Average-Case Intractability vs. Worst-Case Intractability

Johannes Kobler and Rainer Schuler

Abteilung Theoretische Informatik
Universitat Ulm
89069 Ulm, Germany
{koebler,schuler }@informatik.uni-ulm.de

Abstract

We use the assumption that all sets in NP (or other levels of the polynomial-time
hierarchy) have efficient average-case algorithms to derive collapse consequences for
MA, AM, and various subclasses of P/poly. As a further consequence we show for
C € {P(PP),PSPACE} that C is not tractable in the average-case unless C = P.

1 Introduction

In general, the average-case complexity of an algorithm depends (by definition) on the
distribution on the inputs. In fact, there exist certain (so called malign or universal) dis-
tributions relative to which the average-case complexity of any algorithm coincides with its
worst-case complexity [LV92]. Fortunately, these distributions are not recursive. Even for
the class of polynomial-time bounded algorithms, malign distributions are not computable
in polynomial time [Mil93].

In recent literature, it has been shown that several A/P-complete problems are solvable
efficiently on average (i.e., in time polynomial on p-average) with respect to certain natural
distributions g on the instances. However, this is not true for all NP-complete problems,
unless £ = V& [BCGLI2]. In fact, some natural AP problems A are under a particular
distribution g complete for AP in the sense that A is not efficiently solvable on p-average
unless any NP problem is efficiently solvable with respect to any polynomial-time com-
putable distribution [Lev86]. It is therefore one of the main open problems in average-case
complexity theory whether AP problems can be solved efficiently on average with respect
to natural, i.e., polynomial-time computable distributions.

Let AP £p denote the class of sets that are decidable in time polynomial on p-average
with respect to every polynomial-time computable distribution. As noted above, NP C
AP rp implies that & = NE [BCGLI2]. This result provides an interesting connection
between average-case complexity and worst-case complexity. Namely, if all AP problems



can be decided in time polynomial on average, then all sets in N'E can be decided in
(worst-case) exponential time.

Similarly, as observed in [FF93], any random self-reducible set which can be decided in
time polynomial on average (under the distribution induced by the random self-reduction)
can be decided by a randomized algorithm in (worst-case) polynomial time. For example,
Lipton [Lip91] used an idea of Beaver and Feigenbaum [BF90] to show that multivariate
polynomials of low degree are (functionally) random self-reducible. In particular, it follows
from Lipton’s result that if there is an algorithm computing the permanent efficiently for
all but a sufficiently small (polynomial) fraction of all n x n matrices (over GF(p) where
p > n+ 1 is prime), then it is possible to compute the permanent of any n x n matrix in
expected polynomial time. Using this property it is not hard to show that P(PP) Z AP #p
unless PP = ZPP. From Corollary 3.3 below, P(PP) C AP rp even implies that PP = P
(in fact, it is easy to verify that PP = P already follows from the assumption that the
middle bit class MP [GKR195] is contained in AP #p). This means that for C = P(PP),
C is not tractable on the average unless C is tractable in the worst-case. This rises the
question whether a similar relationship holds for other classes C as, e.g., C = N'P or, more
generally, for C = X7,

In contrast to worst-case complexity, where NP C P implies that PH C P, it is not
known whether NP C AP zp implies that all sets in AL = P(NP) are contained in AP zp
(see [Imp95] for an exposition). Consider for example an NP optimization problem. It
is not known whether an efficient average-case algorithm for the corresponding decision
problem can be used to compute efficiently on average an optimal solution. To see the
difficulty consider the computation of a deterministic Turing machine M with oracle A,
where the distribution on the inputs of M is computable in polynomial time. Since the
oracle queries can be adaptive, it depends on the oracle set A which queries are actually
made. Hence, the distribution induced on the oracle queries is not necessarily computable
in polynomial time. On the other hand, it is known that NP C AP zp implies ©5 C AP zp
(cf. Theorem 3.9). We refer the reader to [Imp95, SW95] for further discussions of this
and related questions. As shown in [Sch96], the class AP zp is not closed under Turing
reducibility, moreover, AP zp even contains Turing complete sets for EXP (note that EXP
is not contained in AP £p).

Our results are based on the following special properties of any set A € AP zp: Firstly,
for any P-printable domain D there is an algorithm that decides A efficiently on all inputs
in the domain D. Secondly, since A is efficiently decidable on average with respect to the
standard distribution g (which is uniform on "), there is an algorithm for A that is
polynomial in the worst case for all but a polynomial fraction of the strings of each length.
Roughly speaking, we exploit these two properties in the following context: A serves as an
oracle in a computation that generates oracle queries in such a way that it is sufficient to
answer these queries either on some P-printable domain or on any domain which contains
a large fraction of the strings of each length.

In particular, we get the following collapse consequences. (The notion of instance
complexity and the class IC[log,poly] of sets of strings with low instance complexity were
introduced in [OKSW94]. As shown in [OKSW94], P /log C ICJlog, poly] C P/poly, and in
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[AHH"93] the following characterization of IC[log,poly] is given: A set A is in IC[log, poly]
if and only if A and its complement are both conjunctively reducible to a tally set.)

e If NP C AP zp then NP N P/log = P.

o If AL C AP rp then A} NIC[log, poly] = P and every self-reducible set in P/poly is
in ZPP.
o If ¥ C APzp then all sets in X5 NII5 that conjunctively, disjunctively, or bounded

truth-table reduce to some sparse set are in P.
o If A C APzp then X5 NII5 NP /poly = P.
o If X8 C APsp then X5 NII5 NP /poly = P.
Since BPP is contained in ©5NTT5 [Sip83, Lau83] and in P/poly [BG81] we get in particular:
o If AL C APsp then BPP = P.

It is interesting to note that Corollary 4.5 implies stronger collapse consequences for the
polynomial hierarchy. For example, if AL C APzp then NP C P/poly implies PH =
ZPP.

We also investigate the question whether problems in AP (or in other levels of PH) are
solvable in time polynomial on average with respect to every distribution computable in
FP(E}) (insymbols: NP C?AP rp(sry). Note that AP zp(sp) is a (possibly strict) subclass
of APzp. Hence, X} C AP rp(sp) is a (possibly) stronger assumption than 3} C AP zp.

Under the assumption that NP problems are solvable in time polynomial on average
with respect to distributions in FP(X5) we show that IP[P/poly] is contained in NP N
co-N'P, where IP[P/poly] is the class of all sets that have an interactive proof with prover
complexity restricted to P/poly [BFLI1, AKS95].

o If NP C AP zp(sz) then IP[P/poly] C NP N co-NP.

Since, as we show, ¥} C AP zpr) implies A}, € AP zp(sry and since A} C AP zp(sr)
implies A? C AP xp we get the following corollaries:

o If NP C APgppp) then AY NIC[log,poly] = P and every self-reducible set in
P/poly is in ZPP.

L4 If Eg g A’P}-p(gg) then Eg N Hg N P/pOIy = P and BP'P = 'P

Finally, we extend a result in [Imp95] showing that NP C AP zp implies BPP = ZPP
as follows:

L] IfNP - AP}'p, then MA :NP
o If Eg - AP}'p, then AM = NP



Note that AM = NP has some immediate strong implications as, for example, Graph
Isomorphism is in NP N co-N"P.

Recently a series of plausible consequences, not known to follow from the assumption
P # NP, have been derived from the assumption that AP is not small in EXP, see, e.g.,
[LM96, Lut97a, Lut97b, AK97]. It is interesting to note that the assumption NP C AP zp
is contradictory to Lutz’ hypothesis that NP is not small in EXP, as follows directly from
the fact that AP zp is small in EXP [SY95, CSI6].

In this extended abstract most proofs are omitted; see [KS97] for a complete version.

2 Preliminaries

All languages are over the binary alphabet X = {0,1}. The length of a string x € X* is
denoted by |z|. For a language A, let A=" denote the set of all strings in A of length n. A
string is called tally if it is an element of 1* and a set 7" is tally if T C 1*. A set S is called
sparse if the cardinality of S=" is bounded above by a polynomial in n. TALLY denotes
the class of all tally sets, and SPARSE denotes the class of all sparse sets. The cardinality
of a finite set A is denoted by ||A]|.

The join of two sets A and Bis A® B = {0z | x € A} U{lz | x € B}. The join
of language classes is defined analogously. To encode pairs (or tuples) of strings we use a
standard polynomial-time computable pairing function denoted by (-, -) whose inverses are
also computable in polynomial time. We assume that this function encodes tuples of tally
strings again as a tally string. IN denotes the set of non-negative integers and by log we
denote the function log x = max{1, [log, ]}.

We assume that the reader is familiar with fundamental complexity theoretic concepts
such as (oracle) Turing machines and the polynomial-time hierarchy (see, for example,
[BDGI5, Sch86]).

Let C be a complexity class. A set A is PC-printable if there exists a set C € C and
a polynomial time bounded oracle Turing transducer 7" such that the output of 1" with
oracle C' and input 1" is an enumeration of all strings in A of length n. An oracle Turing
machine 7T is non-adaptive, if for all oracles C' and all inputs x, the queries of T" on input
x are independent of C'. T is honest if there exists a constant ¢ such that |z| < |y|° for
all z and for all oracle queries y of 7' on input z. A set A iS P ponest (C)-printable if A is
P(C)-printable and the respective Turing transducer is honest and non-adaptive.

Next we review the notion of advice functions introduced by Karp and Lipton [KL80] to
characterize non-uniform complexity classes. A function h : 0* — ¥* is called a polynomial-
length function if for some polynomial p and for all n > 0, |h(0™)| = p(n). For a class C of
sets, let C/poly be the class of sets L such that there is a set I € C and a polynomial-length
function A such that for all n,

VeeX":xe L & (z,h(0")) € 1.

The function A is called an advice function for L, whereas I is the corresponding interpreter
set.



In the following we will also make use of multi-valued advice functions. A (total) multi-
valued function h maps every string = to a non-empty subset of X* denoted by set-h(x).
We say that g is a refinement of h if for all z, set-g(x) C set-h(z).

A multi-valued advice function h has the property that for some polynomial p and all
n, set-h(0™) C Y7 and for all w € set-h(0"),

VeeX':x el & (x,w) € l.

Let F be a class of (possibly multi-valued) functions and let L € C/poly. Then L is said
to have an advice function in F (with respect to interpreter class C) if some h € F is an
advice function for L with respect to some interpreter set I € C.

Let 1 be a probability distribution on ¥*. Associated with u are a distribution function
that we also denote by p and a density function, denoted by y'. p and p' are functions from
¥* to the interval [0,1] such that >° p/(z) =1 and p(z) =3, ., i/ (y) where, as usual, <
denotes the lexicographic ordering on ¥X*. Let ¢ be a function from IN to IN. A distribution
p t-dominates a distribution v, if p'(x) - t(Jz|) > /() for all x. If ¢ is a constant, then we
say that p dominates v by a constant factor, similarly, if ¢ is bounded by a polynomial,
then we say that p polynomially dominates v.

Let u be a distribution. A function f : ¥* — IN is polynomial on p-average [Lev86], if
there exists a constant € > 0 such that

The class of functions polynomial on p-average has many closure properties that are
known for polynomials [Lev86, Gur91]. A further important property is robustness un-
der the polynomial domination of distributions [Lev86, Gur91], i.e., any function that is
polynomial on v-average is also polynomial on p-average provided that v dominates p.

In the recent literature on average-case complexity basically two ways have been con-
sidered to formalize the intuitive notion of feasible (or natural) distributions. The more
restrictive way is to consider only distributions as feasible that have efficiently computable
distribution functions [Lev86, Gur91]. On the other hand, any efficiently samplable dis-
tribution (according to which instances can be efficiently generated) can be considered
feasible. As shown in [BCGL92], every efficiently computable distribution is dominated
by an efficiently samplable distribution. This implies that if a problem is solvable in time
polynomial on average with respect to any efficiently samplable distribution then it is
also solvable in time polynomial on average with respect to any efficiently computable
distribution.

A distribution is said to be P-computable if its distribution function y is P-computable,
i.e., there exists a polynomial time bounded deterministic Turing transducer M such that
for all z and all k it holds that | M (x, 1¥) — u(z)| < 27*. Here the output of M is interpreted
as a rational number, in some appropriate way. For example, if M(x,1¥) = (p,q), then
M (z,1%) computes the number p/q. As the following remark shows, requiring that the



density function p' of a distribution is P-computable is a strictly weaker condition unless
P+ NP.

Remark. As shown in [Gur91], if P # NP then there exists a distribution whose density
function p' is P-computable but whose distribution function p is not P-computable.

As usual let FP denote the set of polynomial-time computable functions. An important
subclass of the class of P-computable distributions is the class of so-called FP-computable
distributions for which g can be efficiently computed without error. For a complexity
class C, we say that a distribution is FP(C)-computable (in symbols: p € FP(C)) if its
distribution function p is FP(C)-computable, i.e., there exist functions f € FP(C) and
g € FP such that for all z, pu(x) = f(z)/g(x).

As the following theorem shows, a problem is solvable in time polynomial on v-average
for every FP-computable distribution v if and only if it is solvable in time polynomial on
p-average for every P-computable distribution p.

Theorem 2.1 [Gur91] Every P-computable distribution p is dominated by a FP-com-
putable distribution v by a constant factor. Furthermore, for all x, the binary representation
of v(x) is of length linear in the length of x.

Following [Lev86, Gur9l] we assume that all natural distributions are either P-
computable or dominated by a P-computable distribution. In this sense, a set is efficiently
decidable on average (under natural distributions) if it is decidable in time polynomial on
p-average with respect to every distribution p € FP.

Definition 2.2 [SY96] Let F be a set of distributions. A set A is decidable in average
polynomial time under distributions in F (in symbols, A € AP ) if for every distribution
p € F there exists a deterministic Turing machine M such that A = L(M) and the running
time of M 1is polynomial on j-average.

As noted by Ben-David et al., all sets in APxp are decidable in polynomial time on
tally inputs.
Theorem 2.3 [BCGL92] Every tally set in AP zp is in P.

Proof.  Assume that A is a tally set and in APzp. Consider a tally distribution fuq,
defined as follows:

() = 1/n(n+1), ifz=0"n>0;
“w 0, otherwise.

It is not difficult to see that the distribution function fueu, is FP-computable (i.e.,
taiy () = f(x)/g(x) for some FP functions f,g: X" — IN).

Since A is in APzp there exists a Turing machine M such that A = L(M) and the
running time of M is polynomial on ji4y,-average. This implies, according to part one of
Proposition 2.6, that M is polynomial time bounded (in worst-case) on all tally strings. m

In [Sch90], Schapire gives the following characterization of a function f being polyno-
mial on p-average.



Theorem 2.4 [Sch90] Let p be a distribution. Then f : ¥* — IN is polynomial on p-
average if and only if there exists a polynomial p such that for all m,

1
wa | fl2) > pla|,m)} = —.
From this characterization it follows immediately that any function f that is polynomial
on p-average is in fact polynomially bounded on ¥<", except for a subset which has low
probability under p.

Proposition 2.5 Let f be polynomial on p-average. For every polynomial p there exists
a polynomial p' such that for all n,

plo € 50 | f(z) > p'(n)} < o)’

Proof. Assume that f is polynomial on p-average. Choose constants ¢ and k£ > 1 such
k
that >, L) (' (x) < c. Now let H, denote the set {z € X=P() | f(x) > cfp?*(n)} and

||

assume to the contrary that for some n > 0, p/(H,) > 1/p(n). Then,

l/kl' CQn
S > 3Ty > Loy =

24 il p(n)

The above proposition gives us the following special cases which we will need in the
following.

Proposition 2.6 Let f be polynomial on p-average.

1. Then for every polynomial p there exists a polynomial p' such that f(x) < p'(|z|)
holds for all x with u'(z) > 1/p(|x]).

2. If u = pg is the standard distribution (where p',(x) = m 2271 for all z £ N),
then for every polynomial p there exists a polynomial p’' such that for all n > 0,
2TL
ze€X"| f(z)>p(n)} < .
It | f(z) > p'(n)}] o)



3 Eliminating tally and printable oracle queries

A first consequence of the assumption that A/P problems are decidable in time polynomial
on p-average for any distribution p € FP was given by Ben-David et.al. [BCGL92].

Theorem 3.1 [BCGL92] If NP C APxp, then €& = NE (or, equivalently, NP N
TALLY C P).

Proof. Recall that £ = N'E if and only if every tally set in NP is in P [Boo74]. Since, by
Theorem 2.3, every tally set in AP zp is already in P it follows that NP C AP rp implies
E=NE. n

Put in other words, if AP problems have efficient average-case decision algorithms,
then P(NMNP NTALLY), a subclass of P/poly, collapses downto P. We observe that
similar collapse consequences downto P can be derived for other subclasses of P/poly
(see Corollary 3.3). Some of these collapse consequences follow immediately from recent
results investigating the complexity of sparse and tally descriptions for sets in P/poly
[BS92, K6b94, Gav9s, AKM96|. For the others we can exploit an interesting connection
between the worst-case complexity of a set L and the average-case complexity of oracles
used in the computation of an advice function for L.

The following theorem shows that if an advice function h for some set L can be effi-
ciently computed relative to some oracle which is efficiently decidable on average, then h
is computable in polynomial time.

Theorem 3.2

1. Any advice function that is computable in FP(D) where P(D) NTALLY C AP zp is
computable in FP.

2. Any advice function that is computable in FP (D) where {A | A <P D} NTALLY C
AP rp is computable in FP.

Proof.

1. Let h be an advice function in FP(D) where D is an oracle for which P(D) N
TALLY C APzp. Then h is computable in FP(T) where T is the tally set

T = {{0™,0") | the ith bit of h(0") is one}.

Since T is in P(D) N TALLY and hence by assumption in AP z£p, it follows from
Theorem 2.3 that T' € P, implying that h € FP.

2. Assume that h is an advice function in h € FP(D) via some oracle transducer M.
Then h is computable in FP(T) where T is the tally set

T = {{0™,0") | the ith query of M(0") is in D}.

Since T" many-one reduces to D it follows from the assumption and from Theorem 2.3
that T" € P, implying that h € FP.



Now, using results from [BS92, AKM96, K6b94, Gav95], we can state similar collapse
consequences as in Theorem 3.1 for several subclasses of P /poly. We note that by using a
different proof technique it has been shown in [BFNWO93] that BPP = P follows from the
assumption that every tally set in ¥} is contained in P.

Corollary 3.3

1.
2.
3.

4.
5.

If NPNTALLY C APzp then NPNP /log=P.
If AN TALLY C AP zp then AL NIC[log, poly] = P.

If S5 NTALLY C AP xp then all sets in S5 NI that conjunctively, disjunctively, or
bounded truth-table reduce to some sparse set are in P.

If AN TALLY C AP gp then S5NTIE NP /poly = P and hence BPP = P.

If S8 N TALLY C APxp then X5 NIIE NP /poly = P.

Proof.

1.

As shown in [BS92], every set A in NP N P/log is contained in P(S) for some
sparse set S € NP. Furthermore, as shown in [Har83], P(NP N SPARSE) =
PNPNTALLY), implying that NP N P/log C PNP NTALLY). Assuming
NPNTALLY C AP zp, the collapse now follows by Theorem 2.3.

. As shown in [AKMO96]|, every set A in IC[log, poly] is in P(T) for some tally set

T € P(NP @ A). Therefore, if additionally A € Af, then A € P(T) for some tally
set T' € Ab. Since by Theorem 2.3 every tally set in AP zp is in P it follows by the
assumption AP N TALLY C APxp that A € P.

. As shown in [AKM96], every set A that conjunctively, disjunctively, or bounded

truth-table reduces to some sparse set is in P(S) for some sparse oracle S that can
be decided in N'P(A ® N'P) with the help of an advice function h in FP(NP(A)).
Therefore, if additionally A € Y5 N TI5, then A is computable in FP(X%) and thus,
using the assumption X5 N TALLY C APzp and part two of Theorem 3.2, in FP.
This implies that S € Y8 and using an analogous reasoning as in the proof of part
one it follows that A € P.

As shown in [K6b94], every set A in P/poly has an advice function A computable in
FPNP(A) ®Xh). Therefore, if additionally A € X5 NII5, then h € FP(Z5) and
thus, using the assumption A N TALLY C APzp and part one of Theorem 3.2,
in FP. The consequence that BPP C P is immediate since BPP C X5 NI,
[Sip83, Lau83] and BPP C P/poly [BGSI1].



5. As shown in [Gav95], every set A in P/poly is in P(T') for some tally set T in
NP(A@XE). Therefore, if additionally A € X8 N 11, then A € P(T') for some tally
set T € NP(XENTIE) = 2. Since by Theorem 2.3 every tally set in AP zp is in P
it follows by the assumption ¥4 N TALLY C APzp that A € P.

In our next theorem we consider the complexity of sets in P/poly that have advice
functions which can be computed by nondeterministic transducers under some oracle. For
the proof we need the following proposition which shows as a special case that any set
A € AP zp is efficiently decidable on any P-printable domain B.

Proposition 3.4 Let A € APrp(c) and let B be a P(C)-printable set for some oracle C.
Then there exists a set D € P such that BC D and DN A € P.

Proof. Assume that B is P(C)-printable. Consider the distribution pp defined by

!

1 n(n+1)’

—L " if  is the lex. n-th string in B;
(z) = .
0, otherwise.

Since B is P(C)-printable it is not difficult to see that the distribution function ug is
FP(C)-computable. Furthermore, ps(z) > 1/p(|z])(p(|z]) + 1) for all z € B, where p(n)
is a polynomial bounding the number of all strings in B of length at most n. Since, by
assumption, A € AP rp(cy there is a Turing machine M that decides B and whose running
time, denoted by timey;, is polynomial on pp-average. Now it follows from part one of
Proposition 2.6 that for some polynomial ¢, timey,(z) < ¢(|x|) for all z € B. Thus, letting
D be the set of all inputs = € ¥* such that timey (z) < ¢(|z|), we can conclude that D € P,
B C D, and that DN A € P. [

For an oracle B, a (multivalued) function h is in NPMV(B) if there exists a non-
deterministic polynomial-time transducer T such that set-h(x) consists of all output values
of T on input z. h is in NPMVyonest(B) if, additionally, there exists a constant ¢ such
that |y|¢ > |z]| for all oracle queries y of T'® on input z. In the case B = (), we simply write

NPMY instead of NPMV().

Theorem 3.5 If A € AP rpp(ay), then any advice function h € NPMVyonesi (A) has a
refinement in NPMV, implying that any set L € (NP N co-N"P)/poly that has an advice
function in NPMVyonesi(A) belongs to NP 0 co-NP.

Proof. Let h be a multi-valued advice function in NPMVygnesi (A) and let T be a honest
nondeterministic oracle transducer computing A under oracle A. Let ¢ be a polynomial
bounding the running time of 7" and let ¢ be a constant such that |y|® > |z| for all oracle
queries y of T2 on input z. Consider the following set B consisting of all queries 3 asked
by T4 on input 0" on its leftmost successful computation:

B = {y|3In:T*(0") asks query y on the leftmost successful computation}.
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Since T is honest it follows that B is P(NP(A))-printable. Since, by assumption, A belongs
to AP zprp(a)) We can use Proposition 3.4 to conclude that there exists a set D € P such
that B C D and DN A € P. This implies that h has a refinement in NPMYV and hence,
any set L € (NP Nco-N"P)/{h} belongs to NP N co-NP. ]

Corollary 3.6 If NP C AP rp(sny then IP[P /poly] C N'P N co-N'P.

Proof. Let L € IP[P/poly]. Then L belongs to P/poly. Let I € P be an interpreter set
for L and let h be an advice function, where |h(0")| = p(n) for some polynomial p. An
advice string can be checked by a co-NP(IP[P/poly]) computation as follows. On input
z € YPM | verify for all z € X" that (v,2) € I & z € L. Since IP[P/poly] is low for
Y [AKS95], i.e., ¥5(IP[P/poly]) = X5, it follows that the correctness of an advice string
can be checked by a Y5 computation, and hence L has a multivalued advice function in
NPMVyonest(NP). Thus the result is a consequence of part two of Theorem 3.5. [ |

As mentioned in the introduction, if a decision problem L, is decidable in time polyno-
mial on po-average for any FP-computable distribution ps, then this does not necessarily
imply that also any set L; in P(Ly) is efficiently decidable on average with respect to any
FP-computable distribution p. If however for any FP (N P)-computable distribution ps,
L is decidable in time polynomial on ps-average, then we can show that indeed L; is
efficiently solvable on average with respect to any FP-computable distribution p. For
this it suffices to show that the distribution on the oracle queries induced by gy and by
the reduction of L; to Ly is FP(NP)-computable. Also, we will make use of the notion
of Turing reducibility between distributional problems (L, 1) where L is a set and p is a
distribution.

Definition 3.7 [BCGL92] A distributional problem (L1, p1y) Turing reduces to a distribu-
tional problem (Lo, p2) via some polynomial-time oracle machine M and a distribution u

if
1. p polynomially dominates 1,

2. M Turing reduces Ly to Lo, and

3. ph(y) > > (x)/p(|ly|) where the sum is taken over all strings x such that query y
is asked by M on input x when using oracle Ly (in symbols: y € Q(x, M, Ls) ).

As stated in [BCGL92] the class of efficiently decidable distributional problems is closed
under Turing reducibility.

Theorem 3.8 [BCGL92] If (L, p1) is Turing reducible to (Lo, u2) and if Lo is decidable
in time polynomial on ps-average, then Ly is decidable in time polynomial on py-average.

Using this closure property we can now easily show that all sets in A} . are efficiently
decidable on average with respect to any FP(X})-computable distribution provided that
this is true for all sets in XF.
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Theorem 3.9 Let C and D be language classes where C is closed under polynomial-
time many-one equivalence. Then C C AP gpeap) implies P(C) C APrpeap) and
C C AP zp(py implies P(C) C AP rpp).

Proof.  Assume that C C AP zpcep) and consider an arbitrary set L € P(A) and an
arbitrary distribution py € FP(C & D) where A € C & D. We have to show that L
is efficiently decidable on average with respect to p;. Letting pad(A) = {1*102w10° |
x € ¥ i > 0,w € A} it is not difficult to see that pad(A) and A are equivalent under
polynomial-time many-one reductions. Moreover, we can assume that L = L(M, pad(A))
for a polynomial-time oracle Turing machine M which for some polynomial p asks on input
x only queries y of the form 112102w10? where w € ¥* and i = p(|z|) — |w|. Hence it is easy
to determine for any query y of M the corresponding input string x, (which is unique).
Furthermore, we assume that on any input x, M asks at least one query.

Now consider the distribution ps induced by w1 on the queries of M:

() -

() = | TGty Y € Qlay, M, pad(A)),

2 .
0, otherwise.

It is not difficult to see that (L, 1) Turing reduces to (pad(A), po) via M and py. Thus
it only remains to show that ps is FP(C @ D)-computable. By the monotonicity of the
oracle queries of M it follows that

pol) = S = | @) |+ Lo sha) = mlay) )

z<y r<Ty

where m = ||Q(zy, M, pad(A))||, | is the number of strings in Q(x,, M, pad(A)) less than
or equal to y, and z, is the predecessor of z, in lexicographic order. But this proves that
Mo € .7-"73(C @ D)

Now, assume that C C APzpp) and consider an arbitrary set L € P(D) and an
arbitrary distribution p; € FP(D). Then it follows exactly as above that L is efficiently
decidable on average with respect to j; since the distribution ps induced by p; on the
queries of M is now easily seen to be FP(D)-computable. [ ]

Corollary 3.10
2. If ¥5 C AP gp(sz) then S5 NS NP /poly = P and in particular, BPP C P.

Proof. By Theorem 3.9, ¢ C AP £p(xry implies P C AP gp(sry. Since AP zpsry C
AP zp the results follow from Theorem 3.3 and Corollary 3.6. |
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4 Eliminating random oracle queries

As mentioned in the introduction, any random self-reducible set which can be decided
in time polynomial on average (under the distribution induced by the random self-
reduction) can be decided by a randomized algorithm in expected polynomial time. As
shown by Feigenbaum and Fortnow, many complexity classes like PP, Mod,P, and
PSPACE have complete sets that are random self-reducible. By combining the re-
sults stated in [FF93] with Corollary 4.3 below, it is not hard to verify that for K €
{P(PP), MP, Mody P, ModP, PSPACE}, K is not contained in AP zp unless K C ZPP
where the middle bit class MP, the classes Mod;P, k > 2, and the generalized Mod class
ModP have been introduced and studied in [GKR95], [CH90, Her90, BG92], and [KT96],
respectively.

In Theorem 4.4 below we show a similar collapse for the subclass of P /poly consisting
of all sets L for which a multivalued advice function can be computed by a randomized
algorithm under an oracle that is easily decidable on average. Let h € NPMV(B). Then
we say that h € FZPP(B) if h is computable by an NPMV(B) transducer that, when
considered as a probabilistic Turing machine, on any input x produces with probability at
least 1/2 some output y.

Let M be a randomized Turing machine. If we fix a sequence r € {0,1}* of the
probabilistic choices of M, then the computation of M on input z is deterministic. We use
M, (x) to denote the output of M on input = and computation path r. Assuming that M
uses a functional oracle f : ¥* — ¥* and p is a polynomial bounding the running time of
M, we define for any input x the distribution j ¢, induced by M on input = with oracle

f7
L) 172, ()|

P pa\Y) = rpiain

IR
where

Ry(x) = {(r,i) | r € {0,1}*™ and y is the ith query of M ()}

and R(z) = U, cx- By ().

Assume that g € FZPP/ via some transducer M. Then we say that the compu-
tation of M7 is dominated by a distribution p (in symbols: ¢ € fZPP{L via M) if p
dominates the ensemble (s fz)zex+, i.€., there exists a polynomial s such that for all =
and y, p'(y) > py.(y)/s(|z]). By ZPP,’: we denote the class of all languages whose
characteristic function belongs to fZPP{L.

In the following we use A; to denote the set that contains for any argument y of f all
strings yz such that the ith bit of f(y) is one (in the context of the present paper we can
always assume that |f(y)| < ¢(|Jy|) for some fixed polynomial ¢),

Ay ={ybingyp () | i = |f(y)|+1or 1 <i < |f(y)| and the ith bit of f(y) is one }.
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Lemma 4.1 Let f be a function and q be a polynomial such that |f(y)| < q(|y|). Then
]:Z’PP[L C FZPPL where v is the distribution defined as

V() = {u’(y)/q(lyl), if u = ybingy)) (i) for some i € {1,... q(ly)},
0, otherwise.

Proof. Let g € fZPPfL via some machine M and let s be a polynomial such that for

all z and y, pys;.(y)/s(Jz]) < p'(y). Let M’ be an oracle machine that simulates M by

substituting each oracle query y by the sequence ybing, (i), i = 1,---,¢(|y|) of oracle

queries to Ay. Then g € FZPPA via M'. Furthermore, it is not hard to see that the

distribution iy 4, . on the oracle queries induced by M’ on input z fulfills for all strings
u = ybing,y (i) where 1 < < ¢(|y|) the inequality

Hrr a0 (YD) = Ko g (W) /a(y]) < 1'(y)s(lz])/a(ly]) = v/ (ybinggy))s(|z]).

Since ptyyr 4, .(u) = 0 for all other strings u, this shows that v dominates the ensemble

(,U/M’,Af,:zr)meﬁ*- | |

Theorem 4.2 If Ay € APxp and if p is a distribution in FP, then ]—"ZPP{L C FZPP
and, in particular, Z’PPﬁ C ZPP.

Proof. Let g € ]:ZPPZZ. From Lemma 4.1 it follows that g belongs to FZPPA/ via
some probabilistic oracle Turing machine M and some distribution v € FP. Since the
induced distribution on the oracle queries remains the same if we run an oracle machine
an arbitrary number of times, we can assume that on any input x, M outputs “?” with
probability at most 1/8. Let p be a polynomial time bound for M and let s be a polynomial
such that for all x and y, para,.(y)/s(|z]) < v(y). Since by assumption Ay € APyrp, it
follows from Proposition 2.5 that there exists a machine M, deciding A; such that for
some polynomial ¢ and all n, v'{y € =P() | timens, | (y) > t(n)} < 8p(n)1.s(n). Hence, for
all z it holds that

/ <pllel) | 4 _
,U’M,Af,m{y €X | mmeMAf (y) > t(|l’|)} < 8p(|x|)
Recall that 1y 4, .(y) = [[Ry(2)||/||Rs[|, where Ry(z) is the set of positions (r,) in the
computation tree of M4/ on input z where M4/ queries y and R, = Uy R, (x) is the set of
all query positions of M4/ on input x. Therefore, each position (r,i) at which y is asked
as a query contributes an amount of 1/||R,|| to the probability s 4, .(y)-
This implies that the number of query positions (r,4) such that timen, (y) > t(|=])

where y is the ith query of M, (x), is bounded by ||R.||/8p(|z|). Hence, the number
of computations r of M4/ (x) such that timeny,, (y) > t(|x|) for at least one query y of

M;Y (z) is at most ||R,||/8p(|z]) < 200D /8.
Therefore g can be decided as follows.

14



On input z, |z| = n, guess a string r of length p(n) and simulate M, (z) where
each oracle query y is answered by running M, (y) for at most #(n) steps. If
for some query y, M4, (y) runs for more than ¢(n) steps, then output “?”.

Since this algorithm does only output strings in set-g(x) and since the probability of
outputting “?” is easily verified to be at most 1/4, it follows that a refinement of g is in
FZPP. ]

Since the standard distribution pug; is easily seen to be in FP, we immediately get the
following corollary.

Corollary 4.3 If Ay € APxp, then any function h € fZP'Pﬁst has a refinement in
FZPP and, in particular, Z’PP{M C ZPP.

Now we are ready to show that any advice function which can be computed by a
randomized algorithm under an oracle that is easily decidable on average is computable in
the same way without the help of an oracle.

Theorem 4.4 Any advice function that is computable in FZPP(D) where P(D) C
AP rp has a refinement in FZPP.

Proof. Assume that h is a multi-valued advice function in FZPP (D) and let T be a prob-
abilistic oracle transducer computing h under oracle D. Consider the function f defined
by f(r) = TP(0") if r € {0,1}*™ for some n and T”(0") is a successfull computation,
and f(r) = 0 otherwise. Note that h € }“ZPme via a probabilistic transducer M that
on input 0" randomly guesses a string r € 7™ and outputs f(r). Since A in P(D) and
since by assumption, P(D) C AP zp, it follows from Corollary 4.3 that the result follows
from the assumption that P(D) C AP zp. n

By using results from [BCG196, KW95, Lip91, FF93, GKR 95, KT96] it is easy to
derive the following corollary.

Corollary 4.5
1. [Wat96] If A C AP zp then every self-reducible set in P /poly is in ZPP.
2. If NP C AP zpnpy then every self-reducible set in P /poly is in ZPP.

3. For L € {P(PP), MP, ModP,PSPACE}, K is not contained in AP zp unless K =
P.

Proof.

1. Since, as shown in [BCGT96, KW95|, every self-reducible set L € P/poly has an
advice function in FZPP(NP), the result follows from Theorem 4.4.
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2. By Theorem 3.9, NP C AP zpnp) implies AY C APzpwp). Since AP zppy C
AP rp the result follows from Corollary 4.5.

3. We first consider the case that I = P(PP). Under the assumption P(PP) C AP xp
it is easy to design an algorithm that computes the permanent efficiently for all but
a sufficiently small (polynomial) fraction of all n x n matrices (over GF(p) where
p > n + 1 is prime). As shown in [Lip91] this implies that the permanent (over
GF(p)) of any n x n matrix can be computed in expected polynomial time. Since
computing the permanent (over GF(p) where p is given as part of the input) is hard
for P(PP) [Val79] we can conclude that PP = ZPP. Since A§ C P(PP) [Tod91],
it follows by Corollary 3.3 that PP = P.

Next assume that K € {MP, ModP} is contained in AP zp. Then by Theorem 3.9
it follows that P(K) is contained in AP xp. Since P(PP) C P(K) [GKR95, KT96]
we get that PP = P, implying that I C P.

For the case K = PSPACE we use the result in [FF93] that PSPACE-complete sets
are random self-reducible. From the proof given in [FF93] it is easy to verify that
there is a function f € FP(PSPACE) such that PSPACE C ZPPlfm. Since the
assumption PSPACE C AP zp implies that Ay € AP xp, it follows by Corollary 4.3
that ZPPﬁSt C ZPP, implying that PSPACE = ZPP. Since AL C PSPACE, it
follows by Corollary 3.3 that PSPACE = P.

It is interesting to note that Corollary 4.5 implies stronger collapse consequences for
the polynomial hierarchy. For example, if AL C APzp then NP C P/poly implies
PH = ZPP.

Finally, by applying a technique used to show that MA C ZPPNP) [AKI7] we
extend a result in [Imp95] showing that NP C AP zp implies BPP = ZPP. More specifi-
cally, we derive under the same assumption NP C AP zp that MA can be derandomized,
i.e., MA = NP, whereas under the stronger assumption 5 C APzp also AM can
be derandomized, i.e., AM = NP. Note that AM = NP has some immediate strong
implications as, for example, Graph Isomorphism is in NP N co-NP.

A nondeterministic circuit ¢ has two kinds of input gates: in addition to the actual
inputs x,...,x,, c has a series of distinguished guess inputs yi,...,Ym. The value com-
puted by ¢ on input x € X" is 1 (in symbols, ¢(z) = 1) if there exists a y € ¥™ such that
c(zy) = 1, and 0 otherwise [SV85].

Next we recall the notion of hardness of boolean functions. We denote the class of

boolean functions that can be computed by some (non)deterministic circuit ¢ of size at
most s by CIR(s) (NCIR(s), respectively).

Definition 4.6 (cf. [Yao82, NW94]) Let f : {0,1}" — {0,1} be a boolean function, C be

a set of boolean functions, and let r € IN be a positive integer. f is said to be r-hard for C
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if for all n-ary boolean functions g in C,

1 1 " =

L1 e {0 =gl _ 1,1
2 r 2" 2 r

f is called CIR(r)-hard (NCIR(r)-hard) if f is r-hard for CIR(r) (NCIR(r), respec-

tively).

Theorem 4.7

Proof.

1. Based on the Nisan-Wigderson design of a pseudorandom generator [NW94] it has
been recently shown that any set L in M.A can be decided in ZPP(NP) [AKIT].
Basically, the ZPP(NP) computation proceeds as follows:

On input z, the ZPP base machine randomly guesses some function
g : {0,1}00en) — 0 1} and asks a co-N'P oracle whether ¢ is hard
to approximate by circuits of some suitably chosen (polynomial) size. If
so, g is used to build a pseudorandom generator G that can be used to
derandomize the MA decision procedure for L. Consequently, one further
NP query suffices to decide whether x belongs to L.

