Binop� the
available set of unary and binary operators and their semantics �MUnop� resp� �MBinop��
Abstract datatype Expr and an evaluation function eval � �� � then de�ne syntax and
semantics of expressions where the state �SState� is de�ned as a mapping from identi�ers
to values�

��� semantics of expressions

eval�e�Expr
�s�SState
 � RECURSIVE Value �

CASES e OF

const�val
 � val	

varid�name
 � s�name
	

unopr�op	arg
 � MUnop�op
�eval�arg
�s

	

binopr�op	left	right
 � MBinop�op
�eval�left
�s
	 eval�right
�s

ENDCASES

MEASURE e BY ��

Since boolean expressions are treated in a similar way as expressions� we do not de�ne
them explicitly but instead suppose that an �uninterpreted� type BExp together with an
evaluation function eval bexp � �BExp �� �SState �� bool�� is given�

Syntax and semantics of statements are de�ned by importing the generic theories for
simple statements and control structures�

� import syntax and semantics of simple statements

IMPORTING simple�statements�VarId	 Expr	 Value	 eval�

� import syntax and semantics of control structures

IMPORTING ctrlstruc�BExp	 SState	 PId	 eval�bexp	 SimpleStatement	 ss�meaning�

In the following subsection we deal with the compilation of this language into stack ma�
chine code� then in Section �� its compilation into code of a one�address machine is
described� For both machines� compilation of expressions is outlined explicitly while com�
pilation of statements is carried out by instantiating the generic theories�

�� A Stack Machine Compilation

We consider a stack machine which is parameterized with respect to the type of memory
addresses� the type of machine values� and the set of available unary and binary ALU
operations and their semantics� It includes instructions for

� loading a literal onto the stack �LIT��

�

Generic Compilation Schemes for Simple Programming Constructs

� loading the contents of a speci�c memory cell onto the stack �LOAD��

� applying unary and binary operators �UNOP� BINOP��

� and storing the stack�s top element into memory �STORE��

The memory is a mapping from addresses to values� and the machine state consists of the
stack and the memory combined in a record type MachineState�

MachineState � TYPE� � �� stack� Stack	 mem� Mem ��

The e�ects of each instruction are speci�ed by function onestep in �� �

��litf�v�Value
�s
 � �deterministic�
 �

singleton�s WITH ��stack
 �� push�v	stack�s

�

loadf �a�Addr
�s
 � �deterministic�
 �

singleton�s WITH ��stack
 �� push�mem�s
�a
	stack�s

�

���

onestep�i�Instr
 � PartialFunction�MachineState	MachineState� �

CASES i OF

LIT�v
 � litf�v
	

LOAD�a
 � loadf�a
	

UNOP�op
 � uopf�op
	

BINOP�op
 � bopf�op
	

STORE�a
 � storef�a

ENDCASES

For de�ning the semantics of a code sequence the generic interpreter is imported�

��IMPORTING simple�interpreter�Instr	MachineState	onestep�

Compilation

Consider now the compilation of expressions into stack machine code� We suppose given
a predicate representable� denoting the set of source values which are representable on
the target architecture� The compilation function �� may only compile constants which
have representable values� We further suppose that a bijection valmap from target values
to representable source values is given� In addition� an injective function idmap mapping
identi�ers to memory addresses is required�

�

Generic Compilation Schemes for Simple Programming Constructs

��compile�e�Expr
 � RECURSIVE �deterministic��Code�
 �

CASES e OF

const�val
 �

IF representable��val

THEN singleton��� LIT�inverse�valmap
�val

�Instr �

ELSE emptyset

ENDIF	

varid�name
 � singleton��� LOAD�idmap�name

�Instr �

	

unopr�op	arg
 � compile�arg
 �� singleton��� UNOP�op
�Instr �

	

binopr�op	left	right
 � compile�left
 ��

compile�right
 �� singleton��� BINOP�op
�Instr �

ENDCASES

MEASURE e BY ��

Correctness of compilation is stated using predicate correct in �� � An abstraction
function statemap mapping machine states to program states is de�ned using valmap and
idmap�

