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1 Introduction

This paper describes a problem set for automated theorem provers taken from
a KIV case study in software verification. The goal is to prove 45 consequences
of the axioms specifying the data type of finite enumerations. We present

— a structured algebraic specification of finite enumerations with 102 axioms.

— 52 theorems, 45 of which can be proved without induction (some of them
rely on the 7 inductive consequences)

— results for the 5 provers Otter, Protein, Setheo, Spass and s74P in two ver-
sions, with and without an axiom reduction preprocessing step ([RS97])

* This research was partly sponsored by the German Research Foundation (DFG)
under grant Re 828/2-2.
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Test files are available for Otter, Protein, Setheo, Spass (s74P can be called di-
rectly from KIV) and also in the common syntax of the DFG-Schwerpunkt “De-
duktion” [RH96]. Section 2 describes the specification of the datatype. Section
3 gives a listing of the available axioms and Section 4 contains the theorems to
prove. Section 5 describes the test scenario, and Section 6 gives our experimental
results.

2 The Datatype of Finite Enumerations

The set of theorems deals with the datatype of finite enumerations. These are
bijections from a finite subset of data elements to an initial segment [0, ..., n] of
the natural numbers. Actually, the specification of enumerations was part of a
larger KIV case study on the verification of depth-first search on graphs. There
the data type was used to enumerate a set of nodes.

Enumerations can be constructed by () (the empty bijection), and by en ¢ d
adding a data element d (with fresh code number) to the enumeration en. Adding
an element twice has no effect. The size function # en returns the number
of elements recorded in the enumeration, and the predicate d € en tests for
membership. The selector num_of(d, en) returns the number of the element d in
en, and el_of(n, en) gives back the element number n in en. Both operations are
unspecified if d € en or if n > # en, respectively. Finally, the operation en © d
removes the element d and its code number from the enumeration (if there is
such an element). In addition all code numbers greater than num_of(d, en) are
decremented by one in order to avoid gaps in the range of en © d.

Eg.foren =0 ® a ® b & ¢ we have num_of(a,en) = 0, num_of(b,en) = 1,
num of(c,en) = 2, num_of(a,en © b) = 0 and num_of(c,en © b) = 1.

Specifications in KIV ([RSS95],[Rei95],[RSS97]) are structured algebraic spec-
ifications. They are built up from elementary first-order theories with the usual
operations known in algebraic specification: union, enrichment, parameteriza-
tion, actualization and renaming. Their semantics is the class of all models
(loose semantics). Reachability constraints like “nat generated by 0, +1” or
“list generated by nil, cons” restrict the semantics to term-generated models.
The constraints are reflected by induction principles in the calculus for theorem
proving used in KIV. The structure of a specification is visualized as a specifi-
cation graph. Roughly, each arrow in such a specification graph indicates that
one specification is based upon the other (for formal details see [Rei95]).

Fig. 1 shows the specification and its graph for finite Enumerations: Specifica-
tion NatBasic describes natural numbers with zero (0), successor and predecessor
(postfix +1 and —1). It is written like an ML ([MTHS89]) datatype declaration.
The axioms listed in Sect. 3.1 are generated automatically (including the induc-
tion principle “nat generated by 0,+1”). Specifications Add and Sub enrich
NatBasic by addition an subtraction (written infix), Nat is their union. These
specifications are all taken from the KIV library. Therefore, in addition to the
axioms, they contain lemmas which can be used like axioms in the proofs of
theorems over finite enumerations. Elem declares the sort elem of parameter
elements of Enumerations. Enum and DelEnum specify finite enumerations.



DelEnum Elem =

specification
sorts elem;
variables d: elem,;
Enum end specification
Enum =
| Elem | | Nat | generic specification
parameter Elem
/ using Nat target
sorts enum;
| Add | | Sub | constants ) : enum;
functions
.@® . :enum X elem — enum ;
NatBasic num of : elem x enum — nat ;
el.of :nat x enum — elem ;
# . ! enum — nat
predicates . € . : elem X enum;
. variables en: enum,;
NatBasic =

axioms
enum generated by 0, @;
d€en —>endd=en,

data specification
nat = 0] .+1 (. —1 : nat);

variables m, n: nat; —~del
order predicates dieen®ded=d; Vd €en,
. < .:nat X nat; #0=0
. . )
end data specification ~d€en— #(en ® d) = (# en) +1,

- d € en = num-of(d, en ® d) = # en,
d # di = num-of(d, en ® di) = num_of(d, en),

Add. = ) d € en — el_of(num_of(d, en), en) = d
enrich N?«t with end generic specification
functions
.+ .:nat X nat — nat ; DelEnum =
axioms enrich Enum with
n+ 0 =n, functions
m.+n+1=(m+n) +1 . ©.:enum x elem — enum;
end enrich axioms
Sub — —-d€en —eneod=en,
ub = o d €en — #(en 5 d) = (# en) —1,
enrich NatBasic with di€eenodsd#di Ady Een

functions
. — .:nat X nat — nat;
axioms

d€enAdi Een
A num_of(d, en) < num_of(d;, en)
— num_of(di, en © d) = num-of(ds, en) —1,
m —0=m, deenAdi €en
m-—n +1=(m —n) -1 A num _of(d;, en) < num_of(d, en)
end enrich — num_of(di, en © d) = num-_of(ds, en),

end enrich
Nat =

Add + Sub
Fig. 1. The Example Specification



3 The Axioms

3.1 Axioms and Lemmas from NatBasic

Axioms:
ax-1:
ax-2:
ax-3:
ax-4:
ax-5:
ax-6:
ax-7:
ax-8:

Lemmas:

elim-pred:
lem-01:
lem-02:
lem-03:
lem-04:
lem-05:
lem-06:
lem-07:
lem-08:
lem-09:
lem-10:
lem-11:
lem-12:
lem-13:
lem-14:
lem-15:
lem-16:
lem-17:
lem-18:

n+l—-1=n
n+1=mny+1 < n=ng
0#n+1
n=0Vn=n-1+1
n<n

n<nyoAnp<ng —n<n
—n<0
no<n+l<n=nVn <n

m#0— (n=m-1++m=n+1)
0<n+n#0

m; +1 <my +1 < m; < mo
n#n+1

n#n+1+1
n—-141l=n+n#0
m<n4+l<-n<m
m+l<neom<nAn#Fm+l
n—-1l=n—-n=0
n<n-1—=-n=090

2 0+l1<n<n=0VvVn=0+1
- m<n-1—--m+1<n
m#0+1 > (m-1=0—m=0)
n—-1<n&n#0
m-1l<n—->-n<mAn#0
“n<m-—(-m-1<n-—-m=0)
m<n-—(-m-1<n—m=0)
m#0— (m-1<n++m<n+1)
m#0—-m-1+1=m

3.2 Axioms and Lemmas from Add

Axioms:
ax-1:
ax-2:
ax-3:

Lemmas:

ass:
com:
lem-01:
lem-02:
lem-03:

n+0=n
m+n+1l=(m+n)+1
n<noVn=mnVn <n

(m+n)+k=m+n+k
m+n=mn-+m

0+n=n
m+1l+n=(m+n)+1
m+n=m+k)+l+n=k+1



lem-04:
lem-05:
lem-06:
lem-07:
lem-08:
lem-09:
lem-10:
lem-11:
lem-12:
lem-13:
lem-15:
lem-16:
lem-17:
lem-18:

m+k<n+kéem<n
m+n=m+ken=k

m# (m + k) +1
n#0—->m+n—-1=(m+ n)l
m+n=(m+k)+l 4+l n=k+1+1
—m+n<m
m+n=n+1l<m=0+1
m+n=m<+<n=>0
m<n+m<+<n#0

k<mA-n<n —k+n<m--+n
-m+n#0 m=0An=0

k#0—= (- (k+m)-l1<n+ n<k+m)
m#0— (-(k+m)-l<n<+<n<k+m)
k+n=(k+m)+l - n=m+1

3.3 Axioms and Lemmas from Sub

Axioms:
ax-01:
ax-02:

Lemmas:

lem-01:
lem-02:
lem-03:
lem-07:
lem-08:
lem-10:
lem-11:
lem-13:
lem-14:
lem-15:
lem-16:
lem-17:
lem-21:
lem-22:
lem-23:
lem-24:
lem-25:
lem-26:
lem-27:
lem-30:
lem-37:
lem-38:

m-—0=m
m—n+1=(m — n)l

n—n=20

n+l-n=0+1

m-1—-—n=(m-—n)-1

m<n—-n-—n—m=m
"n<m-—n—n—m=m
n<mAn#0—-m-n-1=(m—n)—+1
-m<nAn#0—-m-—n-1=(m—n)+1
m<n—-n+l—-m=(n—m)+1
“n<m-on+l—-—m=(1n-—m)+1

- n<m-—=n+l-n—-—m=m+1
m<n-—-n+l—(n—m)l=m+1+1
m<n—-n+l-n-1-m=m+1+41
n<mAk<m-—->(m-n<m-ks& k<n)
n<mA-m<k—(m-n<m-—k+& k<n)
-m<nAk<m-o(m-n<m-—k<+ k<n)
-m<nA-m<k—os(m-n<m-—k<+ k<n)
n<mAk<m-—=(-m-n<m-—ké& —k<n)
n<mA-m<k—>(-m-n<m-—k+< —-k<n)
-m<nAk<m-—o(-m-n<m-—k<+& —k<n)
-m<nA-m<k—o(-m-n<m-k+ -k<n)
n<n—-—m-—n<m

n—-m=0—=-m<n

3.4 Lemmas from Nat

Lemmas:
elim:

- m<n—k=m-n+<m=k+n



lem-04:
lem-05:
lem-06:
lem-09:
lem-12:
lem-18:
lem-19:
lem-20:
lem-28:
lem-29:
lem-31:
lem-32:
lem-33:
lem-34:
lem-35:
lem-36:

(m+n)—n=m

m—n+n; =(m—n)—ng

(m+n)+1l —n=m+1

—n<n - (m-n)+m=n+m)—n
m<n—(n-m)l+m=n-1
-n<m-—>(n-m)+m=n

- n<m-—-m-+n-—m=n
n<n—@m-m)+m=mn+m)-—n
“k<m->(-k—-m<ne -k<m-+n)
“k<m-—>(k—m<n4+& k<m+n)
-m<n - (-m—-—n <n<+< -m<n-+n)
-m<n - (m—-—n <n+<m<n+mng)
-n<n > (-m<n-—n; < -m+n; <n)
n<n—(-m<n-n; < -m+n; <n)
-n<n - (m<n-—mn < m-+n; <n)
ni<n—(m<n-mn; < m+n; <n)

3.5 Axioms from Enum

Axioms:
ax-01:
ax-04:
ax-06:
ax-07:
ax-09:
ax-10:
ax-13:

d€en >endd=en
di€en®@ded=d; Vdi Een

#0=0

—d€en— #(en ® d) = (# en) +1

—d € en = numof(d, en ® d) = # en

d # di = num-of(d, en ® di1) = num_of(d, en)
d € en — elof(num-of(d, en), en) = d

3.6 Axioms from DelEnum

Axioms:
ax-02:
ax-03:
ax-05:
ax-08:
ax-11:

ax-12:

~d€en +enod=en

-deo

chEen@de;édl/\dlEen
d€en— #(en 5 d) = (#ix) —1

d € en A di € en A num_of(d, en) < num_of(d,, en) —
num-of(d;, en & d) = num_of(d;, en) —1

d € en A di € en A num_of(d;, en) < num_of(d, en) —
num-of(di, en © d) = num_of(d:, en)

4 The Theorems

Lemmas:
th-01:
th-02:

~d€ensd
deendd



th-03: d € en — num of(d, en) < # en

th-04: ~d€en —elof(#en,en®dd)=d

th-05: d#di Ad€enAd; € en — numof(d, en) # num_of(d;, en)
th-06: 0#endd

th-07: #en=0<en=10

th-08: - d € en = num_of(d, en) = num_of(d, 0)

th-09: —-dEenA—'doEenoAdgédoﬁen@d#eno@do
th-10: #O®d) =0+1

th-11: do#d A —=do €en = #((en ® d) ® do) = (#(en & d)) +1
th-12: —d€enA—-do€en— (en®dd=-¢en®dy < d=do)
th-13: en#@—)(ﬂ dl,enl.en:enl ddi A= ds Eenl)

th-14: d € en = num_of(d, en) # # en

th-15: n< #en— (3d dE€enAnumof(d, en) = n)

th-16: ~d€en An < # en — elof(n, en & d) = el_of(n, en)
th-17: n < # en — el of(n, en) € en

th-18: —d€en An < #en — elof(n, en) #d

th-19: n < # en — num_of(el_of(n, en), en) = n
th-20: n; < #en A nz < # en — (el-of(n1, en) = el_of(n2, en) > n1 = n»)
th-21: n#n An<#enAn; <#en— elof(n, en) # elof(ny, en)

th-22: en = enp <> # en = # enp A
(Vn.n < # en — elof(n, en) = el_of(n, enyp))
th-23: en = enp <> # en = # enp A
(Vd.d €en <> d € eng) A (Vd. num_of(d, en) = num_of(d, eny))
th-24: ~do€enAdo#d—> (en®dd)©Sdo=endd
th-25: do#dA-dp €en = #((en ©d) & do) = (#(en & d)) +1
th-26: do€enAdo#d—(ened)ddo=enod
th-27: do€enAdo#d—> (en®dd) Ddo=endd
th-28: ~do€enAdo#d—> (enod)Sdo=enod
th-29: do €en Ado #d — #((en d d) © do) = (F(en & d))-1
th-30: ~d€enAdo#d— #((en & d) © do) = (#(en © do)) +1
th-31: num of(d, en & d) = num_of(d, 0)
th-32: do # d — num of(d, (en & d) & do) = num_of(d, 0)
th-33: —~d; €en Ad#d; = numof(di, (en & d) & di) = #(en © d)
th-34: d € en = = # en < num_of(d, en)
th-35: = d € en — num_of(d, en © do) = num_-of(d, 0)
th-36: - d€enAd #d— numof(d, (en © do) ® di) = num_-of(d, 0)
th-37: - d€enAd #d— numof(d, (en ® di) © do) = num_-of(d, 0)
th-38: d#di > (enddi)od=(enod) & d
th-39: elof(n, en) € en A n < # en — num of(el_of(n, en), en) =n
th-40: delddd <d=d;
th-41: (enod)ed=enod
th-42: bod)od=>0
th-43:  fod=10
th-44: elof(0, 0 ® d) =d
th-45: #en=0+1— 0 & elof(0, en) = en
th-46: #en=0+1—> (d € en + d = el_of(0, en))
th-47: #en=0+1— (en =0 & d ¢ elof(0, en) = d)



th-48: #en =041 — elof(0, en) € en

th-49: #en =041 — en © elof(0, en) =0

th-50: ~d€en > (endd)oSd=en

th-51: #en=0+4+1 > (d€en+en=0dd)

th-52: —-dEenA—'doEeno—>(en@d:eno@doﬁen:eno/\d:do)

Remark: Of course, we could have split these theorems in two blocks, and
placed the theorems not using © in Enum, the others in DelEnum

5 The Test Scenario

5.1 Sequential Test Discipline

The proof of each of the theorems shown in Sect. 4 could be tried using the 102
axioms from Sect. 3. A far better strategy is the following: to prove theorem th-n
all the n-1 previously proved theorems as lemmas to the theory. Although this
enlarges the theory, the effect is positive: With the redundant 77 lemmas of Nat
and the discipline to add all previously proved test examples to the theory, the
success rate of the five provers was doubled (since proof lengths become much
shorter, and the number of proofs which require induction decreases).

The order of the theorems is generated such that it is compatible with the
partial order induced by the hierarchy of proofs in KIV (i.e. if the KIV proof of
a theorem T uses another theorem L as a lemma, then the number of L is lower
than that of T).

The sequential test discipline results in one input file for each of the 45
theorems to prove and for each of the 5 provers.

5.2 Axiom Reduction

The full number of axioms and lemmas in a specification

is usually quite large (here up to 153, several hundreds in many case studies).
Most of them are redundant for the proof of a particular theorem. Therefore we
have developed a reduction algorithm to find out irrelevant axioms in large spec-
ifications. It exploits the specification hierarchy and other properties of axioms.
It is described in [RS97]. Often the number of relevant axioms and lemmas can
be reduced drastically.

To study the effects of axiom reduction, for each of the 45 noninductive
theorems (and for each prover) another input file was generated for each prover,
which contains only the reduced set of axioms as computed by the algorithm.
This set depends on the signature, which occurs in the theorem:

— Case 1: The theorem does not contain any of ©, < or —1.

— Case 2: The theorem does not contain ©, but it contains the less predicate
or the predecessor (< or —1).

— Case 3: The theorem contains ©



Case 1 applies to theorems th-02, th-04 — th-14, th-23, th-27, th-40, th-44
— th-48, th-51 and th-52, case 2 applies to th-03, th-15 — th-22, th-34 and th-
39. Case 3 applies to the remaining theorems. Depending on the case, axiom
reduction computes for each theorem a set of relevant axioms:

— For case 1 the axioms from Enum and the theorems of case 1 with lower
number are relevant. Also the axioms ax-2 and ax-3 and the theorems lem-
03 and lem-04 from NatBasic, which mention neither < nor —1, are relevant.

— For case 2 the axioms from Enum and the theorems with lower number in
cases 1 and 2 are relevant. Also the axioms and theorems of NatBasic are
relevant.

— For case 3 only the axioms and theorems from Nat, Add and Sub can be
dropped. All axioms and theorems from NatBasic are relevant. Also all ax-
ioms from Enum and DelEnum, and all theorems with lower number are
relevant.

5.3 Input Syntax

Although each of the provers we tested has a different input syntax, a common
translation for symbols was used in the generation of the 90 input files. Since
most automated theorem provers cannot handle infix symbols or graphic sym-
bols, as they are used in KIV, the symbols of the previous sections had to be
translated to ASCII symbols (also some of the symbols are named differently in
the KIV case study than in this paper). The following table gives the translation
from the notation used here to the ASCII notation.

here ASCII|| here |ASCII|| here |ASCII||here|/ASCII
elem data ||— (infix)| jsub ||# (prefix)|jsizix || m | m
nat nat ||® (infix)|jaddix|| < (infix) | jls || ng | no
enum index ||© (infix)|jsubix| € (infix) | inx | en | ix
+1 (postfix)| jsuc || num-of | ix_of d d |leng| ix0
—1 (posfix) | jpre el.of | eloof n; nl || dy | dl
+ (infix) | jadd n n

6 Experimental Results with 5 Provers

6.1 The provers and their settings

All experiments were done on a SPARC 20 with Solaris 2.4. The provers were
given a time limit of 2 minutes for the proof time (excluding preprocessing).

Otter Otter (version 3.0.4,[WOLB92]) has a built-in equality predicate, but no
sorts. These were encoded by mapping terms ¢ of sort s to pairs mk(t,s),
where s is a constant. Otter was used with the settings of auto-mode, but
with the (negated) theorem to prove as the set of support (sos, see p. 552 of
[WOLB92]) and with binary resolution instead of hyper resolution (since the



latter is not complete when combined with sos). The settings are contained
in a file named ‘settings’. This file must be prepended to the input file, to
call Otter successfully. We also tried some other settings, but all resulted in
fewer provable theorems. E.g. in auto-mode, 19 resp. 26 theorems could be
proved without resp. with reduction. For th-48 auto-mode finds the rather
trivial two-step proof (application of th-46 and reflexivity) in 0.10 seconds,
while our setting only finds a complex proof in 138 seconds.

Setheo Setheo (V 3.3,[GLMS94]) can handle only clauses from an unsorted logic, and
has no built-in equality predicate. Therefore we had to use a standard algo-
rithm for encoding formulas as clauses. The resulting clauses are the same
as the ones that Otter generates, except that clauses {x # t, Ly, ...L1}
with x & Vars(t) are optimized to {Li[x < t], ...Li[x + t]}. Sorts were en-
coded as additional arguments to functions, similar to Otter, but dropping
the mk-function. The equality predicate therefore has arity 4 and was explic-
itly axiomatized. Setheo was used with the ‘-wdr’ option, which performed
significantly better than the ‘-dr’ option.

