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Abstract

We use the assumption that all sets in NP �or other levels of the polynomial�time
hierarchy� have e�cient average�case algorithms to derive collapse consequences for
MA� AM� and various subclasses of P�poly� As a further consequence we show for
C � fP�PP��PSPACEg that C is not tractable in the average�case unless C 	 P�

� Introduction

In general� the average�case complexity of an algorithm depends �by de�nition� on the
distribution on the inputs� In fact� there exist certain �so called malign or universal� dis�
tributions relative to which the average�case complexity of any algorithm coincides with its
worst�case complexity �LV	
�� Fortunately� these distributions are not recursive� Even for
the class of polynomial�time bounded algorithms� malign distributions are not computable
in polynomial time �Mil	���

In recent literature� it has been shown that several NP�complete problems are solvable
eciently on average �i�e�� in time polynomial on ��average� with respect to certain natural
distributions � on the instances� However� this is not true for all NP�complete problems�
unless E � NE �BCGL	
�� In fact� some natural NP problems A are under a particular
distribution � complete for NP in the sense that A is not eciently solvable on ��average
unless any NP problem is eciently solvable with respect to any polynomial�time com�
putable distribution �Lev���� It is therefore one of the main open problems in average�case
complexity theory whether NP problems can be solved eciently on average with respect
to natural� i�e�� polynomial�time computable distributions�

Let APFP denote the class of sets that are decidable in time polynomial on ��average
with respect to every polynomial�time computable distribution� As noted above� NP �
APFP implies that E � NE �BCGL	
�� This result provides an interesting connection
between average�case complexity and worst�case complexity� Namely� if all NP problems
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can be decided in time polynomial on average� then all sets in NE can be decided in
�worst�case� exponential time�

Similarly� as observed in �FF	��� any random self�reducible set which can be decided in
time polynomial on average �under the distribution induced by the random self�reduction�
can be decided by a randomized algorithm in �worst�case� polynomial time� For example�
Lipton �Lip	�� used an idea of Beaver and Feigenbaum �BF	�� to show that multivariate
polynomials of low degree are �functionally� random self�reducible� In particular� it follows
from Lipton�s result that if there is an algorithm computing the permanent eciently for
all but a suciently small �polynomial� fraction of all n � n matrices �over GF�p� where
p � n � � is prime�� then it is possible to compute the permanent of any n� n matrix in
expected polynomial time� Using this property it is not hard to show that P�PP� �� APFP

unless PP � ZPP � From Corollary ��� below� P�PP� � APFP even implies that PP � P
�in fact� it is easy to verify that PP � P already follows from the assumption that the
middle bit class MP �GKR�	�� is contained in APFP�� This means that for C � P�PP��
C is not tractable on the average unless C is tractable in the worst�case� This rises the
question whether a similar relationship holds for other classes C as� e�g�� C � NP or� more
generally� for C � �p

k�
In contrast to worst�case complexity� where NP � P implies that PH � P� it is not

known whether NP � APFP implies that all sets in �p
� � P�NP� are contained in APFP

�see �Imp	�� for an exposition�� Consider for example an NP optimization problem� It
is not known whether an ecient average�case algorithm for the corresponding decision
problem can be used to compute eciently on average an optimal solution� To see the
diculty consider the computation of a deterministic Turing machine M with oracle A�
where the distribution on the inputs of M is computable in polynomial time� Since the
oracle queries can be adaptive� it depends on the oracle set A which queries are actually
made� Hence� the distribution induced on the oracle queries is not necessarily computable
in polynomial time� On the other hand� it is known that NP � APFP implies �p

� � APFP

�cf� Theorem ��	�� We refer the reader to �Imp	�� SW	�� for further discussions of this
and related questions� As shown in �Sch	��� the class APFP is not closed under Turing
reducibility� moreover� APFP even contains Turing complete sets for EXP �note that EXP
is not contained in APFP��

Our results are based on the following special properties of any set A � APFP � Firstly�
for any P�printable domain D there is an algorithm that decides A eciently on all inputs
in the domain D� Secondly� since A is eciently decidable on average with respect to the
standard distribution �st �which is uniform on �n�� there is an algorithm for A that is
polynomial in the worst case for all but a polynomial fraction of the strings of each length�
Roughly speaking� we exploit these two properties in the following context� A serves as an
oracle in a computation that generates oracle queries in such a way that it is sucient to
answer these queries either on some P�printable domain or on any domain which contains
a large fraction of the strings of each length�

In particular� we get the following collapse consequences� �The notion of instance
complexity and the class IC�log�poly� of sets of strings with low instance complexity were
introduced in �OKSW	��� As shown in �OKSW	��� P�log � IC�log� poly� � P�poly� and in






�AHH�	�� the following characterization of IC�log�poly� is given� A set A is in IC�log� poly�
if and only if A and its complement are both conjunctively reducible to a tally set��

� If NP � APFP then NP � P�log � P�

� If �p
� � APFP then �p

� � IC�log� poly� � P and every self�reducible set in P�poly is
in ZPP �

� If �p
� � APFP then all sets in �p

� � �p
� that conjunctively� disjunctively� or bounded

truth�table reduce to some sparse set are in P�

� If �p
� � APFP then �p

� � �p
� � P�poly � P�

� If �p
� � APFP then �p

� � �p
� � P�poly � P�

Since BPP is contained in �p
���

p
� �Sip��� Lau��� and in P�poly �BG��� we get in particular�

� If �p
� � APFP then BPP � P�

It is interesting to note that Corollary ��� implies stronger collapse consequences for the
polynomial hierarchy� For example� if �p

� � APFP then NP � P�poly implies PH �
ZPP �

We also investigate the question whether problems in NP �or in other levels of PH� are
solvable in time polynomial on average with respect to every distribution computable in
FP��p

k� �in symbols� NP ��APFP��pk�
�� Note thatAPFP��pk�

is a �possibly strict� subclass
of APFP � Hence� �

p
k � APFP��pk�

is a �possibly� stronger assumption than �p
k � APFP �

Under the assumption that NP problems are solvable in time polynomial on average
with respect to distributions in FP��p

�� we show that IP�P�poly� is contained in NP �
co�NP� where IP�P�poly� is the class of all sets that have an interactive proof with prover
complexity restricted to P�poly �BFL	�� AKS	���

� If NP � APFP��p��
then IP�P�poly� � NP � co�NP�

Since� as we show� �p
k � APFP��pk�

implies �p
k�� � APFP��pk�

and since �p
k � APFP��pk�

implies �p
k � APFP we get the following corollaries�

� If NP � APFP�NP� then �p
� � IC�log� poly� � P and every self�reducible set in

P�poly is in ZPP �

� If �p
� � APFP��p��

then �p
� � �p

� � P�poly � P and BPP � P�

Finally� we extend a result in �Imp	�� showing that NP � APFP implies BPP � ZPP
as follows�

� If NP � APFP � then MA � NP�

� If �p
� � APFP � then AM � NP�
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Note that AM � NP has some immediate strong implications as� for example� Graph
Isomorphism is in NP � co�NP�

Recently a series of plausible consequences� not known to follow from the assumption
P �� NP� have been derived from the assumption that NP is not small in EXP� see� e�g��
�LM	�� Lut	�a� Lut	�b� AK	��� It is interesting to note that the assumption NP � APFP

is contradictory to Lutz� hypothesis that NP is not small in EXP� as follows directly from
the fact that APFP is small in EXP �SY	�� CS	���

In this extended abstract most proofs are omitted� see �KS	�� for a complete version�

� Preliminaries

All languages are over the binary alphabet � � f�� �g� The length of a string x � �� is
denoted by jxj� For a language A� let A�n denote the set of all strings in A of length n� A
string is called tally if it is an element of �� and a set T is tally if T � ��� A set S is called
sparse if the cardinality of S�n is bounded above by a polynomial in n� TALLY denotes
the class of all tally sets� and SPARSE denotes the class of all sparse sets� The cardinality
of a �nite set A is denoted by kAk�

The join of two sets A and B is A � B � f�x j x � Ag 	 f�x j x � Bg� The join
of language classes is de�ned analogously� To encode pairs �or tuples� of strings we use a
standard polynomial�time computable pairing function denoted by h
� 
i whose inverses are
also computable in polynomial time� We assume that this function encodes tuples of tally
strings again as a tally string� IN denotes the set of non�negative integers and by log we
denote the function log x � maxf�� dlog� xeg�

We assume that the reader is familiar with fundamental complexity theoretic concepts
such as �oracle� Turing machines and the polynomial�time hierarchy �see� for example�
�BDG	�� Sch�����

Let C be a complexity class� A set A is PC�printable if there exists a set C � C and
a polynomial time bounded oracle Turing transducer T such that the output of T with
oracle C and input �n is an enumeration of all strings in A of length n� An oracle Turing
machine T is non�adaptive� if for all oracles C and all inputs x� the queries of T on input
x are independent of C� T is honest if there exists a constant c such that jxj � jyjc for
all x and for all oracle queries y of T on input x� A set A is P�honest�C��printable if A is
P�C��printable and the respective Turing transducer is honest and non�adaptive�

Next we review the notion of advice functions introduced by Karp and Lipton �KL��� to
characterize non�uniform complexity classes� A function h � �� � �� is called a polynomial�
length function if for some polynomial p and for all n  �� jh��n�j � p�n�� For a class C of
sets� let C�poly be the class of sets L such that there is a set I � C and a polynomial�length
function h such that for all n�

�x � �n � x � L � hx� h��n�i � I�

The function h is called an advice function for L� whereas I is the corresponding interpreter
set�
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In the following we will also make use of multi�valued advice functions� A �total� multi�
valued function h maps every string x to a non�empty subset of ��� denoted by set�h�x��
We say that g is a re�nement of h if for all x� set�g�x� � set�h�x��

A multi�valued advice function h has the property that for some polynomial p and all
n� set�h��n� � �p�n� and for all w � set�h��n��

�x � �n � x � L � hx� wi � I�

Let F be a class of �possibly multi�valued� functions and let L � C�poly� Then L is said
to have an advice function in F �with respect to interpreter class C� if some h � F is an
advice function for L with respect to some interpreter set I � C�

Let � be a probability distribution on ��� Associated with � are a distribution function
that we also denote by � and a density function� denoted by ��� � and �� are functions from
�� to the interval ��� �� such that

P
x �

��x� � � and ��x� �
P

y�x �
��y� where� as usual� �

denotes the lexicographic ordering on ��� Let t be a function from IN to IN� A distribution
� t�dominates a distribution �� if ���x� 
 t�jxj�  � ��x� for all x� If t is a constant� then we
say that � dominates � by a constant factor� similarly� if t is bounded by a polynomial�
then we say that � polynomially dominates ��

Let � be a distribution� A function f � �� � IN is polynomial on ��average �Lev���� if
there exists a constant � � � such that

X
x���

f ��x�

jxj
���x� ���

The class of functions polynomial on ��average has many closure properties that are
known for polynomials �Lev��� Gur	��� A further important property is robustness un�
der the polynomial domination of distributions �Lev��� Gur	��� i�e�� any function that is
polynomial on ��average is also polynomial on ��average provided that � dominates ��

In the recent literature on average�case complexity basically two ways have been con�
sidered to formalize the intuitive notion of feasible �or natural� distributions� The more
restrictive way is to consider only distributions as feasible that have e�ciently computable
distribution functions �Lev��� Gur	��� On the other hand� any eciently samplable dis�
tribution �according to which instances can be e�ciently generated� can be considered
feasible� As shown in �BCGL	
�� every eciently computable distribution is dominated
by an eciently samplable distribution� This implies that if a problem is solvable in time
polynomial on average with respect to any eciently samplable distribution then it is
also solvable in time polynomial on average with respect to any eciently computable
distribution�

A distribution is said to be P�computable if its distribution function � is P�computable�
i�e�� there exists a polynomial time bounded deterministic Turing transducer M such that
for all x and all k it holds that jM�x� �k����x�j � 
�k� Here the output ofM is interpreted
as a rational number� in some appropriate way� For example� if M�x� �k� � hp� qi� then
M�x� �k� computes the number p�q� As the following remark shows� requiring that the
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density function �� of a distribution is P�computable is a strictly weaker condition unless
P �� NP�

Remark� As shown in �Gur���� if P �� NP then there exists a distribution whose density
function �� is P�computable but whose distribution function � is not P�computable	

As usual let FP denote the set of polynomial�time computable functions� An important
subclass of the class of P�computable distributions is the class of so�called FP�computable
distributions for which � can be eciently computed without error� For a complexity
class C� we say that a distribution is FP�C��computable �in symbols� � � FP�C�� if its
distribution function � is FP�C��computable� i�e�� there exist functions f � FP�C� and
g � FP such that for all x� ��x� � f�x��g�x��

As the following theorem shows� a problem is solvable in time polynomial on ��average
for every FP�computable distribution � if and only if it is solvable in time polynomial on
��average for every P�computable distribution ��

Theorem ��� �Gur��� Every P�computable distribution � is dominated by a FP�com�
putable distribution � by a constant factor	 Furthermore� for all x� the binary representation
of ��x� is of length linear in the length of x	

Following �Lev��� Gur	�� we assume that all natural distributions are either P�
computable or dominated by a P�computable distribution� In this sense� a set is eciently
decidable on average �under natural distributions� if it is decidable in time polynomial on
��average with respect to every distribution � � FP�

De�nition ��� �SY�
� Let F be a set of distributions	 A set A is decidable in average
polynomial time under distributions in F �in symbols� A � APF� if for every distribution
� � F there exists a deterministic Turing machineM such that A � L�M� and the running
time of M is polynomial on ��average	

As noted by Ben�David et al�� all sets in APFP are decidable in polynomial time on
tally inputs�

Theorem ��� �BCGL�� Every tally set in APFP is in P	

Proof	 Assume that A is a tally set and in APFP � Consider a tally distribution �tally
de�ned as follows�

��tally�x� �

�
��n�n� ��� if x � �n� n � ��

�� otherwise�

It is not dicult to see that the distribution function �tally is FP�computable �i�e��
�tally�x� � f�x��g�x� for some FP functions f� g � �� � IN��

Since A is in APFP there exists a Turing machine M such that A � L�M� and the
running time of M is polynomial on �tally�average� This implies� according to part one of
Proposition 
��� that M is polynomial time bounded �in worst�case� on all tally strings�

In �Sch	��� Schapire gives the following characterization of a function f being polyno�
mial on ��average�
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Theorem ��� �Sch��� Let � be a distribution	 Then f � �� � IN is polynomial on ��
average if and only if there exists a polynomial p such that for all m�

�fx j f�x� � p�jxj� m�g �
�

m
�

From this characterization it follows immediately that any function f that is polynomial
on ��average is in fact polynomially bounded on ��n� except for a subset which has low
probability under ��

Proposition ��� Let f be polynomial on ��average	 For every polynomial p there exists
a polynomial p� such that for all n�

�fx � ��p�n� j f�x� � p��n�g �
�

p�n�
�

Proof	 Assume that f is polynomial on ��average� Choose constants c and k � � such

that
P

x���
f��k�x�
jxj

���x� � c� Now let Hn denote the set fx � ��p�n� j f�x� � ckp�k�n�g and

assume to the contrary that for some n � �� ���Hn� � ��p�n�� Then�

X
x���

f ��k�x�

jxj
���x� 

X
x�Hn

cp��n�

p�n�
���x� 

�

p�n�

 c 
 p�n� � c�

The above proposition gives us the following special cases which we will need in the
following�

Proposition ��	 Let f be polynomial on ��average	

�	 Then for every polynomial p there exists a polynomial p� such that f�x� � p��jxj�
holds for all x with ���x�  ��p�jxj�	

	 If � � �st is the standard distribution �where ��st�x� �
�

jxj�jxj���

 
�jxj for all x �� 	��

then for every polynomial p there exists a polynomial p� such that for all n � ��

kfx � �n j f�x� � p��n�gk �

n

p�n�
�

�



� Eliminating tally and printable oracle queries

A �rst consequence of the assumption that NP problems are decidable in time polynomial
on ��average for any distribution � � FP was given by Ben�David et�al� �BCGL	
��

Theorem ��� �BCGL�� If NP � APFP � then E � NE �or� equivalently� NP �
TALLY � P�	

Proof	 Recall that E � NE if and only if every tally set in NP is in P �Boo���� Since� by
Theorem 
��� every tally set in APFP is already in P it follows that NP � APFP implies
E � NE�

Put in other words� if NP problems have ecient average�case decision algorithms�
then P�NP � TALLY�� a subclass of P�poly� collapses downto P� We observe that
similar collapse consequences downto P can be derived for other subclasses of P�poly
�see Corollary ����� Some of these collapse consequences follow immediately from recent
results investigating the complexity of sparse and tally descriptions for sets in P�poly
�BS	
� K ob	�� Gav	�� AKM	��� For the others we can exploit an interesting connection
between the worst�case complexity of a set L and the average�case complexity of oracles
used in the computation of an advice function for L�

The following theorem shows that if an advice function h for some set L can be e�
ciently computed relative to some oracle which is eciently decidable on average� then h
is computable in polynomial time�

Theorem ���

�	 Any advice function that is computable in FP�D� where P�D��TALLY � APFP is
computable in FP	

	 Any advice function that is computable in FP �D� where fA j A �p
m Dg �TALLY �

APFP is computable in FP	

Proof	

�� Let h be an advice function in FP�D� where D is an oracle for which P�D� �
TALLY � APFP � Then h is computable in FP�T � where T is the tally set

T � fh�n� �ii j the ith bit of h��n� is oneg�

Since T is in P�D� � TALLY and hence by assumption in APFP � it follows from
Theorem 
�� that T � P� implying that h � FP�


� Assume that h is an advice function in h � FP �D� via some oracle transducer M �
Then h is computable in FP�T � where T is the tally set

T � fh�n� �ii j the ith query of M��n� is in Dg�

Since T many�one reduces to D it follows from the assumption and from Theorem 
��
that T � P� implying that h � FP�
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Now� using results from �BS	
� AKM	�� K ob	�� Gav	��� we can state similar collapse
consequences as in Theorem ��� for several subclasses of P�poly� We note that by using a
di!erent proof technique it has been shown in �BFNW	�� that BPP � P follows from the
assumption that every tally set in �p

	 is contained in P�

Corollary ���

�	 If NP � TALLY � APFP then NP � P�log � P	

	 If �p
� � TALLY � APFP then �p

� � IC�log� poly� � P	

�	 If �p
� �TALLY � APFP then all sets in �p

� ��p
� that conjunctively� disjunctively� or

bounded truth�table reduce to some sparse set are in P	

�	 If �p
� � TALLY � APFP then �p

� � �p
� � P�poly � P and hence BPP � P	

�	 If �p
� � TALLY � APFP then �p

� � �p
� � P�poly � P	

Proof	

�� As shown in �BS	
�� every set A in NP � P�log is contained in P�S� for some
sparse set S � NP� Furthermore� as shown in �Har���� P�NP � SPARSE� �
P�NP � TALLY�� implying that NP � P�log � P�NP � TALLY�� Assuming
NP � TALLY � APFP � the collapse now follows by Theorem 
���


� As shown in �AKM	��� every set A in IC�log� poly� is in P�T � for some tally set
T � P�NP � A�� Therefore� if additionally A � �p

�� then A � P�T � for some tally
set T � �p

�� Since by Theorem 
�� every tally set in APFP is in P it follows by the
assumption �p

� � TALLY � APFP that A � P�

�� As shown in �AKM	��� every set A that conjunctively� disjunctively� or bounded
truth�table reduces to some sparse set is in P�S� for some sparse oracle S that can
be decided in NP�A�NP� with the help of an advice function h in FP �NP�A���
Therefore� if additionally A � �p

� � �p
�� then h is computable in FP ��p

�� and thus�
using the assumption �p

� � TALLY � APFP and part two of Theorem ��
� in FP�
This implies that S � �p

� and using an analogous reasoning as in the proof of part
one it follows that A � P�

�� As shown in �K ob	��� every set A in P�poly has an advice function h computable in
FP�NP�A�� �p

��� Therefore� if additionally A � �p
� � �p

�� then h � FP��p
�� and

thus� using the assumption �p
� � TALLY � APFP and part one of Theorem ��
�

in FP� The consequence that BPP � P is immediate since BPP � �p
� � �p

�

�Sip��� Lau��� and BPP � P�poly �BG����

	



�� As shown in �Gav	��� every set A in P�poly is in P�T � for some tally set T in
NP�A� �p

��� Therefore� if additionally A � �p
� � �p

�� then A � P�T � for some tally
set T � NP��p

� � �p
�� � �p

�� Since by Theorem 
�� every tally set in APFP is in P
it follows by the assumption �p

� � TALLY � APFP that A � P�

In our next theorem we consider the complexity of sets in P�poly that have advice
functions which can be computed by nondeterministic transducers under some oracle� For
the proof we need the following proposition which shows as a special case that any set
A � APFP is eciently decidable on any P�printable domain B�

Proposition ��� Let A � APFP�C� and let B be a P�C��printable set for some oracle C	
Then there exists a set D � P such that B � D and D � A � P	

Proof	 Assume that B is P�C��printable� Consider the distribution �B de�ned by

��B�x� �

�
�

n�n���
� if x is the lex� n�th string in B�

�� otherwise�

Since B is P�C��printable it is not dicult to see that the distribution function �B is
FP�C��computable� Furthermore� ��B�x�  ��p�jxj��p�jxj� � �� for all x � B� where p�n�
is a polynomial bounding the number of all strings in B of length at most n� Since� by
assumption� A � APFP�C� there is a Turing machine M that decides B and whose running
time� denoted by timeM � is polynomial on �B�average� Now it follows from part one of
Proposition 
�� that for some polynomial q� timeM�x� � q�jxj� for all x � B� Thus� letting
D be the set of all inputs x � �� such that timeM�x� � q�jxj�� we can conclude that D � P�
B � D� and that D � A � P�

For an oracle B� a �multivalued� function h is in NPMV�B� if there exists a non�
deterministic polynomial�time transducer T such that set�h�x� consists of all output values
of TB on input x� h is in NPMVhonest�B� if� additionally� there exists a constant c such
that jyjc � jxj for all oracle queries y of TB on input x� In the case B � �� we simply write
NPMV instead of NPMV����

Theorem ��� If A � APFP�NP�A��� then any advice function h � NPMVhonest�A� has a
re�nement in NPMV� implying that any set L � �NP � co�NP��poly that has an advice
function in NPMVhonest�A� belongs to NP � co�NP	

Proof	 Let h be a multi�valued advice function in NPMVhonest�A� and let T be a honest
nondeterministic oracle transducer computing h under oracle A� Let q be a polynomial
bounding the running time of T and let c be a constant such that jyjc � jxj for all oracle
queries y of TB on input x� Consider the following set B consisting of all queries y asked
by TA on input �n on its leftmost successful computation�

B � fy j �n � TA��n� asks query y on the leftmost successful computationg�

��



Since T is honest it follows thatB is P�NP�A���printable� Since� by assumption� A belongs
to APFP�NP�A�� we can use Proposition ��� to conclude that there exists a set D � P such
that B � D and D � A � P� This implies that h has a re�nement in NPMV and hence�
any set L � �NP � co�NP��fhg belongs to NP � co�NP�

Corollary ��	 If NP � APFP��p��
then IP�P�poly� � NP � co�NP	

Proof	 Let L � IP�P�poly�� Then L belongs to P�poly� Let I � P be an interpreter set
for L and let h be an advice function� where jh��n�j � p�n� for some polynomial p� An
advice string can be checked by a co�NP�IP�P�poly�� computation as follows� On input
z � �p�n�� verify for all x � �n that �x� z� � I � x � L� Since IP�P�poly� is low for
�p
� �AKS	��� i�e�� �p

��IP�P�poly�� � �p
� � it follows that the correctness of an advice string

can be checked by a �p
� computation� and hence L has a multivalued advice function in

NPMVhonest�NP�� Thus the result is a consequence of part two of Theorem ����

As mentioned in the introduction� if a decision problem L� is decidable in time polyno�
mial on ���average for any FP�computable distribution ��� then this does not necessarily
imply that also any set L� in P�L�� is eciently decidable on average with respect to any
FP�computable distribution ��� If however for any FP�NP��computable distribution ���
L� is decidable in time polynomial on ���average� then we can show that indeed L� is
eciently solvable on average with respect to any FP�computable distribution ��� For
this it suces to show that the distribution on the oracle queries induced by �� and by
the reduction of L� to L� is FP�NP��computable� Also� we will make use of the notion
of Turing reducibility between distributional problems �L� �� where L is a set and � is a
distribution�

De�nition ��
 �BCGL�� A distributional problem �L�� ��� Turing reduces to a distribu�
tional problem �L�� ��� via some polynomial�time oracle machine M and a distribution �
if

�	 � polynomially dominates ���

	 M Turing reduces L� to L�� and

�	 ����y� 
P

���x��p�jyj� where the sum is taken over all strings x such that query y
is asked by M on input x when using oracle L� �in symbols� y � Q�x�M� L���	

As stated in �BCGL	
� the class of eciently decidable distributional problems is closed
under Turing reducibility�

Theorem ��� �BCGL�� If �L�� ��� is Turing reducible to �L�� ��� and if L� is decidable
in time polynomial on ���average� then L� is decidable in time polynomial on ���average	

Using this closure property we can now easily show that all sets in �p
k�� are eciently

decidable on average with respect to any FP��p
k��computable distribution provided that

this is true for all sets in �p
k�

��



Theorem ��� Let C and D be language classes where C is closed under polynomial�
time many�one equivalence	 Then C � APFP�C�D� implies P�C� � APFP�C�D� and
C � APFP�D� implies P�C� � APFP�D�	

Proof	 Assume that C � APFP�C�D� and consider an arbitrary set L � P�A� and an
arbitrary distribution �� � FP�C � D� where A � C � D� We have to show that L
is eciently decidable on average with respect to ��� Letting pad�A� � f�jxj�xw��i j
x � ��� i  �� w � Ag it is not dicult to see that pad�A� and A are equivalent under
polynomial�time many�one reductions� Moreover� we can assume that L � L�M� pad�A��
for a polynomial�time oracle Turing machineM which for some polynomial p asks on input
x only queries y of the form �jxj�xw��i where w � �� and i � p�jxj��jwj� Hence it is easy
to determine for any query y of M the corresponding input string xy �which is unique��
Furthermore� we assume that on any input x� M asks at least one query�

Now consider the distribution �� induced by �� on the queries of M �

����y� �

�
��

��xy�

kQ�xy�M�pad�A��k
� if y � Q�xy�M� pad�A���

�� otherwise�

It is not dicult to see that �L� ��� Turing reduces to �pad�A�� ��� via M and ��� Thus
it only remains to show that �� is FP�C � D��computable� By the monotonicity of the
oracle queries of M it follows that

���y� �
X
z�y

����z� �

�
�X

x�xy

����x�

�
A�

l

m

 ����xy� � ���x

�
y � �

l

m

 ����xy�

where m � kQ�xy�M� pad�A��k� l is the number of strings in Q�xy�M� pad�A�� less than
or equal to y� and x�y is the predecessor of xy in lexicographic order� But this proves that
�� � FP�C � D��

Now� assume that C � APFP�D� and consider an arbitrary set L � P�D� and an
arbitrary distribution �� � FP�D�� Then it follows exactly as above that L is eciently
decidable on average with respect to �� since the distribution �� induced by �� on the
queries of M is now easily seen to be FP�D��computable�

Corollary ���

�	 If NP � APFP�NP� then �p
� � IC�log� poly� � P	

	 If �p
� � APFP��p��

then �p
� � �p

� � P�poly � P and in particular� BPP � P	

Proof	 By Theorem ��	� �p
k � APFP��pk�

implies P�pk � APFP��pk�
� Since APFP��pk�

�
APFP the results follow from Theorem ��� and Corollary ����

�




� Eliminating random oracle queries

As mentioned in the introduction� any random self�reducible set which can be decided
in time polynomial on average �under the distribution induced by the random self�
reduction� can be decided by a randomized algorithm in expected polynomial time� As
shown by Feigenbaum and Fortnow� many complexity classes like PP � ModkP� and
PSPACE have complete sets that are random self�reducible� By combining the re�
sults stated in �FF	�� with Corollary ��� below� it is not hard to verify that for K �
fP�PP��MP�ModkP�ModP �PSPACEg� K is not contained in APFP unless K � ZPP
where the middle bit class MP� the classes ModkP � k  
� and the generalized Mod class
ModP have been introduced and studied in �GKR�	��� �CH	�� Her	�� BG	
�� and �KT	���
respectively�

In Theorem ��� below we show a similar collapse for the subclass of P�poly consisting
of all sets L for which a multivalued advice function can be computed by a randomized
algorithm under an oracle that is easily decidable on average� Let h � NPMV�B�� Then
we say that h � FZPP�B� if h is computable by an NPMV�B� transducer that� when
considered as a probabilistic Turing machine� on any input x produces with probability at
least ��
 some output y�

Let M be a randomized Turing machine� If we �x a sequence r � f�� �g� of the
probabilistic choices of M � then the computation of M on input x is deterministic� We use
Mr�x� to denote the output of M on input x and computation path r� Assuming that M
uses a functional oracle f � �� � �� and p is a polynomial bounding the running time of
M � we de�ne for any input x the distribution �M�f�x induced by M on input x with oracle
f �

��M�f�x�y� �
kRy�x�k

kR�x�k

where

Ry�x� � f�r� i� j r � f�� �gp�n� and y is the ith query ofMf
r �x�g

and R�x� �
S

y��� Ry�x��

Assume that g � FZPPf via some transducer M � Then we say that the compu�
tation of Mf is dominated by a distribution � �in symbols� g � FZPPf

� via M� if �
dominates the ensemble ��M�f�x�x���� i�e�� there exists a polynomial s such that for all x
and y� ���y�  ��M�f�x�y��s�jxj�� By ZPPf

� we denote the class of all languages whose

characteristic function belongs to FZPPf
��

In the following we use Af to denote the set that contains for any argument y of f all
strings yz such that the ith bit of f�y� is one �in the context of the present paper we can
always assume that jf�y�j � q�jyj� for some �xed polynomial q��

Af �fybinq�jyj��i� j i � jf�y�j� � or � � i � jf�y�j and the ith bit of f�y� is one g�

��



Lemma ��� Let f be a function and q be a polynomial such that jf�y�j � q�jyj�	 Then
FZPPf

� � FZPPAf
� where � is the distribution de�ned as

� ��u� �

�
���y��q�jyj�� if u � ybinq�jyj��i� for some i � f�� � � � � q�jyj�g�

�� otherwise�

Proof	 Let g � FZPPf
� via some machine M and let s be a polynomial such that for

all x and y� ��M�f�x�y��s�jxj� � ���y�� Let M � be an oracle machine that simulates M by
substituting each oracle query y by the sequence ybinq�jyj��i�� i � �� 
 
 
 � q�jyj� of oracle
queries to Af � Then g � FZPPAf via M �� Furthermore� it is not hard to see that the
distribution �M ��Af �x on the oracle queries induced by M � on input x ful�lls for all strings
u � ybinq�jyj��i� where � � i � q�jyj� the inequality

��M ��Af �x
�ybinq�jyj�� � ��M�f�x�y��q�jyj� � ���y�s�jxj��q�jyj� � � ��ybinq�jyj��s�jxj��

Since ��M ��Af �x
�u� � � for all other strings u� this shows that � dominates the ensemble

��M ��Af �x�x����

Theorem ��� If Af � APFP and if � is a distribution in FP� then FZPPf
� � FZPP

and� in particular� ZPPf
� � ZPP	

Proof	 Let g � FZPPf
�� From Lemma ��� it follows that g belongs to FZPPAf

� via
some probabilistic oracle Turing machine M and some distribution � � FP� Since the
induced distribution on the oracle queries remains the same if we run an oracle machine
an arbitrary number of times� we can assume that on any input x� M outputs "�# with
probability at most ���� Let p be a polynomial time bound forM and let s be a polynomial
such that for all x and y� �M�Af �x�y��s�jxj� � ��y�� Since by assumption Af � APFP � it
follows from Proposition 
�� that there exists a machine MAf deciding Af such that for

some polynomial t and all n� � �fy � ��p�n� j timeMAf
�y� � t�n�g � �


p�n�	s�n� � Hence� for

all x it holds that

��M�Af �x
fy � ��p�jxj� j timeMAf

�y� � t�jxj�g �
�

�p�jxj�
�

Recall that ��M�Af �x
�y� � kRy�x�k�kRxk� where Ry�x� is the set of positions �r� i� in the

computation tree of MAf on input x where MAf queries y and Rx �
S

y Ry�x� is the set of

all query positions of MAf on input x� Therefore� each position �r� i� at which y is asked
as a query contributes an amount of ��kRxk to the probability �M�Af �x�y��

This implies that the number of query positions �r� i� such that timeMAf
�y� � t�jxj�

where y is the ith query of M
Af
r �x�� is bounded by kRxk��p�jxj�� Hence� the number

of computations r of MAf �x� such that timeMAf
�y� � t�jxj� for at least one query y of

M
Af
r �x� is at most kRxk��p�jxj� � 
p�jxj����
Therefore g can be decided as follows�

��



On input x� jxj � n� guess a string r of length p�n� and simulate Mr�x� where
each oracle query y is answered by running MAf �y� for at most t�n� steps� If
for some query y� MAf �y� runs for more than t�n� steps� then output "�#�

Since this algorithm does only output strings in set�g�x� and since the probability of
outputting "�# is easily veri�ed to be at most ���� it follows that a re�nement of g is in
FZPP �

Since the standard distribution �st is easily seen to be in FP� we immediately get the
following corollary�

Corollary ��� If Af � APFP � then any function h � FZPPf
�st

has a re�nement in

FZPP and� in particular� ZPPf
�st
� ZPP	

Now we are ready to show that any advice function which can be computed by a
randomized algorithm under an oracle that is easily decidable on average is computable in
the same way without the help of an oracle�

Theorem ��� Any advice function that is computable in FZPP�D� where P�D� �
APFP has a re�nement in FZPP 	

Proof	 Assume that h is a multi�valued advice function in FZPP�D� and let T be a prob�
abilistic oracle transducer computing h under oracle D� Consider the function f de�ned
by f�r� � TD

r ��n� if r � f�� �gp�n� for some n and TD
r ��n� is a successfull computation�

and f�r� � � otherwise� Note that h � FZPPf
�st via a probabilistic transducer M that

on input �n randomly guesses a string r � �p�n� and outputs f�r�� Since Af in P�D� and
since by assumption� P�D� � APFP � it follows from Corollary ��� that the result follows
from the assumption that P�D� � APFP �

By using results from �BCG�	�� KW	�� Lip	�� FF	�� GKR�	�� KT	�� it is easy to
derive the following corollary�

Corollary ���

�	 �Wat�
� If �p
� � APFP then every self�reducible set in P�poly is in ZPP 	

	 If NP � APFP�NP� then every self�reducible set in P�poly is in ZPP	

�	 For K � fP�PP��MP�ModP �PSPACEg� K is not contained in APFP unless K �
P	

Proof	

�� Since� as shown in �BCG�	�� KW	��� every self�reducible set L � P�poly has an
advice function in FZPP�NP�� the result follows from Theorem ����

��




� By Theorem ��	� NP � APFP�NP� implies �p
� � APFP�NP�� Since APFP�NP� �

APFP the result follows from Corollary ����

�� We �rst consider the case that K � P�PP�� Under the assumption P�PP� � APFP

it is easy to design an algorithm that computes the permanent eciently for all but
a suciently small �polynomial� fraction of all n � n matrices �over GF�p� where
p � n � � is prime�� As shown in �Lip	�� this implies that the permanent �over
GF�p�� of any n � n matrix can be computed in expected polynomial time� Since
computing the permanent �over GF�p� where p is given as part of the input� is hard
for P�PP� �Val�	� we can conclude that PP � ZPP � Since �p

� � P�PP� �Tod	���
it follows by Corollary ��� that PP � P�

Next assume that K � fMP�ModPg is contained in APFP � Then by Theorem ��	
it follows that P�K� is contained in APFP � Since P�PP� � P�K� �GKR�	�� KT	��
we get that PP � P� implying that K � P�

For the case K � PSPACE we use the result in �FF	�� that PSPACE �complete sets
are random self�reducible� From the proof given in �FF	�� it is easy to verify that
there is a function f � FP�PSPACE� such that PSPACE � ZPPf

�st � Since the
assumption PSPACE � APFP implies that Af � APFP � it follows by Corollary ���
that ZPPf

�st � ZPP � implying that PSPACE � ZPP � Since �p
� � PSPACE � it

follows by Corollary ��� that PSPACE � P�

It is interesting to note that Corollary ��� implies stronger collapse consequences for
the polynomial hierarchy� For example� if �p

� � APFP then NP � P�poly implies
PH � ZPP �

Finally� by applying a technique used to show that MA � ZPP�NP� �AK	�� we
extend a result in �Imp	�� showing that NP � APFP implies BPP � ZPP � More speci��
cally� we derive under the same assumption NP � APFP thatMA can be derandomized�
i�e�� MA � NP� whereas under the stronger assumption �p

� � APFP also AM can
be derandomized� i�e�� AM � NP� Note that AM � NP has some immediate strong
implications as� for example� Graph Isomorphism is in NP � co�NP�

A nondeterministic circuit c has two kinds of input gates� in addition to the actual
inputs x�� � � � � xn� c has a series of distinguished guess inputs y�� � � � � ym� The value com�
puted by c on input x � �n is � �in symbols� c�x� � �� if there exists a y � �m such that
c�xy� � �� and � otherwise �SV����

Next we recall the notion of hardness of boolean functions� We denote the class of
boolean functions that can be computed by some �non�deterministic circuit c of size at
most s by CIR�s� �NCIR�s�� respectively��

De�nition ��	 �cf	 �Yao�� NW���� Let f � f�� �gn � f�� �g be a boolean function� C be
a set of boolean functions� and let r � IN be a positive integer	 f is said to be r�hard for C

��



if for all n�ary boolean functions g in C�

�



�

�

r
�

kfx � f�� �gn j f�x� � g�x�gk


n
�

�



�

�

r
�

f is called CIR�r��hard �NCIR�r��hard� if f is r�hard for CIR�r� �NCIR�r�� respec�
tively�	

Theorem ��


�	 If NP � APFP then MA � NP	

	 If �p
� � APFP then AM � NP	

Proof	

�� Based on the Nisan�Wigderson design of a pseudorandom generator �NW	�� it has
been recently shown that any set L in MA can be decided in ZPP�NP� �AK	���
Basically� the ZPP�NP� computation proceeds as follows�

On input x� the ZPP base machine randomly guesses some function
g � f�� �gO�logn� � f�� �g and asks a co�NP oracle whether g is hard
to approximate by circuits of some suitably chosen �polynomial� size� If
so� g is used to build a pseudorandom generator G that can be used to
derandomize the MA decision procedure for L� Consequently� one further
NP query suces to decide whether x belongs to L�

A crucial point for this algorithm to work is that the randomly chosen function g is
hard to approximate with high probability� Hence� under the assumption that NP �
APFP we can turn the above ZPP�NP� computation into an NP computation as
follows� Consider a suitable ecient on average algorithm M �which exists by the
assumption that NP � APFP� which veri�es that g is not hard to approximate�
Then M rejects most of its inputs within a polynomial time bound p� Consequently�
an NP algorithm can guess some boolean function g� verify the hardnes of g by
running M�g�� and then use the corresponding pseudorandom generator G to decide
whether x belongs to L�

We proceed by giving a formal proof� By the way MA is de�ned� there exist a
polynomial p and a set B � P such that for all x� jxj � n�

x � L � �y� jyj � p�n� � Probr�Rf���gp�n� �hx� y� ri � B�  ����

x �� L � �y� jyj � p�n� � Probr�Rf���gp�n� �hx� y� ri � B� � ���

where the subscript r �R f�� �gp�n� means that the probability is taken by choosing
r uniformly at random from f�� �gp�n��

��



For �xed strings x and y� the decision procedure for B on input x� y� r can be simu�
lated by some circuit cx�y with inputs r�� � � � � rp�n�� implying that

x � L � �y� jyj � p�n� � Probr�Rf���gp�n� �cx�y�r� � ��  ����

x �� L � �y� jyj � p�n� � Probr�Rf���gp�n� �cx�y�r� � �� � ���

where w�l�o�g� we can assume that the size of cx�y is bounded by p��jxj� and that
p�n� � �n� As shown in �NW	�� �see also �AK	��� there is an FP function G having
the following property� For any CIR�p��n���hard boolean function g � f�� �gm�n� �
f�� �g� where m�n� � �
 log p�n�� and for every p�n��input circuit c of size at most
p��n� it holds that��Proby�Rf���gp�n� �c�y� � ��� Probs�Rf���gl�n� �c�G�g� s�� � ��

�� � ��p�n� ���

where l�n� � 
�m�n�� Furthermore� for all suciently large n� a randomly chosen
boolean function g � f�� �gm�n� � f�� �g is CIR�p��n���hard with probability at least
�� e�p

��n�� Since the set

A � fg � f�� �gm�n� � f�� �g j n  �� g is not CIR�p��n���hard g

belongs to NP� we can use the assumption NP � APFP to get an algorithm M
for A that is ecient on average w�r�t� the standard distribution� Exploiting the fact
that at least a fraction of �� e�p

��n� of the strings of length 
m�n� are rejected by M �
it follows from part two of Proposition 
�� that there is a polynomial q such that M
rejects at least one string of length 
m�n� within q�n� steps� Now we are ready to give
the NP decision procedure for L�

input x� jxj � n�
guess g � f�� �gm�n� � f�� �g�
if M�g� rejects within q�n� steps then

guess y � �p�n��
k ��

P
s�f���gl�n� cx�y�G�g� s���

if k  
l�n��� then accept else reject

else reject

Using inequality � above it is easy to verify that this algorithm decides L correctly�


� The proof is similar to the one above� The only di!erence is that now a �p
� oracle has

to be used to check whether g is hard to approximate by nondeterministic circuits�
Let L � AM� Then there exist a polynomial p and a set D � NP such that for all
x� jxj � n

x � L � Probr�Rf���gp�n� �hx� ri � D�  ����

x �� L � Probr�Rf���gp�n� �hx� ri � D� � ����

��



For a �xed input x� the decision procedure for D on input x� r can be simulated by
some nondeterministic circuit cx with input r� implying that

x � L � Probr�Rf���gp�n� �cx�r� � ��  ����

x �� L � Probr�Rf���gp�n� �cx�r� � �� � ���

where again we can assume that the size of cx is bounded by p��jxj�� As shown
in �AK	�� there is an FP function G having the following property� For any
NCIR�p��n���hard boolean function g � f�� �gm�n� � f�� �g� where m�n� �
�
 log p�n�� and for every p�n��input nondeterministic circuit c of size at most p��n�
it holds that��Proby�Rf���gp�n� �c�y� � ��� Probs�Rf���gl�n� �c�G�g� s�� � ��

�� � ��p�n�

where l�n� � 
�m�n�� Furthermore� for all suciently large n� a randomly chosen
boolean function g � f�� �gm�n� � f�� �g is NCIR�p��n���hard with probability at
least �� e�p

��n�� Since the set

A � fg � f�� �gm�n� � f�� �g j n  �� g is not NCIR�p��n���hard g

belongs to �p
�� we can use the assumption �p

� � APFP to get an algorithm M for A
that is ecient on average w�r�t� the standard distribution� Exactly as in part one
above it follows that there is a polynomial q such that M rejects at least one string
of length 
m�n� within q�n� steps� Hence� L can be decided by the following NP
algorithm�

input x� jxj � n�
guess g � f�� �gm�n� � f�� �g�
if M�g� rejects within q�n� steps then

if
P

s�f���gl�n� cx�G�g� s��  
l�n��� then accept else reject

else reject

Note that the condition of the second if�statement can be evaluated in NP by guess�
ing for each s � f�� �gl�n� some assignment for the guess inputs of the nondeter�
ministic circuit cx on actual input G�g� s� and checking whether the sum over the
corresponding output bits exceeds 
l�n����

Note that the above proof shows that in order to derive MA � NP �AM � NP� it
suces to assume that for any set L in co�NP �respectively� �p

�� and any FP�computable
distribution � there is some nondeterministic Turing machine for L whose running time is
polynomial on ��average�

�	
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