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Abstract

The concept of syn�re chains has been proposed by Abeles as a reason�

able biophysical model for cortical long�time correlations and replicating spike

patterns in multi unit recordings� Some recent computational modelling ap�

proaches extend the model into a functional direction proposing that the

synchronization of syn�re chains may help to solve the binding problem of

cortical information processing� In the present paper we investigate further

computational aspects of syn�re chains� First� we show how they can be used

as spatio�temporal feature stores capable to learn� regenerate and recognize

spatio�temporal signals� Thereby syn�re chains introduce time into the static

world of attractor neural networks as paradigms for cortical information pro�

cessing� Then we extend the syn�re chain model from linear autonomously
evolving networks to graph�like structures with external input signals� Such

syn�re graphs can implement arbitrary deterministic and nondeterministic ��

nite state automata� We prove formally that syn�re graphs consisting of time�

continuous spiking neurons can robustly process arbitrary long input words

even if realistic postsynaptic potentials� bounded background noise and spike�

timing jitter are taken into consideration� A single syn�re node may consist

of a single spiking neuron or a larger set of cells� In the latter case connec�

tions between two nodes can be diluted or have otherwise random synaptic

e�cacies� The extension of syn�re chains to syn�re graphs introduces opera�

tional �logical� procedural� cognitive� components into common modelling of

Hebbian cell assemblies and brain functioning�

Keywords� syn�re chains� syn�re graphs� spike timing� synchronization� gamma�
oscillations� spiking neurons� �nite automata� brain theory

� Introduction

The concept of syn�re chains has been introduced by Abeles ��� in order to ex�
plain precisely replicating spike patterns which have been observed experimentally
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in many parts of the brain ��� 	�� �
� 
��� Such patterns can comprise action poten�
tials �spikes
 of di�erent single neurons distributed over surprisingly large times of
up to hundreds of milliseconds� Nonetheless within a pattern individual spikes oc�
cur with a temporal precision of about one millisecond� The classical syn�re chain
model proposed by Abeles provides a plausible explanation for such precise long
time correlations ��� 	�� its main idea is that highly speci�c spatio�temporal �ring
patterns are generated by means of synchronously �ring pools of neurons which it�
eratively excite well de�ned other pools whereby a reproducable chain of activation
evolves and propagates through the network�
In sensory areas the observed patterns seem to be stimulus speci�c� although

a single stimulus excites a collection of perhaps many di�erent patterns �	�� 
���
Moreover� experiments in frontal as well as motor areas of trained awake monkeys
show that the occurrence of spike patterns in those areas is clearly correlated with
behavioral events ��� �
�� These observations relate the syn�re chain concept to
information processing and cognitive capabilities� the explicit relation� however� is
still a matter of discussion ��� �� 
���
Reaching for a functional interpretation of cortical spike patterns and long�time

correlations the present work takes the viewpoint of computer science and asks
for possible computations that can be based on the syn�re chain concept� It is
shown that the computational capabilities of the conventional syn�re chain model
are much less than that of �nite state automata� An extension of the standard model
is proposed which at any step of a chain allows for transitions to several successor
states depending on external input� Such networks are called �syn�re graphs� in
the sequel� We show that syn�re graph networks can simulate arbitrary �nite state
automata� deterministic ones �DFA
 if only a single wave of activation propagates
through the network at any time� and nondeterministic ones �NFA
 if several chains
can be present simultaneously� The presence of several activated waves can be
envisaged as a generalization of Bienenstock�s �multiple syn�re chains� ����
We study syn�re graph networks analytically utilizing networks of biologically

plausible spiking neurons similar to integrate and �re cells� Spiking neurons mimic
action potentials of real neurons in form of delta functions� they also implement real�
istic postsynaptic potentials and a refractory mechanism ��
� 
��� First we consider
networks where every syn�re node consists of a single noise�free neuron� Afterwards
we include bounded background noise and generalize all results to the case of pools
of cells as syn�re nodes with perhaps diluted or random connections between them�
This way a considerable degree of realism can be reached� but nonetheless it is still
possible to prove formally that syn�re graph networks can properly simulate arbi�
trary deterministic and nondeterministic automata� In such networks a rhythmic
input in the range of roughly ��Hz �for biologically plausible parameter settings

can synchronize the internal dynamics of the implemented automaton even in the
presence of considerable input timing jitter and background noise�
Several earlier models for neural automata have been proposed� some of them

providing Turing�complexity or even more computational power �		� 	�� 	�� ��� ����
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Although a high computational complexity is not the main purpose of the present
paper� there still are some relations to these previous works� For example� our
network architecture bears similarities to that of Omlin and Giles ����� who have
shown that certain time discrete networks with sigmoid squashing functions and
second order �multiplicative
 synapses can stably simulate �nite state automata
�DFAs
 for arbitrary long input words� Technically� our results present an extension
of this result to continuous time networks consisting of biologically realistic spiking
neurons� In the same sense syn�re graph networks may provide a generalization of
conventional McCulloch�Pitts networks �	���
Maass has addressed general bounds on the computational capabilities of spiking

neurons �		� 	��� His results suggest that the theoretical power of spiking neurons
is impressively high� However� some assumptions essential for the argumentation in
�		� 	�� are probably not satis�ed in the brain� For example� an in�nite precision
in spike timing as well as the existence of perfect neural oscillators are assumed
and background noise is neglected �see ��� 	
� 	�� for e�ects of noise on computing
devices
� These assumptions are certainly critical when imposed on real neural
systems �
�� 
��� In the present work we explicitely avoid them in favour of more
biological realism but at the cost of reaching only less computational power� In a
forthcoming paper we will show how the here proposed syn�re graph networks can
be integrated into a uni�ed framework of brain functioning based on Hebbian cell
assemblies �
���

� Spatio�temporal spike patterns� long time cor�

relations� and the syn�re chain model

Neural agorithms in computer science are often based on discrete time networks com�
prising graded response neurons with sigmoid squashing �rate or output
 functions
����� Contrary� in real brains the prevailing signals communicated among neurons
consist of sequences of short pulses� so�called action potentials or spikes ����� Those
in general become more frequent the higher a cell is excited� Continuous time and
pulse�coding introduce an additional coding dimension in comparison with time dis�
crete graded neurons� the rate of pulse emmision of a single neuron �or a pool of
cells
 can be described by the sigmoid squashing function in standard models� but
spiking neurons o�er the further possibility to encode information in the precise
�ring times of a single neuron and in timing relations between spikes of a collection
of cells ��� ��� 		� ��� 
���
An increasing evidence suggests that brains in fact make use of such timing

relations� Although the extent to which rate or spike coding are employed for
information processing tasks in real brains is a matter of discussion ���� 
��� spike
timing phenomena have been demonstrated in at least two contexts�
In primary visual areas spike�synchronization has been observed which strongly

depends on global stimulus properties like proximity of features� their colinearity�

	



and other simple relations between stimulus features ���� ��� 
��� It is believed
that cells at distant cortical sites which contribute to the representation of the same
external object express this correspondence by the synchronization of their respective
�ring times� cells coding for features of di�erent objects are assumed to remain
uncorrelated� This way synchronization� i�e� short time correlations in the range of a
few milliseconds� may signi�ciantly contribute to the problem of feature integration
and segregation in preattentive visual processing �binding by synchronization� cf�
���� ��� 	�� 
��
� Comparable synchronization phenomena have also been found
in other areas beside visual cortex �review in ����
� They furthermore are often
accompanied by oscillations in the gamma�range �	����Hz
� Gamma�oscillations and
short time synchronization of spikes have been intensively investigated theoretically
���� �
� ��� 
	� 
�� 
��� Many computational modeling attempts have been reviewed
in ���� 
���
A second type of temporal correlations has �rst been described by Abeles ���

�� �� in higher frontal areas� but seems to be present also in other cortical and
subcortical structures �	�� 
�� �
�� These correlations are characterized by highly
precise spatio�temporal patterns in the action potential traces of one or several
cells� Such patterns have been observed by Abeles in multiple unit recordings of
spike trains from prefrontal areas of behaving monkeys� To this end the spike trains
were searched for replicating patterns � doublets� triplets� quadruplets of spikes �
with well de�ned delays between participating spikes �cf� Fig� �
� It turns out that
some patterns occur signi�ciantly more often than expected by chance assuming
that spike trains are Poisson processes ��� ��� These patterns can contain spikes
distributed over several hundred milliseconds� Nonetheless the participating spikes
are precise within roughly one millisecond� Such long time correlations present
a puzzling problem in light of the noisy and unreliable nature of signals usually
revealed by cortical recordings�
As a plausible model for the generation of spatio�temporal patterns Abeles pro�

posed the concept of syn�re chains ��� 	�� The main idea is depicted in Fig� �� It
assumes that patterns appear as an expression of the ordered activation of speci�c
pools of neurons� Such pools are called syn�re nodes� In cortex they are estimated
to consist of roughly 	� to ��� cells �n in Fig� �
 ���� Cells in one syn�re node are
intensively connected to those in the next pool via diverging�converging projections�
so�called syn�re links� Hence� the almost synchronous �ring of cells in the �rst pool
homogeneously excites all cells in the target pool and � supposed thresholds are
chosen appropriately � the cells in the target pool will also �re almost synchronously
after a short transmission delay� This way a reproducable wave of activity evolves
in a network of linearly ordered syn�re nodes� Simultaneous recordings from two
cells of the network can therefore reveal precisely correlated �ring events separated
by long delays� if these cells appear in distant nodes of a repeatedly activated chain�
Because it must be furthermore assumed that a single cortical neuron can belong

to many di�erent nodes which themselves contribute to di�erent sequences� a more
realistic picture of the cortical situation should be provided by the reverberating syn�
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Figure �� Triple correlation� on the left spike trains of three cells are shown� Neuron
one �res at time �� neuron two at �� � 
�ms and neuron three at �� � ��ms� these
delays de�ne a �triplet�� The whole data set is searched for the number of occurences
of all possible triplets with a spike accuracy of� say� one millisecond� Most triplets
occur by chance� indicated by the homogeneous random background in the histogram
on the right� but some are replicated signi�cantly more often and appear as towers
in the histogram� �Shown are computer generated data� for experimental data see
��� 	� ��
�

�re chain model ���� Here� the nodes do not consist of disjoint sets of cells arranged
in feedforward manner� but the neurons belonging to every single node are chosen
randomly from a large collection of cells� This model is similar to hetero�associative
memories storing spatio�temporal sequences of patterns �cf� next section
�
Since reverberating networks have to be expected in cortex� and furthermore the

probability to record from two cells belonging to the same syn�re chain is only very
small� most patterns observable in experiments should appear random and only a
few patterns signi�cantly above the noise level �Fig��
 ����
Beside their puzzling physiological properties� i�e� long correlation times and pre�

cise timing� a second important observation regarding spike patterns is that their
occurrence correlates with behavior ��� �
�� This has been demonstrated with trained
monkeys that had to perform speci�c reactions in response to di�erent stimulus sit�
uations� Although in prefrontal areas the experimental results show correlations
between the occurences of patterns and external or behavioral events �such as push�
ing a lever
 only on a coarse time scale� they nonetheless reveal that during some
phases � perhaps corresponding with increased attention � almost all spikes of some
cells can belong to repeating patterns� Moreover� di�erent patterns seem to be more
frequent in di�erent stimulus situations� A similar input speci�ty has also been
reported for repeating spike patterns in visual area V� of monkeys by Lestienne and
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Figure �� The syn�re chain model explains precise long time correlations and cor�
tical spike patterns� it assumes well de�ned distinct pools� so�called syn�re nodes
consisting of a small number of neurons �n � 	�����
 which are coupled in feed�
forward manner by speci�c diverging�converging projections or syn�re links� Near
synchronous �ring of cells in one pool after a short transmission time evoke the
synchronous activation and �ring of cells in the next pool� The activity pattern
in a linear sequence of pools then appears as an almost deterministic wave �syn�re
chain
 and repeated waves may lead to the observation of spike patterns correlated
over long times ���� On the right of the �gure an idealized scheme of the model is
drawn which represents whole syn�re nodes by single circles�

Strehler �	�� and in the motor cortex by Riehle et al� ��
��
Whereas the idea of �binding by synchronization� provides a reasonable concept

for the functional signi�cance of gamma�oscillations and short time synchroniza�
tion� such conceptual framework is almost completely missing for replicating spike�
patterns and long�time correlations� In contrast to neural binding where many
functional models addressing visual information processing have been investigated�
by far most theoretical studies on the syn�re chain model are only concerned with
technical or mathematical problems�
Several early publications have addressed syn�re chain�like activation in neural

nets from a conceptual viewpoint ���� ��� 	�� ���� At that time� of course� evidence
for the existence of such activation� for example� in form of Abeles� replicating
patters� was missing� Unfortunately those early theories have not been developed
very far�
More recent modeling attempts try to relate syn�re chains to the neural binding�

problem �	� �� ��� This idea has been brought up by Bienenstock� In ��� he introduced
the concept ofmultiple syn�re chains according to which many waves of synchronous
excitation can actually be propagating in a single network at any time� Based on
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multiple chains he proposed a functional model of the cortex� where complex spatio�
temporal excitation structures can arise from the synchronization of simple elemen�
tary syn�re chains� He argues how the concept of multiple chains can be interpreted
as a basis for �cognitive compositionality�� In some sense this work makes the above
cited earlier attempts more concrete� Essentially Bienenstocks model can be viewed
as a �perhaps modularized and hierarchical
 associative memory which stores spatio�
temporal patterns� Instead of static attractors it operates with syn�re chains ��
actually retrieved pattern sequences
 and replaces synchronizing oscillators� as they
are used in conventional models for binding� by synchronizing syn�re chains�
Bienenstock denotes the complex synchronization process going on in multiple

syn�re chain networks as �computation�� Although with this term he does not refer
to computer science it seems interesting to investigate� which kinds of computation
�now in the sense of computer science
 can be performed by syn�re chain networks�
This is the topic of the present paper�
The rest of the paper is organized as follows� In the next section we formalize

the concept of syn�re chains in the framework of associative memories� Doing so�
the conventional associative memory model is simultaneously extended by several
properties of real neurons� our model operates in continuous time� the model neu�
rons generate spikes as output� and the impact of spikes on target cells is described
by realistic postsynaptic potentials� In section �� we give a brief introduction into
regular languages and �nite automata� The main bulk of the paper is then con�
cerned with tentative computational tasks that can be performed by syn�re chains�
Section 
 interprets them as spatio�temporal feature detectors� which in turn can
be envisaged as recognizers for a single word of some regular language� This idea is
developed further in section � where syn�re chains are extended to syn�re graphs�
that is� networks of spiking neurons able to simulate arbitrary deterministic and
nondeterministic �nite state automata� Section � makes the informal arguments
in section � more precise inasmuch as it contains proofs for the proper function of
syn�re graph networks comprising spiking neurons�

� Syn�re chains� spiking neurons� and associative

memories

The reverberating syn�re chain model can be reformulated within the framework
of associative memories ��	� ��� �	� ��� Syn�re nodes may be considered as binary
patterns with n ones �and zeros else
 embedded in a network of N � n cells� Syn�re
links between nodes correspond with Hebbian heteroassociative connections between
patterns� This is made more explicit in the present section which also introduces
the biologically motivated spiking neuron model employed in the sequel�
We consider a network of N completely coupled neurons which operate in contin�

uous time� At the input�side dendritic and somatic membrane properties of nerve
cells are incorporated in form of �postsynaptic potentials� �PSPs
� A PSP gij�t
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represents the linear response kernel elicited by a Dirac�spike zj�t
 � ��t
 of cell j
at a postsynaptic cell i� We choose the prototypical form

g�t
 � g�t��� �
 �
t��
� �

exp
�
�t��

�

�
��t��
 � ��


where � � � is a synaptic transmission time and � � � sets the timescale of the
PSP� In general the values of � and � depend on the particular synapse� that is the
pair i� j� For simplicity we may assume that they are the same for each i� j� The
Heaviside�function ��t
 in ��
 ensures causality of the response� ��t
 is one for t � �
and zero else� Furthermore the integral

R
�

� g�t
dt is normalized to one� We describe
the somatic membrane potential of neuron i by a single variable xi�t
 and assume
linear spatio�temporal membrane properties� Then� the time�evolution of xi can be
written as

xi�t
 � I �
K�

n

NX
j��

Z t

t�

Cijg�t� t�
zj �t
�
 dt� ��


Here� the external input I is constant and the same for all cells� The second term on
the right hand side of ��
 has the form of a spatio�temporal convolution elucidating
the linear summation of PSPs� The inital time t� is arbitrary� Cij� � � i� j � N �
are synaptic weights de�ned below� K� globally sets the height of PSPs and the
factor ��n serves for normalization purposes� zj�t
 represents the temporal pattern
of output spikes of neuron j� It consists of a sum of Dirac�functions� if spikes are
modelled as Dirac�pulses� It should be noted� that for g�t
 � ��t��
 the integrals in
��
 can be easily performed leading to the conventional dot product form of neuronal
interactions�
Firing�times at the output of a neuron have to be determined selfconsistently

from equation ��
� if the membrane potential xi�t
 reaches a certain cell�intrinsic
and time�dependent threshold ��t
 at time tjk� then a Dirac�pulse is generated

zj�t
 � ��t� tjk
 if xj�tjk
 � ��tjk � tj�k���
 � �	


The tjk� k � �� �� � � � are the successive �ring times of neuron j� After �ring the
threshold ��t
 prevents the cell from �ring immediately again� This is reached by
setting ��t
 to a large value after each spike for a �xed time � and afterwards let it
relax back to an asymptotic threshold value �� ��� �
� ��� 
���

�

A set of P � � binary patterns 	�� 
 � �� �� � � � � P � �� each containing n� N
ones at random positions �zero�s else
� is stored in the weights Cij according to the
�binary Hebbian rule� ����

Cij � min

�
��

P��X
���

	�i 	
�
j

�
� j	�j � n� N � ��


�The exact implementation of refractoriness is not crucial as long as it avoids multiple spiking
of neurons during the large superimposed PSP evoked by n predecessor cells in one syn�re node
which converge synchronously onto a given cell� Instead of internal thresholds ��t� in each cell	
resets of the potential xi to low values after �ring as in 
integrate and �re��neurons �see for example
�
�	 
	 ���� essentially lead to the same results than derived in the following�

�



The index � in ��
 distinguishes between two possible operational modes of the
network�
If � � 
 the rule is called auto�associative� i�e� each pattern is associatively

mapped to itself and can therefore be retrieved from noisy or incomplete input
information� This corresponds with standard retrieval in attractor neural networks
���� �	� �	�� although due to the time continuous nature of our model � the spikes�
postsynaptic response functions and dynamical thresholds � the temporal behavior
of associative memories of this kind turns out to be more complicated than that of
Hop�eld networks� Autoassociative networks comprising spiking neurons probably
provide a good model for gamma�oscillations and short�time spike�synchronization
introduced brie�y in section �� For biological �and also technical reasons� as argued
soon
 one should add a global threshold control that regulates the total level of
activation� This control could be provided by inhibitory neurons in the cortex� For
plausible time�constants the resulting associative networks oscillate in the gamma�
range ���� �
� ��� 
��� Furthermore� when the stored patterns are sparse �n � N

and the overall spike activity is carefully controlled by the global inhibition� pattern
retrieval can be so fast that durig each period a single pattern can be perfectly
completed� Since in that case the memory capacity is also very high� we have argued
that on one hand the frequency of gamma�oscillations is optimal with respect to the
maximally possible repetition frequency of retrieval processes in cortex� and that on
the other hand spike synchronization further supports an optimal memory capacity
�
�� 
���
In the later sections� we assume that the there described automata receive rhyth�

mic synchronized input from some not further speci�ed input network� Such input
may be provided by associative memories of spiking neurons in the auto�associative
mode as described here�
For � � 
 � � the Hebbian learning rule ��
 is �hetero�associative�� it maps one

pattern to another one� Moreover with this particular choice the patterns are stored
in linear order just as suggested by the syn�re chain model� For convenience it is
often further assumed that the stored sequence is cyclically closed �then upper greek
indices in ��
 should be implicitly understood as taken modulo P 
� This way the
reverberating syn�re chain model is essentially recovered�
Figure 	 displays an example for the retrieval of a cyclic pattern sequence� Al�

though individual spike trains in the lower frame �SUA� single unit activity
 appar�
ently are random due to the stochastic pattern generation� the upper plot nonetheless
reveals that the network dynamics evolves deterministically� In networks of realistic
size with many simultaneously stored sequencess and actually propagating waves of
activity this deterministic structure might of course be hard to detect from spike
recordings of just a few cells as in typical experiments� �Simulation parameters in
Fig� 	 are N � ���� P � 
�� n � ��� �ij � � � �� �ij � � � ���
� �ref � 	�� K� �
��
� �� � ��� and I � ��� Only �� of the ��� single unit spike trains are shown�

Hetero�associative storage of spatio�temporal patterns has been repeatedly in�

vestigated in the literature� mostly for variants of time�discrete Hop�eld nets �short
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Figure 	� Retrieval of a cyclic sequence of P � 
� random patterns with n � ��
ones� Pattern zero is excited externally at time t � �ms for �
ms � afterwards the
network evolves autonomously� The lower frame displays single unit spikes �SUA

of �� out of N � ��� cells and apparently looks random due to the stochastic nature
of the patterns� The greyscale image above shows the evolution of overlaps of all

� patterns �states
 with the current network spike activity� The well organized
retrieval process becomes apparent in form of dominating diagonal bands� Light
grey speckled background re�ects pattern overlap� cells in one pattern can also be
contained in others�

review in ����
� but also for spiking neurons ��� �� ��� ��� 
�� ���� Theoreti�
cal studies regarding syn�re chains addressed their general dynamical properties
��� 
� �� ��� 

� ���� memory capacities ��� ���� the propagation and synchronization
of several simultaneously excited chains in a single network ��� �� 	�� learning or self�
organization of syn�re chains in networks of spiking neurons ��	�� and propagation
velocities of activity peaks in a linear chain ��� 

��

� Finite automata and formal languages

Regular languages are the smallest class within the Chomsky hiearchy of formal
languages ��
�� They are generated by regular grammars� A regular grammar is
formally de�ned as a quadruple G � �V��� P� S
� V is a �nite set of syntactic
variables or nonterminal symbols� � is the alphabet� e�g� a �nite set of �terminal

symbols with V 	 � � 
� P is a �nite set of production rules of the form A � a
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Figure �� Simple DFA with 	 states and transition function �

or A � aB with A�B � V and a � �� And� �nally� S is a designated element of
V� the start variable� Successive application of rules in P starting from S eventually
leads to strings or words consisting of terminal symbols� The set of all such possible
derivations is� by de�nition� the regular language L�G
 generated by G�
Regular languages correspond with deterministic �nite automata �DFAs�� A

DFA is a quintuple M � �Z��� �� z�� E
� Here� Z � fz�� � � � � zng� n � 
 is the set
of states and � � fa�� � � � � amg� m �
 the alphabet� z� � Z is the initial state and
E � Z the set of �nal or accepting states� Operation of the automaton is de�ned
by the transition function � � Z � � � Z which maps every pair �z� a
 � Z � �
to exactly one successor state� A word �over �
 is any �nite string consisting of
symbols in �� A word x is said to be accepted by a DFA M� if reading the word
symbol by symbol and starting from the initial state� application of the respective
transition rules leads to a �nal state in E when the word is read completely� The set
of words L�M
 that a DFA M accepts is the language M recognizes� Alternatively M
can also be interpreted as a generator of L�M
 if starting from S possible rules are
applied successively and the symbols in � envisaged as output symbols� It is known
that the set of languages which can be recognized by deterministic �nite automata
are exactly the regular languages�
A simple example for a deterministic �nite automaton is shown in Fig� �� Here�

the states are Z � fz�� z�� z�g� z� is the inital state S� and E � fz�g is the set of ac�
cepting states� As usual S is marked by an ingoing arrow in Fig� � and the accepting
state�s
 are indicated by double circles� The input alphabet of the shown automaton
consists of the symbols � and �� e�g� � � f�� �g� On the right in Fig� � the transition
function � is given� Each pair �zi� aj
 � Z�� is mapped to a successor state zk � Z
and these transitions can be identi�ed in the graphical representation of the automa�
ton on the left by directed edges from zi to zk labeled by the respective input symbol
aj� The displayed automaton recognizes regular expressions of the form �

������
�

where a � sign at a symbol or subexpression means one or more repetitions� and
a � indicates an arbitrary number of repetitions including zero� Hence� the short�
est words that the automaton recognizes are ��� ���� ����� ����� ����� ����� ����� � � ��
and so on�
Beside deterministic �nite automatons also nondeterministic �nite automatons

��



�NFAs� can be de�ned� Those are represented by a quintuple M � �Z��� �� S� E
�
where Z�� and E are de�ned as before� In contrast to the deterministic case in every
time step several states of the NFA can be active� �rst� S is now a �non empty
 subset
of Z� e�g� initially more than just a single state can be active� Second� from every
state several �including zero
 successor states are possible for the same input symbol�
Mathematically this is expressed by the transition function � which now maps from
Z � � into the power set of states P�Z
� A word x is accepted by an NFA if any
sequence of states exists which� starting from an initial state� ends in an accepting
state while x is read in completely� This sequence must not be unique� The set of
words accepted by an NFA is the language it recognizes� It is known that NFAs�
just as DFAs� recognize exactly the regular languages� Thus NFAs do not have
more computational power� Nonetheless� they can be faster inasmuch as several
state transitions can be performed on several activated states in a single step� This
provides some simple kind of �parallel processing��

� Syn�re chains as spatio�temporal feature detec�

tors

As outlined in section 	� syn�re chains can be interpreted as an extension of the
standard associative memory from static or structural patterns to spatio�temporal
ones �see also ���� chapter ��
� The example in this section is a consequent elabo�
ration of this� In fact� the regeneration of ordered sequences of patterns has been
demonstrated in SFC�models earlier �	� 
� �� ��� Nonetheless in this section we go a
step farther and show that SFCs cannot only be used to recover sequences� but also
to learn time�patterns and recognize them in a fault�tolerant manner�

1 2

a(2)a(1) a(P)

P

Figure 
� Scheme of a syn�re chain as a spatio�temporal pattern recognizer or
generator� The cells � to n represent a conventional syn�re chain� These cells
receive a further input a�t
 which has to be learned� recognized or reproduced�

We demonstrate the main ideas in form of an example� To this end imagine an
excitatorily connected associative network of spiking neurons as considered before�
Inhibitory interneurons do no harm as long as the inhibition is not too strong to
forbid the stable propagation of syn�re activity� Assume that a sequence of P
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Figure �� Syn�re chains can store� recognize and replay spatio�temporal patterns�
a
�b
 Time patterns to learn are derived from simple line�drawings� in a
 a spot
moves along the curve r�t
 with constant velocity� the two components of the velocity
vector � proportional to dr�t
 in b
 � provide inputs to each neuron in a syn�re chain
�SFC
� c
 displays learning of a trajectory� to the left a snapshot of the input space
is shown and to the right the spike�raster of the syn�re chain neurons� Learning
in c
 is Hebbian� movement �the spot
 and SFC both start at t��� Each time a
SFC�neuron �res it stores the actual input values dr�t
 in its synapses� The �nally
learned synaptic input matrix C is shown to the right� d
 displays two�fold replay
of the trajectory by repeated activation of the SFC with two di�erent gain values�
Here� the previously learned synapses are used in reverse direction and control the
movement �velocity vector
 in input space� e
 Recognition of a distorted input
trajectory� f
 Recognition fails for a di�erent pattern� For explanations see text�
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patterns is stored in linear order in the coupling matrix� For sake of simplicity�
we further replace each pattern by a single representative cell� hence� the syn�re
chain network can be thought of as consisting of P cells coupled feedforward in
linear order� Some mathematical analysis reveals� that this structure can show
stable propagation of activity moving from the �rst to the last neuron in the chain�
provided the global input I is chosen appropriately �

� ���� Now� we want to learn�
recognize and replay a certain time�pattern a�t
� where a�t
 may have more than
one� for example m� components� To do this� we assume that synaptic connections
Cij� i � �� �� � � � � P� j � �� � � � � m exist from each component of a to each neuron
in the SFC� These synapses are used to store samples of the pattern a�t
 at certain
times provided by the ordered �ring of the SFC neurons �Fig� 

� Learning can
proceed in a Hebbian way� suppose that by some mechanism the learning pattern
a�t
 and the activation of the SFC �node �
 start simultaneously� Then� each time ti�
a neuron of the SFC �res� it su ces to store the actual values a�ti
 in the synapses
Cij� j � � � � �m�� �
 converging to the respective neuron i� This works in a single
trial ��one�shot� learning
�
Figure �c displays an example simulation �with P � 	� and m � �
� The spike�

raster of the SFC�neurons is shown to the right �compare with the upper frame in
Fig� 	
� These spikes represent the postsynaptic part of the Hebbian learning rule�
Generation of the �presynaptic
 input time�signal a�t
 requires further explanation�
in principle arbitrary� su ciently smooth signals can be used as input� Here� those
are extracted from simple line�drawings as indicated in Fig� �a!b� A spot �rectangle
in �gure �a
 starts at time zero at some corner of the object and travels along it
with constant speed v� The velocity vector 
v�t
 � d
r�dt � �dx�dt� dy�dt
T along the
curve 
r�t
 is taken as the two�dimensional input function a�t
� Hence� every neuron
in the SFC has two external inputs� which represent velocity in x respectively y�
direction� When� during learning� neuron i �res a time ti� its synapses Ci� and Ci�

are set to dx�ti
�dt respectively dy�ti
�dt� The matrix C � �Cij
 resulting from
such a learning process is shown to the right in Fig� �� obviously it represents the
derivatives of the curve 
r�t
 in Fig� �a �white codes for movement in positive and
black for movement in negative x or y direction
��

Pattern regeneration is shown in Fig� �d� Again the SFC has to operate in
the stable regime� but now without external input� Instead� the formerly learned
synapses are now interpreted as �output��synapses controlling the movement in the
output space� If a neuron in the SFC �res� its synapses determine the instantaneous
velocity vector with which a movement is performed� In Fig� �d the SFC is acti�
vated twice � only the second spike�raster is shown� By choosing di�erent absolute
starting positions and di�erent �arbitrary
 gain factors the previously stored object

�We should mention that the model is not intended as a concrete example for visuo�motor
coordination or related tasks	 although similarities might exist ����� Intended is a purely abstract
view	 just as the standard associative memory at �rst is an abstract paradigm� Both models may
be suited as building blocks for more concrete and complex networks	 incorporating static as well
as temporal properties of stored entities�
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is recovered in two sizes in the input space�
Finally� �gures �e and f display examples for pattern recognition� To this end the

thresholds in the SFC�network must be high enough to avoid the stable propagation
of excitation without a further external input� An additional temporal input into
the actually �ring neurons then can lead to the complete recovery of the stored
sequence� provided the input pattern matches the synaptic pattern of the actually
�ring neurons su ciently closely� At any step only the conjunction of the additional
input and that from the previously �ring SFC�neuron should lead to the �ring of
the next cell� If at any position in the SFC� the stored and externally applied
snapshots do not mach� the syn�re chain in the recognition network dies out� Only
when the syn�re wave reaches the last node of the sequence �double circle in Fig� 


the spatio�temporal pattern is recognized� An example for proper recognition of a
distorted version of the stored pattern is shown in Fig� �e� Note that �
 the di�erent
parameter settings lead to a faster SFC sequence than before �cf� �

� ��� for speed
control of SFCs
� �
 the distorsions in the test pattern lead to slight �uctuations in
the instantaneous speed of syn�re propagation� and 	
 the stored pattern e�ectively
uses only �� of the total of 	� cells in the SFC �cf� matrix C in Fig� �
� Hence� under
recognition conditions� the last few nodes do not �re in �gure �e� Finally� Fig� �f
shows failure of recognition for a completely di�erent input pattern�
The above interpretation of syn�re activity explicitly takes into account tem�

poral information stored in the network structure� We should note� that it is not
very likely that syn�re networks of this kind provide a reasonable substrate for arbi�
trary time�patterns an individual might learn� say for example� complex movement
patterns� The main reason for this is that sequences longer than some hundred
milliseconds need exceedingly large hardware resources ��� and� furthermore� the re�
sulting syn�re structure is very in�exible� Motor control �for movements or speech
etc�
 certainly needs more �exible� probably modular and hierarchically organized
structures �cf� also ���� ���
� However� we believe� that chains with roughly some
��� nodes and perhaps ��� neurons per node may be useful storage devices for ele�
mentary �spatio�temporal features� in such architectures� the complete information
can still be retrieved in a short time and a time�span of ��� to 
��ms would indeed
make sense� since this is roughly the duration of syllables or morphemes� which orga�
nize speech�production� similar timing intervals have also been proposed to organize
other cognitive tasks �see ���� for a collection of related articles
�

	 From Syn�re Chains to Automata

��� Construction of the deterministic automaton

In light of the de�nitions of �nite automata and regular languages in section � it is
quite obvious� that the simple spatio�temporal pattern store described above can be
interpreted as a realization of a �nite automaton� If one neglects that it operates on
real valued input �of course input symbols in form of binary spike patterns are also
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possible
 and that some kind of synchronization mechanism between input symbols
and node��ring is necessary �see below
� then the scheme in Fig� 
 represents the
implemented automaton in analogy to Fig� ��
In fact� this analogy also shows� that the model is actually capable of recognizing

only a single word� the stored temporal pattern� Hence� even if a set of di�erent
chains is stored the recognized language always consists of only �nitely many words�
Grammatical rules� represented by the transition function of the automaton �or al�
ternatively the production rules of the corresponding regular language
 are seriously
restricted to the form ��z�� a
 � z�� where for each z� � Z at most one a � � leads to
a meaningful target state and all other possible a�s to failure� �In the neural imple�
mentation the activity simply dies out in case of failure� this might be represented
by an extra state in the abstract automaton model�
 More complicated syntactical
dependencies between symbols are not representable by the spatio�temporal pattern
store� which already extends the conventional syn�re chain model with respect to
the external input� Insofar the computational capabilities of the model are only very
poor�
If we want to extend the syn�re chain model �respectively the spatio�temporal

pattern store
 such that at least the functionality of �nite state automata is ob�
tained� then a short re�ection shows that everything that is essentially missing is
the possibility for di�erent target states that can be reached from an actually �r�
ing state in dependence of the current input signal� The introduction of this feature
leads from a simple linear pattern recognizer to directed and labelled "syn�re graph#
structures�
The most simple idea for an implementation of a given automaton consists per�

haps in a one�to�one translation of the graph representing the automaton into a
network of spiking neurons with the same connectivity graph� this requires distinct
�syn�re�
nodes for every state z�� � � � � zn and every input symbol a�� � � � � am� and di�
rect feedforward connections from the nodes zi and aj to zk for every transition rule
��zi� aj
 � zk� If� for example� all connections have strength one and the thresholds
are ��
 synchronous activation of zi and aj then leads to the selective �ring of the
target node zk� However� this simplest implementation faces the following problem�
for two rules ��z�� a�
 � z� and ��z�� a�
 � z�� a� �� a�� z� �� z� ambiguities occur
such that also the pairs �z�� a�
 and �z�� a�
 activate the target node z�� This in
general will be an error� �The described problem is well known as the XOR�problem
in neural network theory �����
 Hence� the straightforward one�to�one translation of
the automaton into a neural network does not work�
To resolve this di culty we introduce further nodes into the network beside the

already mentioned state� and inputnodes� For every transition rule one correspond�
ing transition node is needed� giving a total of m � n additional nodes if n is the
number of states and m the number of input symbols�� Figure � shows the principal
strategy� on the left a usual projection from node zn to zn�� is displayed �syn�re�

�It is certainly possible to construct networks with fewer nodes� The solution proposed here	
however	 is simple and advantageous with respect to the following mathematical analysis�
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Figure �� Extension of syn�re links to input�dependent transitions�

link� compare Fig� �
� The nodes simultaneously represent neurons and states of
an automaton� Transitions in the standard model occur spontaneously without fur�
ther external input� this is indicated by the � labelling the projection �� denotes
the empty word in automata theory
� On the right a further node between zn and
zn�� is inserted� called z

a
n� which represents the transition rule ��zn� a
 � zn��� This

transition�node is exclusively acivated by zn and a such that the above mentioned
ambiguities for target nodes with several possible predecessors� cannot longer occur�
The transition nodes uniquely represent the entries in the transition function � of
the automaton� Conceptually every edge of the transition graph � for example in
Fig� � � is replaced by a node that receives input from the respective predecessor
and the input node which labels the particular edge� The target of this transition
node is the node representing the target state of the respective transition rule�
Figure � shows how a deterministic �nite automaton can be constructed with

the aid of such transition nodes� The intended automaton is the same than that
in Fig� �� The automaton has n � 	 states z�� z�� z� and m � � input symbols �
and � which are represented by nodes a� und a�� Thus we need mn � � additional
nodes for the possible transitions� These are denoted by ������������	��	� and rep�
resent all possible combinations of states and input symbols� Therefore� from every
state node m connections of strength 
 to the respective transition nodes exist� as
well as n connections of strength � from every input node to their corresponding
transition nodes� Furthermore� the � transition rules constituting the ��function of
the automaton can be identi�ed as connections wijk of strength � from exactly one
transition node back to one state node� The squares in Fig� � at this point of the
discussion can be envisaged as simple adders�
We assume that all nodes in the network consist of a single refractory neuron

with threshold �� for states z� to zn and �� for transition nodes� In particular this
implies that the network operates in continuous time� Synaptic response functions
g�t
 are assumed to be the same for all connections� Their form as well as the
refractory mechanism of the cells to a large degree determines the stable operation
of the automaton �section �
�
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Figure �� Network of spiking neurons that implements the automaton in Fig� �� For
explanations see text�

����� Proper function of the DFA

It is clear that an arbitrary deterministic �nite automaton can be translated into
a network of the above described type� In the following we consider function and
temporal behavior of such networks in more detail� For simplicity we �rst assume
that 
 � � � � � �� �� � ��
� �� � ��
� and that the response function g�t

is given by the simple rectangular function g�t
 � �	
��
��t
� which is one on the
interval ��� ��� and zero else� E�ects due to refractoriness are neglected� Input into
the network is delivered by �ring of the appropriate input nodes in regular intervals
T � ��� Then it is easy to see that the network simulates exactly the intended
automaton�
We start at time t � � by activating the initial state S and the �rst input node�

that is both nodes �re� After the synaptic transmission time � the spikes excite
some of the transition nodes� By construction only one of these nodes receives input
from both at t � � �ring cells� Due to the particular choice of connection strengths
and thresholds� and because the rectangular PSP�function discontinuously jumps to
its maximum value at t � �� this node �res at time � and no other transition node
reaches threshold� Hence� exactly that neuron �res which represents the transition
rule applicable in the �rst step� Because � � � � ��
 � �� after a further delay of
� this �ring leads to the activation of the target state z which is determined by the
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rule ��S� a�
 � z� This node �res a time t � �� � T synchronously with the next
input symbol� By inductive application of these arguments it follows that in cycle
i � �� �� � � � at time ti � iT always the input node ai�� of an input word a�a� � � � �res
in synchrony with the actual state node� and at time ti �� exactly that transition
node �res which induces the �ring of the correct next state node�
After reading the last input symbol� the input nodes stop �ring� but one state

node can still �re driven by the last input� If this node represents an accepting state�
the word is by de�nition recognized� otherwise it is rejected� It is easily possible to
detect this "halting condition# by a further neuron with threshold �
 which receives
synapses of strength � from all accepting state nodes and �� from all input nodes�
Firing of this neuron� at a time � after �ring of the last state node� would signal
that a correct word has been read in� Afterwards no further spiking is possible in
the whole network� because without excitation from input nodes no transition node
can reach threshold�
This argumentation shows that the network can process arbitrary long input

words correctly� that is� it simulates the intended automaton� However� what also
becomes clear is� that the usage of purely rectangular PSP�functions reduces the
network dynamics essentially to the time�discrete case� Comparable time�discrete
models are� for example� discussed in �	�� ����

����� Realistic response functions

The introduction of realistic response functions leads to several problems� Such PSPs
are characterized by a synaptic transmission time� a smooth� not in�nitely fast� rising
edge and an exponential decay �see ��

� Problems are particularly caused by the
exponential decay� since after one run of activity through the network the potentials
will in generally have not been relaxed to zero� at least not for plausible choices of
PSP time constants� Thus temporal summation occurs on membranes� which in the
worst case leads to �ring of erroneous cells� but in any case shifts �ring times on
the rising edge of the response functions� It is no longer obvious that the proper
function of the network can be guaranteed for arbitrary input sequences�
Typical synaptic delays are roughly one and rise times up to a few milliseconds�

decay constants can be several times larger than rise times� Because only two
synaptic transmissions are involved and the transmission is fast� the cycle time of
the automaton� i�e� the time between �ring of one state node and the next� is of the
order of the decay time or smaller� Therefore considerable temporal summation on
membranes must be expected�
To repair this problem we have to introduce further delays which e�ectively

increase the cycle time� One possibility for this is to insert futher nodes at the sites
indicated by squares in Fig� �� Each square is replaced by a chain of k � � refractory
neurons coupled feedforward with strength � and threshold ��� Then a lower bound
for the cycle time is Tm � �k � �
� where � is the synaptic delay� Since any
particular neuron �res at most once in a given cycle it is clear that by choosing k large
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enough the error potentials of all cells after one run of activity trough the network
can be made uniformly smaller than an arbitrary small given bound� Moreover� for
appropriate thresholds the delays per stage can be considerably larger than � �as
assumed in the lower bound for Tm
� If � denotes the rise time of PSPs� delays up
to �� � per stage can be reached� Since the decay of PSPs is exponential� about ��
milliseconds should be su ciently large cycle times corresponding with frequencies
in the gamma�range and perhaps 
 or � synaptic stages in the network� For cycle
times in this range� which simultaneously presents the shortest possible interspike
interval� refractoriness of cells should play no signi�cant role and may be neglected
in the sequel�
Even if error potentials are made small by an appropriate number of delay stages

they nonetheless shift �ring times in a hard to predict pseudo�random manner�
Moreover cortical neurons always receive considerable excitation due to stochastic
background activity which adds to the membrane �uctuations� Therefore� cycle
times in the network will not be constant as in the �time discrete� model with rect�
angular PSPs� Instead they will scatter in a certain range� This requires some kind
of synchronizing mechanism between the �ring of input nodes and the network dy�
namics to ensure that also for long input words the nodes representing the kth input
symbol and state �re synchronously within certain bounds�
The necessary synchronization can be reached by several means� One way is to

derive some kind of �read� signal directly from the network activation� for example�
the �ring of the state nodes� This signal can excite the input neurons in form of a
global threshold control enforcing �ring of the next input node� Which input state
�res will be further determined by another �here not explicitely speci�ed
 neuronal
network sending subthreshold activation to the input nodes� This possibility is
indicated by the dotted �synchonization path� in Fig� �� If delay nodes are required�
as it will usually be the case� then the synchronizing signal should be derived as late
as possible from cells �ring in the delay lines� because spike shifts in earlier stages
can be completely ignored� This kind of input synchronization might be supported
by bidirectional connections between cortical sites as they are known to exist within
and between many cortical areas��

Instead of deriving trigger signals for the next input symbol from the network
itself� one may alternatively imagine that an independent input rhythm provides the
�ring of input nodes driven by oscillations in some external network� Interestingly
it is possible that the intrinsic dynamics of the automaton synchronizes with the
rhythmic input supposed the internal and external cycle times are not too di�erent
�cf� section �
� This does not even require that the input intervals are strictly
periodic� some scatter in spike times is well tolerable and only an approximate

�Regarding the primary visual area V� and the lateral geniculate nucleus �LGN� in thalamus	
which provides the main ascending input to V�	 it is known that synchronous �ring of cells in V�
is re�ected by an accompanying synchronization of LGN activity due to mutual connections� This
way V� organizes its own input into synchronized volleys of spikes in the gamma�range �����	 cf�
also �
����
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synchrony is required� According to the above estimate for the necessary cycle
times of the automata suitable inputs could be supplied by network oscillations in
the gamma�range�
It section � we prove formally� that both versions of input synchronization enable

the processing of arbitrary long input sequences� Thus syn�re graph networks can
simulate the intended automata also when realistic response functions are used�
provided su ciently many delay stages are added� The necessary number of such
stages is independent of the particular automaton and a certain amount of bounded
membrane noise is admissible as well as a bounded scatter of input spike times�
Moreover instead of single cells� the nodes of the network may also consist of pools
of cells� In this case all cells within a pool �re in a certain time�interval which can
be kept bounded by a constant for arbitrary long input sequences� A proof of these
propositions is given in section ����

����� Nondeterministic automaton

As already mentioned earlier nondeterministic �nite state automata can also be
simulated by networks similar to that in Fig� �� We have seen that in case of the
deterministic automaton in every cycle exactly one state and one transition node as
well as the corresponding �unique
 chain of delay nodes become activated� This is
equivalent to a single propagating wave of activity in the syn�re chain �respectively
now �syn�re graph�
 picture� The path through the network taken by the wave is
controlled by the external input� A possible nondeterminism is expressed by the fact
that several states can be active at any given time� This corresponds with several
propagating waves� Accordingly at time zero all initial states in the set S �see section
�
 have to be activated simultaneously with the �rst input node� Whether an input
word is accepted can be detected similar than for the DFA by means of a special
neuron receiving connections of strength one from all accepting states and those of
strength �n from all input nodes� the latter because during reading of the input
symbols only a single input node �res per cycle� but up to n state neurons� The
threshold of this neuron can again be �
$g�
Furthermore the connections wijk in Fig� � have to be chosen di�erently for NFAs

in comparison with DFAs� This is� because a state can now have a varying number
of possible target states �between � and n
 for one and the same input symbol�
For every alternative ��zi� aj
 � zk the respective connection wijk must be set to �
�otherwise to zero
� Thus� an arbitrary transition node now has between zero and
n outgoing connections in contrast to the previous case� where these cells contacted
exactly one target� These connections again correspond with entries in the transition
function of the automaton�
From the above it follows that the number of active neurons respectively propa�

gating waves depends on time� Excited waves melt together if two transition rules
actually lead to the same target node� Contrary� new waves are evoked if several suc�
cessor states branch from an active state for the current input� This is an expression
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of the �nondeterminism� of the computation�
As for the DFA it is not di cult to see that the network with simple rectan�

gular response functions g�t
 � �	
��
� and input times ti � ��i for the symbol
ai��� i � �� � � � � l�� simulates exactly the intended NFA� We skip the details at this
point� Furthermore� using realistic response functions it is again possible to prove
that the versions of input synchronization distinguished for the DFA also enable
stable processing of arbitrary input sequences for the NFA�network� Again pools�
additional membrane �uctuations and scatter in the timing of input spikes are al�
lowed� This is proved in section ���� The stability and synchronization problems are
similiar than before and can be solved by inserting an appropriate number of delay
stages� In contrast to the DFA the necessary number of such stages now depends on
the automaton under consideration� particularly on the number of its states� The
reason for this is that a varying number of spikes of transition nodes can converge
on a given target node� Therefore the compound PSPs can be up to n times larger
than before� Accordingly the potentials need a longer time to relax below a given
�xed bound� The number of necessary delay stages is of the order log�n
� This
problem could be avoided by introducing a nonlinear saturation of the compound
PSPs� Obviously it does not occur if PSP functions vanishing for times larger than
some �xed time tm are used as in �		� 	���
An additional problem occuring in the NFA network but not the DFA is the

following� If several waves of activation are propagating� di�erent target neurons of
transition nodes can receive a varying number of input spikes in the same operation
cycle� Therefore these neurons will �re at di�erent times� The additional scatter
in spike times due to this unpredictable e�ect can become so large that a proper
function of the automaton cannot longer be garanteed� However� it is possible to
make the additional scatter small� if� �rst� the membrane �uctuations are made small
by an appropriate number of delay stages� and� second� the �ring thresholds of the
target neurons are chosen only slightly above the maximally expected �uctuations�
This way it can be reached that the target neurons �re within an arbitrary short �xed
interval after the synaptic transmission delay is over independently of the number
of activating spikes� This again requires k � O�log�n

 delay stages� Furthermore�
if additional noise sources are taken into consideration then with increasing k the
condition on the bound of this noise becomes increasingly restrictive� because the
scatter in spike times accumulates with an increasing number of stages� This means�
theoretically it is possible to ensure a stable operation for certain parameter regimes�
but in physical realizations of the network architecture large automata are perhaps
not easily implementable� because the external noise sources in general cannot be
controlled� that is� made as small as required�
In any case response functions with a steep rising edge would be of advantage�

since the scatter in spike times is roughly inversely proportional to the rise time
of the PSPs �and proportional to the membrane �uctuations
� With that respect
decaying exponentials �or �rst order low�pass membranes
 and rectangular PSPs
provide rather special cases� Inasmuch as also time�discrete networks in some sense
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utilize PSPs with in�nite slope the problem does not occur in these models �it only
does insofar the transfer of results found for time�discrete automata to more realistic
models is made uncertain
�


 Stability proofs

In this rather technical section we show that the above described automata models
can indeed process input sequences of arbitrary length even if biologically plausible
response functions are used� The principal correctness of the operation has been
already shown for rectangular PSPs� Hence� we can restrict the discussion in the
following to dynamical aspects of stability and synchronization�
We require that the response functions g�t
 are �i
 continuous �ii
 equal to zero

for t � � �
 �iii
 continuously di�erentiable and strictly monotonously increasing
on ����� � � for some constant � with � � � �
 and �iv
 exponentially bounded�
that is there exist constants C� � �� C� � � such that g�t
 � C� exp��C�t
 for all
t � IR� Furthermore let �v
 $g �� max

t�IR g�t
 � g�t � �
 and g��� �x
 be the inverse
of the strictly monotonously increasing branch according to �iii
� The constants �
and � are the synaptic transmission time respectively the rise time of the PSP� ��C�

provides a lower bound for the decay time constant� The alpha function ��
 can be
envisaged as a prototypical response function�

��� Deterministic Automaton

In section ��� we stated that after one cycle through the network the membrane
potentials in general will not have been relaxed to zero� This can lead to the �ring
of wrong nodes as well as shifts in spike times� In the worst case a particular
synapse is activated in every cycle� then the temporal summation is maximal� Let
� � t� � t� � t� � � � � be the �ring times of the exciting neuron� A cycle needs
a certain minimal time� which since two synaptic transitions are involved must be
larger or equal than Tm � ��� thus jti � ti��j � ��� The same is assumed to hold
for the input times too �see below
� For t � � the response to the last spike at
t� � � is the signal and responses to earlier spikes constitute an error potential not
yet decayed to zero� Now� PSP functions are exponentially bounded� Thus for t � �
we have

�X
i��

g�t� ti
 � C�

�X
i��

exp ��C�Tm � i
� �z �
�
qi � ��q��

� C�

�X
i��

qi � C�
q

�� q
�� $b � �



This provides an upper bound for the maximally possible contribution of the �uc�
tuations to the membrane potential that a single synapse of strength one can evoke
on a target cell for t � �� The de�nition q � exp��C�Tm
 shows that q and hence
also $b decrease rapidly when the cycle time increases� As explained in section ���
the cycle time can be increased by additional delay stages� If k such stages are