Protein Protein (v 2.12, [BF94]) was given the same input as Setheo. It was used
with the model elimination calculus, which gave the best results.

Spass Spass (v 0.55, [WGR96]) is a theorem prover for unsorted first-order logic
with equality. Since unary predicates are treated by special “sort” inference
rules we encoded sorts as unary predicates.

STAP TAP (version 4.0, [BHOS96]) is a theorem prover for full first-order logic with
equality. In a project together with the developers of sT4P on the integration
of interactive and automated theorem proving an interface between KIV and
4P has already been built. Therefore, in contrast to all other provers, it
was not necessary to generate separate input files for each theorem. Instead
sTAP could be called directly from KIV. The experiments with 74P benefited
from the fact, that KIV gives only a subset of the previously proved lemmas

to JTA4P.

6.2 The input and output files

Some of the theorems, namely th-03, th-07, th-08, th-13, th-15, th-22 and th-23
can only be proved by structural induction. Currently no input files are generated
(a later release may include the two goals for induction base and step), but the
theorems are used as lemmas. For any other theorem th-n, a file ‘vO-th-n’ with
the full set of axioms and a file ‘vk-th-n’ with the reduced set of axioms is
generated, where k is 4,3,1, if the theorem falls under case 1,2,3 (see Sect. 5.2)
respectively (for historical reasons). The files have suitable extensions .tme, .lop,
.cl, .in etc. for the provers. The output generated from the provers for input file
‘vk-th-n’ can be found in ‘res-vk-th-n’ for Spass and Protein. The output file
for Otter is ‘vk-th-n.out’, and for Setheo it is ‘vk-th-n.log’.

6.3 Proof Times and Success Rates

The following table gives the proof times (in seconds) for the automated theo-
rem provers. The results are given with (columns marked with red) and without
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axiom reduction. Lines marked with an exclamation mark have not been tried,
since the proof requires induction. The last column gives the number of inter-
actions, which were required in KIV to prove a goal. An exclamation mark in
this column indicates that the proof in KIV used induction (for th-19 and th-51
induction would not have been necessary). For th-14 the positions marked with
an ‘X’ refer to the fact, that it is not provable with the reduced set of axioms,
since it must be generalized to th-03, which requires the additional <-predicate.
The success rates are indicated in the bottom row. X' indicates how many of the
45 theorems could be proved with and without reduction for all the provers.

theorem||Otter| Otter |[Protein|Protein||Setheo|Setheol| Spass | Spass || s1P | PP [[KIV
red red red red red
th-01 0.03 | 0.02 || 0.00 | 0.00 0.99 | 0.40 — | 51.486.54|0.34|| 0
th-02 0.02 | 0.01 0.00 | 0.00 0.99 | 0.18 ([ 78.72| 0.23 |{0.31 {0.13 || 0
th-03 ! ! ! ! ! ! ! ! ! ! 0!
th-04 1.86 | 0.04 || 13.15 | 0.82 5.49 | 0.35 — 025 || — |209] 1
th-05 0.04 | 0.01 — 21.73 — | 0.84 ||53.10| 0.15 || — | — 2
th-06 0.01 | 0.02 0.00 0.02 1.01 | 0.18 1.07 | 0.13 — | 549 | 2
th-07 ! ! ! ! ! ! ! ! ! ! 0!
th-08 ! ! ! ! ! ! ! ! ! ! 0!
th-09 82.97| 10.96 — — — — ||97.98| 140 || — | — || 4
th-10 10.08| — 0.03 | 0.00 1.92 | 0.23 || 58.83| 0.28 || — |7.77| O
th-11 7.20 | 0.74 — 0.02 2.35 | 0.26 — 0.47 ||31.42| 181 O
th-12 0.42 | 0.81 0.07 | 0.03 1.08 | 0.25 [|60.07| 0.37 || — | — 0
th-13 ! ! ! ! ! ! ! ! ! ! 0!
th-14 0.01 X 0.18 X 1.97 X 46.40 | — — X 1
th-15 ! ! ! ! ! ! ! ! ! ! 3!
th-16 — — — — — — — — — | — 3
th-17 0.27 | 0.05 — — — — ||97.92|16.78 || — | — 1
th-18 0.15| 0.08 || 0.02 0.03 1.20 | 0.40 || 48.63 | 7.92 || 3.64|0.45| O
th-19 0.28 | 0.05 — — — 140.51 — 2083 || — 2!
th-20 — — — 8.42 11.41 | 0.49 — | 1787 || — | — 1
th-21 0.49 | 0.16 0.00 0.00 1.14 | 0.42 ||119.88/19.52 || — | — 0
th-22 ! ! ! ! ! ! ! ! ! ! 5!
th-23 ! ! ! ! ! ! ! ! ! ! 9!
th-24 1.00 | 0.86 || 0.48 | 0.27 1.31 | 0.68 — | 89.57| — |592] 0
th-25 0.16 | 0.16 || 0.05 0.02 1.31 | 0.63 ||108.33]| 56.43 || — [12.53]| 0
th-26 1.70 | 1.16 || 0.57 | 0.38 1.28 | 0.68 — | 7150 || — | — 0
th-27 0.42 | 0.16 0.02 0.00 1.26 | 0.31 |[117.92| 1.12 — | 141 O
th-28 0.19| 0.17 || 0.02 0.02 1.24 | 0.65 |/ 90.07 | 53.20 || 5.49|1.91| O
th-29 0.41] 0.31 0.05 0.02 1.32 | 0.70 — |86.52 || — |15.93|| 0
th-30 — — — — — — — — — | — 0
th-31 0.00 | 0.00 || 0.00 | 0.00 1.32 | 0.75 || 45.02 | 2815 || — | — 1
th-32 2.76 | 2.53 0.12 0.05 1.39 | 0.68 — [104.28]| 5.2 | 1.5 0
th-33 0.21| 0.20 || 0.05 0.00 1.32 | 0.70 — |56.23| — |0.65| 0O
th-34 31.50| 5.85 || 0.07 | 0.00 1.58 | 0.53 || 46.12| 9.22 || 5.57 | 1.06 || 3
th-35 0.16 | 0.15 0.12 0.07 1.35 | 0.68 ||104.48| 52.63 || 4.31 (0.72| 1
th-36 — |105.21}| 45.87 | 0.30 2.87 | 0.89 — 109.28||23.29| 0.67 || 0
th-37 23.29|21.27 || 0.13 0.05 1.31 | 0.74 — |105.13|| — |1.03 | 1




theorem| Otter| Otter ||Protein|Protein||Setheo|Setheol|| Spass |Spass JAP] AP [[KIV

red red red red red

th-38 — — — — — — — — — | — 11

th-39 0.36 | 0.17 || 0.00 | 0.02 1.35 | 0.48 ||109.79|22.95|| — | — 0

th-40 0.11| 0.03 || 15.50 | 0.42 7.94 | 0.51 — | 167| — | — 0

th-41 0.03 | 0.02 || 0.00 | 0.00 133 | 0.78 || 1.97 | 1.02| — | — 0

th-42 0.68 | 0.61 — — — | 11.07 — — — 123.47|| 4

th-43 0.01| 0.70 || 0.00 | 0.00 1.45 | 0.76 || 2.08 | 1.50 || — | 4.59 || O

th-44 — 1323 | 7.83 | 048 6.94 | 0.58 ||99.73 353 | — | — 1

th-45 — | 11.05 — — — — — [66.22|| — | — 1

th-46 — |105.09 — — 90.54 | 4.45 — 622 | — | — 0

th-47 36.18| 6.94 || 119.03 | 2.88 2.40 | 0.53 — 12.08]| — | — 0

th-48 1.19| — 0.00 | 0.00 1.38 | 0.34 ||53.22 293 || — | — 0

th-49 1.76 | 0.70 || 0.65 | 0.43 590 | 1.42 — — | — | — 1

th-50 — — — — — — — — | — | — 5

th-51 — | 21.60 — — — | 56.54 — 1947 || — |20.19|| 0!

th-52 12.29| — — — 117.15| — ||118.03| — — | — 5

X 35 36 30 32 34 36 22 37 9 | 21 || 52
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