��statemap�ms�MachineState
 � SState �

LAMBDA �v�VarId
� valmap�mem�ms
�idmap�v

correct�e�Expr	c�Code
 � bool �

FORALL �start	final�MachineState
�

interprete�c
�start
�final

IMPLIES

nonempty��stack�final

 AND

eval�e
�statemap�start

 � valmap�top�stack�final

 AND

statemap�final
 � statemap�start

To establish correctness of expression compilation� one has to prove�

��correctness � THEOREM compile�e
�c
 IMPLIES correct�e	c

The proof is by induction on the structure of e� The base cases for constants and
identi�ers as well as the induction step for unary operators can be proved easily� To
prove the induction step for binary operators� one �rst has to establish an invariant
interprete invariant which states that when interpreting the compiled code in the
�nal state the stack contains an additional element� This ensures that executing code for
the second subexpression does not e�ect the value of the �rst one� i�e� the value of the
�rst subexpression is preserved� The proof of the invariant is also by structural induction
on e�

��interprete�invariant � LEMMA

compile�e
�c
 AND interprete�c
�start
�final

IMPLIES

EXISTS �v�TarValue
� stack�final
 � push�v	 stack�start

Consider now compilation of statements� In order to utilize the generic compilation theory
for simple statement compilation described in Section �� speci�c values must be provided
for the abstract parameters� More speci�cally�

	

Generic Compilation Schemes for Simple Programming Constructs

� The output function accesses the top element of the stack� Hence� the output is only
de�ned in states in which the stack contains at least one element� Since the access
location of values is constant for this machine �top of stack�� parameter T in the
generic theory is not required and instantiated with a default type �unit� consisting
of exactly one element �one��

� access of values

outputdefd��u�unit
�ms�MachineState
 � bool � nonempty��stack�ms

output�u�unit
�ms��outputdefd��u

 � TarValue � top�stack�ms

� Code for storing values into memory at a speci�c address is given by the single STORE
instruction�

� storing values

STORE�code�u�unit	 a�Addr
 � Code � �� STORE�a
�Instr �

� To match the signature of the parameter compileExpr we simply extend the com�
pilation function compile as follows�

� compilation of expressions

compileExpr�e
 � ��deterministic��Code�
	 unit� � �compile�e
	 one

Using these de�nitions� and let target memory denote the state record selector mem� the
generic theory can be imported�

� import compilation of simple statements

compile�assign �VarId	 Expr	 Value	 eval	 Instr	 MachineState	

onestep	 Addr	 TarValue	 unit	 outputdefd�	

RegFile	 STORE�code	 target�memory	

representable�	 valmap	

idmap	 compileExpr	 statemap�

Importing this theory� four assumptions are generated� see �� � �� � and �� � Assump�
tion expression compilation correct is discharged using theorem correctness above�
Assumption interprete store is proved easily by unfolding de�nitions� Assumption
symtab and memory is trivial� and �nally the proof of assumption statemap and memory

requires injectivity of idmap�

Consider now compilation of control structures� In order to use the generic theory for
compiling control structures into basic blocks� a read function has to be de�ned� The read
function for stack machine is simply a pop operation on the current stack� In addition�
an output function with range type bool is required�

�	� access of truth values

read�msdef��outputdefd�

 � MachineState � msdef WITH ��stack
 �� pop�stack�msdef

�

output�bool�msdfd��outputdefd�

 � bool

�

Generic Compilation Schemes for Simple Programming Constructs

We will not consider compilation of boolean expressions explicitly since it closely follows
the compilation of expressions� We suppose given a compilation function compileBExpr

for boolean expressions satisfying a correctness assumption bexp comp correct�

compileBExpr�b�BExp
 � �deterministic��Code�

bexp�comp�correct � AXIOM

�FORALL �b�BExp	 c�Code
�

compileBExpr�b
�c
 IMPLIES

FORALL �start	final� MachineState
�

interprete�c
�start
�final
 IMPLIES

nonempty��stack�final

 AND

eval�bexp�b
�statemap�start

 � output�bool�final
 AND

statemap�final
 � statemap�start

Importing the generic theory for compiling control structures into basic blocks� three
assumptions have to be proved� It must be proved that �boolean� expression compilation
and simple statement compilation are correct� Using the axiom above and the generic
compilation theorem simple statement comp correct �� � respectively� these obligations
can be discharged easily� The third obligation states that read must have no e�ects on
corresponding source states� It is proved automatically using GRIND� Finally� the generic
theory for linearization is imported� Since this theory does not contain assumptions no
proof obligations are generated� Finally� the following theorem which states correctness of
basic block compilation and linearization of control structures can be proved easily using
the generic theorems correctness and linearization correct�

�
� compilation of source programs is correct

stmts�compile�correct� THEOREM FORALL �p�source�program
�

FORALL �start	final�MachineState
�

compile�defined��p
 AND

Ip�cp�compile�p

�start
�final

IMPLIES P�p
�statemap�start

�statemap�final

�� Compilation into a One�Address Machine

Our simple one�address machine is parameterized in the same way as the stack machine
described in the last subsection� Addr denotes the type of memory addresses� MValue
the type of values� Unop� Binop� munop sem� mbinop sem the available set of unary and
binary operators and their semantics� Here� the machine state consists of an accumulator�
the memory �a mapping from addresses to values�� and a �ag of type bool� The machine
does not contain general registers� There are instructions for

� loading a literal into the accumulator �LIT��

� loading the contents of a speci�c memory cell into the accumulator �LOADA��

� applying unary and binary operators �UNOP� BINOPA��

� and storing the content of the accumulator into memory �STOREA��

�

Generic Compilation Schemes for Simple Programming Constructs

MState � TYPE� � �� ac�MValue	 mem� �Addr � MValue�	 flag�bool ��

The e�ects of each instruction are speci�ed by function one step in �� � all arithmetic
operations are carried out using the accumulator�

��� effects of instructions

one�step�i�Instr
 � PartialFunction�MachineState	MachineState� �

CASES i OF

SETFLAG�flg
 � singleton�ms WITH ��flag
 �� flg�
	

LIT�v
 � singleton�ms WITH ��ac
 �� v�
	

LOADA�a
 � singleton�ms WITH ��ac
 �� mem�ms
�a
�
	

UNOP�uop
 � singleton�ms WITH ��ac
 �� munop�sem�uop
�ac�ms

�
	

BINOPA�bop	a
 � singleton�ms WITH

��ac
 �� mbinop�sem�bop
�ac�ms
	 mem�ms
�a

�
	

STOREA�a
 � singleton�ms WITH ��mem
 �� mem�ms
 WITH ��a
 �� ac�ms
��

ENDCASES

For de�ning the semantics of a code sequence the generic interpreter is imported�

��IMPORTING simple�interpreter�Instr	MachineState	onestep�

Compilation

As for the stack machine compilation� we suppose given a predicate representable�

denoting the set of representable source values� a bijection valmap from target values to
representable source values� and an injective memory mapping idmap from identi�ers to
target addresses� Since this machine does not have a stackmechanism� temporary locations
for storing intermediate values have to be allocated� More speci�cally� compiling a binary
expression bop
e��e�� consists of �rst generating code for e�� saving this value into a
temporary location� then generating code for e� and code for the operator bop which then
accesses the values from the temporary location and the accumulator� The compilation
of expressions thus starts with a set of available temporary locations from which required
temporaries are taken� If there are not enough temporaries the compilation function is
unde�ned� i�e� returns the empty code set� Type tempset speci�es the type of such a set�
It is required that locations onto which identi�ers are mapped by idmap are not used as
temporaries� For allocating locations we suppose given a function ralloc which selects a
free location from a �nonempty� set of temporaries�

tempset�TYPE � fM�set�Addr� � FORALL �id�Ident
� not�member�idmap�id
	 M

g

The complete compiling function is given by compile in ��

Generic Compilation Schemes for Simple Programming Constructs

��� compilation of expressions

� RT � TYPE � �Code	 tempset�

compile�e�Expr
�free�tempset
 � RECURSIVE �deterministic��RT�
 �

CASES e OF

const�val
 � IF not�representable��val

 THEN emptyset�RT�

ELSE singleton�RT����� LIT�inverse�valmap
�val

 �
�Code	 free

ENDIF	

varid�name
 � singleton�RT����� LOADA�idmap�name

 �
�Code	 free

	

unopr�unop	e�
 � LET m � compile�e�
�free
 IN

IF empty��RT��m
 THEN emptyset�RT�

ELSE LET �code	 rest
 � select�m
 IN

singleton�RT���code �� �� UNOP�unop
 �
	 free

	