�	



present the cycle time is at least Tm � Tm�k
 � �k � �
�� Since this is also a
lower bound for the shortest possible interspike interval we can furthermore neglect
refractory e�ects if k is large enough� In the sequel we therefore assume that the
in�uence of refractoriness is vanishing small� �More formally we could also impose
an exponential bound on the refractory mechanism� i�e� the dynamical threshold
��t
� and integrate the e�ects in $b
�
Even if the error potentials are small they shift spike times of cells� We have to

show that those remain in certain bounds for arbitrary long input sequences�
Assume the error potentials are exactly zero and that at time t � � a state node

and an input node �re synchronously� Then the corresponding transition node �res
at time t� � g��� �����
 � �

 �provided the thresholds are chosen appropriately
�
Firing of this node evokes a spike in the �rst delay node after a time t� � g��� �����
�
further delay nodes as well as eventually the next state node also �re at intervals
of t� � g��� �����
� Hence� one cycle through the network ideally needs the time
T � t� � �k � �
t��
To avoid unnecessary notational complications in the sequel we set 
 � � � � �

�� �� � ��
$g and �� � ��
$g� Then t� � t� and because g
��t�
 � � and g

� is continuous
on ����� � � there exists a neighborhood U ��t�� �� t� � �� � ����� � � where g�

is strictly positive� We de�ne g� � mint�U g
��t
 and g� � maxt�U g

��t
 and require
that � � � is so small that g��g� � c� for some constant c� � �� This choice of � is
possible for any real c� � � because the continuity of g

��t
 in a neighborhood of t�
implies that the limits lim��� g� and lim��� g� are both equal to g

��t�
 � �� hence
lim��� g��g� � ��
The in�uence of PSPs of earlier spikes can be made uniformly small� i�e� for all

synapses simultaneously� by su ciently many delay stages� We take k so large that
the error potential bs�t
 evoked by a single synapse of strength one on its target for
times larger than Tm�k
 � �k � �
� after the last �ring is absolutely bounded by a
constant b � � with b � $g�� and

�k � �
b�g� � c�� ��


for some constant c� � �� Since according to equation �

 the error potentials decay
exponentially in the number of delay stages such constants k and b always exist�
Since no neuron receives more than two spikes in any cycle and the convergence is
uniform� k and b can in particular be chosen independently of the automaton under
consideration� The �rst condition on b� b � $g��� in the following ensures that the
correct transition nodes still �res �and no other
 even under noisy conditions� and
the second� eqn� ��
� implies that the scatter in spike times remains in bounds�
Now we assume that one state and one input node do not �re exactly at time

zero but deviate by dt� respectively dt� from zero� We require that jdt�j � c�� and
jdt�j � c�� for constants c� � �� c� � � with c� � c� � c� � ��
We show that after a time near the ideal cycle time T � �k��
t� the next state

neuron reliably �res and the deviation of its �ring time from T remains within certain
error bounds� To this end de�ne G�t� dt�� dt�
 �� g�t�dt�
�g�t�dt�
� b��t
� b��t


��



which is the potential of the transition neuron addressed by the �ring of the state
and input node� b��t
 and b��t
 represent contributions of the two synapses to the
membrane �uctuations �note that 
 � � � �
� Because max�
� �
$g��b � 
��$g � ��
at most this transition neuron can �re and no other� With t � t��dtTaylorexpansion
of the PSP�functions in G gives for arbitrary dt� dt�� dt� with jdt� dtij � �� i � �� ��

G�t��dt� dt�� dt�
 � ���g
��%t�
�dt�dt�
�g��%t�
�dt�dt�
�b��t��dt
�b��t��dt
 � ��


Here we have used �g�t�
 � ��� The %ti� i � �� � are appropriate times �depending
on dt� dti
 in the intervals %ti � �t�� t� � dt� dti�� i � �� ��
Assume for the �rst dt� � dt� and dt � dt� � b�g�� Hence jdt � dt�j � c�� � �

and jdt� dt�j � jdt� � dt� � b�g�j � �c� � c� � c�
� � �� and from equation ��
 we
obtain the estimate

G�t� � dt� � b�g�� dt�� dt�
 � �� � g��%t�
b�g� � g��%t�
�dt� � dt�
 � g��%t�
b�g� � ��


�b��t� � dt
 � b��t� � dt
 � �� � g��dt� � dt�
 � �b� �b � �� �

On the other hand for dt � dt� � b�g� the same argument implies G�t� � dt� �
b�g�� dt�� dt�
 � �� and from both estimates together it follows that there exists a t

�

�

in the interval �t��dt��b�g�� t��dt��b�g��� U with G�t��� dt�� dt�
 � ��� The same
holds when we assume dt� � dt�� Therefore under the above conditions it is ensured
that the addressed transition neuron still reaches threshold� The threshold crossing
need not be uniquely de�ned� particularly not� if further noise sources are taken
into consideration �see below
� But the above arguments imply that all threshold
crossings are contained in the neighborhood U � Only the �rst leads to the �ring
of the cell� later �rings are prohibited by the refractory mechanism� Let t�� be the
�ring time� Then ��
 with t�� � t� � dt and G�t��� dt�� dt�
 � �� imply the bound

jdtj �
�����g
��%t�
dt� � g��%t�
dt� � b��t

�

�
� b��t
�

�


g��%t�
 � g��%t�


����� � g�
�g�
�jdt�j� jdt�j
 � b

g�
��


for the shift of the �ring time t�� in comparison with the ideal value t��
Similarly one �nds that �uctuations in the following stages lead to additional

shifts which �per stage
 are smaller than b�g�� Thus� given a total of k � � stages�
the next state node will �re at a time t � T � dt�� where

jdt��j �
g�
�g�
�jdt�j� jdt�j
 � �k � �
 b

g�
�
�
c�
�
�c� � c�
 � c�

�
� � � ���


For the time dt� of the state �ring near zero we assumed jdt�j � c��� If we
require at least the same accuracy for the �ring of the state after one cycle equation
���
 leads to the inequality c��c� � c�
�� � c� � c� as a condition that deviations in
spike times of state nodes do not increase in one cycle� The constants c� to c� must
further satisfy the above stated conditions c� � c� � c� � �� ci � �� i � �� �� 	 and
c� � �� One possible choice is c� � ���� c� � ���� c� � ���� and c� � 
���

�




Now� let a�a�a� � � �al be an input word of length l� We consider di�erent alter�
natives for the synchronization between input symbols and the network dynamics�
�
 �Quasiperiodic input�� Here the initial state is activated at time t ���c��� c���

and the input node ai at an arbitrary time in the interval ��i� �
T � c��� �i� �
T �
c���� i � �� � � � l with T � �k � �
t� as before� The input is assumed to be supplied
by some external in�uences� Furthermore it is rhythmic with period T� but some
scatter in the ideal input times �i� �
T in the range �c�� is admissible� Inductive
application of the above argumentation then shows that the network operates stably
on arbitrary long input sequences� that is� the scatter of �ring times of state nodes
around the ideal times iT� i � �� �� �� � � � � l remains absolutely bounded by c���
�
 �Statistical input intervals�� For the input times it is required that the time

between �ring of successive input nodes is given by Ti � T � dt��i
 i � �� � � � � l � �
where the deviations dt��i
 �� � c��� c��� are arbitrary� In contrast to the previous
case this includes the situation where the input cycle is systematically somewhat
shorter or longer than T� Moreover the input times in �
 are strongly correlated over
arbitrary long times� whereas correlations can decay in the present case� because
independent and randomly �uctuating deviations accumulate roughly proportional
to
p
i�
Assume that at time dt� the input node a� �res and at time dt� the initial

state� As before let jdt�j � c�� and jdt�j � c��� Now w�l�o�g� we can in this and
every following cycle rede�ne the time origin to coincide with the spike time of the
actually �ring input node� With respect to the new time origin the transformed
spike deviations are fdt� � � and jfdt�j � jdt�j � jdt�j � �c� � c�
�� The next input
by assumption occurs at time T � dt���
 relative to the new origin and the next
state node �res according to the above argumentation at a time T � dt���
 in the
interval T � dt�� with dt�� given by ���
 but now using the transformed di�erences�
Equation ���
 again leads to dt�� � c�� with c� to c� as before� Rede�ning the time

origin again to the �ring time of the input neuron T � dt���
 we �nd fdt���
 � � and
jfdt���
j � jdt���
j � jdt���
j � �c� � c�
�� Inductively it follows that the scatter in
spike times of the state neurons relative to the input neurons is now bounded by
�c� � c�
��� Thus the internal dynamics of the network synchronizes with the input
process and the automaton can again process arbitrary long input sequences�
	
 �Input request by the network�� This possibility is indicated by the dashed

�synchronization path� in Fig� �� Here� trigger signals are derived from the network
activity itself �particularly the state nodes in Fig� �
� which enforce �ring of a new
input node� Proper function of this mechanism requires that the cycle time T is
about the same than the time a signal needs to propagate through the synchroniza�
tion branch and evoke the next input �plus!minus error bounds as before
� Since
we do not specify the dynamics of the input neurons in detail satisfaction of the
error bound is a requirement imposed on these input circuits� Clearly� the trigger
signals need not be derived from the state nodes� If delay nodes are present it is
more advantageous to derive them from nodes as late as possible in the delay line�
because all previous spike shifts can be neglected�

��



��� Nondeterministic Automaton

Stability and synchronization problems for the NFA are similar to those discussed
for the DFA� In the following we only sketch some points where di�erences appear�
If approximately at time t � � a total of n� state nodes �re all within the interval

��dt�� dt�� and an input node �res with precision dt�� then exactly n� transition nodes
become activated in the interval �t� � dt� t� � dt�� The times t� and dt are the same
than for the DFA because all activated nodes receive exactly one spike from an input
node and one from a state node�
Di�erences appear when we consider the projection from transition nodes to

their targets� These cells now can experience a varying number of up to n incoming
spikes� They must �re when at least one input spike is present because the input
spike represents the fact that the corresponding transition rule can �and hence must

be applied in the present situation� This requires n$b� � �� � �$g�
It is clear that error potentials can be made small as before by inserting delay

stages� but because the compound PSPs can now be at worst n times as large as for
the DFA the number of necessary delay stages will depend on n� the number of states
in the automaton� The worst case occurs when n spikes converge repeatedly on the
same neuron� If we require that the error potentials are bounded by a constant B
we have at worst n$b � B with $b from �

 as an upper bound for the contribution
of a single synapse of strength one� q decays exponentially in k� thus �� q asymp�
totically approaches �� Then �

 implies an asymptotically logarithmic dependence
of the necessary number of delay stages from n� i�e� k � ���C��
 ln�nC��B
� This
means� we can bound the error potentials� but the neccessary number of stages de�
pends on the size of the automaton� We should further mention that B cannot be
chosen arbitrarily� As outlined below� it has to satisfy constraints analogous to ��
�
Obviously the discussed problem does not occur when response functions are used
that are di�erent from zero only on a �nite interval� for example rectangular PSPs
or other functions with �nite support �		�� Then a constant number of delay stages
is enough� if the total delay exceeds the duration of the PSP�
If di�erent target neurons of transition nodes simultaneously experience a dif�

ferent number of incoming spikes a second problem occurs� because this can lead to
an increase in the scatter of spike times� The increase can be held small if the �ring
thresholds are chosen just above the maximally expected error potentials �B� This
obviously prevents wrong cells from �ring� The situation for correctly addressed
transition nodes is depicted in Fig� � where b �� B�n� If all spikes of transition
nodes fall into the interval ��� dt� then the earliest possible �ring time of a target
neuron is tmin � �� This lower bound is approached the more cells �re at t � �
and converge on the particular neuron� Contrary the latest possible �ring time is
determined by a single spike of one transition node at time dt which converges onto
a target neuron with zero error potential� One �nds tmax � dt� g��� �����
� At rela�
tively high thresholds as in Fig� � the possible increase in the scatter of �ring timesfdt � tmax � tmin � dt� in addition to the scatter dt already present in the previous

��
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Figure �� Minimal and maximal �ring times at the projection from transition nodes
to their targets� A vanishing small scatter in spike times requires that �� and
therefore also b tend to zero�

stage can be considerably large� However� since B � nb can be made arbitrarily
small� �� can be chosen arbitrarily close above nb�� and lims�� g

��
� �s
 � � � tmin

holds� one can again reach that the scatter increases by a neglectable amount only�
The increase fdt is furthermore the smaller the larger the slope of the PSP functions
is� Hence� fast rise times support the proper function of the automaton� In the lim�
iting case of a discontinuity in t � �� i�e� rectangular PSPs� the discussed problem
vanishes completely �	�� ���� Moreover� observe that it only occurs for the projec�
tion from transition nodes to their targets� Only at this point a variable number
of incoming spikes can in�uence the spike scatter� In later stages thresholds can
therefore be chosen larger� such that larger transmission delays are obtained� As for
the DFA it is then possible to prove that the there distinuished versions for input
synchronization also enable the stable processing of arbitrary long input words in
the NFA network� To this end we �nally note that b in analogy to ��
 must satisfy

the condition fdt � �k � �
b�g� � c��� With this choice the proof follows exactly
the same lines than for the DFA with the same constants c� � � � c�� This condition
restricts the choice of b such that k must perhaps be further increased in comparison
with the above estimate� Nonetheless the asymptotic number of necessary stages
can again be shown to depend logarithmically on n��

�If	 for example	 g�t� in a region just above t � � has everywhere a slope of at least g�� and the

�ring time falls into that region	 then edt � n�b�g��	 and using �
� and some simple approximations

one �nds k � �

C��
ln
h

C�

C��c��

	
�

g�
� n��

g�

�


i
� O�log�n��� �The same expression with n � � can also

be obtained for the DFA��

��



��� Cell pools and noise

As a further step towards more biological realism we consider the case where syn�re
nodes consist of cell pools instead of just a single neuron� Furthermore the in�uence
of additional background noise is discussed�
First� let us introduce cell pools� Here� every node in the network is replaced

by a number of cells� not necessarily the same number for di�erent nodes� The
architecture of the network itself is not changed� but if a connection exists between
two nodes and the nodes contain n respectively m neurons� then this connection is
replaced by the projection �cf�Fig� �


�

m

mX
j��

Cij�g�t� tij
 � bij�t

� i � � � � �n � ���


Note the �normalization� of the sum by ��m� the number of cells in the source
node� With this choice thresholds can be chosen constant independently of the
poolsizes� We take the same thresholds ��� �� than before for all neurons in the
respective pools� Cij in ���
 are synaptic strengths� tij the last �ring times of
neurons in the source node� and the bij�t
 represent the error potentials due to
earlier �ring of source cells� The automata certainly will not work properly for
arbitrary choices of the connections Cij� Therefore� we �rst assume that the Cij in
���
 are independent and identically distributed random variables and the poolsize
tends to in�nity� Afterwards a �nite poolsize is discussed as well as two important
special cases� identical couplings and diluted projections�

Random connectivities in the asymptotic limit� We consider a single pro�
jection of the form ���
 and assume that the Cij are independent and identically
distributed random variables with expectation EC�� � C and EC�

�� � 
� The
latter requirement is exclusively necessary for technical reasons� It is� for example�
satis�ed whenever the distribution function is continuous and has �nite support� in
addition �nitely many pointmasses at particular synaptic strengths �e�g� at strength
zero
 are also admissible in the distribution function� Because� physiological values
for synaptic e cacies are certainly bounded� all reasonable distribution functions
satisfy the stated condition� Without loss of generality we may assume that C is
one� Depending on the type of the projection C may be identi�ed with 
� � or �
in section ���� �Remember that we have used 
 � � � � � � in section ��� for
simplicity�
 Let wij �� Cij � C� i� j � �� �� 	 � � �� In the sequel we repeatedly refer
to the following lemma�

Lemma �� Let wij� i� j � �� �� 	� � � � be an in�nite collection of i�i�d� random vari�

ables with Ew�� � � and Ew�
�� �
� Then limn�� supi�����n

��� �
n

Pn
j��wij

��� � � a�s�

A proof of the lemma can be found in �
��� Note that it is stronger than the usual
law of large numbers inasmuch as it ensures almost sure �or strong
 convergence for

��



an in�nite collection of sums of random variables and not just a single sum�
Now� ���
 can be written as

C
�

m

mX
j��

g�t� tij
 �
�

m

mX
j��

Cijbij�t
 �
�

m

mX
j��

�Cij � C
g�t� tij
 � ���


The second term can be absolutely bounded by the Holder inequality �observe that
the Cij are positive
������ �m

mX
j��

Cijbij�t


������ �
�� �
m

mX
j��

Cij


A sup
ij

jbij�t
j � ��	


supij jbij�t
j can be bounded for times larger than the mimimal cycle time by
an arbitrary small b� because additional delay stages lower the error potentials
uniformly for all synapses� Then the lemma implies in the asymptotic limit
limn�� supi�����n

��� �
n

Pn
j��Cijbij�t


��� � Cb a�s�

The same argument cannot directly be applied to the third term in ���
 to
conclude that it must vanish asymptotically� This is� because the �ring times tij in
general are not independent� particularly they depend in a complicated manner on
the Cij� However� if we assume that tij � � for all i� j� i�e� synchronous �ring of
all cells in the source node� then g�t
 can be moved outside the sum in the third
term and the almost sure convergence towards zero holds uniformly in i �that is�
for all cells in the target node simultaneously
� Furthermore� if all tij are zero the
�rst term in ���
 simply reduces to Cg�t
� Putting things together� supposed all
cells in the source node �re synchronously� we can conclude that in the asymptotic
limit a random projecion ���
 behaves with arbitrary precision and probability one
like a connection between two individual cells in the previously considered automata
comprising single neurons per syn�re node� This particularly implies� that the ideal
transmisson times t� and t� de�ned in section ��� for vanishing �uctuations bij�t
 are
necessarily the same for random projections ���
 in the asymptotic limit� Moreover�
since only a �nite number of nodes and projections exist in an implementation of an
arbitrary �nite automaton� the almost sure convergence can be reached uniformly
for all projections �the union of �nitely many sets of measure zero again has measure
zero
� Hence� although in the sequel we only consider single projections the reader
should bear in mind that convergence proofs immediately carry over to the whole
set of projections in any implementation of a �nite automaton�
Now assume non�ideal conditions tij �� �� bij �� �� As for the DFA�network of

single neurons we have to show that� �rst� the cells in the target node still �re �and
no others do
 and� second� the �ring times of all cells in one node remain in certain
bounds�
We only consider the situation for transition nodes in detail� Projections in

further stages can be handled similarly� Transition nodes receive input through two
projections of the form ���
� one from an input node the other one from a state

	�



node� For simplicity we assume that all nodes contain the same number of m cells�
The potentials of the cells i � �� �� � � � � m in the target node then read

Gi�t� 
t�� 
t�
 �
�

m

mX
j��

h
C

���
ij

	
g�t� t�j
 � b

���
ij �t




� C

���
ij

	
g�t� t�j
 � b

���
ij �t



i
� ���


where 
tl � �tl�� � � � � tlm
T � l � �� �� The index l refers to the projection from the
input respectively state node�
It is not di cult to see that at most one transition node can �re in response

to the conjunctive �ring of one input and one state node around time zero� This�
of course� is the transition node receiving input from both these source nodes� All
other transition nodes receive input from at most one of them� Hence for those

���Gi�t� 
t�� 
t�

��� � �b� $gmax

l����

�� �
m

mX
j��

C
�l�
ij


A ��



and the lemma implies that asymptotically

lim
n��

sup
i�����n

���Gi�t� 
t�� 
t�

��� � �b � $gmax

l����
EC

�l�
�� � �b� $gmax�
� �
 �




�
$g � �� � ���


Therefore at most the addressed transition node can �re�
Now we consider the addressed transition node� As in section ��� we can expand

Gi�t� 
t�� 
t�
 into a Taylorseries around the ideal time t�

Gi�t� � dt� 
t�� 
t�
 � �� �
�

m

�X
l��

mX
j��

C
�l�
ij

	
g��t

�l�
ij 
�dt� tlj
 � b

�l�
ij �t� � dt




� ���


The expansion is valid if jdt�tljj � � for l � �� � and all j � �� �� � � � � m� The t�l�ij � l �
�� �� i� j � �� �� � � � � m are appropriate times in the intervals �t�� t� � dt � tlj� � U �
�� and U are the same than de�ned in section ����

Requiring tlj � cl�� l � �� � and choosing dt� � max�c�� c�
� � b�g� one derives

from ���
 that Gi�t� � dt�� 
t�� 
t�
 � �� for all i � �� �� � � �m� Likewise dt� �
�max�c�� c�
� � b�g� implies Gi�t� � dt�� 
t�� 
t�
 � ��� However� these choices for dt
may invalidate the condition jdt�tlj j � � for some l� j� Hence the Taylorexpansion is
not necessarily justi�ed for all terms in ���
� This can be easily repaired by replacing
� by �� � ���� i�e� the requirements tlj � cl��� l � �� � and �k � �
b�g� � c���
�compare ��

� Then for all l� j the times t��dt� tlj fall into the neighborhood U as
necessary and we can conclude that all cells in the target node still �re somewhere
in the intervall U even for random projections� Let t� � dt�i� i � �� �� � � � � m be the
respective �ring times� Then� using������ �m

mX
j��

C
�l�
ij g

��t
�l�
ij 
dt�i

������ � jdt�ijg�
�� �
m

mX
j��

C
�l�
ij


A and ���


������ �m
mX
j��

C
�l�
ij g

��t
�l�
ij 
tlj

������ � g�

�� �
m

mX
j��

C
�l�
ij


A sup
j

jtljj � g�

�� �
m

mX
j��

C
�l�
ij


A cl�� � ���
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and the fact that the lemma implies that limm�� supi�����m j �m
Pm

j��C
�l�
ij j � C�l�a�s�

proceeding as in section ��� we �nd after some straightforward calculations analogous
to those leading from ��
 to ���
 that the shifts in spike times dt��i of the cells in the
next �ring state node are uniformly bounded by

lim
m��

sup
i�����m

jdt��ij �
�
c� �

c�
�
�c� � c�


�
�� � ���


This yields the same relation between c�� � � � � c� as required for the stable opera�
tion of the DFA consisting of single neurons� compare ���
� The rest of the proof
concerning the di�erent kinds of input synchronization proceeds as for the automa�
ton comprising single spiking neurons per node� Thus it follows that syn�re graph
networks with random projections in the asymptotic limit can stably simulate arbi�
trary deterministic �nite state automata� Regarding the non�deterministic version
of syn�re graphs the results can be similarly generalized�
Because lemma � implies almost sure convergence� we can �nd for every particu�

lar automaton and every � � � a �nite poolsizeM such that for allm � M a random
realization of the automaton �random with respect to the particular synaptic values

with probability �� � operates correctly on all possible input words�

Random couplings in the �nite case� In case of �nite pool sizes limit laws are
not applicable� Instead we must require that for all cells in any given projection the
condition

��� �
m

Pm
j��wij

��� � � holds for a suitable positive constant �� The second and

third term in ���
 can then be bounded absolutely by �C � �
b � �$g �� %b� Here�
the �rst term can be made small as usual� The smallness of the second term is a
constraint that we must impose on the projections� More precisely for the DFA we
require that �k��
��C ��
$b�k
��$g
 � �k��
%b � c��� for suitable � and k� C can
be chosen to be one and $g follows from the particular choice for g�t
� Such a choice
is possible for su ciently small �� With this choice the stability proof follows the
same lines than before but with b replaced by %b� A similar constraint imposed on
projections in a NFA network ensures also the stable operation of these networks�
If the sums

��� �
m

Pm
j��wij

��� are not strictly bounded by �� but may obtain larger
values with a small probability� this to a certain degree might be tolerable as long
as it leads only to the erroneous �ring of a small fraction of cells in every pool� It is
plausible to assume that a few wrong cells per pool do not harm� However� a proof
of this conjecture is missing�

Identical and diluted connections� We should mention that the condition on �
is trivially satis�ed for identical �non�random
 connections whatever the poolsize is�
Moreover� in conventional syn�re chain networks sometimes syn�re links of the form
���
 whith diluted connectivities are considered� If the nodes contain m cells� only
m� � m connections might be actually realized on any cell in the target node� Obvi�
ously� if the realized synapses all have identical values� this case essentially reduces

	�



to that of identical synapes and a complete connectivity � only the normalization in
���
 has to be adapted to the multiplicities �that is ��m has to be replaced by ��m�

in ���
�
Finally� diluted projections with random synaptic e cacies can be envisaged as

a special case of general random projections as studied above� This is� because as
mentioned at the beginning of this section the distribution function of the connec�
tions may have a pointmass in zero� If� for example� the connectivity of a syn�re
link is p �� m��m
 then the distribution function has a Diracmass of weight ��p in
zero� which determines the fraction of vanishing connections� Note� however� that
this interpretation of diluted connections is slightly di�erent from the idea of mul�
tiplicities� because the number of actually realized synapses on a target cell now is
a random variable �with expection m�
 and not �xed �at exactly m�
� Of course� a
varying number of neurons projecting on di�erent target cells should be viewed as
the more plausible situation�

Additional background noise� So far we did not take into consideration that
neurons in the network may be subject to noise as for example supplied by asyn�
chronously �ring background cells in real neural networks� Noise can be included in
form of an additional random contribution to the membrane potentials� As long as
the noise is bounded and small it can be treated similarly to the quenched disorder
in the previous case� i�e� we may impose a bound �� on the maximal �uctuations
and formulate conditions on the smallness of �� as above� In that case the noise
sources need not even be independent� For large or unbounded noise the situation
turns out to be more complicated� The problem has been discussed recently for
several other automata models ��� 	
� 	��� In �	�� it has been shown under quite
general conditions that time�discrete networks of sigmoid neurons subject to un�
bounded noise cannot recognize arbitrary regular languages� Although not directly
comparable with our network it seems reasonable that a similar conjecture holds
true in networks of spiking neurons�
The proofs above have shown that the number of delay stages for NFA net�

works can be chosen independently of the special automaton� In contrast for NFAs
it depends on the number of states of the automaton� This implies that also the
constants � and �� in the previous paragraphs depend on the number of states�
The larger a given automaton is� the stronger are the constraints imposed on these
bounds� For this reason it seems unlikely that very large NFAs �of the here consid�
ered architecture
 can be constructed which successfully operate under the rather
unreliable conditions in the brain� Even for automata of moderate size� may they
be deterministic or nondeterministic� one should expect that node �ring fails with a
certain probability� This suggests that perhaps probabilistic automata models with
signi�cant failure rates are more appropriate to describe computational processes
going on in real brains� From this point of view deterministic computations are only
a rather special limiting case�

		



� Discussion

Frontal cortical areas� where many experiments on syn�re activity are per�
formed� participate in planing� spatial and temporal memory� and other cognitive
tasks���	� ��� A relation between the appearance of spatio�temporal spike patterns
and behavioral events has been demonstrated ��� �
�� Therefore one may ask�
whether syn�re chains contribute to behavioral or cognitive tasks in any reasonable
way� Obviously the conventional syn�re chain model with linear or perhaps cycli�
cally reverberating chains has not much explanatory power regarding mechanisms
for the solution of complex tasks� Its main purpose is to provide a plausible model
for the abundance of spatio�temporal spike patterns and long�time correlations� As
we have shown� a rather simple extension of the model enables the construction
of arbitrary deterministic and nondeterministic �nite state automata� To this end
it essentially su ces to introduce several possible successor nodes in any state of
the chain which become selectively activated in dependence of further input signals�
In this way� arbitrary �sn�re�graphs� can be built� that are able to implement any
desired �nite automaton� Furthermore� nondeterminism �in the sense of computer
science
 in this model corresponds to several simultaneously propagating waves of
activation ��multiple sn�re chains� ���
� We have proved formally that both versions
of syn�re graphs� the deterministic as well as the nondeterministic one� can reliably
process arbitrary long input sequences in suitable parameter regimes� Input spike
trains need not be perfectly periodic but spike times may �uctuate in certain bounds�
in any case they synchronize the dynamics of the automaton� This generalizes com�
parable results stated by Omlin and Giles for time�discrete deterministic automata
of a similar architecture� although this work uses graded neurons and multiplicative
synapses �����
Similarities of the present work also exist to the work of Maass and collaborators

regarding automata of spiking neurons �		� 	��� These works investigate general
bounds on the theoretical computational power of spiking neuron networks� In fact�
this power turns out to be very high� For example� reference �	�� proposes archi�
tectures for arbitrary threshold gates� Turing machines� and certain random access
machines operating on real numbers� However� some of the assumptions that are
necessary to reach this high power are probably not satis�ed by real neural systems�
One crucial assumption concerns the representation of real numbers necessary to go
from �nite automata to in�nte machines like Turing machines� This representation
relies on neural oscillators emitting spikes with an arbitrary precision within one
period as well as relative to other neurons� Although coding by spike timing to
some degree is supported experimentally� its precision is still a matter of discus�
sion ���� 
��� Certainly it is not arbitrarily precise� but any restriction to a �nite
precision immediatly leads back from Turing complexity to �nite automata in the
architecture of Maass et al� �		� 	��� Similarly these models neglect noise and ef�
fects due to the exponential decay of postsynaptic potentials� which both restrict
timing precision too� Hence� it seems that the strong results about the theoretical

	�



power of spiking neuron networks hardly carry over to biological neural networks� In
the present work we have explicitly avoided the mentioned unrealistic assumptions
and included some further features probably relevant to real networks� for example�
pools and diluted random projections� We have shown that our automata are robust
against �uctuations in membrane potentials� that may arise from quenched disorder
in synaptic e cacies� background noise� jitter in input times and the �ring of cells
in syn�re nodes� as well as unpredictable temporal summation on membranes�
It is clearly not surprising that networks of time�continuous spiking neurons can

simulate �nite automata since already McCulloch and Pitts have shown that this
is possible for simple time�discrete threshold neurons �	��� As for Omlin and Giles�
work our results can be viewed as an extension of McCulloch�Pitts networks to spik�
ing neurons� Per se it is not obvious that McCulloch�Pitts networks work properly
when realistic single unit models and membrane properties are included� In fact our
analysis implies that at least some constraints regarding minimal interspike intervals
have to be satis�ed� which require more than just two layers of cells� Moreover� we
should also emphasize that our motivation was not so much the developement of
automata as such� but a step towards a functional interpretation of syn�re chains�
The hypothesis is that syn�re activity can perhaps be understood as an expression
of computations based on neuronal micro�circuits in some way similar to our model�
This hypothesis has been made concrete by the extension of the conventional syn�re
chain model�
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