
Theorem Proving in Large Theories�

Wolfgang Reif and Gerhard Schellhorn

Abt� Programmiermethodik� Universit�at Ulm� D����	� Ulm� Germany

Abstract� This paper investigates the performance of automated theo�
rem provers in formal software veri
cation� The challenge for the provers
in this application is the large number of �up to several hundred� axioms
in typical software speci
cations� Both the success rates and the proof
times strongly depend on how good the provers are able to
nd out the
few relevant axioms that are really needed in the proofs� We present a re�
duction technique for this problem� It takes the axioms of a theory and
a theorem and computes a reduced axiom set by eliminating as many
irrelevant axioms as possible� The proof search for the theorem then is
performed in the reduced set� Comparative experiments with
ve auto�
mated theorem provers show that with the reduction technique they can
prove more theorems than before� and were faster for those that could
be proved already without reduction�

� Introduction

The motivation behind this paper is the question� how can formal software veri��
cation bene�t from automated �rst�order theorem proving� To answer the ques�
tion we used the software veri�cation tool� KIV ��RSS	
�� �Rei	
�� �FRSS	
��
as a test environment� and did comparative experiments with �ve automated
theorem provers as dedicated subsystems for the non�inductive �rst�order goals
that showed up during proofs of speci�cation� and program properties
 The
�ve provers were Protein��BF	���� Otter ��WOLB	���� Setheo ��GLMS	���� �TAP
��BHOS	��� and Spass ��WGR	���
 The experiments were performed in the con�
text of a joint project� on the conceptual integration of interactive and auto�
mated theorem proving using KIV and �TAP as an experimental platform
 There�
fore� �TAP could be called from inside KIV� whereas for the other provers the
problems had to be transfered by hand

As a general result in the experiments we found that the automated provers
did not satisfy the expectations induced by the good results some of them nor�
mally get in standard benchmarks from the TPTP ��GSY	��� library
 In our
experiments either the success rate was rather low or the required time was
unexpectedly high

� This research was sponsored by the German Research Foundation �DFG� under grant
Re �
��
�
�

� between the research groups of �TAP and KIV at the Universities of Karlsruhe and
Ulm

One major reason for this behaviour is the large number of axioms in typical
software speci�cations
 Whereas TPTP problems only have a few axioms� typical
software speci�cations in KIV comprise up to several hundreds of axioms
 The
provers were misled or even got lost in the search space although the majority
of the axioms were irrelevant to the proofs under consideration
 We found that
in the context of large software speci�cations it is important to �nd out the
relevant axiom set �for the proof of a theorem� or at least a good approximation
to it

In this paper we present a reduction technique that takes a large theory and
a goal� and computes a reduced axiom set by �ltering out as many irrelevant
axioms as possible
 The proof search then is performed with the reduced ax�
iom set
 The reduction is independent from the actual prover and the calculus

Furthermore� it can be applied recursively during a proof to the subgoals and
sublemmas of the original theorem
 They often have progressively smaller sets
of relevant axioms than the theorem itself

To evaluate the reduction technique we repeated the original experiments
once more� but now with the reduced axiom sets
 In the largest example� the
original theory had
�� axioms
 The reduced axiom sets for the test examples
had around �� axioms

With the reduction the provers were able to prove more theorems than before

Furthermore� for those theorems that could already be proved without the axiom
reduction we got considerably shorter proof times

As a side e�ect it turned out that the susceptibility of the �ve provers to
the problem of large axiom sets is quite di�erent
 Furthermore� the experiments
shed some light on the question what makes one large theory more harmful than
another

In the next section we illustrate the problem with an example
 In section �
we present the reduction criteria and the assumptions about the speci�cation
structure
 The reduction procedure is explained in section �
 Section
 reports
on the experimental results� and section � draws some conclusions

� An Example

The example is a speci�cation of a single datatype and not of a whole software
system
 But it is su�cient to demonstrate the basic reduction criteria� and large
enough to cause some problems for the automated theorem provers

It deals with the data type of �nite enumerations
 These are bijections from
a �nite subset of data elements to an initial segment of the natural numbers
 An
example for an enumeration is the function which maps all customers queueing
for bread in a bakery to their position in the queue
 Further examples are map�
pings which associate unique keys to database entries� or enumerate the nodes
in a graph
 Actually� the speci�cation of enumerations was part of a larger KIV
case study on the veri�cation of depth��rst search on graphs

Enumerations can be constructed by � �the empty bijection�� and by en � d
adding a data element d �with fresh code number� to the enumeration en
 Adding

�

an element twice has no e�ect
 The size function � en returns the number
of elements recorded in the enumeration� and the predicate d � en tests for
membership
 The selector num of�d� en� returns the number of the element d in
en� and el of�n� en� gives back the element number n in en
 Both operations are
unspeci�ed if d �� en or if n � � en� respectively
 Finally� the operation en � d
removes the element d and its code number from the enumeration �if there is
such an element�
 In addition all code numbers greater than num of�d� en� are
decremented by one in order to avoid gaps in the range of en � d

Back to the bakery� In the early morning the situation in the bakery is
re�ected by �
 Then three customers arrive leading to the enumeration en �
��� � john� � mary� � peter� with num of�john� en� � �� num of�mary� en� �
�� and num of�peter� en� � �
 We have el of��� en� � mary and � en � �
 When
mary leaves the bakery� we get en� � en � mary� with num of�john� en�� � ��
and num of�peter� en�� � �

Enumerations can be implemented in various ways� depending on what oper�
ations are critical for e�ciency
 Possible implementations are duplicate free lists�
arrays� or hashtables �to speed up num of�

��� The formal speci�cation

With a little experience the above description of �nite enumerations can be di�
rectly translated into a bunch of axioms
 However� from the software engineering
point of view an amorphous list of formulas is a bad representation
 In the soft�
ware design process� the speci�cation is preceded by a careful problem analysis
identifying decomposable subproblems and their interrelations
 With the stan�
dard algebraic speci�cation language used in KIV� this information can be made
explicit in the speci�cation structure
 This is not only good software engineering
practice but also very helpful for automated deduction

The formal speci�cation of �nite enumerations is shown in Fig
 �
 It identi�es
seven speci�cation modules
 DelEnum is the toplevel speci�cation describing the
overall functionality of �nite enumerations over the parameter Elem
 It imports
the subspeci�cation Enum and enriches it by the axioms for� �called the� of the
enrichment�
 Enum speci�es the remaining operations for �nite enumerations

The constraint �enum generated by ���� gives a structural induction principle

The speci�cation is formulated relative to a standard speci�cation of natural
numbers �actually taken from the KIV library�� NatBasic is the freely generated
fragment of the natural numbers with � and successor succ� with additional pre�
decessor function pred and the ordering �
 It is written like an ML ��MTH�	��
datatype declaration for which the axioms can be generated automatically
 The
enrichments Add and Sub introduce addition and subtraction by recursive de��
nitions
 Nat is the union of Add and Sub

The speci�cation DelEnum �inclusive of all subspeci�cations� has �� axioms
that are directly given in Fig
 �
 � axioms are generated automatically for the
data speci�cation NatBasic
 Furthermore� the speci�cation Nat from the library
is associated with �� additional standard lemmas to improve arithmetical rea�
soning
 These are persistent over the lifetime of the speci�cation� and have been

�

proved long time ago once and for all
 Generally� the reuse of a formal library
speci�cation may include axioms that are relevant to one application but irrele�
vant to another
 For Enum we get altogether ��� axioms

As test examples we selected the
� proof obligations for DelEnum� that
showed up during a KIV case study on depth��rst search in graphs
 In a number
of large case studies we found that in order to prove theorem n� it is a good idea to
add all the n�� previously proved theorems as lemmas to the theory
 Although
this enlarges the theory again� the e�ect is positive� With the redundant ��
lemmas of Nat and the discipline to add all previously proved test examples to
the theory� the success rate of the four provers was doubled

��� Proving a goal

Now we want to prove the theorem

th��
� � en � � �� � � � el of��� en� � en

from our example theory
 In the test suite� th��
 was the �
th theorem
 Therefore
we had at this stage ��� �� ��� � ��� axioms in the theory
 Potentially all of
them could be used in the proof
 Actually an interactive proof in KIV used
only �� of them �� of the previously proved theorems� � axioms from the Enum�
speci�cation and two axioms from NatBasic�

Of course� it is impossible by syntactic considerations to �nd out exactly
which axioms will be relevant for a proof
 But already the structure of the spec�
i�cation allows us to reduce the set of relevant axioms and lemmas considerably�
as we will now show informally for the example
 A precise de�nition of the re�
duction criteria is given in sect
 �

First� we select the minimal subspeci�cation� whose signature comprises that
of the theorem
 In our case this is the speci�cation Enum� since the operation
� de�ned in DelEnum does not occur in the theorem
 Thereby
 axioms and ��
lemmas can be removed from the theory

Second� the arithmetic operations � and � are not required
 They are neither
used to de�ne any operation in the Enum speci�cation nor do they occur in the
theorem �this does not mean that Add and Sub are super�uous
 They could be
used for example in a superspeci�cation of DelEnum in a larger case study�

Removing all axioms and theorems for � and � saves additional � axioms and

� lemmas� which no longer must be passed to the automated theorem prover

Third� with the removal of � we have eliminated all axioms� which make use
of the predecessor function
 Since the theorem does not use it� and NatBasic
could be split into a speci�cation� which de�nes ��succ and an enrichment for
pred� we can also remove all axioms and lemmas which use the predecessor
function �this is not a special case� it is true for all destructors of datatype
speci�cations�
 Again this removes � axioms and �� lemmas from the theory

Finally� with a similar argument as for the predecessor function� the � axioms
and � lemmas for the � predicate can be dropped

After four reductions we are left with �� axioms ��� axioms from the speci��
cation� �� additional lemmas�� which may be relevant to the proof of the theorem

�

DelEnum

Enum

Elem Nat

Add Sub

NatBasic

� �

� �

��� �

� �

����mmm
mmm

mmm
mm

� �

� �

� �

� �

����nnn
nnn

nnn
nn

� �

� �QQQQQQQQQQQ ��

� �

� �

��� �

� �

NatBasic �
data speci�cation

nat � � j succ �pred � nat��
variables m� n� nat�
order predicates

� � � � nat � nat�
end data speci�cation

Add �
enrich Nat with

functions

� � � � nat � nat � nat �
axioms
n � � � n�
m � succ�n� � succ�m � n�

end enrich

Sub �
enrich NatBasic with

functions
� � � � nat � nat � nat�

axioms
m � � � m�
m � succ�n� � pred�m � n�

end enrich

Nat �
Add � Sub

Elem �
speci�cation

sorts elem�
variables d� elem�

end speci�cation

Enum �
generic speci�cation

parameter Elem
using Nat target
sorts enum�
constants � � enum�
functions

� � � � enum � elem � enum �
num of � elem � enum � nat �
el of � nat � enum � elem �
� � � enum � nat �

predicates � � � � elem � enum�
variables en� enum�
axioms

enum generated by �� ��
d � en � en � d � en�
� d � ��
d� � en � d 	 d � d�
 d� � en�
� � � ��
� d � en � ��en � d� � succ�� en��
� d � en � num of�d� en � d� � � en�
d �� d� � num of�d� en � d�� � num of�d� en��
d � en � el of�num of�d� en�� en� � d

end generic speci�cation

DelEnum �
enrich Enum with

functions
� � � � enum � elem � enum�

axioms
� d � en � en � d � en�
d � en � ��en � d� � pred�� en��
d� � en � d 	 d �� d�
 d� � en�

d � en
 d� � en

 num of�d� en� � num of�d�� en�

� num of�d�� en � d� � pred�num of�d�� en���
d � en
 d� � en

 num of�d�� en� � num of�d� en�
� num of�d�� en � d� � num of�d�� en��

end enrich

Fig� �� The Example Speci
cation

The set of relevant axioms was reduced by a factor of almost �
 Although� this is
not optimal �only twelve of them are actually needed� it makes a big di�erence
for automated theorem provers
 E
g
 Otter was not able to prove the theorem
with the full set of axioms within
 minutes
 With the reduced set of axioms the
time to prove the theorem was about �� seconds �a summary of the results for
all provers will be given in section
�

� Reduction Criteria

Speci�cations in KIV are built up from elementary �rst�order theories with the
usual operations known in algebraic speci�cation� union� enrichment� parame�
terization� actualization and renaming
 Their semantics is the class of all models
�loose semantics�
 Reachability constraints like �nat generated by �� succ� or
�list generated by nil� cons� restrict the semantics to term�generated models

The constraints are re�ected by induction principles in the calculus for theorem
proving used in KIV
 We treat them as �higher�order� axioms
 The structure of
a speci�cation is visualized as a speci�cation graph� like the one we have seen in
�g
 �

Structuring operations are not used arbitrarily in formal speci�cations of
software systems
 Enrichments �ESPEC � enrich SPEC by ��� where � con�
sists of a signature sig��� and axioms ax��� to be added� are supposed to have
the property of hierarchy persistency
 This property says that every model of
SPEC can be extended to a model of ESPEC �therefore such enrichments are
sometimes also called model conservative�

Hierarchy persistency of an enrichment implies safe reduction of the set of
necessary axioms to prove a theorem �� Every theorem � that holds in �all models
of� ESPEC and uses only the signature de�ned in SPEC� already holds in SPEC

Without loss of generality we can also assume sig��� �� � in the following� since
otherwise the axioms in ax��� would already be theorems over SPEC

Hierarchy persistency cannot be checked syntactically� but there are su�cient
criteria� e
g
 de�nitional extensions �see e
g
 �Far	��� and recursive de�nitions
over free datatypes are easily proved to be hierarchy persistent
 More generally�
if the functions and predicates de�ned in the � of an enrichment enrich SPEC
with� can be implemented by abstract programs� which use only the operations
de�ned in SPEC� terminate on any input and satisfy the given axioms� the
enrichment is hierarchy persistent
 E
g
 function � de�ned in DelEnum could be
implemented by a program which given an enumeration en and an element d to
delete� would construct the result by inserting �using a loop from � to � en� all
elements of en except d in a new empty enumeration

The criterion of hierarchy persistency for enrichments can be used to derive
criteria for the safe reduction of axioms for all other types of speci�cations� A
generic speci�cation like Enum must be a hierarchy persistent enrichment of the
parameter
 Nothing is required for renamings� and actualized speci�cations must
be removed from the speci�cation graph by actually computing the instantiated
speci�cation �this may duplicate some speci�cation structure�

For a union speci�cation SPEC� � SPEC� the criterion required is that the
operations common to SPEC� and SPEC� are de�ned in a set of subspeci�cations

�

SP ��

 SPn of both SPEC� and SPEC�� which is shared in the speci�cation
graph and that both the enrichments of SP � �

 � SPn to SPEC� and to
SPEC� are hierarchy persistent
 In this case the union is said to have explicit
sharing� and the proof of a theorem � with sig��� 	 sig�SPECi� requires only
the axioms of SPECi �i�����

Structured Speci�cations in which every enrichment is hierarchy persistent
and every union has explicit sharing are called modular
 An example is the
speci�cation from the last section given in �g
 �
 All enrichments are hierarchy
persistent� and the union speci�cation Nat has explicit sharing� The common
part of Add and Sub is the speci�cation NatBasic shared by both speci�cations

Modular speci�cations are the usual case in software development�
 Often
even the structure of an implementation by a system of software modules �for a
formal de�nition of such implementations� as they are done in KIV� see �Rei	
��
follows the structure of the speci�cation
 The speci�cation is then called an
architectural speci�cation ��Mos	���

For a modular speci�cation we can now prove the following criteria for the
reduction of axioms�

� minimality criterion� To prove a theorem one never needs more axioms than
those of the minimal subspeci�cation MSPEC whose signature covers the
signature of the theorem
 This criterion was applied to the example theorem
in section � to eliminate the axioms of DelEnum
 In practice� this criterion
usually does not lead to much reduction� since usually theorems are formu�
lated over the minimal subspeci�cation

� structure criterion� If the enrichment ��enrich SPEC by ��� is a subspeci��
cation of the minimal speci�cation MSPEC� such that the operations from�

are neither used in speci�cations above the enrichment nor in the theorem�
the axioms from � can be dropped
 This criterion was applied to eliminate
the axioms for � and �

� speci�cation criterion� For elementary speci�cations the criteria described
above can also used to determine� if an operation de�ned in it is a hierar�
chy persistent enrichment of the rest
 This criterion was applied to split the
datatype speci�cation NatBasic into a basic speci�cation NatB and enrich�
ments for the predecessor function and the less predicate

� recursion criterion� The three previous criteria can be applied recursively

This criterion was used to eliminate the axioms for the predecessor function

By applying the four criteria on a modular speci�cation� a theory can be
determined� over which the theorem can be guaranteed to hold� if it holds at
all
 Even if there are some non hierarchy persistent enrichments in a structured
speci�cation� the axiom reduction is still a very good heuristic

For actually proving theorems� we use the automated theorem provers as �or�
acles�� which relieve us� if successful� of some interaction in KIV
 The approach
is correct� but not complete� since we are dealing with inductive theories and
reachability constraints such as �Nat generated by ��succ� are not available to

� The situation is di�erent in mathematics� consider e�g� the enrichment of rings to

elds� which is not hierarchy persistent

�

the automated theorem provers
 In rare cases� an inductively provable theorem
may even require to be generalized to a theorem� which requires a larger theory
�the only theorem in our example is th��	� which must be generalized to th����
which requires additionally the ��predicate�

� The Reduction Algorithm

With the reduction criteria from the previous section� a set of relevant axioms
RelAx�SPEC��� for a structured speci�cation SPEC and a theorem � can be
computed
 Of course� �relevant� axioms are a superset of those actually needed

In practical applications� there will be a lot of theorems ��� ���

which
have to be proved over the same speci�cation SPEC
 Therefore� it is a bad idea
to start the computation of relevant axioms and lemmas for every theorem anew

Instead� the algorithm we present in the following splits computation of
RelAx�SPEC��� in two phases� In the �rst phase� speci�cation structure is com�
piled to information Comp�SPEC� � fInfo�Ax�� Ax � ax�SPEC�g for every
axiom of SPEC
 This phase is independent of the theorem to prove� and can be
computed when the speci�cation and its structure are known

In the second phase this information is evaluated to give the set of relevant
axioms as Eval�Info��� for a theorem � to prove
 We will see that Comp does
the main computation� Eval is a simple iteration function over all axioms

To de�ne the algorithm let us �rst state two theorems about modular speci�
�cations�

Theorem�� A modular speci�cation enrich �enrich SPEC with ��� with
�� is semantically equivalent to enrich �enrich SPEC with ��� with �� and
the latter is also a modular speci�cation� if the operations de�ned in �� are not
used in the axioms of ���

Theorem�� A modular speci�cation �enrich �SPEC� � SPEC�� with �� is
semantically equivalent to �enrich SPEC� with �� � SPEC� and the latter is
also a modular speci�cation� if the operations de�ned in � are not used in the
axioms of SPEC��

These two theorems allow to view the removal of irrelevant axioms as a
process of �lifting irrelevant �s up in the speci�cation hierarchy�� until they
are outside the minimal subspeci�cation relevant to the theorem
 E
g
 in our
example two applications of the second theorem allow us to restructure enrich
Elem � Add � Sub with �Enum to �enrich Elem with �Enum� � Add � Sub
��Enum is the enrichment of Enum�

Examining the consequences of the two theorems� we �nd� that the original
structure of a modular speci�cation is completely irrelevant
 If we view basic
speci�cations as enrichments of an empty speci�cation� all that matters are the
�s of its enrichments
 These can be put together arbitrarily without changing
the semantics as long as the resulting speci�cation is syntactically valid �the
proof is by induction on the number of �s�
 This fact can be exploited to de�ne
a certain �normal form� of modular speci�cations� in which all irrelevant parts
of subspeci�cations have been �lifted up�

�

To de�ne this normal form� we �rst compute for an enrichment enrich SPEC
with � the minimal necessary set sub��� of ��s� which must be contained in
SPEC� such that the enrichment is syntactically valid
 sub��� can be computed
by de�ning �read� �� is directly necessary for ���

�� �� � �
 sig���� � sig�ax���� �� � and �� �� �

If � is the transitive closure of �� we have

sub��� � f��� �� � �g

Setting max�sub���� to be the set of maximal elements in sub��� with re�
spect to �� we can now de�ne the normal form� which is semantically equivalent
to the original speci�cation�

De�nition�� Let SPEC be a modular speci�cation
 Then for every � in SPEC
the normal form of SPEC contains an enrichment enrich SPEC� �

 � SPECn

with �� such that SPEC��

 � SPECn are the enrichments for the elements in
max�sub����
 Additionally the normal form contains a toplevel union speci�ca�
tion for all maximal �s from SPEC with respect to �

Only the maximal elements in sub��� are needed in SPEC��

 � SPECn�
since the others are already contained in subspeci�cations of these speci�cations

The following theorem holds�

Theorem�� The normal form of a speci�cation SPEC is unique up to reorder�
ing of arguments in the union speci�cations� It is semantically equivalent to
SPEC�

For the example speci�cation from section � the speci�cation graph of the
normal form is shown in Fig
 � �ignore speci�cation Enum � Less for the mo�
ment�
 Before computing the normal form NatBasic has already been split into
a basic speci�cation NatB and two enrichments with less predicate �speci�cation
Less� and predecessor function �Pred� according to the speci�cation criterion of
section �

The normal form is used to determine the set of relevant axioms as follows�

Theorem�� Let SPEC be a modular speci�cation and � a formula with signa�
ture sig���� Set S��sig���� 	
 f� 	 sig��� � sig��� �� � g �the set of all��s which
de�ne some signature used in �� and S�sig���� 	
 sub�S��sig����� � S��sig����
�their subspeci�cations in the normal form of SPEC�� Then � holds over SPEC�
if it already holds in the union of all enrichments with �s in S�sig���� in the
normal form of SPEC� This speci�cation is minimal �i�e� there are theorems
which will need the axioms of every ���

Note that S�sig���� is just the minimal set of �s whose signatures include
sig��� and which can be put together to a speci�cation

As an application consider the theorem

	

DelEnum � Add � Sub

DelEnum

Enum � Less Enum � Pred � Less

Enum Sub

Elem Add Less Pred

NatB

�

� �

� �

��

����������������������

����������������������������

� �

� �

��� �

� �

� �

� �

��

�
�
�

��

L
L
L
L
L
L
L
L
L
L
L

� �

� �

��hhhh
hhhh

hhhh
hhhh

h

��

JJJJJJJJJJJJJJJJJJ		

� �

� �MMMMMMMMMMMMMMMMMMMMM��

��mmm
mmm

mmm
mm

� �

� �

��� �

� �

� �

� �VVVVVVVVVVVVVVVVV

� �

� �

��

� �

� �

��iiii
iiii

iiii
iii

� �

� �

��� �

� �

Fig� �� Speci
cation in normal form

th��	� n � � en � �num of�el of�n�en�� en� � n

which is the dual theorem to the last axiom

ax���� d � en � el of�num of�d� en�� en� � d

from speci�cation Enum
 It contains symbols from �Enum �the � of the enrich�
ment Enum� and �Less� so S��sig�th��	�� � f�Enum� �Lessg
 The only spec�
i�cation below Enum and Less in Fig
 � is NatB� so S�sig�th��	�� � f�Enum�
�Less� �NatBg
 According to theorem
� � is therefore provable over the sum
of Enum� Less and NatB
 Of course we can remove non maximal elements from
this sum� so � is provable in the union speci�cation Enum � Less� which is
added in Fig
 � with a double frame
 For our example theorem th��
 from sec�
tion �� things are easier
 We have S��sig�th��
�� � f�Enumg and S�sig�th��
��
� f�Enum��NatBg� so th��
 is provable with the axioms of those two �s� as
was stated informally in section �
 Note that for a theorem � the sets S��sig����
and S�sig���� can be computed as the union of sets S�ffg�� for every symbol f
from sig���

With the computation of the minimal speci�cation� in which a theorem �

should be proved� we have answered the question� which axioms may be relevant
for the proof a theorem
 For a previously proved lemma� the situation is slightly
di�erent� since a lemma is not necessarily connected to one of the �s
 E
g
 th��	
is proved over the union of Enum and Less
 But in fact� the answer is now easy

��

to �nd� Lemma � may be relevant for a proof of �� if and only if it holds over
the axioms of S�sig���� �consequences of irrelevant axioms are also irrelevant�

Since it holds over the axioms in S�sig����� we must test� whether S�sig���� 	
S�sig����
 This test can also be used for axioms
 To gain e�ciency� it su�ces
to use the maximal elements from S�sig���� on the left side in the subset�test

For an axiom � de�ned in a �� max�S�sig����� usually just contains this �
�otherwise� if the axiom does not use any symbols from sig���� it is redundant�

Now we are ready to de�ne the two phases of an algorithm� which computes
the relevant axioms and lemmas for the proof of a theorem� as we announced in
the beginning of this section�

In a �rst phase� which is done as soon as the speci�cation and its structure
become known� function Comp computes

� all �s from the speci�cation structure
� the ���relation on speci�cations
� its transitive closure �
� S�ffg� for every symbol �sort�function and predicate� of the speci�cation
� Info��� �� max�S�sig����� for every axiom �

Info��� is attached to every axiom �

In the second phase� on an attempt to prove theorem �� function Eval �rst

computes S�sig���� �using the precomputed information on S�ffg� for every
symbol f�
 The relevant axioms then are

Relax��� �� f �� Info��� 	 S�sig���� g

After a successful proof of theorem �� we can add it to the now available
axioms� and attach Info��� �� max�S�sig�����

This algorithm can still be improved by two further observations�

� An inference step between an axiom � and a theorem � will require� that
sig��� � sig��� �� � �at least in all calculi for theorem proving� we know�

� A theorem � is always formulated over the union of the enrichments in
max�S�sig����
 Its proof will almost always make use of axioms of these �s�
which are the uppermost in the speci�cation graph in normal form �otherwise
parts of the theorem could be dropped�

The idea is to add the axioms incrementally� with topmost axioms in the
hierarchy speci�cations added �rst� others lower down in the hierarchy added
later
 This is done as follows� Instead of computing the full set S�sig����� for
a theorem ��� we just compute S��sig������ the enrichments which de�ne some
signature used in �
 With these �s a �rst approximation

Relax����� �� f � � sig���� � sig��� �� � for every � � Info���g

of the relevant axioms can be computed
 Adding these axioms as preconditions
to the goal to prove� i
e
 setting �� �� Cl��Relax������ � ��� where Cl� is
universal closure� we can either compute a second approximation

��

Relax����� �� f � � sig���� � sig��� �� � for every � � Info���g

immediately �and iteration will �nally yield all relevant axioms�� or �rst try some
deduction steps before considering the axioms of the next approximation
 Often
the theorem will already be provable with the axioms from Relax�
 In fact� for
the example theorem th��	� Relax� will include the necessary lemma �th��
� and
axiom �ax���� for the proof� but not the axioms from NatB

Iterated computation of relevant axioms is even more bene�cial when a cal�
culus is used for theorem proving that has a notion of �subgoals� �like sequent�
or tableau�calculus�
 Then the second iteration of computing relevant axioms
may use the subgoals produced by the inference steps instead of ��� with the
expectation that even fewer axioms should be relevant for subgoals with smaller
signature

� Experimental Results

To evaluate the results of axiom reduction we �rst tried the automated theorem
provers Setheo� Otter� Spass and �TAP on
� theorems de�ned over the DelEnum
speci�cation from section �
 No theorem was invented for this case study� all
were drawn from the case study on verifying depth��rst search on graphs
 A
full listing of the theorems� settings of the provers and the results can be found
appendix A

To summarize� all provers bene�ted from the reduction of axioms� but there
were enormous di�erences
 Very signi�cant improvements were made by Spass
and �TAP � Otter and Setheo bene�ted less

A possible explanation for the good behaviour of Otter and Setheo is� that it
concentrates proof search on the distinguished goal clause
 E
g
 if in the proof of
th��� we intentionally take a wrong goal clause �th���� the time Setheo needs to
�nd a proof increases from �
� seconds to ��� seconds �and this result is typical�

As a second case study we considered
� simple non inductive �rst�order
theorems that showed up during the veri�cation of a Prolog compiler in KIV
��SA	���
 These are formulated over a speci�cation which is built up from a lot
of standard datatypes �lists� tuples� pairs etc
� in various di�erent instantiations

Therefore the speci�cation structure contains many di�erent sorts� but the hi�
erarchy of speci�cations is relatively �at
 The theorems are easier than the ones
found in DelEnum example� but the initial set of axioms an lemmas is much
larger �ca

���
 We found that Spass and �TAP were initially only able to prove
� resp
 	 theorems
 Setheo could prove ��� Otter �� theorems
 The situation
changes� when instead of the full set only the reduced set of axioms is consid�
ered� since this set contains in most cases only between � � � and �
 axioms� For
Spass and �TAP the set of provable theorems increased to �
 resp
 �

 Otter and
Setheo cannot prove more theorems� but the time to prove them drops in several
examples from over �� seconds to about �

It seems� that Otter�s and Setheo�s heuristics for using axioms are already
strong enough� to avoid all axioms involving sorts �encoded as constants�� which

��

do not occur in the theorem
 In a �at speci�cation structure� this set is already
a good approximation to the set of relevant axioms
 To see� how the heuristics
of Otter and Setheo would behave in general� we �nally tried an example with
the opposite characteristic� Only few sorts� but many operations
 The example
is from the KIV library of standard speci�cations� There� a speci�cation Graph
is de�ned
 To de�ne the set of nodes of a graph it uses a speci�cation EnrSet
of nodes� which is itself an enrichment of a basic speci�cation Set of �nite sets
�with �� ��
� cardinality� insert and delete� by the operations � � � � and n �set�
di�erence�� an ordering on elements and a selector of the minimal element of a
set
 The theorems we tried to prove with the axioms of Set�Enrset and Graph
are the �� theorems from the Set speci�cation� which of course can be proved
with the axioms of the smallest speci�cation Set only

Indeed� Otter �Setheo� can prove �� ��	� theorems of this speci�cation when
given the � axioms of the Set speci�cation only
 With the additional �� axioms
�including lemmas� of the Enrset speci�cation� the number drops to �� ����� and
adding the axioms of the Graph speci�cation� the number of provable theorems
drops to �� ����

Let us �nally make a technical remark� One criterion for the e�ective use
of automated theorem provers in the veri�cation of �rst�order theorems from
software veri�cation is that they separate expensive preprocessing of axioms from
the actual proof attempts
 This avoids preprocessing the axioms over and over
again for several theorems over the same speci�cation
 The code generation for
Setheo already takes a minute for the test examples of the Prolog compiler with
the full set of axioms
 This is quite unsatisfactory
 The same problem exists for
Otter�s transformation of formulas to clauses� but it is less severe since generating
clauses is done in about
 seconds
 Spass already separates clause generation from
actual proof attempts
 Here� �TAP o�ers the best solution� in that it may keep
an arbitrary number of preprocessed sets of axioms� which can be referred by
name

� Conclusion

We have investigated the performance of automated theorem provers in formal
software veri�cation
 To this purpose we used the software veri�cation tool�
KIV as a test environment� and did comparative experiments with the four
automated theorem provers Otter � Setheo � �TAP and Spass
 In this application
the challenge for the automated provers is the large number of �up to several
hundred� axioms in typical software speci�cations
 The major problem is to �nd
out the few axioms that are really relevant to the proof of a given theorem

We have presented a reduction technique for this problem which eliminates for
a given theory and a theorem as many irrelevant axioms from the theory as
possible
 The technique relies on good software speci�cation practice to re�ect
design decisions in the speci�cation structure
 It is safe for hierarchy persistent
speci�cations
 The property of hierarchy persistency is proved separately by
KIV
 Reduction can be applied recursively also to the subgoals of a goal� and it
is independent from the particular prover and calculus
 The incremental version

��

of the reduction algorithm computes the reduced axiom set stepwise� using the
entire set only when needed

From the experiments we learned that all four provers bene�ted from the
axiom reduction
 They could prove more theorems than before� and were faster
for those that could be proved already without reduction
 However� the suscep�
tibility of the four provers to the problem of large axiom sets was quite di�erent

Furthermore� the experiments shed some light on the question� to what extent
an interactive veri�cation system could bene�t from an automated prover
 We
expect that in an integrated system ��! of the user interactions �in the context
of �rst�order goals� can be saved

Acknowledgements

We thank Kurt Stenzel for reading the draft and making helpful comments

Thanks also to Harald Vogt and Michael Balser for their help with the experi�
ments

References

�BF��� P� Baumgartner and U� Furbach� Protein� A prover with a theory extension
interface� In Proc� ��th CADE� LNCS ���� Springer� �����

�BHOS�	� Bernhard Beckert� Reiner H�ahnle� Peter Oel� and Martin Sulzmann� The
tableau�based theorem prover �TAP � version ���� In Michael McRobbie�
editor� Proc� ��th CADE� New Brunswick�NJ� USA� LNCS ����� pages
�������� Springer� ���	�

�Far��� W� M� Farmer� A general method for safely overwriting theories in mech�
anized mathematics systems� Technical report� The mitre Corporation�
�����

�FRSS��� T� Fuch�� W� Reif� G� Schellhorn� and K� Stenzel� Three Selected Case
Studies in Veri
cation� In M� Broy and S� J�ahnichen� editors� KORSO�
Methods� Languages� and Tools for the Construction of Correct Software 	
Final Report� Springer LNCS ����� �����

�GLMS��� C� Goller� R� Letz� K� Mayr� and J� Schumann� Setheo v��
� Recent
developments � system abstract� In A� Bundy� editor� ��th Interna

tional Conference on Automated Deduction� CADE
��� Springer LNCS
���� Nancy� France� ����� for the newest version of SETHEO� see the
URL� http���wwwjessen�informatik�tu�muencen�de�forschung�reasoning��
setheo�html�

�GSY��� C�B� Suttner G� Sutcli�e and T� Yemenis� The tptp problem library� In
A� Bundy� editor� ��th International Conference on Automated Deduction�
CADE
��� Springer LNCS ���� Nancy� France� �����

�Mos�	� P� D� Mosses� Co
 � The common framework initiative for algebraic spec�
i
cation� In H� Ehrig� F� v� Henke� J� Meseguer� and M� Wirsing� editors�
Speci�cation and Semantics� Dagstuhl�Seminar�Report ���� ���	� Further
information available at http���www�brics�dk�Projects�CoFI�

�MTH��� Robin Milner� Mads Tofte� and Robert Harper� The De�nition of Standard
ML� MIT Press� Cambridge� MA� �����

��

�Rei��� W� Reif� The KIV�approach to Software Veri
cation� In M� Broy and
S� J�ahnichen� editors� KORSO� Methods� Languages� and Tools for the Con

struction of Correct Software 	 Final Report� Springer LNCS ����� �����

�RSS��� W� Reif� G� Schellhorn� and K� Stenzel� Interactive Correctness Proofs for
Software Modules Using KIV� In Tenth Annual Conference on Computer
Assurance� IEEE press� NIST� Gaithersburg �MD�� USA� �����

�SA�	� G� Schellhorn and W� Ahrendt� Veri
cation of a Prolog Compiler �
First Steps with KIV� Ulmer Informatik�Berichte �	���� Universit�at Ulm�
Fakult�at f�ur Informatik� ���	�

�WGR�	� C� Weidenbach� B� Gaede� and G� Rock� Spass � �otter� version ���
�
In ��th International Conference on Automated Deduction� CADE
���
Springer LNCS� ���	�

�WOLB�
� L� Wos� R� Overbeek� E� Lusk� and J� Boyle� Automated Reasoning� Intro

duction and Applications ��nd ed�
� McGraw Hill� ���
� for the newest ver�
sion of OTTER� see the URL� http���www�mcs�anl�gov�home�mccune�ar��
otter��doc�

A Theorems and Results for the Example

A�� The theorems

th���� � d � en � d

th��
� d � en � d

th���� d � en � num of�d� en� � � en

th���� � d � en � el of�� en� en � d� � d

th���� d �� d�
 d � en
 d� � en � num of�d� en� �� num of�d�� en�

th��	� � �� en � d

th���� � en � � 	 en � �

th���� � d � en � num of�d� en� � num of�d� ��

th���� � d � en
 � d� � en�
 d �� d� � en � d �� en� � d�
th���� ��� � d� � � ��

th���� d� �� d
 � d� � en � ���en � d� � d�� � ���en � d����

th��
� � d � en
 � d� � en � �en � d � en � d� 	 d � d��

th���� en �� � � �� d�� en�� en � en� � d�
 � d� � en��

th���� d � en � num of�d� en� �� � en

th���� n � � en � �� d� d � en
 num of�d� en� � n�

th��	� � d � en
 n � � en � el of�n� en � d� � el of�n� en�

th���� n � � en � el of�n� en� � en

th���� � d � en
 n � � en � el of�n� en� �� d

th���� n � � en � num of�el of�n� en�� en� � n

th�
�� n� � � en
 n� � � en � �el of�n�� en� � el of�n�� en� 	 n� � n��

th�
�� n �� n�
 n � � en
 n� � � en � el of�n� en� �� el of�n�� en�

th�

� en � en� 	 � en � � en�
 �� n� n � � en � el of�n� en� � el of�n� en���

th�
�� en � en� 	 � en � � en�

�� d� d � en 	 d � en��
 �� d� num of�d� en� � num of�d� en���

th�
�� � d� � en
 d� �� d � �en � d� � d� � en � d

th�
�� d� �� d
 � d� � en � ���en � d� � d�� � ���en � d����

th�
	� d� � en
 d� �� d � �en � d� � d� � en � d

�

th�
�� d� � en
 d� �� d � �en � d� � d� � en � d

th�
�� � d� � en
 d� �� d � �en � d� � d� � en � d

th�
�� d� � en
 d� �� d � ���en � d� � d�� � ���en � d����

th���� � d � en
 d� �� d � ���en � d� � d�� � ���en � d�����

th���� num of�d� en � d� � num of�d� ��

th��
� d� �� d � num of�d� �en � d� � d�� � num of�d� ��

th���� � d� � en
 d �� d� � num of�d�� �en � d� � d�� � ��en � d�

th���� d � en � � � en � num of�d� en�

th���� � d � en � num of�d� en � d�� � num of�d� ��

th��	� � d � en
 d� �� d � num of�d� �en � d�� � d�� � num of�d� ��

th���� � d � en
 d� �� d � num of�d� �en � d�� � d�� � num of�d� ��

th���� d �� d� � �en � d�� � d � �en � d� � d�
th���� el of�n� en� � en
 n � � en � num of�el of�n� en�� en� � n

th���� d � � � d� 	 d � d�
th���� �en � d� � d � en � d

th��
� �� � d� � d � �

th���� � � d � �

th���� el of��� � � d� � d

th���� � en � � �� � � � el of��� en� � en

th��	� � en � � �� � �d � en 	 d � el of��� en��

th���� � en � � �� � �en � � � d 	 el of��� en� � d�

th���� � en � � �� � el of��� en� � en

th���� � en � � �� � en � el of��� en� � �

th���� � d � en � �en � d� � d � en

th���� � en � � �� � �d � en 	 en � � � d�

th��
� � d � en
 � d� � en� � �en � d � en� � d� 	 en � en�
 d � d��

A�� The Results

The following table gives the results of applying the theorem provers Otter�
Setheo� Spass and �TAP to the theorems listed above� one time with the original
set of axioms and one time with the reduced set �columns marked with �red
��

At the time we made the experiment the theorems were already proved in KIV in
the order in which they are numbered
 As in KIV� previously proved theorems
were therefore available for the proofs in Otter� Setheo Spass and �TAP
 All
provers were given a time limit of � minutes on a SPARC ��
 The proof times
in the table are in seconds� and do not take preprocessing time into account

The number of interactions in KIV is given in the last column� with an
exclamation mark indicating� that the KIV proof made use of the induction
rule
 An inductive proof in KIV does not necessarily mean� that a noninductive
proofs is impossible �see e
g
 th��	�� but for th���� th���� th���� th���� th��
�
th��� and th��� �marked with � �� inductive proofs seem unavoidable �th�
� has
a noniductive proof involving two applications of th���� although Otter Setheo
and Spass only �nd a proof involving ��
 To prove the theorems with KIV �	
interactions and � hours of work were needed
 The last line gives the number of
proved theorems ���
 For th��� the positions marked with an �X� refer to the

��

fact� that it is not provable with the reduced set of axioms� since it must be
generalized to th��� �see sect
 ��
 Finally� here are some informations on how the
provers were set up and how the problems were prepared for them�

Otter Otter �version �
�
�� has a built�in equality predicate� but no sorts
 These
were encoded by mapping terms t of sort s to pairs mk�t� s�� where s is
a constant
 Otter was used with the settings of auto�mode� but with the
�negated� theorem to prove as the set of support �see p

� of �WOLB	���
and with binary resolution instead of hyper resolution �since the latter is
not complete when combined with sos�
 We tried some other settings� but all
resulted in fewer provable theorems
 E
g
 in auto�mode� �	 resp
 �� theorems
could be proved without resp
 with reduction
 For th��� auto�mode �nds the
rather trivial two�step proof �application of th��� and re�exivity� in �
��
seconds� while our setting only �nds a complex proof in ��� seconds

Setheo Setheo �V �
�� can handle only clauses from an unsorted logic� and has no
built�in equality predicate
 Therefore we had to encode formulas as clauses

Sorts were encoded as for Otter
 Equality was explicitly axiomatized
 Setheo
was used with the ��wdr� option� which performed signi�cantly better than
the ��dr� option

Protein Protein �v �
��� was given the same input as Setheo
 It was used with the
model elimination calculus� which gave the best results

Spass Spass �v �

� is a theorem prover for unsorted �rst�order logic with equal�
ity
 Since unary predicates are treated by special �sort� inference rules we
encoded sorts as unary predicates

�TAP �TAP �version �
�� is a theorem prover for full �rst�order logic with equality

In a project together with the developers of �TAP on the integration of inter�
active and automated theorem proving an interface between KIV and �TAP

has already been built
 Therefore� in contrast to all other provers� �TAP could
be called directly from KIV
 The experiments with �TAP bene�ted from the
fact� that KIV gives only a subset of the previously proved lemmas to �TAP

theorem Protein Protein Spass Spass Otter Otter Setheo Setheo �TAP �TAP �r KIV
red red red red red

th��� ���� ���� ����� ���� ���
 ���� ���� 	��� ���� �
th��
 ���� ���� ����
 ��
� ���
 ���� ���� ���� ���� ���� �
th��� ! ! ! ! ! ! ! ! ! ! �!
th��� ����� ���
 ��
� ���	 ���� ���� ����
��� �
th���
���� ����� ���� ���� ���� ����

th��	 ���� ���
 ���� ���� ���� ���
 ���� ���� ����

th��� ! ! ! ! ! ! ! ! ! ! �!
th��� ! ! ! ! ! ! ! ! ! ! �!
th��� ����� ���� �
��� ����	 �
th��� ���� ���� ����� ��
� ����� ���
 ��
� ���� �
th��� ���
 ���� ��
� ����
��� ��
	 ����
 ���� �
th��
 ���� ���� 	���� ���� ���
 ���� ���� ��
� �
th��� ! ! ! ! ! ! ! ! ! ! �!
th��� ���� X �	��� X ���� X ���� X X �

��

theorem Protein Protein Spass Spass Otter Otter Setheo Setheo �TAP �TAP �r KIV
red red red red red

th��� ! ! ! ! ! ! ! ! ! ! �!
th��	 �
th��� ����
 �	��� ��
� ���� �
th��� ���
 ���� ���	� ���
 ���� ���� ��
� ���� ��	� ���� �
th���
���� ��
� ���� �����
!
th�
� ���
 ����� ����� ���� �
th�
� ���� ���� ������ ����
 ���� ���	 ���� ���
 �
th�

 ! ! ! ! ! ! ! ! ! ! �!
th�
� ! ! ! ! ! ! ! ! ! ! �!
th�
� ���� ��
� ����� ���� ���	 ���� ��	� ���
 �
th�
� ���� ���
 ������ �	��� ���	 ���	 ���� ��	� �
��� �
th�
	 ���� ���� ����� ���� ���	 ��
� ��	� �
th�
� ���
 ���� �����
 ���
 ���
 ���	 ��
	 ���� ���� �
th�
� ���
 ���
 ����� ���
� ���� ���� ��
� ��	� ���� ���� �
th�
� ���� ���
 �	��
 ���� ���� ���
 ���� ����� �
th��� �
th��� ���� ���� ����

���� ���� ���� ���
 ���� �
th��
 ���
 ���� ����
�
��	
��� ���� ��	� ��
 ��� �
th��� ���� ���� �	�
� ��
� ��
� ���
 ���� ��	� �
th��� ���� ���� �	��
 ��

 ����� ���� ���� ���� ���� ���	 �
th��� ���
 ���� ������ �
�	� ���	 ���� ���� ��	� ���� ���
 �
th��	 ����� ���� ����
� ����
�
��� ����
��
� ��	� �
th��� ���� ���� ������
��
�
��
� ���� ���� ���� �
th��� ��
th��� ���� ���
 ������

��� ���	 ���� ���� ���� �
th��� ����� ���
 ��	� ���� ���� ���� ���� �
th��� ���� ���� ���� ���
 ���� ���
 ���� ���� �
th��
 ��	� ��	� �����
���� �
th��� ���� ����
��� ���� ���� ���� ���� ���	 ���� �
th��� ���� ���� ����� ���� ��
� 	��� ���� �
th��� 		�

 ����� �
th��	 	�

 ������ ����� ���� �
th��� ������
���
��� �	��� 	���
��� ���� �
th��� ���� ���� ���

��� ���� ���� ���� �
th��� ��	� ���� ���	 ���� ���� ���
 �
th��� �
th��� ����
��	� �	���
���� �!
th��
 ������ �
�
� ������ �
� �� �

 �� �� �	 �� �	 �
� �

This article was processed using the LATEX macro package with LLNCS style

��

