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Abstract

An open tool architecture for the formal verification of logic controllers for chemical
processes is presented. It supports a model-based verification approach which builds on
models of the controller and of the plant. The architecture consists of a hierarchical modeling
editor, translators for the input of given controllers and an interface to integrate available
model-checkers. In the paper, the tool architecture is described and the necessity for front-
ends to modeling paradigms used in process engineering is explained on the example of
Process Control Event Diagrams (PCEDs).

1 Introduction

For formal verification of logic controllers in process industry, discrete models of the controller
and often also of the basically continuous process dynamics are necessary, because the correct
operation of such controlled processes depends on the interaction of the discrete actions of the
controller and the continuous quantities of the plant (e.g., if a discrete controller starts the
cooling of a reactor as soon as a certain temperature threshold is reached, it is necessary to
know how fast the reaction temperature rises and how much heat can be carried away by the
cooling). The resulting model of the controller or of the controlled process can be checked by
a formal verification whether a given specification is fulfilled or not (e.g., the temperature of a
reactor may be only within certain boundaries).

Up to now, formal verification was hardly applied to analyze logic controllers. For this the
following reasons seem to be responsible:

Even for simple examples the necessary models can become very complex. Obviously, the
descriptive and computational effort is the standard problem in the application of the formal
verification. Furthermore, the industrial user is usually not familiar with the complex underlying
theory developed in computer science by theorists for theorists. Therefore, well-known and
available modeling paradigms from process engineering should be used to model plant and
controller. For this several modeling front-ends have to be offered to the user. The model
of the controller can be created from an already implemented controller or from an available
specification.

This contribution describes the software environment VERDICT ( Verification of Discrete
Controllers for Continuous Processes) [KT97] which supports the application of formal verifi-
cation techniques in an industrial environment by dealing with the ideas mentioned above.

The paper is organized as follows: In Section 2 the software architecture of VERDICT is
described and in Section 3 the used modeling framework is introduced. Section 4 presents the



available front ends to modeling paradigms known in process engineering. This front ends allow
to generate discrete models automatically from already available descriptions of the plant and
of the controller. Section 5 sketches the analysis by available model checkers. The paper finishes
with a short conclusion.

2 Architecture

The VERDICT environment connects available tools for discrete event and real-time systems to
a suit of user interfaces which allow the process engineer to apply model-based verification with-
out having to get into the details of specifying modeling paradigms and verification theories.
Instead, the process engineer shall be able to specify the problem using familiar representa-
tions from process or automation industry. Through this, it is possible to include available
specifications without having additional modeling effort.
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Figure 1: Software architecture of VERDICT

In figure 1 the software architecture is illustrated. Due to its design, VERDICT is an open
system, which consists of different components. Several components can be used alternatively to
each other. For the modeling, different graphical editors are available and for the analysis, one
tool can be chosen from different analysis tools. The main part of the user interface consist of a
hierarchical block diagram editor in which the subsystems of plant elements and control devices



and their interaction can be specified using so-called Condition/Event systems (CESs) [SK91]
(see next section). Blocks can be timed discrete state CESs (TCESs) [EKKJ95], continuous
systems or controller devices specified in different controller languages. For the analysis the
continuous systems [SKE97] and the controller devices can be automatically replaced by TCESs.
The overall result is a TCES representation of the whole controller or of the whole controlled
plant. The internal dynamics of TCESs are specified using hierarchical state graphs in which
the requirements can be indicated by forbidden states. For the specification of the continuous
systems and the controller devices further front ends are available, e.g., a text editor to specify
continuous systems as differential algebraic equation (DAE) or special graphical editors (see
also section 4). TCES modules can be stored and managed by the library function of the block
diagram editor. Therefore, TCES modules already specified can be reused and assembled to a
new model later.

3 Modeling paradigm

TCESs as underlying modeling framework were chosen, because they meet certain requirements:
In order to be able to model also complex technical processes, TCES support a modular mod-
eling approach. Complex models can be created by interconnecting simple TCES submodules
which represent parts of the process or of the controller. The individual TCES modules are fi-
nite state machines with quantitative timing information. The interactions between the TCES
modules are represented as signals. Two different classes of signals can be used: Condition
signals are piece-wise constant and their values correspond to discrete states. Fwvent signals
are point-wise nonzero and carry information about currently occurring state transitions. The
condition signals are used to disable or enable transitions in other systems, whereas the event
signals can enforce transitions in other systems. In contrast to the a-causal synchronization
mechanisms of the automata models from computer science (e.g Times Automata (TA) [AD94]
or Hybrid Automata (HA) [ACHH93]), the condition and event signals reflect cause and effect
of the interactions between different parts of the process and the controller.

Quantitative timing information of the process and of the timers of the controller can be
modeled by TCES. The timing in the TCES modules is modeled by clocks. Clocks are reset by
an input signal or by a transition and their value rises with the gradient one. Other transitions
can depend on the values of these clocks. This concept is closely related to that of TA.

4 Modeling front ends

To support the user in developing verifiable control code, editors and a translators which map the
available control code to TCES are provided. At present the textual language Instruction List
(IL) and the graphical language Sequential Function Charts (SFC) according to the IEC61131-3
norm and so-called Process Control Event Diagrams (PCED) are supported. Yang and Chung
suggest using PCED [YC97], [YC98] during safety analyses of logic controlled processes. PCEDs
are an abstract and qualitative model of the controller. The advantage of this representation
is that connections between process variables and the control logic can be visualized in a very
simple and descriptive manner. The PCED illustrates the interaction between nodes arranged
on five different layers of a controlled process (from the top to the bottom layer: Operator,
Human Interface Device (HID), Computer, Sensor/Actuator, Process). The nodes represent
the components (e.g., sensors, actuators, control algorithm) involved in the system. An edge
linking two nodes is either the propagation of a signal or the causal action or effect. The example
PCED in figure 2 illustrates an emergency control. If a fault occurs, i.e., if the measured oil
level falls below a certain threshold, an alarm is displayed and the output values catalyst flow



and cooling flow are kept constant by holding the catalyst valve (CATV) and the cooling valve
(COOV).
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Figure 2: An example PCED

PCEDs can be read into VERDICT. VERDICT replaces the PCEDs by a TCES model.
Every node of the PCED is modeled by an individual TCES module. The data flow between
the nodes is represented by condition or event signals between the TCES modules modeling
PCED nodes. The translation algorithm will be described more detailed in the full paper.

5 Analysis

The complete TCES model can be analyzed. The concept of VERDICT is not to develop a
specific analysis algorithm but to provide an interface to already available tools.

To facilitate the analysis of the TCES model by existing analysis tools, the model has to be
converted into the input format of the chosen analysis tool. The tools KRONOS [0Y93] and
HyTech [HHWT96] are able to analyze TA. To integrate these tools, we take advantage of the
fact that the TCESs can be expressed by TAs. First, the underlying transition system of the
TCES is mapped into the state transition structure of the TA. Then the relevant conditions
and events of the TCESs are mapped into transition constraints of the TA. An algorithm for
automatic translation of TCESs into TA is integrated in VERDICT.

Additionally, the discrete model-checker SMV was chosen. To use a discrete model-checker,
the infinite space of all clock values of the TCES has to be approximated by a finite automaton,
which combines infinitely many time points to a discrete state. The idea of the translation is
based on so-called region automata [AD94], whose regions can be modeled by representative
states [Yov98], so that it can be modeled by a finite state machine. Similar to the translator
into TA, the translator maps the state transition structure of the TCESs into a finite state
machine. This algorithm is also integrated in VERDICT.

6 Conclusion

A tool environment for formal verification of logic controllers for chemical plants was presented.
The tool named VERDICT supports a model-based approach with interfaces to common specifi-
cation paradigms for modeling the plant and the controller. Timed C/E systems as underlying
modeling framework are modular and signal-oriented which helps to build complex models.
Continuous models and controllers are replaced automatically by TCES models. This provides
a systematic procedure to develop verifiable models of the controlled plants.

The main objective of VERDICT is to provide a consistent modeling environment and inter-
faces to different analysis tools. The integration of several tools, all based on different modeling



paradigms, in a modeling environment based on TCES systems, is representing a major chal-
lenge in developing VERDICT. The application of VERDICT is described in [KEPS99] and

[KES99].
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Di1sSCoO Toolset — The New Generation

Timo Aaltonen, Mika Katara, and Risto Pitkidnen
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Tampere University of Technology
P.O. Box 553, FIN-33101 Tampere, Finland
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1 Introduction

Formal methods are widely considered one possible so-
lution to the so-called software crisis arising from the
increasing complexity of systems. However, they are
not easy to adopt in industrial use. They often require
some mathematical knowledge and new ways of think-
ing. Some difficulties can be overcome by providing
appropriate tool support for users.

When talking about formal method tools, people
usually first think of verification. Formal proofs are
usually complicated and long, and therefore theorem
provers such as PVS [8] and model checkers such as
Kronos [10] have been developed to assist in or com-
pletely automatize them. However, formal proof is not
the only way to analyze a formal specification.

Simulation and animation have proved valuable aids
to validation and testing of formal models. They re-
quire that the specification has an operational interpre-
tation, i.e. that it can be executed in some way.

DisCo [4] is a formal specification method for re-
active systems. It focuses on collective behaviour of
objects and provides a simple refinement mechanism
preserving safety properties. Tool support for anima-
tion of D1sCo specifications has existed already in the
beginning of the 1990’s [9]. An improved version of the
DisCo language containing support for real-time spec-
ification and a more flexible type system among other
new features has been developed during the last few
years. Due to technical limitations (e.g. poor portabil-
ity) of the first tool generation, support for the new
language was not added in the old implementation.
Instead, a whole new toolset was designed and imple-
mented. This paper describes the new toolset.

The structure of the rest of this paper is as follows.
Section 2 introduces the DiSCO method and describes
example specification. In Section 3, the architecture of
the new DISCo toolset and the individual tools are de-
scribed. Section 4 contains some concluding remarks.

2 DisCo

2.1 Method

DisCo is a formal specification method for reactive
systems. Specifications are written in a programming-
language-like notation, whose formal semantics is given
in terms of Temporal Logic of Actions [6]. The basis of
D1sCo is in the joint action theory [3], which allows
describing systems at a high level of abstraction, at
which implementation-level details are superfluous.

The basic building blocks of the specifications are
classes and actions. The global state of the modelled
system is formed by local the states of individual ob-
jects, relations, global clock €2, and a global set of dead-
lines. The only way to change the state is to execute
actions. Actions are atomic units of execution. They
consist of roles, in which objects may participate (only
the states of the participating objects may change in
an action); parameters, which are values of basic types
or records; a guard, which limits the possible partic-
ipant and parameter combinations and a body, which
is one parallel assignment clause. Assertions may be
stated on the global state, but they do not limit the
behaviour of the system, thus they need to be verified.

DisCo specifications are generic. The number of
objects need not be fixed. Even an infinite number of
objects is allowed.

The specifications are structured in behavioural
units called layers, each of which encapsulates a dif-
ferent aspect of the system being specified. A layer
describes how a specification is changed when the
new aspect is modelled. This structuring mecha-
nism is orthogonal to ordinary architectural struc-
turing, in which the specifications are divided in ar-
chitectural units reflecting the implementation-level
units. Behavioural structuring—unlike architectural
structuring—does not lead to specifying the interfaces
between units, before knowing the collective behaviour
of the total system.

DisCo specifications are written in layered manner:
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the refinement mechanism is superposition, which only
allows adding new variables to classes, strengthening
the guards of existing actions, introducing new actions,
adding new assignments to actions, and assigning to
the new variables only.

2.2 Example Specification

In this subsection a very simple cash-point service sys-
tem is specified in D1SC0. The system consists of four
kinds of entities: accounts, tills, cash cards and cus-
tomers. Cards may be inserted and ejected to and
from tills. Money may be withdrawn from accounts
using tills.

The DisCo specification consists of four layers:
till, card, customer and complete. Layers card and
customer refine layer til1, and layer complete refines
the composition of card and customer.

Layer till (see below) defines the most abstract
view to the system. Classes Account and Till are in-
troduced. Assertion balanceOK states that balance of
all accounts is always non-negative. Withdrawal is pos-
sible only from a till in our simple specification. Action
withdraw has two roles: acc (of class Account) and ti11
(of class Ti11) and one parameter: amount (of type in-
teger). It may be executed if the withdrawn amount is
positive and there exists enough money on the account.
At this level of abstraction we do not specify anything
about customers or cards. Deposit is also possible in
the layer.

layer till is
class Account is
balance: integer;
end;

class Till is end;

assert balanceOK is V acc: Account :: acc.balance >= 0;

action withdraw(acc:Account; till: Till; amount:integer) is

when amount > 0 A acc.balance >= amount do
acc.balance := acc.balance — amount;

end;

action deposit(acc:Account; amount:integer) is
when amount > 0 do
acc.balance := acc.balance + amount;
end;
end;

Layer customer (see below) refines specification ti11
by adding aspects related to customers to the model.
The layer specifies that withdrawals are only possible
for customers from their own accounts. Ownership is
specified by relation CustAcc.

layer customer is

import till;

class Customer is
wallet: integer;
end;

relation CustAcc(Customer, Account) is 0..1:1;
refined withdraw(cust:Customer; acc:Account;

till: Till; amount:integer)
of withdraw(acc, till, amount) is

when ... CustAcc(cust, acc) do
cust.wallet := cust.wallet + amount;
end;
end;

Layer card adds aspects of cash cards to the speci-
fication, and finally layer complete gathers all the re-
finements together. These layers are omitted here to
save space.

3 Tools

3.1 Architecture

With the experience gained with the first generation
of DisCo tools, we saw portability, extensibility and
usability as the most important considerations when
choosing implementation technologies and designing
the general architecture of the new toolset. Portabil-
ity was ensured by choosing ISO C++ and Java as the
implementation languages. Extensibility was achieved
by designing a general architecture (depicted in Figure
1) centered around a multi-purpose intermediate form
and utilizing hooks that allow modifying and adding
functionality.