A crucial point for this algorithm to work is that the randomly chosen function g is
hard to approximate with high probability. Hence, under the assumption that NP C
AP rp we can turn the above ZPP(NP) computation into an NP computation as
follows. Consider a suitable efficient on average algorithm M (which exists by the
assumption that NP C APxp) which verifies that ¢ is not hard to approximate.
Then M rejects most of its inputs within a polynomial time bound p. Consequently,
an NP algorithm can guess some boolean function g, verify the hardnes of g by
running M (g), and then use the corresponding pseudorandom generator G to decide
whether z belongs to L.

We proceed by giving a formal proof. By the way MA is defined, there exist a
polynomial p and a set B € P such that for all z, |z| = n,

rel = Hya |y| :p(n) : PrObreR{O,l}P(")[<x7y7T> S B] > 3/47
Y g L = Vy, |y| :p(n) : PrObrER{O,l}P(")[<x7y7T> S B] < 1/4

where the subscript r €x {0, 1}1’(”) means that the probability is taken by choosing
r uniformly at random from {0, 1}7().
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For fixed strings x and y, the decision procedure for B on input x,y,r can be simu-

lated by some circuit ¢, , with inputs 71,...,7,.,), implying that
xeL = Ty lyl=phn): Prob,.c, o,13pm) [coy(r) = 1] > 3/4,
v ¢ L = Yy, |yl =pn): Prob,c, o 1ypmlcay(r) =1] < 1/4

where w.l.o.g. we can assume that the size of ¢,, is bounded by p?(Jz|) and that
p(n) > 4n. As shown in [NW94]| (see also [AK97]) there is an FP function G having
the following property: For any CZR(p*(n))-hard boolean function g : {0,1}™" —
{0,1}, where m(n) = 12logp(n), and for every p(n)-input circuit ¢ of size at most
p*(n) it holds that

[Prob,e 0.1y [e(9) = 1) = Probego o [e(Glo,8) = 1] < p(n) (1)

where [(n) = 24m(n). Furthermore, for all sufficiently large n, a randomly chosen
boolean function g : {0, 1}™™ — {0,1} is CZR(p®(n))-hard with probability at least
1 —e P Since the set

A={g:{0,1}™™ — {0,1} | n > 1, g is not CIR(p*(n))-hard }

belongs to NP, we can use the assumption NP C APxp to get an algorithm M
for A that is efficient on average w.r.t. the standard distribution. Exploiting the fact
that at least a fraction of 1 — e ?°(™ of the strings of length 2" are rejected by M,
it follows from part two of Proposition 2.6 that there is a polynomial ¢ such that M
rejects at least one string of length 2™ within q(n) steps. Now we are ready to give
the NP decision procedure for L:

input z, |z| = n;

guess ¢ : {0,1}™ — {0,1};

if M (g) rejects within ¢(n) steps then
guess y € ¥PM);

k= ZSE{O,I}I(") Cm,y(G(ga S))a
if k > 2!(-1 then accept else reject

else reject
Using inequality 1 above it is easy to verify that this algorithm decides L correctly.

. The proof is similar to the one above. The only difference is that now a ¥ oracle has
to be used to check whether ¢ is hard to approximate by nondeterministic circuits.
Let L € AM. Then there exist a polynomial p and a set D € NP such that for all
z, |z =n

r€L = Prob.g,pml(z,7) € D] > 3/4,
x ¢ L = Prob.g,qpm[(z,7) € D] <1/4.
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For a fixed input x, the decision procedure for D on input z,r can be simulated by
some nondeterministic circuit ¢, with input r, implying that

x €L = Prob,.g,pmlc:(r) =1] > 3/4,
v ¢ L = Prob.,pmlc:(r) =1 < 1/4

where again we can assume that the size of ¢, is bounded by p*(|z|). As shown
in [AK97] there is an FP function G having the following property: For any
NCIR(p*(n))-hard boolean function g : {0,1}™™ — {0,1}, where m(n) =
12logp(n), and for every p(n)-input nondeterministic circuit ¢ of size at most p?(n)
it holds that

‘PmbyeR{o,up(n) [c(y) = 1] = Probyc 9.1y [c(G(y, 5)) = 1” < 1/p(n)

where [(n) = 24m(n). Furthermore, for all sufficiently large n, a randomly chosen
boolean function g : {0,1}™™ — {0,1} is NCIR(p®(n))-hard with probability at
least 1 — e "™ Since the set

A={g:{0,1}™™ = {0,1} | n > 1, g is not NCITR(p*(n))-hard }

belongs to X8, we can use the assumption ¥ C AP rp to get an algorithm M for A
that is efficient on average w.r.t. the standard distribution. Exactly as in part one
above it follows that there is a polynomial ¢ such that M rejects at least one string
of length 2™(™ within g(n) steps. Hence, L can be decided by the following NP
algorithm:

input z, |z| = n;
guess ¢ : {0,1}™™ — {0,1};
if M (g) rejects within ¢(n) steps then
if 3 cr01ym (G, 5)) > 2!(")=1 then accept else reject
else reject

Note that the condition of the second if-statement can be evaluated in NP by guess-
ing for each s € {0,1}™ some assignment for the guess inputs of the nondeter-
ministic circuit ¢, on actual input G(g,s) and checking whether the sum over the
corresponding output bits exceeds 2/,

Note that the above proof shows that in order to derive MA = NP (AM = NP) it
suffices to assume that for any set L in co-N'P (respectively, I15) and any FP-computable
distribution p there is some nondeterministic Turing machine for L whose running time is
polynomial on p-average.
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