ENDIF	

binopr�bop	e�	e�
 �

LET m� � compile�e�
�free
 IN

IF empty��RT��m�
 THEN emptyset�RT�

ELSE LET �code�e�	 free�e�
 � select�m�
 IN

IF empty��Addr��free�e�
 THEN emptyset�RT�

ELSE LET temp � ralloc�free�e�
 IN

LET m� � compile�e�
�remove�temp	 free�e�

 IN

IF empty��RT��m�
 THEN emptyset�RT�

ELSE

LET �code�e�	 free�e�
 � select�m�
 IN

singleton�RT���code�e� ��

�� STOREA�temp
 �
�Code ��

code�e� ��

�� BINOPA�bop	 temp
 �
�Code	 free

ENDIF

ENDIF

ENDIF

ENDCASES

MEASURE e BY ��

A notion of correctness for this compilation is given by predicate correct compExpr in
�� � Informally� this predicate states that if the interpretation of the expression code
is de�ned� the value of the expression can be accessed by reading the contents of the
accumulator� and the state transition is not vissible on the source state� i�e� locations
which are associated with identi�ers do not change�

��� ��� notion of correctness ���

correct�compExpr�e�Expr
�code�Code
 � bool �

FORALL �start	final�MState
�

interprete�code
�start
�final
 IMPLIES

valmap�ac�final

 � eval�e
�statemap�start

 AND

statemap�final
 � statemap�start

Thus� for proving the correctness of expression compilation in this sense one has to prove�

�

Generic Compilation Schemes for Simple Programming Constructs

��� ��� correctness of expression compilation ���

expr�compilation�correct � THEOREM

compile�e
�free
�result

IMPLIES correct�compExpr�e
�proj���result

The proof is by induction on the structure of expressions� The base cases �constants and
identi�ers� as well as the induction step for unary operators are proved easily� Here� the
most interesting case is the induction step for binary operators� As for the stack machine
compilation one �rst has to prove an invariant in order to accomplish the induction step for
binary operators� This invariant states that locations which are not contained in the initial
set of temporary locations do not change when executing the code� i�e� only temporaries
may change� The proof of the invariant is also by induction on e�

Consider now compilation of statements� The speci�c values provided for the abstract
parameters in the generic theory for simple statement compilation consist of�

� The output function accesses the accumulator� As in the last subsection� the access
location of values is constant� and thus� parameter T of the generic theory is not
required and instantiated with the unit type�

� access of target values

outputdefd��u�unit
�ms�MachineState
 � bool � true

output�u�unit
�ms��outputdefd��u

 � MValue � ac�ms

� Code for storing values into memory at a speci�c address is given by the single STORE
instruction�

STORE�code�u�unit	 a�Addr
 � Code � �� STOREA�a
�Instr �

� To match the signature of the parameter compileExpr we have to change the com�
pilation function for expressions �compile� as follows where t set is a �xed set of
temporary locations�

� compilation function of expressions used for instantiation

compileExpr�e�Expr
 � ��deterministic��Code�
	 unit� �

LET result � compile�e
�t�set
 IN

IF empty��RT��result
 THEN �emptyset�Code�	 one

ELSE LET �code	 rest
 � choose�result
 IN

�singleton�Code��code
	 one

ENDIF

Using these de�nitions� and let target memory denote the state record selector mem� the
generic theory can be imported�

�

Generic Compilation Schemes for Simple Programming Constructs

� import compilation of simple statements

compile�assign�Ident	 Expr	 SrcValue	 eval	 Instr	 MState	

one�step	 Addr	 MValue	 unit	 outputdefd�	

RegFile	 STORE�code	 target�memory	

representable�	 valmap	

idmap	 compileExpr	 statemap�

Importing this theory� four assumptions are generated� see �� � �� � and
�� � Assumption expression compilation correct is discharged using theorem
expr compilation correct above� Assumption interprete store is proved easily by
unfolding de�nitions� Assumption symtab and memory is trivial� and �nally the proof of
assumption statemap and memory requires injectivity of idmap�

Next� we deal with the compilation of control structures� As in the last subsection we do
not consider boolean expression compilation explicitly and suppose given a compilation
function compileBExpr satisfying the assumption bexp comp correct in �� � The boolean
output function output bool tests the �ag in the current state�

��� ��� correctness assumption for boolean expression compilation

bexp�comp�correct � AXIOM

�FORALL �b�BExp	 c�Code
�

compileBExpr�b
�c
 IMPLIES

FORALL �start	final� MState
�

interprete�c
�start
�final
 IMPLIES

eval�bexp�b
�statemap�start

 � output�bool�final
 AND

statemap�final
 � statemap�start

Here� outputdefd� is instantiated with the constant true function� and read is instanti�
ated with the identity on states� The generic theory for compiling control structures into
basic blocks is then imported�

� import compilation into basic blocks

IMPORTING c�bb�BExp	 SState	 PId	 eval�bexp	 SimpleStatement	 ss�meaning	

Instr	 MState	 one�step	 outputdefd�	 output�bool	

read	 statemap	 compileBExpr	 compile�simpleStmt�

All generated assumptions are proved in the same way as described in the last subsection�
Finally� the generic theory for linearization is imported which enables to prove the main
correctness conjecture�

��� compilation of Statements is correct

stmts�compile�correct � THEOREM

FORALL �p�source�program
� FORALL �start	final�MState
�

compile�defined��p
 AND

Ip�cp�compile�p

�start
�final

IMPLIES P�p
�statemap�start

�statemap�final

�

Generic Compilation Schemes for Simple Programming Constructs

�� Conclusion

In this paper a hierarchy of formal generic theories for the compilation of standard lan�
guage constructs for procedural languages has been presented� It includes speci�cations
for compiling simple statements� control structures �statements�� and parameterless pro�
cedures� All speci�cations are generic in the sense that they abstract from speci�c target
architectures and source languages and can therefore be reused by means of instantiations�
The compilation theories are largely independent of each other� they are linked only by
parameters and assumptions about compilation functions for constructs lower in the hi�
erarchy� The compilation of control structures� for example� builds on the compilation
of expressions and simple statements but can be considered independently� Parameters
specify the interface to expression and simple statement compilation for which some cor�
rectness assumptions must hold� A further modularization is achieved by splitting the
compilation task into small manageable parts following the structure of existing com�
pilers� control structures are �rst translated into blocks preserving their structure but
working on machine states� and then further compiled into linear code by introducing rel�
ative jumps� Procedure bodies and the main program are �nally linearized� Applicability
of the generic theories to speci�c compilation processes has been demonstrated by means
of two examples� All speci�cation and veri�cation tasks have been carried out using the
PVS system�

Future work will extend the hierarchy of speci�cations by new theories for additional lan�
guage constructs� in particular procedures with parameters� and complex data structures�
We are also in the process of instantiating the theories with concrete compilation tasks
as de�ned in the Veri�x project� for example� the compilation of the imperative language
Cint� a subset of C� into Transputer assembler code� The long term goal of our work is
to develop a library of generic speci�cations which can be utilized to specify and verify
di�erent compilation processes of standard imperative and functional languages�

References

�	� F� Bartels� A� Dold� F�W� von Henke� H� Pfeifer� and H� Rue!� Formalizing Fixed�
Point Theory in PVS� Ulmer Informatik�Berichte ��	�� Universit�at Ulm� December
	��

��� R�S� Boyer and J S� Moore� A Computer Proof of the Correctness of a Simple
Optimizing Compiler for Expressions� Technical Report �� SRI International� 	���

��� M� Broy� Experiences with Software Speci�cation and Veri�cation using LP� the Larch
Proof Assistant� Technical report� Digital Systems Research Center� 	��

�
� Manfred Broy� Ursula Hinkel� Tobias Nipkow� Christian Prehofer� and Birgit Schieder�
Interpreter Veri�cation for a Functional Language� In P� S� Thiagarajan� editor� Pro�
ceedings of the ��th Conference on Foundations of Software Technology and Theoret�
ical Computer Science� pages ������ Springer�Verlag LNCS ���� 	
�

�

Generic Compilation Schemes for Simple Programming Constructs

��� L�M� Chirica and D�F� Martin� Toward Compiler Implementation Correctness Proofs�
ACM Transactions on Programming Languages and Systems� �����	����	
� April
	���

��� Paul Curzon� A Veri�ed Vista Implementation � Final Report� Technical Report �		�
University of Cambridge� Computer Laboratory� September 	��

��� Wolfgang Goerigk� Axel Dold� Thilo Gaul� Gerhard Goos� Andreas Heberle� Friedrich
W� von Henke� Ulrich Ho�mann� Hans Langmaack� Holger Pfeifer� Harald Ruess�
and Wolf Zimmermann� Compiler Correctness and Implementation Veri�cation� The
Veri�x Approach� In CC ��	 Int
 Conf
 on Compiler Construction �poster session��
Link"ping� Sweden� 	��

��� John Hannan and Frank Pfenning� Compiler Veri�cation in LF� In Andre Scedrov�
editor� Seventh Annual IEEE Symposium on Logic in Computer Science� pages
���

	�� Santa Cruz� California� June 	��

�� C� A� R� Hoare� Re�nement Algebra Proves Correctness of Compiling Speci�cations�
In C�C� Morgan and J�C�P� Woodcock� editors� rd Re�nement Workshop� pages ���

�� Springer�Verlag� 		�

�	�� J�J� Joyce� A Veri�ed Compiler for a Veri�ed Microprocessor� Technical Report 	���
University of Cambridge� New Museums Site� Pembroke Street� Cambridge� CB�
�QG� England� March 	��

�		� J S� Moore� A Mechanically Veri�ed Language Implementation� Journal of Automated
Reasoning� ��
�� 	��

�	�� J S� Moore� Piton� A Mechanically Veri�ed Assembly�Level Language� Kluwer Aca�
demic Publishers� 	��

�	�� Markus M�uller�Olm� An Exercise in Compiler Veri�cation� Internal report� CS
Department� University of Kiel� 	��

�	
� Markus M�uller�Olm� Modular Compiler Veri�cation� PhD thesis� Techn� Fakult�at
der Christian�Albrechts�Universit�at� Kiel� June 	��

�	�� S� Owre� J� Rushby� N� Shankar� and F� von Henke� Formal Veri�cation for Fault�
Tolerant Architectures� Prolegomena to the Design of PVS� IEEE Transactions on
Software Engineering� �	����	���	��� February 	��

�	�� S� Owre� J� M� Rushby� and N� Shankar� PVS� A Prototype Veri�cation System�
In Deepak Kapur� editor� Proceedings ��th International Conference on Automated
Deduction CADE� volume ��� of Lecture Notes in Arti�cial Intelligence� pages �
��
���� Saratoga� NY� October 	�� Springer�Verlag�

�	�� H� Pfeifer� A� Dold� F�W� von Henke� and H� Rue!� Mechanized Semantics of Simple
Imperative Programming Constructs� Ulmer Informatik�Berichte ��		� Universit�at
Ulm� December 	��

Generic Compilation Schemes for Simple Programming Constructs

�	�� W� Polak� Compiler Speci�cation and Veri�cation� In J� Hartmanis G� Goos� editor�
Lecture Notes in Computer Science� number 	�
 in LNCS� Springer�Verlag� 	�	�

�	� Augusto Sampaio� A Comparative Study of Theorem Provers� Proving Correctness
of Compiling Speci�cations� Technical report� Oxford University Computing Labo�
ratory� Programming Research Group� 		�

���� Augusto Sampaio� An Algebraic Approach to Compiler Design� PhD thesis� Ox�
ford University Computing Laboratory� Programming Research Group� October 	��
Technical Monograph PRG�		�� Oxford University Computing Laboratory�

��	� Deborah Weber�Wul�� Proof Movie � A Proof with the Boyer�Moore Prover� Formal
Aspects of Computing� �����	�	�	�	� 	��

���� Phillip J� Windley� A Theory of Generic Interpreters� In George J� Milne and Laurence
Pierre� editors� Correct Hardware Design and Veri�cation Methods� volume ��� of
Lecture Notes in Computer Science� pages 	���	�
� Springer�Verlag� May 	��

���� William D� Young� A Mechanically Veri�ed Code Generator� Journal of Automated
Reasoning� ��
���	�� 	��

��

