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1 Introduction

Complex problems can often be described and solved in an easy and elegant way
with functional programs. Well-known functional programming languages are,
e.g., LISP [McC60], ML [Mil84], Miranda [Tur85], and Gofer [Jon93] (also cf.
[Hud89] for a survey). In this paper we present a further functional programming
language called NoName and its programming environment. The reason for
this development is to be able to test evaluation strategies and transformation
strategies in the field of different recursive program schemes. NoName has some
helpful features which cannot be found in other languages in this composition:

Mathematical syntax: The syntax of the function definitions are based on
the convention of mathematics. Thus, parentheses and commata together
with a strict, monomorphic, higher-order typing discipline provide a clear
and simple notation in contrast to the lambda calculus.

Evaluation strategies: For every function NoName allows the choice between
the evaluation strategies call-by-name and call-by-value. Note that most of
the declarative programming languages have a fixed strategy. Indeed, the
only declarative programming language we know which supports different
evaluation strategies is Dactl [GKS91].

Tree transducers: Special recursive program schemes are explicitely suppor-
ted by simple NoName constructs. The program schemes are called top-
down tree transducer [Rou70, Tha70], macro tree transducer [Eng80, CF82,
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EV85], attributed tree transducer [Fil81], macro attributed tree trans-
ducer [KV94], and modular tree transducer [EV91]. A detailed description
can be found in Section 2.3.

Module concept: NoName allows to structure programs and enables the pos-
sibility to import functions and data types from other programs.

The main part of the programming environment is the syntax driven editor of
NoName that has been developed with the help of the Synthesizer Generator',
a software tool from GrammaTech, Inc [RT89]. Such a syntax driven editor is
taillormade for exactly one programming language and it simplifies the program-
mers work with the help of pull-down menus and transformations to construct
a program in a top-down manner.

The NoName editor is based on an attribute grammar which determines
both, the context-free syntax of NoName and the context-sensitive properties of
NoName. While editing a NoName program, the NoName editor checks these
properties by means of an incremental attribute evaluator.

The attribute grammar for NoName is specified in SSL (Synthesizer Specifi-
cation Language) by the following parts: (i) the abstract syntax which describes
the syntactical structure, (ii) the in- and output syntax, (iii) transformations
to refine the program, (iv) attribute grammars for the context-sensitive prop-
erties, and (v) external functions for interfaces to other applications (for the
implementation of the NoName editor see [EHM95]). The usage of the editor is
described in Section 3.1 in more detail.

The further components of the NoName programming environment are based
on the fact that, internally, the current program is represented as syntax tree
which, e.g., can be easily modified. The integration of the components which
are described later, was enabled by offered interfaces of the editor.

This paper is divided into four sections. In Section 2 we describe the language
NoName by means of an example. The NoName programming environment is
presented in Section 3. In Section 4 we provide a list of further research topics.

2 The language NoName

In this section we explain some basic concepts of the functional language No-
Name and describe the features of a NoName program: data types, functions,
and tree transducers. The skeleton of a NoName program is as follows:

PROGRAM program_name;
list of specifications
END_PROGRAM program_name.

!The Synthesizer Generator is a trade mark of GrammaTech?™ | Inc.



There are four different kinds of specifications:
e data type specification
e function specification
e tree transducer specification
e import specification

We will describe these kinds of specifications by constructing a NoName pro-
gram. This NoName program is a type checker for SPL-programs, where the
context-free part of the SPL-syntax is determined by the set of productions
of the context-free grammar shown in Figure 1. The type checker checks the
context-sensitive properties of SPL, i.e., (i) whether every identifier which oc-
curs in a statement is also declared, and (ii) whether the type of the left-hand
side of an assignment is equal to the type of its right-hand side. This example

is derived from [Vog91].

prog — Program decl; stmt End. Program
decl — var ident: type var
decl — decl; ident: type a: int;
stmt — ident := ident b: int;
stmt — begin decl; stmt end begin
stmt — stmi; stmt var
ident — a b: int;
tdent — b a:=b
type — int end;
type — bool b :=a
End.

Figure 1: Context-free grammar of SPL and a valid SPL-program.

For a full description of the syntax and semantics of NoName see [EGHT 94a).

2.1 Data type specifications

In NoName there are two main categories of data types: basic types, e.g., IN-
TEGER, BOOLEAN, VOID (empty type), and algebraic data types. Already
known data types can be composed via cartesian products or function types to
new types called data type synonyms. Since basic types and data type synonyms
are well known from other programming languages, we restrict our interest to
algebraic data types.



Generally an algebraic data type specification has the following form:

ALG DEF
data type, = constructor; 1(list of types)
constructor; s(list of types)

constructory ,(list of types)
data types = ...

data type,
END_ALG DEF

We explain this concept by defining the context- free grammar of SPL (shown
in Figure 1) as an algebraic data type in NoName. Since it suffices to specify
the abstract syntax instead of the concrete syntax in the data type declaration
of NoName, the terminal symbols are dropped completely. The production

prog — Program decl; stmt End. (%)
1s represented by the NoName data type declaration
prog = Prog(decl,stmt);

where prog is the name of the data type, Prog is a constructor name of rank
two, and the nonterminals decl and stmt, which correspond to decl and stmitin
(%), respectively, denote further data types. Note that each constructor name
and the type of each object have to be uniquely determined in NoName. The
complete NoName data type specification of the abstract syntax of SPL is shown
in Figure 2. Additionally, this figure presents the abstract syntax tree of the
SPL-program from Figure 1.

2.2 General functions

A function 1s specified by its declaration and its definition. The declaration
determines the types of the input and output values. The definition fixes how
the output values of the function depends on its input values. Note that a
function must be declared before it is defined or used. The skeleton of a function
specification is as follows:

FUNC_SPEC
evaluation strategy (optional)
list of function declarations
list of function definitions
END _FUNC_SPEC



ALG_DEF Prog(
prog = Prog(decl, stmt); VarDefList (
decl = VarDef(ident, type) VarDef (
| VarDefList(decl, ident, type); A,Int),
stmt = Assign(ident, ident) B,Int),
| Compound(decl, stmt) StmtList (
| StmtList(stmt, stmt); Compound (
ident = A VarDef (
| B; B,Int),
type = Int Assign(
| Bool; A,B),
END_ALG_DEF Assign(
A,B))))

Figure 2: The NoName data type specification of the abstract syntax of SPL
and the abstract syntax tree of the SPL-program shown in Figure 1.

For every function, an evaluation strategy (call-by-value or call-by-name) can be
stated explicitely (for details cf. page 7 and [EGH'94a]). A function declaration
has the following form:

function_name : input type —> output type

The input and output types are arbitrary; for example the input type can be
CARDINAL x INTEGER, i.e., a cartesian product of types.

Generally a function definition has the following form:
function_name(ty, . ..,t) = right-hand side

where the left-hand side has to be linear, i.e., no variable occurs twice. A func-
tion which has no parameters (denoted by VOID as input type in the declaration)
needs empty parentheses. Obviously, the type of the right-hand side must be
identical with the output type specified in the function declaration.

Now let us consider SPL and let us define a type checker for the conditions
named before: every identifier has to be declared and the types of the two sides
of an assignment have to be equal. For this purpose, we define a symbol table,
called env, which is realized as a list of identifiers with their types. For its
handling we need the function update which builds up and modifies the symbol
table, and the function look_up to determine the type of a given identifier.
Furthermore, we need the function type_eq which checks if two types are defined
and equal. These functions are shown in Figure 3. The additional necessary
algebraic data type definitions for idtype and env are shown in Figure 4.



FUNC_SPEC
update : env x ident x idtype -> env;
helpupdate : ident x idtype x env x ident x idtype -> env.
update(Nil, id1l, ty1)
= Cons(id1, ty1, Nil)
update (Cons(id1, tyl, tail), id2, ty2)
= help_update(id1l, tyl, tail, id2, ty2);
help update(idl, tyl, tail, id2, ty2)
= Cons(id2, ty2, tail),
IF idl = id2,
= Cons(idl, tyl, update(tail, id2, ty2)),
OTHERWISE;
END_FUNC_SPEC

FUNC_SPEC
lookup : env x ident -> idtype;
help_lookup : ident x ident x idtype x env -> idtype.
look.up(Nil, id1)
= undef
look.up(Cons(id2, ty, tail), idil)
= help_lookup(id2, id1l, ty, tail);
help_look up(id2, idl, ty, tail)
= ty,
IF id1l = id2,
= lookup(tail, id1),
OTHERWISE;
END_FUNC_SPEC

FUNC_SPEC

type_eq : idtype x idtype -> BOOLEAN.

type_eq(tl, t2) = ((t1 <> undef) and (£t2 <> undef)) and (t1 = t2);
END_FUNC_SPEC

Figure 3: Functions of the type checker of SPL.

Let us explain the function look_up more detailed:

Assume that update has created a list where all identifiers together with their
types of an SPL-program are listed. Now look_up checks if the list contains the
given identifier, and if so, then it returns its type. Therefore we need a help
function, called help_look_up, which returns the type if the identifier is found,
or it checks if the identifier can be found in the rest of the list.

Note that look_up and help_look_up are defined by simultaneous recursion.
Also note that help look_up uses conditional clauses whereas look_up is defined
by pattern matching. The conditional clause which 1s introduced by the keyword
IF, must return a boolean value.



ALG_DEF
idtype = int
| bool
| undef;
END_ALG_DEF

ALG_DEF
env = Nil
| Cons(ident, idtype, env);
END_ALG_DEF

Figure 4: The algebraic data types idtype and env

We demand that conditional clauses fulfill the following conditions:

e They have to be non-overlapping, 1.e., for every input value at most one
condition can match.

e They must be exhaustive, i.e., for every input value at least one condition
must match.

If we use the conditional clause OTHERWISE, then it only can occur once, because
the conditional expressions have to be non-overlapping.

In contrast to most of the functional programming languages, NoName al-
lows to determine for every function one of the following evaluation strategies:

e call-by-name
e call-by-value.

Call-by-name is a strategy where the outermost function call is evaluated first,
in contrast to the call-by-value strategy, where the innermost function call is
evaluated first. The benefits and drawbacks of both strategies are well known.

The keyword CALL _BY NAME or CALL_BY _VALUE which determines the strategy,
has to be inserted between the keyword FUNC_SPEC and the list of function decla-
rations (cf. Section 2.2, page 4).

Higher-order functions

In contrast to pattern matching, which is only allowed on inductive data types
(i.e., algebraic data types, CARDINAL, and BOOLEAN), conditional expressions are
not restricted to particular data types.

A more elegant way to define the type checker would be to define 1ook_up and
update in a higher-order manner. For this purpose the symbol table new_env
is defined as a function of type ident -> idtype. Then new_update looks as
shown in Figure 5.



FUNC_SPEC
new_update : new_env x ident x idtype —> new_env.
new_update(rho, idl, tyl) = lambda
WHERE FUNC_SPEC
lambda : ident -> idtype.
lambda(id2) = ty1,
IF id1l = id2,
= rho(id2),
OTHERWISE;
END_FUNC_SPEC;
END_FUNC_SPEC

Figure 5: The function specification new_update.

2.3 Tree transducers

Tree transducers specify functions over algebraic data types. The language No-
Name supports five different kinds of tree transducers, these are:

e top-down tree transducer [Rou70, Tha70],

e macro tree transducer [Eng80, CF82, EV85],
e attributed tree transducer [Fil81],

e macro attributed tree transducer [KV94], and
e modular tree transducer [EV91].

The most special one is the top-down tree transducer where each function is
defined in a top-down way and has exactly one parameter called recursion arqu-
ment. More precisely, these functions are synthesized functions, i.e., in the right-
hand sides of their definitions only function calls (of a tree transducer function
from the same specification block) with a successor of the recursion argument
are allowed. Note that this restriction does not hold for general function calls.

A macro tree transducer is a generalization of a top-down tree transducer
in such a way that its functions may contain further parameters additionally to
the recursion argument.

An attributed tree transducer is a generalization of a top-down tree trans-
ducer in another direction: synthesized functions as well as inherited functions
can be specified. Hereby in the right-hand side of an inherited function defini-
tion only function calls (of a tree transducer function from the same specification
block) with a predecessor of the recursion argument are allowed.

A combination of the above enumerated concepts is realized by macro at-
tributed tree transducers. That means we can use further parameters in addi-



tion to the recursion argument and we can use both, synthesized functions and
inherited functions.

Modular tree transducers cluster several top-down tree transducers and ma-
cro tree transducers into a unit and allows for a tree shaped hierarchical ar-
rangement of units.

For instance, the type checker of SPL can be specified by the following macro
tree transducer:

BEGIN_MAC
envir: SYN DESC decl x env -> env;
check: SYN DESC stmt x env —> BOOLEAN.

envir(<z:VarDef>, rho)

= wupdate(rho, id(<z>.1), id(<z>.2));
envir(<z:VarDefList>, rho)

= envir(<z>.1, update(rho, id(<z>.2), id(<z>.3)));

check(<z:Assign>, rho)
= type_eq(look_up(rho, id(<z>.1)), look_up(rho, id(<z>.2)));
check(<z:Compound>, rho)
= check(<z>.2, envir(<z>.1, rho));
check(<z:StmtList>, rho)
= check(<z>.1, rho) and check(<z>.2, rho);
END_MAC

In contrast to general functions the left-hand side of a macro tree transducer
function definition comprises a term of the form <z: constructor> which denotes
a path in the input tree labeled by constructor. Note that this notation has to
be used in recursion argument position, whereas the other argument positions
have to be instantiated by variables.

The right-hand side of a tree transducer function definition is similar to that
of a general function (cf. Section 2.2). If, in the right-hand side, we call a tree
transducer function of the same specification block, then the recursion argument
has the form

<z>.j
where j denotes the jth subtree.

The functions envir and check are declared as synthesized functions by the
lines

envir: SYN DESC decl x env -> env;
and

check: SYN DESC stmt x env -> BOOLEAN.

Note that the keywords SYN DESC marks a synthesized descent function.
Since the data type decl has two constructors (VarDef and VarDefList), there
are two function equations for envir.



The id function which occurs in the right-hand side of, e.g., envir, is a
special construct for tree transducers, because <z>.jis the pointer to the jth
subtree and does not include the value of this subtree. The built-in function id
1s necessary to convert this pointer into the complete subtree.

The second function equation of envir recursively walks down the symbol
table (by a recursive call of envir) until one identifier is left. Then the first
function equation calls update and builds up the symbol table.

Additionally to the function envir, the macro tree transducer contains the
function check which checks the type equality in the assignment statements of
SPL.

Furthermore we need the following function specification to complete the
NoName specification of the type checker for SPL:

FUNC_SPEC
check_prog : prog —> BOOLEAN.
check_prog(Prog(z1,z2))
= check(z2, envir(zl, Nil));
END_FUNC_SPEC

The table below presents an overview of the syntactic requirements of the differ-
ent tree transducers (note that tr? abbreviates tree transducer). A more concise
description can be found in [EGH*94a].

H top-down tr? ‘ macro tr2 ‘ attributed tr? ‘ macro attr. tr?
Begin BEGIN_TOP BEGIN_MAC BEGIN_ATT BEGIN.MAT
End END_TOP END_MAC END_ATT END_MAT
Functype DESC DESC WALK WALK
Synthesized func. allowed allowed allowed allowed
Inherited func. — — allowed allowed
More parameters — allowed — allowed

2.4 Import specification

Such modules have the same
structure as other NoName programs and so we can use every NoName program

NoName supports the use of library modules.

as a library module. Functions, tree transducers, or data types from other No-
Name programs can be imported by the IMPORT specification. For example, the
import specification

FROM math.nnm IMPORT ack;

imports from the NoName program math.nnm the function ack and, addi-
tionally, all functions and data types which are necessary for the specification of
ack (even if, in its turn, all these functions and data types have been imported
in math.nnm for ack).
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2.5 Conclusion

With the help of the simple programming language SPL we have described the
most important properties of NoName. The type checker, including the alge-
braic data type specifications, the functions update, look up and type_eq (see
Section 2.2, page 5), the macro tree transducer (described in Section 2.3, page
9) and the function check_prog (see Section 2.3, page 10) represents a complete
NoName program to check the context-sensitive properties of SPL. The follow-
ing sections explain how to use and work with the NoName programming en-
vironment, a tool to develop NoName programs in an effective, correct, and easy
way and how to use the features of this environment.

3 The programming environment of NoName

The NoName programming environment was developed to support the user in
writing NoName programs. The main part of this environment is a syntax
driven editor for NoName (cf. Section 3.1). Tt was generated with the help
of the Synthesizer Generator, a software tool designed by T. W. Reps and T.
Teitelbaum. We have integrated an online help (cf. Section 3.2), different views
of the current program (cf. Section 3.3), as well as a database connection (cf.
Section 3.4) to maintain parts of NoName programs, e.g., standard functions
(for a collection of standard functions see [May95]). For different purposes, e.g.,
optimization and user guidance, complex transformations (cf. Section 3.5) and a
tool for representing the syntax tree of the current program graphically (cf. Sec-
tion 3.6) complete our user-friendly environment. Additionally, the NoName
programming environment includes two compilers (cf. Section 3.7). Figure 6

Online
Help
>
& L,
S =
FS fo ™ 3
6 & /8 ) )
2 o% 2
%g-
(>
N 0
% N 9 58
103} &
%% P §,'§§9

suoIewIoSuel |

Figure 6: The programming environment of NoName and its features.

pictures this programming environment. Remember that the programming lan-
guage NoName was described in Section 2.
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3.1 The basics of the NoName editor

First we describe the basic concepts of the NoName editor. In contrast to text "
editors, the NoName editor provides syntactic correct NoName programs by ‘:’
accepting only syntactic correct modifications. Moreover it can react helpfully
if any program errors are detected. Since a semantic analyser is also part of the
NoName editor, the user is promptly informed about existing semantic defects.

With the help of a screenshot, shown in Figure 7, we describe how to work
with the editor.

Editor and Program Name

Y

'_LI NoName:SPL.annm

Menu Pane File Edit View Tools Options Structure Text Transforms Extras NollS  Help

—= help_lock up : ident x ident x idtype x env -> idtype. N
Llock_up(Nil, idl) = undef
Look_up(Consi{id2, ty, tail),idl) = help look wp(idZ, idl, ty, tail);
<identifier={<parameter=) = <expression:,
IF <expression= = <expressions,
= Llock_up (=identifier=(<expression=) ),
DTHERWIL.
END_FUNC_SPEC

Work Area __| FUNC_SPEC
type_eq : idtype = <typelist> -» <type=
type_eqitl, t2) = ((tl <> undef) and {<expression= <> undef)) and (tl = £Z);

END_FUNG_SPEG

=iree_specification=

END_PROGRAM SPL

= { PLACEHOLDER INPROGEAM } Fi
ol |
Transform | o
Buttons ATT-Tree| MAC-Tree| MAT-Tree| MOD-Tree | TOP_Trez|
= e
4 Aead home/MNatamerPLanm Context: treeSpec
i

L Status Pane Actual Selection J

Figure 7: The programming environment of NoName.

The menu pane includes the following areas:

File: The menu File is used for file handling, i.e., to open, close, or save files
etc. as usual.

Edit: This menu allows to execute several edit functions, i.e., to select, copy,
paste, or delete parts of the actual program. Additionally to a text ver-
sion of these edit functions, structure modifying functions are included,
1.e., functions which only allow to modify complete subtrees of the actual
program’s syntax tree in a correct way.

View: In addition to the representation of the actual program as shown in Fig-
ure 7, other views are supported, e.g., the miranda view which shows the
program in the syntax of the functional programming language Miranda
[Tur85]. The different views are described in Section 3.3.
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Tool: The menu Tool offers interfaces to the operating system.

Options: The menu Options allows to adjust some basic options like switching
on and off the status pane.

Structure: With this menu the navigation through the syntax tree of the actual
program can be performed.

Text: In contrast to the menu Structure the menu Text supports navigations
through the program text.

Transforms: This menu has the same function as the transform buttons which
are described below.

Extras: The menu Extras allows to start different compilers (cf. Section 3.7)
and it is possible to edit NoName programs with any other editor.

NoMIS: The menu NoMIS is used to open and work with a database (see
Section 3.4 and [Miil95]).

Help: The menu Help starts a detailed help environment, e.g.; all transform
buttons are explained precisely (see Section 3.2).

Note that the menus View and Help are interfaces offered by the Synthesizer Ge-
nerator which we have adjusted for NoName. Additionally we have added the
menus Extras and NoMIS which are explained later. For a more concise descrip-
tion of the other menus see [Gra96].

The actual program is shown in a pretty-printed version in the work area.
Programs are built by refining so-called templates, i.e., predefined, formatted
patterns for parts of NoName programs which contain placeholders. New tem-
plates can be inserted at the position of placeholders of already existing tem-
plates. By this method programs are constructed top-down. The underlined
part of the program is the actual selection. In Figure 7 the template

<tree_specification>
is a placeholder where a new template can be inserted. Here, it can be refined
to a certain tree transducer (see transform buttons in Figure 7). We refine this
placeholder to a template of a macro tree transducer with the button MacTree.
The result of this refinement is shown in Figure 8.

The available transformations depend on the current context, because only
templates which generate a syntactic correct program are allowed.

Comments can be inserted at pre-defined places, which are automatically
marked by the line (% <comment> %). In Figure 7, e.g., there are two possible
places where comments can be written. For more information see [EGHT94a].

The textual representation can also be edited by the keyboard. The return
key finishes the editing mode and the text is parsed. Syntax errors are shown
in the status pane and should be corrected immediately. Furthermore all other
messages, as, e.g., the message Read /home/NoName/SPL.nnm in Figure 7 and
the actual context are shown in the status pane.

13



N NoMame:SPL.hhm

File Edit View Tools Options Structure Text Transforms Extras NelllS  Help

= look_up (<identifier={<exprassion=) ), N
DTHERWISE;
END_FUNC_SPEC

FUNC_SPEC

type_eq : idtype = <typelist= -» <types

type_eq(tl, £2) = ((tl <> undef) =nd (<expression= <> undef)) and (tl = t2);
END_FUNC_SPEC

Templateof a —= || femma=

<identifier=: SYN DESG <identifier> = <basictype= -» <hasictype=.
macro tree __| (%< commments %)
<identifier=i{<z <identifier=>, <identifier=) = <mac_rights;
transducer L — || =o e
END_PROBRAM SPL
¢ PLACEHOLDER INPROGRAM } 7
= i
T
Comment OFFI
=
¢ Fead omeMoNamesSPL.nnm Context: optionalComment
1

Figure 8: Part of the NoName specification of SPL: one step later as shown in
Figure 7.

3.2 The online help of the editor

The online help of the editor offers support to the complete NoName environ-
ment. There are help functions to every executable command as, e.g., the file
handling commands which can be found under the menu item File. Further-
more all transform buttons are described in detail. Let us show the online
help for the transform button MacTree which was used in the previous section.
To get this help page the item describe-transform of the menu Help has to be
selected. The browser eMosaic is started with a page in HTML (Hyper Text
Markup Language) format which contains references to all help pages of the
current enabled transforms buttons. As mentioned before we select the help
page for the transform button MacTree. The result is shown in Figure 9. Un-
derlined text phrases of the document are links which refer to other related
topics. Here the underlined word synthesized 1s a link which refers to the topic
synthesized functions. Note that all help pages for transform buttons consist of
the following items where some of them may be omitted:

e USAGE:
Describes which code is generated if we click the corresponding transform
button.

e DESCRIPTION:

Gives further details to the transform button.

e LITERATURE:

Refers to other documents for further information on this topic.

14
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N MAC Tree

File Edi# MNavigate ORA Windows Heip

< URL: IIfiIe:fﬂhomefl\lol\lamefdocfhtm\ftransform—MacTree.hlmI g
Al

MAC Tree

USAGE:

If you click the MAC Tree button, then the following code is generated:
(% <comment> %)
BEGIN_MAC
{% <comment> %)
<identifier>: S3¥YMN DESC <identifier> z <basictype> -> <basict
{% <comment> %)
<identifier»i{<z:<identifier>>, <identifier>) =<top_right>;
END MRC

DESCRIPTION:

Is used to generate the skeleton of a macro tree transducer specification.
Ag usual the places where comments can be written, are given by the lines
{% <comment> %).Between BEGIN_MAC and END_MaC the placeholder for a

declaration line of the form
<identifier>: 2YN DESC <identifier> xz <basictype> -> <basicty

and a definition line of the form

<identifier>i{<z: <identifier>>, <identifier>) = <top_right>;
is inserted. The keyword svii DEsc marks a function ag synthesized /
= I -

Figure 9: The NoName online help for the MacTree transform button.

o EXAMPLE:

Pictures the usage of the transform buttons.

e ATTENTION:

Gives hints for important peculiarities.

e SEE ALSO:

Links to other similar transform buttons.

Moreover our online help contains references to the language description of No-
Name [EGH"94a] and to the manual for the NoName programming environment

[EGH*94b].

