
A Small Span Theorem within P

Wolfgang Lindner and Rainer Schuler�

Abteilung Theoretische Informatik� Universit�at Ulm�

Oberer Eselsberg� ����� Ulm� GERMANY

Abstract

The development of Small Span Theorems for various complexity classes and re�
ducibilities plays a basic role in �resource bounded� measure�theoretic investigations
of e�cient reductions� A Small Span Theorem for a complexity class C and reducibil�
ity �r is the assertion that� for all sets A in C� at least one of the cones below or
above A is a negligible small class with respect to C� where the cones below or above
A refer to the sets fB �B �r Ag and fB �A �r Bg� respectively� That is� a Small
Span Theorem rules out one of the four possibilities of the size of upper and lower
cones for a set in C�

Here we use the recent formulation of resource�bounded measure of Allender and
Strauss which allows meaningful notions of measure on polynomial�time complexity
classes� We show two Small Span Theorems for polynomial�time complexity classes
and sublinear�time reducibilities� namely a Small Span Theorem for P and Dlogtime�
uniform NC��computable reductions� and for PNP and Dlogtime�transformations�
Furthermore� we show that� for every 	xed k� the hard set for P under Dlogtime�
uniform AC��reductions of depth k and size nk is a small class� In contrast� we show
that every upper cone under P�uniform NC��reductions is not small�

� Introduction

Resource�bounded measure ���� provides a tool to investigate abundance phenomena in
complexity classes� Besides insights in the measure�theoretic structure of complexity
classes� resource�bounded measure also enriches the measure�theoretic investigations of
e	cient reductions with its origin in the work of Bennet and Gill ��
� ��� ��� �� �

A unifying theme in this area is the development of Small Span Theorems for various
complexity classes and reducibilities� A �rst Small Span Theorem for EXP and polynomial�
time many�one reductions was shown by Juedes and Lutz ����� and has subsequently ex�
tended to other reducibilities �e�g� ��� ����� Brie�y� a Small Span Theorem for a complexity
class C is the assertion that� for all sets A in C� at least one of the cones below or above A
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is a negligible small class with respect to C� where the cones below or above A refer to the
sets reducible to A� and the sets to which A can be reduced� respectively� That is� a Small
Span Theorem rules out one of the four possibilities of the size of upper and lower cones
for a set in C� As an immediate consequence� the hard sets for C is a negligible small class
with respect to C� Furthermore� there are sets for all of the three possibilities not ruled
out by a Small Span Theorem� which has been further studied in ���� ��� �� �
�� �For a
recent overview� we refer to ��� �����

The formulation of resource�bounded measure given by Lutz applies only to complexity
classes at least containing E� Recently� Allender and Strauss ��� �� 
� provided meaningful
notions of measure on P� Here we concentrate on the most restricted notion� the con�
servative ��P��measure� Though some of intuitively small subclasses of P are in fact not
measurable� notably the p�printable sets and hence all sparse sets in P� it satis�es all basic
properties required by a reasonable notion of measure in P� In particular� it is possible to
de�ne pseudo�random sets and to show that the majority of sets in P is pseudo�random
�
�� Furthermore� all proofs in this context relativize� that is� the de�nitions immediately
apply to classes like PNP�

In order to have a non�trivial degree structure in P without unproven assumptions we
consider reductions computed by Dlogtime�uniform constant depth circuits �see e�g� �����
We show a Small Span Theorem for Dlogtime�uniform NC��reductions in P� In contrast�
we show that every upper cone under P�uniform NC��reductions is not small� It follows
that a Small Span Theorem for P�uniform NC��reductions does not hold�

A consequence of the Small Span Theorem is that the hard sets for P under Dlogtime�
uniform NC��reductions is a small class� We also show that this can be improved to a
restricted version of Dlogtime�uniform AC��reductions of depth k�

As in the proofs in ���� �� the main technical step in the proof of the Small Span Theorem
is to show that every reduction from a pseudo�random set can not decrease the length of its
value to much� In the case of polynomial�time reductions and exponential�time classes this
involves inverting polynomial�time functions� which can be done in exponential time� But
even Dlogtime�uniform NC��computable functions can not be inverted in polynomial time�
unless P � NP� Thus� we merely explore the fact that for a NC��computable function there
is some constant c such that each output bit depends on at most c di�erent input bits� In
contrast� we use the exponential lower bound on the size of a constant depth circuit for the
parity function ���� �� to show the result concerning the hard sets for P under �restricted�
AC��reductions�

However� in the presence of an NP�oracle� Dlogtime�transformations are invertible� This
allows us to show a Small Span Theorem for Dlogtime�transformations within PNP with
an adaption of the proofs in ���� ���
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� Preliminaries

A circuit family is a sequence fCng� n � N where each Cn is an acyclic circuit with n
Boolean inputs x�� � � � � xn �as well as the constants � and � allowed as inputs� and some
number of output gates y�� � � � � ym� fCng has size s�n� if each circuit Cn has at most s�n�
gates� it has depth d�n� if the length of the longest path from input to output in Cn is at
most d�n�� A family fCng is uniform if the function n �� Cn is easy to compute in some
sense� We will consider Dlogtime�uniformity ���� and P�uniformity ����

A function f is said to be AC��computable if there is a circuit family fCng of polynomial
size and constant depth consisting of unbounded fan�in AND and OR and NOT gates such
that for each input x of length n� the output of Cn on input x is f�x��

A function f is said to be NC��computable if there is a circuit family fCng of polynomial
size and constant depth� consisting of fan�in two AND and OR and NOT gates� Note that
for any NC� circuit family� there is some constant c such that each output bit depends on
at most c di�erent input bits�

Note that a NC���AC���computable function f satis�es the restriction that jxj �
jyj �� jf�x�j � jf�y�j�

A function g is an inverse of a function f � if� for all strings y� y � range f �� f�g�y�� �
y� A proof of the following can be found in e�g� ����

�� Proposition� P � NP if and only if every length increasing Dlogtime�uniform NC��
computable function has a polynomial�time computable inverse�

A set A is NC���AC���reducible to a set B if A is many�one reducible to B via a
polynomially length bounded NC���AC���computable function�

A function f is a Dlogtime�transformation if f is polynomially length bounded and the
set f�x� i� b� � the i�th bit of f�x� is b � f�� �g g is decidable in logarithmic time�

A set A is r�printable if there is a function computable within the resources speci�ed
by r� which� on input �n� prints out the whole set of strings in A up to length n�

� Measure on P

In order to de�ne a reasonable notion of measure within subexponential time classes� Allen�
der and Strauss ��� �� consider sublinear computations� Here the underlying computation
model is a Turing machine with random�access to its input via a special index tape� When
M enters a special query state� M receives the i�th bit of the input� where i is the content
of the index tape� Furthermore� M is given both w and the length of w as the input�

Given such a machineM and a string w� let IM�w� denote the set of bits queried byM
to the input w� We assume that M queries the bits of the input w in parallel� that is� the
bits queried by M do not depend on the actual input w but only on the length jwj� De�ne
the dependency set DM �w� � f�� �� � � � � ng be the unique minimal set containing IM�w�






and satisfying

i � DM �w� �� IM�w����i�� � DM �w�

Note that the queries to the length of w are not content of the dependency set�

A function f is ��nc��computable if it is computable by a machineM such that M runs
in time O�logc jwj� and has dependency sets DM �w� with size bounded by O�logc jwj�� A
function f � �� � �� is ��P��computable if f is ��nc��computable for some c � N �

A martingale is a function d � ��� � R� satisfying the average law d�x�� � d�x�� �
�d�x� for all x � ��� � A martingale succeeds on a set A � �� if limsupn d�Ajzn� � �� A
class X is a ��nc��nullset if there is a ��nc��computable martingale d which succeeds on
every set in X � A class X is a ��P��nullset if X is a ��nc��nullset for some c � N �

Allender and Strauss show that the ��P��nullsets de�ne a reasonable notion of nullsets�
That is� the ��P��measure corresponds to P in the sense that all singletons of P are ��P��
nullsets� but the whole space P is not a ��P��nullsets� Moreover� the collection of ��P��
nullsets is closed under subsets� �nite unions� and arbitrary unions over the sub�collection
of ��nc��nullsets�

The latter permits the de�nition of pseudo�random sets as the �typical� sets within P in
the sense of ����� More precisely� de�ne a set A to be ��nc��random if no ��nc��computable
martingale succeeds on A� Equivalently� A is ��nc��random if and only if the singleton fAg
is a ��nc��nullset� Then� for each �xed c� all sets in P but a ��P��nullset are ��nc��random�
but no ��nc��random set possesses any property which is speci�c for only a ��nc��nullset�

This gives us the following characterization of ��P��nullsets in terms of ��nc��random
sets�

�� Proposition� Let X any class of sets� The following are equivalent�

�� X is a ��P��nullset�

�� For some c 	 �� X contains no ��nc��random set�

Mayordomo ���� showed that� for every �xed c� the class of non�Dtime�nc��bi�immune
sets is small in exponential time� The same proof can be used to show the following�

�� Proposition� If A is a ��nc��random set then A is bi�immune for the class of
Dtime�nc��printable sets�

� The Small Span Theorem

�� Lemma� Let A be a ��n���random set reducible to some set B via a function f com�
putable by a Dlogtime�uniform NC��circuit family of depth d� Then jf�x�j 	 jxj��d�

Proof� Suppose f maps strings of length n to strings of length less than n��d for in�nitely
many n� Fix such an n� Then there is at least one input bit which is ignored by the circuit
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computing f � Let y be the string of length n� where all the ignored bits are set to �� and
the remaining bits are set to �� Then f��n� � f�y�� and therefore� A��n� � A�y�� that is�
the membership of y in A can be predicted from the membership of �n in A� Since y can
be computed in time O�n log n�� it follows that there is a ��n���martingale which succeeds
on A�

�� Theorem� Let A be a ��n���random set in Dtime�nc�� for some c 	 �� Let A be
reducible to some set B via a Dlogtime�uniform NC��reduction f � Then B has an in	nite
Dtime�nc����printable subset�

Proof� Since A is ��n���random� A 
 �� is in�nite� Hence� by Lemma �� f�A 
 ��� is a
in�nite Dtime�nc����printable subset of B�

�� Corollary �Small Span Theorem	� For every set A in P� either its upper or its
lower cone under Dlogtime�uniform NC��reductions is a ��P��null set�

Proof� Fix a set A in P� If the lower cone of A is a ��P��nullset then the assertion follows
vacuously� So assume that the lower cone of A is not a ��P��nullset� Hence� by Proposition
�� the lower cone of A contains a ��n���random set in Dtime�nc�� for some c 	 �� From
Proposition 
� Theorem � and the transitivity of uniform projections� it follows that the
upper cone of A contains no ��nc����random set� Hence� again by Proposition �� the upper
cone of A is a ��P��null set�


� Remark� We note that there are sets in P for all three cases not ruled out by the
Small Span Theorem� First� every set in NC� can be reduced to all sets� hence its upper
cone is not small� Second� the lower cone of any complete set in P is not small� Finally�
consider the set A � fx � jxj � �k� k 	 �� and x has an even number of ��sg� Using similar
arguments as in Lemma � and Theorem � its not hard to see that the upper cone of A
is small� Moreover� for every set B reducible to A� ��

k
� B is decidable in linear time�

whence B is not bi�immune for the class of Dtime�n��printable sets� Hence the lower cone
of A is small as well�


� Theorem� ��� Every upper cone under P�uniform NC��computable reductions is not a
��P��nullset�
��� Every degree under P�uniform AC��computable reductions is not a ��P��nullset�

Proof� Fix any set A� In order to proof that the p�printable sets do not form a ��P��nullset
Allender and Strauss ��� show the following�

Let d be a ��P��martingale� Then there are p�printable sets D and D�� with D� � D�
such that� for all set B� if B satis�es x � D �� B�x� � D��x� then d does not succeed
on B�

Since D is sparse� for every n there is some string x of length n such that fyxn � jxj �
jyj � ng
D � �� Let xn be the smallest such x� Since D is p�printable� xn can be obtained
from n in time polynomial in n�
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De�ne a set A� by

z � A� ��

�
z � D� if z � D

z � yxn and y � A if z � D

By the de�nition� d does not succeed on A�� The set A is reducible to A� via a P�uniform
NC��function y �� yxn� This shows ����

For ��� note that A� is reducible to A via a P�uniform AC��function�

�� Remark� Let A be a complete for P under P�uniform NC��reductions� Then the lower
cone of A is P� hence not a ��P��nullset� By Theorem �� the upper cone of A is not a
��P��nullset as well� Thus� in contrast to Dlogtime�uniform NC��reductions� a Small Span
Theorem for P and P�uniform NC��reductions does not hold�

In the following we show that each output�bit of a reduction may depend on all of the
input�bits when considering only the hard sets for P�

Let us call a AC��function k�bounded if the circuit computing f has depth � k� and
every output�bit is determined by a circuit of size � nk�

��� Theorem� Let k 	 � some 	xed constant� The upper cone of PARITY under
Dlogtime�uniform k�bounded AC��reductions is a ��P��nullset�

Proof� Let PARITY be reducible to some set B via a function f computable by an AC�

circuit of depth k�

Let Cn be the circuit which� for strings x of length n� compares f�x� with all strings of
length jf�x�j and accepts x if and only if f�x� � B� Since f is a reduction from PARITY

to B� Cn computes the parity function� The size of Cn is O�nk � �jf�x�j�� From the lower

bound �n
����d�

on the PARITY function ���� ��� it follows that jf�x�j 	 jxj���ck�� where c
can be chosen independently of B and f �

Hence� f�� � ��� is an in�nite Dtime�nck����printable subset of B� The assertion follows
from Proposition ��

� A Small Span Theorem in P
NP

As already observed in ��� all basic properties hold also in the presence of an NP oracle� if
we consider ��nc�NP�computable functions where the machine computing f may ask queries
to SAT of length bounded by O�logc n��

As in ���� ��� we adapte the version of the strongly P�bi�immune sets ���� in order to
proof the following lemma�

��� Lemma� There is a constant c 	 � such that� if A is a ��nc�SAT�random set reducible
to some set B via a Dlogtime�transformation f � then jf�x�j 	 jxj for in	nitely many x�





Proof� De�ne f �s collision set Cf � �� � �� by

Cf � f�x� y� �x � y and f�x� � f�y�g�

and its bounded collision set  Cf � �� � �� by

 Cf � f�x� y� �x � y and f�x� � f�y� and jf�y�j � jyjg�

First we show that if the bounded collision set  Cf is �nite� then jf�x�j 	 jxj for in�nitely
many x� Consider the following two cases�

� If the collision set Cf is �nite� then jf�x�j 	 jxj i�o� follows from an easy counting
argument�

� Otherwise the collision set Cf is in�nite� Since  Cf � Cf and  Cf is �nite� for almost
all pairs �x� y� in Cf � jf�y�j � jyj�

Thus it su	ces to show that f �s bounded collision set  Cf is �nite� So assume that  Cf

is in�nite� Hence there are in�nitely many n and pairs �xn� yn� such that yn is the lex�
smallest string of length n such that there is some string x� � y with f�x�� � f�y�� and
xn is the lex smallest such x�� Every pair �xn� yn� can be generated by pre�x search and
O�n� adaptive queries to an NP oracle� Since f�xn� � f�yn�� A�xn� � A�yn�� It follows
that there is a martingale succeeding on A which is ��nc��computable relative to SAT� for
some c which can be chosen independently of the transformation f �

��� Theorem� There are constants c� c� 	 � such that� if A is a ��nc�SAT�random set
in Dtime�nd�SAT reducible to some set B via a Dlogtime�transformation f � then B is not
bi�immune for the class of sets Dtime�nmax�c

��d���printable relative to SAT�

Proof� Let c be as in Lemma ��� Let I be the in�nite set of strings x such that x is the lex
smallest string of the strings x� of length jxj with jf�x��j 	 jx�j� Then f�I 
A� or f�I 
A�
is a in�nite set of B or B� respectively� which is printable in time O�nmax�c

��d�� relative to
SAT� where c� can be chosen independently of the transformation f �

��� Corollary� For every set A in PNP� either its upper or its lower cone under Dlogtime�
transformations is a ��PNP��nullset�
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