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Abstract

We use the assumption that all sets in NP �or other levels of the polynomial�time
hierarchy� have e�cient average�case algorithms to derive collapse consequences for
MA� AM� and various subclasses of P�poly� As a further consequence we show for
C � fP�PP��PSPACEg that C is not tractable in the average�case unless C 	 P�

� Introduction

In general� the average�case complexity of an algorithm depends �by de�nition� on the
distribution on the inputs� In fact� there exist certain �so called malign or universal� dis�
tributions relative to which the average�case complexity of any algorithm coincides with its
worst�case complexity �LV	
�� Fortunately� these distributions are not recursive� Even for
the class of polynomial�time bounded algorithms� malign distributions are not computable
in polynomial time �Mil	���

In recent literature� it has been shown that several NP�complete problems are solvable
e
ciently on average �i�e�� in time polynomial on ��average� with respect to certain natural
distributions � on the instances� However� this is not true for all NP�complete problems�
unless E � NE �BCGL	
�� In fact� some natural NP problems A are under a particular
distribution � complete for NP in the sense that A is not e
ciently solvable on ��average
unless any NP problem is e
ciently solvable with respect to any polynomial�time com�
putable distribution �Lev���� It is therefore one of the main open problems in average�case
complexity theory whether NP problems can be solved e
ciently on average with respect
to natural� i�e�� polynomial�time computable distributions�

Let APFP denote the class of sets that are decidable in time polynomial on ��average
with respect to every polynomial�time computable distribution� As noted above� NP �
APFP implies that E � NE �BCGL	
�� This result provides an interesting connection
between average�case complexity and worst�case complexity� Namely� if all NP problems
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can be decided in time polynomial on average� then all sets in NE can be decided in
�worst�case� exponential time�

Similarly� as observed in �FF	��� any random self�reducible set which can be decided in
time polynomial on average �under the distribution induced by the random self�reduction�
can be decided by a randomized algorithm in �worst�case� polynomial time� For example�
Lipton �Lip	�� used an idea of Beaver and Feigenbaum �BF	�� to show that multivariate
polynomials of low degree are �functionally� random self�reducible� In particular� it follows
from Lipton�s result that if there is an algorithm computing the permanent e
ciently for
all but a su
ciently small �polynomial� fraction of all n � n matrices �over GF�p� where
p � n � � is prime�� then it is possible to compute the permanent of any n� n matrix in
expected polynomial time� Using this property it is not hard to show that P�PP� �� APFP

unless PP � ZPP � From Corollary ��� below� P�PP� � APFP even implies that PP � P
�in fact� it is easy to verify that PP � P already follows from the assumption that the
middle bit class MP �GKR�	�� is contained in APFP�� This means that for C � P�PP��
C is not tractable on the average unless C is tractable in the worst�case� This rises the
question whether a similar relationship holds for other classes C as� e�g�� C � NP or� more
generally� for C � �p

k�
In contrast to worst�case complexity� where NP � P implies that PH � P� it is not

known whether NP � APFP implies that all sets in �p
� � P�NP� are contained in APFP

�see �Imp	�� for an exposition�� Consider for example an NP optimization problem� It
is not known whether an e
cient average�case algorithm for the corresponding decision
problem can be used to compute e
ciently on average an optimal solution� To see the
di
culty consider the computation of a deterministic Turing machine M with oracle A�
where the distribution on the inputs of M is computable in polynomial time� Since the
oracle queries can be adaptive� it depends on the oracle set A which queries are actually
made� Hence� the distribution induced on the oracle queries is not necessarily computable
in polynomial time� On the other hand� it is known that NP � APFP implies �p

� � APFP

�cf� Theorem ��	�� We refer the reader to �Imp	�� SW	�� for further discussions of this
and related questions� As shown in �Sch	��� the class APFP is not closed under Turing
reducibility� moreover� APFP even contains Turing complete sets for EXP �note that EXP
is not contained in APFP��

Our results are based on the following special properties of any set A � APFP � Firstly�
for any P�printable domain D there is an algorithm that decides A e
ciently on all inputs
in the domain D� Secondly� since A is e
ciently decidable on average with respect to the
standard distribution �st �which is uniform on �n�� there is an algorithm for A that is
polynomial in the worst case for all but a polynomial fraction of the strings of each length�
Roughly speaking� we exploit these two properties in the following context� A serves as an
oracle in a computation that generates oracle queries in such a way that it is su
cient to
answer these queries either on some P�printable domain or on any domain which contains
a large fraction of the strings of each length�

In particular� we get the following collapse consequences� �The notion of instance
complexity and the class IC�log�poly� of sets of strings with low instance complexity were
introduced in �OKSW	��� As shown in �OKSW	��� P�log � IC�log� poly� � P�poly� and in






�AHH�	�� the following characterization of IC�log�poly� is given� A set A is in IC�log� poly�
if and only if A and its complement are both conjunctively reducible to a tally set��

� If NP � APFP then NP � P�log � P�

� If �p
� � APFP then �p

� � IC�log� poly� � P and every self�reducible set in P�poly is
in ZPP �

� If �p
� � APFP then all sets in �p

� � �p
� that conjunctively� disjunctively� or bounded

truth�table reduce to some sparse set are in P�

� If �p
� � APFP then �p

� � �p
� � P�poly � P�

� If �p
� � APFP then �p

� � �p
� � P�poly � P�

Since BPP is contained in �p
���

p
� �Sip��� Lau��� and in P�poly �BG��� we get in particular�

� If �p
� � APFP then BPP � P�

It is interesting to note that Corollary ��� implies stronger collapse consequences for the
polynomial hierarchy� For example� if �p

� � APFP then NP � P�poly implies PH �
ZPP �

We also investigate the question whether problems in NP �or in other levels of PH� are
solvable in time polynomial on average with respect to every distribution computable in
FP��p

k� �in symbols� NP ��APFP��pk�
�� Note thatAPFP��pk�

is a �possibly strict� subclass
of APFP � Hence� �

p
k � APFP��pk�

is a �possibly� stronger assumption than �p
k � APFP �

Under the assumption that NP problems are solvable in time polynomial on average
with respect to distributions in FP��p

�� we show that IP�P�poly� is contained in NP �
co�NP� where IP�P�poly� is the class of all sets that have an interactive proof with prover
complexity restricted to P�poly �BFL	�� AKS	���

� If NP � APFP��p��
then IP�P�poly� � NP � co�NP�

Since� as we show� �p
k � APFP��pk�

implies �p
k�� � APFP��pk�

and since �p
k � APFP��pk�

implies �p
k � APFP we get the following corollaries�

� If NP � APFP�NP� then �p
� � IC�log� poly� � P and every self�reducible set in

P�poly is in ZPP �

� If �p
� � APFP��p��

then �p
� � �p

� � P�poly � P and BPP � P�

Finally� we extend a result in �Imp	�� showing that NP � APFP implies BPP � ZPP
as follows�

� If NP � APFP � then MA � NP�

� If �p
� � APFP � then AM � NP�
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Note that AM � NP has some immediate strong implications as� for example� Graph
Isomorphism is in NP � co�NP�

Recently a series of plausible consequences� not known to follow from the assumption
P �� NP� have been derived from the assumption that NP is not small in EXP� see� e�g��
�LM	�� Lut	�a� Lut	�b� AK	��� It is interesting to note that the assumption NP � APFP

is contradictory to Lutz� hypothesis that NP is not small in EXP� as follows directly from
the fact that APFP is small in EXP �SY	�� CS	���

In this extended abstract most proofs are omitted� see �KS	�� for a complete version�

� Preliminaries

All languages are over the binary alphabet � � f�� �g� The length of a string x � �� is
denoted by jxj� For a language A� let A�n denote the set of all strings in A of length n� A
string is called tally if it is an element of �� and a set T is tally if T � ��� A set S is called
sparse if the cardinality of S�n is bounded above by a polynomial in n� TALLY denotes
the class of all tally sets� and SPARSE denotes the class of all sparse sets� The cardinality
of a �nite set A is denoted by kAk�

The join of two sets A and B is A � B � f�x j x � Ag 	 f�x j x � Bg� The join
of language classes is de�ned analogously� To encode pairs �or tuples� of strings we use a
standard polynomial�time computable pairing function denoted by h
� 
i whose inverses are
also computable in polynomial time� We assume that this function encodes tuples of tally
strings again as a tally string� IN denotes the set of non�negative integers and by log we
denote the function log x � maxf�� dlog� xeg�

We assume that the reader is familiar with fundamental complexity theoretic concepts
such as �oracle� Turing machines and the polynomial�time hierarchy �see� for example�
�BDG	�� Sch�����

Let C be a complexity class� A set A is PC�printable if there exists a set C � C and
a polynomial time bounded oracle Turing transducer T such that the output of T with
oracle C and input �n is an enumeration of all strings in A of length n� An oracle Turing
machine T is non�adaptive� if for all oracles C and all inputs x� the queries of T on input
x are independent of C� T is honest if there exists a constant c such that jxj � jyjc for
all x and for all oracle queries y of T on input x� A set A is P�honest�C��printable if A is
P�C��printable and the respective Turing transducer is honest and non�adaptive�

Next we review the notion of advice functions introduced by Karp and Lipton �KL��� to
characterize non�uniform complexity classes� A function h � �� � �� is called a polynomial�
length function if for some polynomial p and for all n 
 �� jh��n�j � p�n�� For a class C of
sets� let C�poly be the class of sets L such that there is a set I � C and a polynomial�length
function h such that for all n�

�x � �n � x � L � hx� h��n�i � I�

The function h is called an advice function for L� whereas I is the corresponding interpreter
set�
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In the following we will also make use of multi�valued advice functions� A �total� multi�
valued function h maps every string x to a non�empty subset of ��� denoted by set�h�x��
We say that g is a re�nement of h if for all x� set�g�x� � set�h�x��

A multi�valued advice function h has the property that for some polynomial p and all
n� set�h��n� � �p�n� and for all w � set�h��n��

�x � �n � x � L � hx� wi � I�

Let F be a class of �possibly multi�valued� functions and let L � C�poly� Then L is said
to have an advice function in F �with respect to interpreter class C� if some h � F is an
advice function for L with respect to some interpreter set I � C�

Let � be a probability distribution on ��� Associated with � are a distribution function
that we also denote by � and a density function� denoted by ��� � and �� are functions from
�� to the interval ��� �� such that

P
x �

��x� � � and ��x� �
P

y�x �
��y� where� as usual� �

denotes the lexicographic ordering on ��� Let t be a function from IN to IN� A distribution
� t�dominates a distribution �� if ���x� 
 t�jxj� 
 � ��x� for all x� If t is a constant� then we
say that � dominates � by a constant factor� similarly� if t is bounded by a polynomial�
then we say that � polynomially dominates ��

Let � be a distribution� A function f � �� � IN is polynomial on ��average �Lev���� if
there exists a constant � � � such that

X
x���

f ��x�

jxj
���x� ���

The class of functions polynomial on ��average has many closure properties that are
known for polynomials �Lev��� Gur	��� A further important property is robustness un�
der the polynomial domination of distributions �Lev��� Gur	��� i�e�� any function that is
polynomial on ��average is also polynomial on ��average provided that � dominates ��

In the recent literature on average�case complexity basically two ways have been con�
sidered to formalize the intuitive notion of feasible �or natural� distributions� The more
restrictive way is to consider only distributions as feasible that have e�ciently computable
distribution functions �Lev��� Gur	��� On the other hand� any e
ciently samplable dis�
tribution �according to which instances can be e�ciently generated� can be considered
feasible� As shown in �BCGL	
�� every e
ciently computable distribution is dominated
by an e
ciently samplable distribution� This implies that if a problem is solvable in time
polynomial on average with respect to any e
ciently samplable distribution then it is
also solvable in time polynomial on average with respect to any e
ciently computable
distribution�

A distribution is said to be P�computable if its distribution function � is P�computable�
i�e�� there exists a polynomial time bounded deterministic Turing transducer M such that
for all x and all k it holds that jM�x� �k����x�j � 
�k� Here the output ofM is interpreted
as a rational number� in some appropriate way� For example� if M�x� �k� � hp� qi� then
M�x� �k� computes the number p�q� As the following remark shows� requiring that the

�



density function �� of a distribution is P�computable is a strictly weaker condition unless
P �� NP�

Remark� As shown in �Gur���� if P �� NP then there exists a distribution whose density
function �� is P�computable but whose distribution function � is not P�computable	

As usual let FP denote the set of polynomial�time computable functions� An important
subclass of the class of P�computable distributions is the class of so�called FP�computable
distributions for which � can be e
ciently computed without error� For a complexity
class C� we say that a distribution is FP�C��computable �in symbols� � � FP�C�� if its
distribution function � is FP�C��computable� i�e�� there exist functions f � FP�C� and
g � FP such that for all x� ��x� � f�x��g�x��

As the following theorem shows� a problem is solvable in time polynomial on ��average
for every FP�computable distribution � if and only if it is solvable in time polynomial on
��average for every P�computable distribution ��

Theorem ��� �Gur��� Every P�computable distribution � is dominated by a FP�com�
putable distribution � by a constant factor	 Furthermore� for all x� the binary representation
of ��x� is of length linear in the length of x	

Following �Lev��� Gur	�� we assume that all natural distributions are either P�
computable or dominated by a P�computable distribution� In this sense� a set is e
ciently
decidable on average �under natural distributions� if it is decidable in time polynomial on
��average with respect to every distribution � � FP�

De�nition ��� �SY�
� Let F be a set of distributions	 A set A is decidable in average
polynomial time under distributions in F �in symbols� A � APF� if for every distribution
� � F there exists a deterministic Turing machineM such that A � L�M� and the running
time of M is polynomial on ��average	

As noted by Ben�David et al�� all sets in APFP are decidable in polynomial time on
tally inputs�

Theorem ��� �BCGL�
� Every tally set in APFP is in P	

Proof	 Assume that A is a tally set and in APFP � Consider a tally distribution �tally
de�ned as follows�

��tally�x� �

�
��n�n� ��� if x � �n� n � ��

�� otherwise�

It is not di
cult to see that the distribution function �tally is FP�computable �i�e��
�tally�x� � f�x��g�x� for some FP functions f� g � �� � IN��

Since A is in APFP there exists a Turing machine M such that A � L�M� and the
running time of M is polynomial on �tally�average� This implies� according to part one of
Proposition 
��� that M is polynomial time bounded �in worst�case� on all tally strings�

In �Sch	��� Schapire gives the following characterization of a function f being polyno�
mial on ��average�
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Theorem ��� �Sch��� Let � be a distribution	 Then f � �� � IN is polynomial on ��
average if and only if there exists a polynomial p such that for all m�

�fx j f�x� � p�jxj� m�g �
�

m
�

From this characterization it follows immediately that any function f that is polynomial
on ��average is in fact polynomially bounded on ��n� except for a subset which has low
probability under ��

Proposition ��� Let f be polynomial on ��average	 For every polynomial p there exists
a polynomial p� such that for all n�

�fx � ��p�n� j f�x� � p��n�g �
�

p�n�
�

Proof	 Assume that f is polynomial on ��average� Choose constants c and k � � such

that
P

x���
f��k�x�
jxj

���x� � c� Now let Hn denote the set fx � ��p�n� j f�x� � ckp�k�n�g and

assume to the contrary that for some n � �� ���Hn� � ��p�n�� Then�

X
x���

f ��k�x�

jxj
���x� 


X
x�Hn

cp��n�

p�n�
���x� 


�

p�n�

 c 
 p�n� � c�

The above proposition gives us the following special cases which we will need in the
following�

Proposition ��	 Let f be polynomial on ��average	

�	 Then for every polynomial p there exists a polynomial p� such that f�x� � p��jxj�
holds for all x with ���x� 
 ��p�jxj�	


	 If � � �st is the standard distribution �where ��st�x� �
�

jxj�jxj���

 
�jxj for all x �� 	��

then for every polynomial p there exists a polynomial p� such that for all n � ��

kfx � �n j f�x� � p��n�gk �

n

p�n�
�
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� Eliminating tally and printable oracle queries

A �rst consequence of the assumption that NP problems are decidable in time polynomial
on ��average for any distribution � � FP was given by Ben�David et�al� �BCGL	
��

Theorem ��� �BCGL�
� If NP � APFP � then E � NE �or� equivalently� NP �
TALLY � P�	

Proof	 Recall that E � NE if and only if every tally set in NP is in P �Boo���� Since� by
Theorem 
��� every tally set in APFP is already in P it follows that NP � APFP implies
E � NE�

Put in other words� if NP problems have e
cient average�case decision algorithms�
then P�NP � TALLY�� a subclass of P�poly� collapses downto P� We observe that
similar collapse consequences downto P can be derived for other subclasses of P�poly
�see Corollary ����� Some of these collapse consequences follow immediately from recent
results investigating the complexity of sparse and tally descriptions for sets in P�poly
�BS	
� K ob	�� Gav	�� AKM	��� For the others we can exploit an interesting connection
between the worst�case complexity of a set L and the average�case complexity of oracles
used in the computation of an advice function for L�

The following theorem shows that if an advice function h for some set L can be e
�
ciently computed relative to some oracle which is e
ciently decidable on average� then h
is computable in polynomial time�

Theorem ���

�	 Any advice function that is computable in FP�D� where P�D��TALLY � APFP is
computable in FP	


	 Any advice function that is computable in FP �D� where fA j A �p
m Dg �TALLY �

APFP is computable in FP	

Proof	

�� Let h be an advice function in FP�D� where D is an oracle for which P�D� �
TALLY � APFP � Then h is computable in FP�T � where T is the tally set

T � fh�n� �ii j the ith bit of h��n� is oneg�

Since T is in P�D� � TALLY and hence by assumption in APFP � it follows from
Theorem 
�� that T � P� implying that h � FP�


� Assume that h is an advice function in h � FP �D� via some oracle transducer M �
Then h is computable in FP�T � where T is the tally set

T � fh�n� �ii j the ith query of M��n� is in Dg�

Since T many�one reduces to D it follows from the assumption and from Theorem 
��
that T � P� implying that h � FP�
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Now� using results from �BS	
� AKM	�� K ob	�� Gav	��� we can state similar collapse
consequences as in Theorem ��� for several subclasses of P�poly� We note that by using a
di!erent proof technique it has been shown in �BFNW	�� that BPP � P follows from the
assumption that every tally set in �p

	 is contained in P�

Corollary ���

�	 If NP � TALLY � APFP then NP � P�log � P	


	 If �p
� � TALLY � APFP then �p

� � IC�log� poly� � P	

�	 If �p
� �TALLY � APFP then all sets in �p

� ��p
� that conjunctively� disjunctively� or

bounded truth�table reduce to some sparse set are in P	

�	 If �p
� � TALLY � APFP then �p

� � �p
� � P�poly � P and hence BPP � P	

�	 If �p
� � TALLY � APFP then �p

� � �p
� � P�poly � P	

Proof	

�� As shown in �BS	
�� every set A in NP � P�log is contained in P�S� for some
sparse set S � NP� Furthermore� as shown in �Har���� P�NP � SPARSE� �
P�NP � TALLY�� implying that NP � P�log � P�NP � TALLY�� Assuming
NP � TALLY � APFP � the collapse now follows by Theorem 
���


� As shown in �AKM	��� every set A in IC�log� poly� is in P�T � for some tally set
T � P�NP � A�� Therefore� if additionally A � �p

�� then A � P�T � for some tally
set T � �p

�� Since by Theorem 
�� every tally set in APFP is in P it follows by the
assumption �p

� � TALLY � APFP that A � P�

�� As shown in �AKM	��� every set A that conjunctively� disjunctively� or bounded
truth�table reduces to some sparse set is in P�S� for some sparse oracle S that can
be decided in NP�A�NP� with the help of an advice function h in FP �NP�A���
Therefore� if additionally A � �p

� � �p
�� then h is computable in FP ��p

�� and thus�
using the assumption �p

� � TALLY � APFP and part two of Theorem ��
� in FP�
This implies that S � �p

� and using an analogous reasoning as in the proof of part
one it follows that A � P�

�� As shown in �K ob	��� every set A in P�poly has an advice function h computable in
FP�NP�A�� �p

��� Therefore� if additionally A � �p
� � �p

�� then h � FP��p
�� and

thus� using the assumption �p
� � TALLY � APFP and part one of Theorem ��
�

in FP� The consequence that BPP � P is immediate since BPP � �p
� � �p

�

�Sip��� Lau��� and BPP � P�poly �BG����

	



�� As shown in �Gav	��� every set A in P�poly is in P�T � for some tally set T in
NP�A� �p

��� Therefore� if additionally A � �p
� � �p

�� then A � P�T � for some tally
set T � NP��p

� � �p
�� � �p

�� Since by Theorem 
�� every tally set in APFP is in P
it follows by the assumption �p

� � TALLY � APFP that A � P�

In our next theorem we consider the complexity of sets in P�poly that have advice
functions which can be computed by nondeterministic transducers under some oracle� For
the proof we need the following proposition which shows as a special case that any set
A � APFP is e
ciently decidable on any P�printable domain B�

Proposition ��� Let A � APFP�C� and let B be a P�C��printable set for some oracle C	
Then there exists a set D � P such that B � D and D � A � P	

Proof	 Assume that B is P�C��printable� Consider the distribution �B de�ned by

��B�x� �

�
�

n�n���
� if x is the lex� n�th string in B�

�� otherwise�

Since B is P�C��printable it is not di
cult to see that the distribution function �B is
FP�C��computable� Furthermore� ��B�x� 
 ��p�jxj��p�jxj� � �� for all x � B� where p�n�
is a polynomial bounding the number of all strings in B of length at most n� Since� by
assumption� A � APFP�C� there is a Turing machine M that decides B and whose running
time� denoted by timeM � is polynomial on �B�average� Now it follows from part one of
Proposition 
�� that for some polynomial q� timeM�x� � q�jxj� for all x � B� Thus� letting
D be the set of all inputs x � �� such that timeM�x� � q�jxj�� we can conclude that D � P�
B � D� and that D � A � P�

For an oracle B� a �multivalued� function h is in NPMV�B� if there exists a non�
deterministic polynomial�time transducer T such that set�h�x� consists of all output values
of TB on input x� h is in NPMVhonest�B� if� additionally� there exists a constant c such
that jyjc � jxj for all oracle queries y of TB on input x� In the case B � �� we simply write
NPMV instead of NPMV����

Theorem ��� If A � APFP�NP�A��� then any advice function h � NPMVhonest�A� has a
re�nement in NPMV� implying that any set L � �NP � co�NP��poly that has an advice
function in NPMVhonest�A� belongs to NP � co�NP	

Proof	 Let h be a multi�valued advice function in NPMVhonest�A� and let T be a honest
nondeterministic oracle transducer computing h under oracle A� Let q be a polynomial
bounding the running time of T and let c be a constant such that jyjc � jxj for all oracle
queries y of TB on input x� Consider the following set B consisting of all queries y asked
by TA on input �n on its leftmost successful computation�

B � fy j �n � TA��n� asks query y on the leftmost successful computationg�

��



Since T is honest it follows thatB is P�NP�A���printable� Since� by assumption� A belongs
to APFP�NP�A�� we can use Proposition ��� to conclude that there exists a set D � P such
that B � D and D � A � P� This implies that h has a re�nement in NPMV and hence�
any set L � �NP � co�NP��fhg belongs to NP � co�NP�

Corollary ��	 If NP � APFP��p��
then IP�P�poly� � NP � co�NP	

Proof	 Let L � IP�P�poly�� Then L belongs to P�poly� Let I � P be an interpreter set
for L and let h be an advice function� where jh��n�j � p�n� for some polynomial p� An
advice string can be checked by a co�NP�IP�P�poly�� computation as follows� On input
z � �p�n�� verify for all x � �n that �x� z� � I � x � L� Since IP�P�poly� is low for
�p
� �AKS	��� i�e�� �p

��IP�P�poly�� � �p
� � it follows that the correctness of an advice string

can be checked by a �p
� computation� and hence L has a multivalued advice function in

NPMVhonest�NP�� Thus the result is a consequence of part two of Theorem ����

As mentioned in the introduction� if a decision problem L� is decidable in time polyno�
mial on ���average for any FP�computable distribution ��� then this does not necessarily
imply that also any set L� in P�L�� is e
ciently decidable on average with respect to any
FP�computable distribution ��� If however for any FP�NP��computable distribution ���
L� is decidable in time polynomial on ���average� then we can show that indeed L� is
e
ciently solvable on average with respect to any FP�computable distribution ��� For
this it su
ces to show that the distribution on the oracle queries induced by �� and by
the reduction of L� to L� is FP�NP��computable� Also� we will make use of the notion
of Turing reducibility between distributional problems �L� �� where L is a set and � is a
distribution�

De�nition ��
 �BCGL�
� A distributional problem �L�� ��� Turing reduces to a distribu�
tional problem �L�� ��� via some polynomial�time oracle machine M and a distribution �
if

�	 � polynomially dominates ���


	 M Turing reduces L� to L�� and

�	 ����y� 

P

���x��p�jyj� where the sum is taken over all strings x such that query y
is asked by M on input x when using oracle L� �in symbols� y � Q�x�M� L���	

As stated in �BCGL	
� the class of e
ciently decidable distributional problems is closed
under Turing reducibility�

Theorem ��� �BCGL�
� If �L�� ��� is Turing reducible to �L�� ��� and if L� is decidable
in time polynomial on ���average� then L� is decidable in time polynomial on ���average	

Using this closure property we can now easily show that all sets in �p
k�� are e
ciently

decidable on average with respect to any FP��p
k��computable distribution provided that

this is true for all sets in �p
k�

��



Theorem ��� Let C and D be language classes where C is closed under polynomial�
time many�one equivalence	 Then C � APFP�C�D� implies P�C� � APFP�C�D� and
C � APFP�D� implies P�C� � APFP�D�	

Proof	 Assume that C � APFP�C�D� and consider an arbitrary set L � P�A� and an
arbitrary distribution �� � FP�C � D� where A � C � D� We have to show that L
is e
ciently decidable on average with respect to ��� Letting pad�A� � f�jxj�xw��i j
x � ��� i 
 �� w � Ag it is not di
cult to see that pad�A� and A are equivalent under
polynomial�time many�one reductions� Moreover� we can assume that L � L�M� pad�A��
for a polynomial�time oracle Turing machineM which for some polynomial p asks on input
x only queries y of the form �jxj�xw��i where w � �� and i � p�jxj��jwj� Hence it is easy
to determine for any query y of M the corresponding input string xy �which is unique��
Furthermore� we assume that on any input x� M asks at least one query�

Now consider the distribution �� induced by �� on the queries of M �

����y� �

�
��

��xy�

kQ�xy�M�pad�A��k
� if y � Q�xy�M� pad�A���

�� otherwise�

It is not di
cult to see that �L� ��� Turing reduces to �pad�A�� ��� via M and ��� Thus
it only remains to show that �� is FP�C � D��computable� By the monotonicity of the
oracle queries of M it follows that

���y� �
X
z�y

����z� �

�
�X

x�xy

����x�

�
A�

l

m

 ����xy� � ���x

�
y � �

l

m

 ����xy�

where m � kQ�xy�M� pad�A��k� l is the number of strings in Q�xy�M� pad�A�� less than
or equal to y� and x�y is the predecessor of xy in lexicographic order� But this proves that
�� � FP�C � D��

Now� assume that C � APFP�D� and consider an arbitrary set L � P�D� and an
arbitrary distribution �� � FP�D�� Then it follows exactly as above that L is e
ciently
decidable on average with respect to �� since the distribution �� induced by �� on the
queries of M is now easily seen to be FP�D��computable�

Corollary ���


�	 If NP � APFP�NP� then �p
� � IC�log� poly� � P	


	 If �p
� � APFP��p��

then �p
� � �p

� � P�poly � P and in particular� BPP � P	

Proof	 By Theorem ��	� �p
k � APFP��pk�

implies P�pk � APFP��pk�
� Since APFP��pk�

�
APFP the results follow from Theorem ��� and Corollary ����

�




� Eliminating random oracle queries

As mentioned in the introduction� any random self�reducible set which can be decided
in time polynomial on average �under the distribution induced by the random self�
reduction� can be decided by a randomized algorithm in expected polynomial time� As
shown by Feigenbaum and Fortnow� many complexity classes like PP � ModkP� and
PSPACE have complete sets that are random self�reducible� By combining the re�
sults stated in �FF	�� with Corollary ��� below� it is not hard to verify that for K �
fP�PP��MP�ModkP�ModP �PSPACEg� K is not contained in APFP unless K � ZPP
where the middle bit class MP� the classes ModkP � k 
 
� and the generalized Mod class
ModP have been introduced and studied in �GKR�	��� �CH	�� Her	�� BG	
�� and �KT	���
respectively�

In Theorem ��� below we show a similar collapse for the subclass of P�poly consisting
of all sets L for which a multivalued advice function can be computed by a randomized
algorithm under an oracle that is easily decidable on average� Let h � NPMV�B�� Then
we say that h � FZPP�B� if h is computable by an NPMV�B� transducer that� when
considered as a probabilistic Turing machine� on any input x produces with probability at
least ��
 some output y�

Let M be a randomized Turing machine� If we �x a sequence r � f�� �g� of the
probabilistic choices of M � then the computation of M on input x is deterministic� We use
Mr�x� to denote the output of M on input x and computation path r� Assuming that M
uses a functional oracle f � �� � �� and p is a polynomial bounding the running time of
M � we de�ne for any input x the distribution �M�f�x induced by M on input x with oracle
f �

��M�f�x�y� �
kRy�x�k

kR�x�k

where

Ry�x� � f�r� i� j r � f�� �gp�n� and y is the ith query ofMf
r �x�g

and R�x� �
S

y��� Ry�x��

Assume that g � FZPPf via some transducer M � Then we say that the compu�
tation of Mf is dominated by a distribution � �in symbols� g � FZPPf

� via M� if �
dominates the ensemble ��M�f�x�x���� i�e�� there exists a polynomial s such that for all x
and y� ���y� 
 ��M�f�x�y��s�jxj�� By ZPPf

� we denote the class of all languages whose

characteristic function belongs to FZPPf
��

In the following we use Af to denote the set that contains for any argument y of f all
strings yz such that the ith bit of f�y� is one �in the context of the present paper we can
always assume that jf�y�j � q�jyj� for some �xed polynomial q��

Af �fybinq�jyj��i� j i � jf�y�j� � or � � i � jf�y�j and the ith bit of f�y� is one g�

��



Lemma ��� Let f be a function and q be a polynomial such that jf�y�j � q�jyj�	 Then
FZPPf

� � FZPPAf
� where � is the distribution de�ned as

� ��u� �

�
���y��q�jyj�� if u � ybinq�jyj��i� for some i � f�� � � � � q�jyj�g�

�� otherwise�

Proof	 Let g � FZPPf
� via some machine M and let s be a polynomial such that for

all x and y� ��M�f�x�y��s�jxj� � ���y�� Let M � be an oracle machine that simulates M by
substituting each oracle query y by the sequence ybinq�jyj��i�� i � �� 
 
 
 � q�jyj� of oracle
queries to Af � Then g � FZPPAf via M �� Furthermore� it is not hard to see that the
distribution �M ��Af �x on the oracle queries induced by M � on input x ful�lls for all strings
u � ybinq�jyj��i� where � � i � q�jyj� the inequality

��M ��Af �x
�ybinq�jyj�� � ��M�f�x�y��q�jyj� � ���y�s�jxj��q�jyj� � � ��ybinq�jyj��s�jxj��

Since ��M ��Af �x
�u� � � for all other strings u� this shows that � dominates the ensemble

��M ��Af �x�x����

Theorem ��� If Af � APFP and if � is a distribution in FP� then FZPPf
� � FZPP

and� in particular� ZPPf
� � ZPP	

Proof	 Let g � FZPPf
�� From Lemma ��� it follows that g belongs to FZPPAf

� via
some probabilistic oracle Turing machine M and some distribution � � FP� Since the
induced distribution on the oracle queries remains the same if we run an oracle machine
an arbitrary number of times� we can assume that on any input x� M outputs "�# with
probability at most ���� Let p be a polynomial time bound forM and let s be a polynomial
such that for all x and y� �M�Af �x�y��s�jxj� � ��y�� Since by assumption Af � APFP � it
follows from Proposition 
�� that there exists a machine MAf deciding Af such that for

some polynomial t and all n� � �fy � ��p�n� j timeMAf
�y� � t�n�g � �


p�n�	s�n� � Hence� for

all x it holds that

��M�Af �x
fy � ��p�jxj� j timeMAf

�y� � t�jxj�g �
�

�p�jxj�
�

Recall that ��M�Af �x
�y� � kRy�x�k�kRxk� where Ry�x� is the set of positions �r� i� in the

computation tree of MAf on input x where MAf queries y and Rx �
S

y Ry�x� is the set of

all query positions of MAf on input x� Therefore� each position �r� i� at which y is asked
as a query contributes an amount of ��kRxk to the probability �M�Af �x�y��

This implies that the number of query positions �r� i� such that timeMAf
�y� � t�jxj�

where y is the ith query of M
Af
r �x�� is bounded by kRxk��p�jxj�� Hence� the number

of computations r of MAf �x� such that timeMAf
�y� � t�jxj� for at least one query y of

M
Af
r �x� is at most kRxk��p�jxj� � 
p�jxj����
Therefore g can be decided as follows�

��



On input x� jxj � n� guess a string r of length p�n� and simulate Mr�x� where
each oracle query y is answered by running MAf �y� for at most t�n� steps� If
for some query y� MAf �y� runs for more than t�n� steps� then output "�#�

Since this algorithm does only output strings in set�g�x� and since the probability of
outputting "�# is easily veri�ed to be at most ���� it follows that a re�nement of g is in
FZPP �

Since the standard distribution �st is easily seen to be in FP� we immediately get the
following corollary�

Corollary ��� If Af � APFP � then any function h � FZPPf
�st

has a re�nement in

FZPP and� in particular� ZPPf
�st
� ZPP	

Now we are ready to show that any advice function which can be computed by a
randomized algorithm under an oracle that is easily decidable on average is computable in
the same way without the help of an oracle�

Theorem ��� Any advice function that is computable in FZPP�D� where P�D� �
APFP has a re�nement in FZPP 	

Proof	 Assume that h is a multi�valued advice function in FZPP�D� and let T be a prob�
abilistic oracle transducer computing h under oracle D� Consider the function f de�ned
by f�r� � TD

r ��n� if r � f�� �gp�n� for some n and TD
r ��n� is a successfull computation�

and f�r� � � otherwise� Note that h � FZPPf
�st via a probabilistic transducer M that

on input �n randomly guesses a string r � �p�n� and outputs f�r�� Since Af in P�D� and
since by assumption� P�D� � APFP � it follows from Corollary ��� that the result follows
from the assumption that P�D� � APFP �

By using results from �BCG�	�� KW	�� Lip	�� FF	�� GKR�	�� KT	�� it is easy to
derive the following corollary�

Corollary ���

�	 �Wat�
� If �p
� � APFP then every self�reducible set in P�poly is in ZPP 	


	 If NP � APFP�NP� then every self�reducible set in P�poly is in ZPP	

�	 For K � fP�PP��MP�ModP �PSPACEg� K is not contained in APFP unless K �
P	

Proof	

�� Since� as shown in �BCG�	�� KW	��� every self�reducible set L � P�poly has an
advice function in FZPP�NP�� the result follows from Theorem ����

��




� By Theorem ��	� NP � APFP�NP� implies �p
� � APFP�NP�� Since APFP�NP� �

APFP the result follows from Corollary ����

�� We �rst consider the case that K � P�PP�� Under the assumption P�PP� � APFP

it is easy to design an algorithm that computes the permanent e
ciently for all but
a su
ciently small �polynomial� fraction of all n � n matrices �over GF�p� where
p � n � � is prime�� As shown in �Lip	�� this implies that the permanent �over
GF�p�� of any n � n matrix can be computed in expected polynomial time� Since
computing the permanent �over GF�p� where p is given as part of the input� is hard
for P�PP� �Val�	� we can conclude that PP � ZPP � Since �p

� � P�PP� �Tod	���
it follows by Corollary ��� that PP � P�

Next assume that K � fMP�ModPg is contained in APFP � Then by Theorem ��	
it follows that P�K� is contained in APFP � Since P�PP� � P�K� �GKR�	�� KT	��
we get that PP � P� implying that K � P�

For the case K � PSPACE we use the result in �FF	�� that PSPACE �complete sets
are random self�reducible� From the proof given in �FF	�� it is easy to verify that
there is a function f � FP�PSPACE� such that PSPACE � ZPPf

�st � Since the
assumption PSPACE � APFP implies that Af � APFP � it follows by Corollary ���
that ZPPf

�st � ZPP � implying that PSPACE � ZPP � Since �p
� � PSPACE � it

follows by Corollary ��� that PSPACE � P�

It is interesting to note that Corollary ��� implies stronger collapse consequences for
the polynomial hierarchy� For example� if �p

� � APFP then NP � P�poly implies
PH � ZPP �

Finally� by applying a technique used to show that MA � ZPP�NP� �AK	�� we
extend a result in �Imp	�� showing that NP � APFP implies BPP � ZPP � More speci��
cally� we derive under the same assumption NP � APFP thatMA can be derandomized�
i�e�� MA � NP� whereas under the stronger assumption �p

� � APFP also AM can
be derandomized� i�e�� AM � NP� Note that AM � NP has some immediate strong
implications as� for example� Graph Isomorphism is in NP � co�NP�

A nondeterministic circuit c has two kinds of input gates� in addition to the actual
inputs x�� � � � � xn� c has a series of distinguished guess inputs y�� � � � � ym� The value com�
puted by c on input x � �n is � �in symbols� c�x� � �� if there exists a y � �m such that
c�xy� � �� and � otherwise �SV����

Next we recall the notion of hardness of boolean functions� We denote the class of
boolean functions that can be computed by some �non�deterministic circuit c of size at
most s by CIR�s� �NCIR�s�� respectively��

De�nition ��	 �cf	 �Yao�
� NW���� Let f � f�� �gn � f�� �g be a boolean function� C be
a set of boolean functions� and let r � IN be a positive integer	 f is said to be r�hard for C

��



if for all n�ary boolean functions g in C�

�



�

�

r
�

kfx � f�� �gn j f�x� � g�x�gk


n
�

�



�

�

r
�

f is called CIR�r��hard �NCIR�r��hard� if f is r�hard for CIR�r� �NCIR�r�� respec�
tively�	

Theorem ��


�	 If NP � APFP then MA � NP	


	 If �p
� � APFP then AM � NP	

Proof	

�� Based on the Nisan�Wigderson design of a pseudorandom generator �NW	�� it has
been recently shown that any set L in MA can be decided in ZPP�NP� �AK	���
Basically� the ZPP�NP� computation proceeds as follows�

On input x� the ZPP base machine randomly guesses some function
g � f�� �gO�logn� � f�� �g and asks a co�NP oracle whether g is hard
to approximate by circuits of some suitably chosen �polynomial� size� If
so� g is used to build a pseudorandom generator G that can be used to
derandomize the MA decision procedure for L� Consequently� one further
NP query su
ces to decide whether x belongs to L�

A crucial point for this algorithm to work is that the randomly chosen function g is
hard to approximate with high probability� Hence� under the assumption that NP �
APFP we can turn the above ZPP�NP� computation into an NP computation as
follows� Consider a suitable e
cient on average algorithm M �which exists by the
assumption that NP � APFP� which veri�es that g is not hard to approximate�
Then M rejects most of its inputs within a polynomial time bound p� Consequently�
an NP algorithm can guess some boolean function g� verify the hardnes of g by
running M�g�� and then use the corresponding pseudorandom generator G to decide
whether x belongs to L�

We proceed by giving a formal proof� By the way MA is de�ned� there exist a
polynomial p and a set B � P such that for all x� jxj � n�

x � L � �y� jyj � p�n� � Probr�Rf���gp�n� �hx� y� ri � B� 
 ����

x �� L � �y� jyj � p�n� � Probr�Rf���gp�n� �hx� y� ri � B� � ���

where the subscript r �R f�� �gp�n� means that the probability is taken by choosing
r uniformly at random from f�� �gp�n��

��



For �xed strings x and y� the decision procedure for B on input x� y� r can be simu�
lated by some circuit cx�y with inputs r�� � � � � rp�n�� implying that

x � L � �y� jyj � p�n� � Probr�Rf���gp�n� �cx�y�r� � �� 
 ����

x �� L � �y� jyj � p�n� � Probr�Rf���gp�n� �cx�y�r� � �� � ���

where w�l�o�g� we can assume that the size of cx�y is bounded by p��jxj� and that
p�n� � �n� As shown in �NW	�� �see also �AK	��� there is an FP function G having
the following property� For any CIR�p��n���hard boolean function g � f�� �gm�n� �
f�� �g� where m�n� � �
 log p�n�� and for every p�n��input circuit c of size at most
p��n� it holds that��Proby�Rf���gp�n� �c�y� � ��� Probs�Rf���gl�n� �c�G�g� s�� � ��

�� � ��p�n� ���

where l�n� � 
�m�n�� Furthermore� for all su
ciently large n� a randomly chosen
boolean function g � f�� �gm�n� � f�� �g is CIR�p��n���hard with probability at least
�� e�p

��n�� Since the set

A � fg � f�� �gm�n� � f�� �g j n 
 �� g is not CIR�p��n���hard g

belongs to NP� we can use the assumption NP � APFP to get an algorithm M
for A that is e
cient on average w�r�t� the standard distribution� Exploiting the fact
that at least a fraction of �� e�p

��n� of the strings of length 
m�n� are rejected by M �
it follows from part two of Proposition 
�� that there is a polynomial q such that M
rejects at least one string of length 
m�n� within q�n� steps� Now we are ready to give
the NP decision procedure for L�

input x� jxj � n�
guess g � f�� �gm�n� � f�� �g�
if M�g� rejects within q�n� steps then

guess y � �p�n��
k ��

P
s�f���gl�n� cx�y�G�g� s���

if k 
 
l�n��� then accept else reject

else reject

Using inequality � above it is easy to verify that this algorithm decides L correctly�


� The proof is similar to the one above� The only di!erence is that now a �p
� oracle has

to be used to check whether g is hard to approximate by nondeterministic circuits�
Let L � AM� Then there exist a polynomial p and a set D � NP such that for all
x� jxj � n

x � L � Probr�Rf���gp�n� �hx� ri � D� 
 ����

x �� L � Probr�Rf���gp�n� �hx� ri � D� � ����

��



For a �xed input x� the decision procedure for D on input x� r can be simulated by
some nondeterministic circuit cx with input r� implying that

x � L � Probr�Rf���gp�n� �cx�r� � �� 
 ����

x �� L � Probr�Rf���gp�n� �cx�r� � �� � ���

where again we can assume that the size of cx is bounded by p��jxj�� As shown
in �AK	�� there is an FP function G having the following property� For any
NCIR�p��n���hard boolean function g � f�� �gm�n� � f�� �g� where m�n� �
�
 log p�n�� and for every p�n��input nondeterministic circuit c of size at most p��n�
it holds that��Proby�Rf���gp�n� �c�y� � ��� Probs�Rf���gl�n� �c�G�g� s�� � ��

�� � ��p�n�

where l�n� � 
�m�n�� Furthermore� for all su
ciently large n� a randomly chosen
boolean function g � f�� �gm�n� � f�� �g is NCIR�p��n���hard with probability at
least �� e�p

��n�� Since the set

A � fg � f�� �gm�n� � f�� �g j n 
 �� g is not NCIR�p��n���hard g

belongs to �p
�� we can use the assumption �p

� � APFP to get an algorithm M for A
that is e
cient on average w�r�t� the standard distribution� Exactly as in part one
above it follows that there is a polynomial q such that M rejects at least one string
of length 
m�n� within q�n� steps� Hence� L can be decided by the following NP
algorithm�

input x� jxj � n�
guess g � f�� �gm�n� � f�� �g�
if M�g� rejects within q�n� steps then

if
P

s�f���gl�n� cx�G�g� s�� 
 
l�n��� then accept else reject

else reject

Note that the condition of the second if�statement can be evaluated in NP by guess�
ing for each s � f�� �gl�n� some assignment for the guess inputs of the nondeter�
ministic circuit cx on actual input G�g� s� and checking whether the sum over the
corresponding output bits exceeds 
l�n����

Note that the above proof shows that in order to derive MA � NP �AM � NP� it
su
ces to assume that for any set L in co�NP �respectively� �p

�� and any FP�computable
distribution � there is some nondeterministic Turing machine for L whose running time is
polynomial on ��average�

�	
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