3.3 Views

The NoName environment supports four different views: the baseview and the
views miranda, decl, and clickpoint. The baseview shows the program in the
standard view as shown in Figure 7 and 8. The miranda view presents NoName
programs in miranda syntax. The decl view only shows the declarations of a
NoName program and the clickpoint view marks all positions where templates
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can be inserted. Views can be shown simultaneously, e.g., the baseview and
the miranda view can be shown in two different buffers at the same time. Note
that changes made in one view are adapted in the other views immediately.
Consequently, with slight modifications the NoName editor can be expanded in
such a way that programs can also be written in miranda syntax. For more
information see [EHM95].

3.4 Database connections

The NoName programming environment includes a relational mSQL database
(cf. [Hug96]) to administrate constructs of NoName programs interactively. To
use the database we have to open the connection to it with the help of the
item db-connect of the menu item NoMIS. The database itself allows to retrieve,
store, and delete specifications of data types, algebraic data types, functions,
and tree transducers as well as templates of such specifications (see the items
db-retrieve, db-store, and db-delete). Each saved construct is determined by a
name and a version and it can be accompanied by a comment. Search criterions
called topics simplify the administration of constructs. They are determined by
their name (comments to describe them more precisely are allowed). We can
create new topics, delete them, or view all topics (see the item topic-handling).
Topics can be associated to constructs and vice versa. The item db-output allows
the user to generate different LATEX-files which give an overview about stored
data in the database. The following files can be generated:

e constructs.tex: Gives an overview over all stored constructs.
e topic.tex: Gives an overview about all topics.
e assign.tex: Lists all associations between constructs and topics.

We use the item db-disconnect to end the connection with the database and
return to the NoName programming environment. If we use the item db-exit-all
we disconnect the database and close the NoName programming environment.

For a complete description of the database connection see [Miil95]. There,
the backgrounds, the basics, the implementation, and the usage of the database
etc. are described in a very detailed form. A lot of examples complete the
description in that document.

3.5 Transformations

In Section 3.1 we have described some basic transformations to refine templates.
Now we present more powerful transformations which allow complex code mod-
ifications. Since the class of tree transducer is well structured, many theoretical
results are known for this class (cf., e.g, [Eng75, Eng77, Fil81, Eng80, CF82,
EV85, EV86, EV88, FHVVI3, KV94]). Some of them are realized in the No-

Name programming environment. With the help of transformations it is possible
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to transform one kind of tree transducer into another kind of tree transducer,
e.g., a modular tree transducer can be split into several top-down and macro
tree transducers; hereby external functions are resolved, context parameters are
substituted, and simultaneous recursion is eliminated (the underlying technique
can be found in [Kiih90]).

Obvious syntactic transformations from one class into the other are enabled
if the conditions pictured in the following table are given.

Furthermore it is possible to improve the efficiency of the underlying program
by applying the tupling strategy to macro tree transducer (cf. [MV95]). Indeed
this tupling strategy is a combination of some transformations which are based
on the idea to avoid recomputations of values and multiple traversals of the
input argument. This transformation is fully automatic and it is offered with
the transform button tupling when a macro tree transducer is marked.

To support the programmer in the usage of tree transducers other helpful
transformations are integrated (cf. [Ern95]), e.g., the necessary left-hand sides
of tree transducer definitions can be inserted automatically.

To simplify the programmers work several transformations exist as, e.g., the
transform button PM -> IF which allows to change the distinction of cases by
pattern-matching into TF-clauses.

Now let us explain helpful transformations of tree transducers by an ex-
ample. We demonstrate the usage of the transform buttons Create Defs and
Make Compact with the following template of the macro tree transducer from
Section 2.3 (page 9).

BEGIN_MAC
envir: SYN DESC decl x env -> env;
check: SYN DESC stmt x env —> BOOLEAN.
END_MAC

If the functions of a tree transducer are completely declared as shown above,
then it is possible to determine the corresponding definitions except their right-
hand sides because of the restricted syntax of tree transducers. More precisely
it is known that for every constructor function equations must exist of the form:

funetionname (<z:constructor>) = right-hand side

Clicking the transform button Create Defs generates these equations automati-
cally and the result is as follows:

BEGIN_MAC
envir: SYN DESC decl x env -> env;
check: SYN DESC stmt x env —> BOOLEAN.
envir(<z:VarDefList>, y1) = <mac_right>;
envir(<z:VarDef>, y1) = <mac_right>;
check(<z:Assign>, yl1) = <mac_right>;
check(<z:Compound>, y1) = <mac_right>;
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check(<z:StmtList>, y1) = <mac_right>;
END_MAC

This can also be done by refining templates by hand. Hereby the case may arise
that the functions of a tree transducer are not defined compactly, that means,
it is not guaranteed that the function equations are defined in the right order
like shown in the following example:

BEGIN_MAC

envir: SYN DESC decl x env -> env;

check: SYN DESC stmt x env —> BOOLEAN.

envir(<z:VarDef>, rho) = <mac_right>;

check(<z:Assign>, rho) = <mac_right>;

check(<z:Compound>, rho) = <mac_right>;

check(<z:StmtList>, rho) = <mac_right>;

{ NOT COMPACT } envir(<z:VarDeflList>, rho) = <mac_right>;
END_MAC

The error message { NOT COMPACT } shows that this tree transducer is not
defined compactly, i.e., the program is not correct. If the actual tree transducer
1s marked, then this error can be corrected automatically with the help of the
transform button Make Compact:

BEGIN_MAC
envir: SYN DESC decl x env -> env;
check: SYN DESC stmt x env —> BOOLEAN.
envir(<z:VarDefList>, rho) = <mac_right>;
envir(<z:VarDef>, rho) = <mac_right>;
check(<z:StmtList>, rho) = <mac_right>;
check(<z:Compound>, rho) = <mac_right>;
check(<z:Assign>, rho) = <mac_right>;
END_MAC

For more information cf. [Ern95].

3.6 Graphical support

The NoName programming environment supports a graphical representation of "
NoName programs. To use this feature select the item Enable Graphical Support ‘
from the menu item Options. An extra window is opened in parallel to the AR
NoName editor to show the syntax tree of the corresponding program. All
modifications in this program are shown immediately in the syntax tree and the

actual selection is highlighted (see Figure 10).
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Figure 10: Part of the syntax tree of our SPL program.

3.7 Compilers

NoName offers two different compilers: The NoName compiler and the miranda
compiler. As we have described in Section 3.3 the miranda view shows a No-
Name program as miranda program. By this method it is possible to evaluate
NoName expressions with the help of an integrated miranda compiler by trans-
forming them also in miranda expressions. More precisely, for the evaluation
of a concrete expression expr we select the menu item Execute Miranda from
the menu Extra. A dialog box is opened where the user can type in expr. By
selecting the Start button, expr is automatically transformed in a miranda ex-
pression expr’ and evaluated with the associated miranda program. The result
is back transformed to NoName and shown in the message pane. This process
is pictured in Figure 11. Most parts of NoName programs are easy to translate,
except tree transducers and different evaluation strategies because Miranda does
not support them. So each tree transducer is represented in the corresponding
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Figure 11: The Miranda compiler.
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Miranda program as set of functions and given evaluation strategies are ignored.
For further information see [EHM95].

At the time being the NoName compiler which is based on a runtime stack
machine can only evaluate first-order NoName programs (that means, NoName
programs without higher-order functions). The evaluation can be started by
selecting the menu item Execute NoName. For detailed information see [Hou95].

3.8 Conclusion

In this section we have presented the NoName programming environment with
all its features: The integrated online help, the different views, the database con-
nection, the transformations with their various functions, the graphical support
to show the syntax tree of a NoName program, and the different compilers. A de-
tailed description of the programming environment can be found in [EGHT94a]
and further background information is enclosed in the quoted articles.

4 Further research topics

After having described the language NoName and the programming environ-
ment of NoName, we give an overview about other desirable features.

One major point is to introduce the concept of lists in NoName. It would
be useful to have an extra notation for lists.

Furthermore we want to support the concept of polymorphism, that means,
a function which is required for different data types should be implemented only
once with the help of type variables. Note that the introduction of polymor-
phism causes great changes in the NoName programming environment and in
the underlying type checker for NoName.

Obviously some of the existing features should be generalized. For exam-
ple we want to expand the possibility to correct syntactic and semantic errors
automatically. Clearly this can not be done for all errors which can occur in a
program.
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Other program transformation techniques could be senseful as, e.g., defore-
station ([Wad90]) and partial evaluation ([DGT96]), and should be integrated
in the NoName editor. The ability to compare and test transformation tech-
niques, a possibility to protocol the number of evaluated function calls, and
other measure criteria shall be introduced.
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