The intermediate form produced by the DisCo com-
piler front end is an explicit and flat representation of a
layered specification. It is utilized by the compiler itself
and several back ends that produce input for different
tools.

3.2 COMPILER

DisCo COMPILER plays a central role in the DisCo
toolset. It works as a link between different tools and
DisCo source code. Standard C++ was chosen as the
implementation language for its good performance and
portability. Object-oriented features and genericity of
C++ are heavily utilized.

Functionality of the compiler is divided into two
phases: front-end and several back-ends. The front-end
produces an intermediate form of DisCo source. Af-
ter successful translation into intermediate form, back-
ends of the compiler may be used to produce input for

12
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Figure 1: General architecture of the DisCo toolset.

different tools, like ANIMATOR or different verification
tools.

The front-end of the compiler takes one D1sCo layer
and the intermediate forms of possibly imported spec-
ification branches as its inputs, and produces an in-
termediate form of the specification. The intermediate
form corresponds one to one to the internal represen-
tation of the semantical tree (or DAG) of the specifi-
cation being compiled. The intermediate forms of im-
ported branches are merged into the tree representing
the specification being compiled. Checking syntactic
and semantic correctness of the code is carried out by
the front-end. If an error occurs during the compila-
tion, no intermediate form is produced.

Animation back-end of the compiler produces a spec-
ification engine, which is a Java package, for ANIMA-
TOR. It offers an interface by which ANIMATOR can
instantiate objects in the creation phase, and execute
enabled actions in the execution phase. The engine no-
tifies ANIMATOR about state changes and some other
events. It also informs ANIMATOR about enabled ac-
tions. The assertions of the specification are guarded
by the engine during execution.

Back-ends for producing input for several verifica-
tion tools could be added to the toolset. We are also
researching possibilities of producing VHDL or C code
from an instantiation of a DiSCo specification.

3.3 DisCo ANIMATOR

DisCo specifications can be executed and animated
in ANIMATOR (Figure 2). Animation enables valida-
tion, testing and debugging of specifications and of-

fers an enhanced means of communication for design-
ers, application experts and customers. Animation of
Di1sCo specifications is very visual: objects, their state
and their relations are depicted as graphical objects,
executed actions and state changes are visualized by
animation sequences and real time is depicted by a
scrolling timeline displaying current time and any set
deadlines. ANIMATOR offers a graphical user interface
for instantiating and executing specifications.

Java was chosen as the implementation language of
ANIMATOR for easy portability of the user interface and
to enable producing a WWW-based version running as
an applet for demonstration purposes. Functionality
of the tool is easily extensible by hooks—the user can
supply Java code to be executed upon certain events.

Animation of a specification starts with instantia-
tion. The user drags objects of classes she wants to
instantiate onto the object view window and sets the
initial values of variables using pop-ups that appear
on the screen. Relations between objects are set by
selecting a relation and then pointing at the objects
one wants to add as relation pairs. Once the instan-
tiation has been completed, animation may be begun.
First the tool checks that the initial conditions and as-
sertions of the specification hold for the instantiation.
Then, action guards are evaluated, and enabled actions
are indicated by a green highlight color. In Figure 2,
the user has selected action insertCard of the exam-
ple cash-point specification to be executed and is now
picking objects to participate in its roles.

Execution traces can be rerun and saved as scenario
files that can be processed by the DISCO SCENARIO
TooL.

13



FMessages

27.04.2000 14.21.17 Specification -

Epammpants far action insertCard

insertCard( t o Till

‘ Execute

| Why Inactive

| Random Pick H Cancel |

balance : 400

[SustAcc

fwithdraw( cust : Customer, a: Accou

jectcard(t: Till, ¢ : Card )

Figure 2: DISCO ANIMATOR.

3.4 DisCo SCENARIO TooOL

Message Sequence Charts (MSCs) are a widespread
notation for describing inter-object communication.
Their main strength is intuitive visual representation.
Objects are depicted as vertical lines and messages sent
to other objects as horizontal lines.

D1sCo SCENARIO TooL (DST) is a tool for display-
ing execution scenarios as MSCs. Executed actions are
interpreted as messages between participating objects.
DST can be used to modify existing and create new
MSCs which can be animated by ANIMATOR.

In Figure 3, an execution scenario of the example
specification is illustrated as a MSC. In the figure, the
larger window displays the MSC and the smaller win-
dow contains buttons corresponding to different instru-
ments available for modifying the MSC.

3.5 Verification

In system design, validation and verification comple-
ment each other. The former answers the question
whether we are designing the right product and the
latter whether we are designing the product right. The
DisCo toolset does not include any dedicated verifi-
cation tool, instead a number of more general purpose
verification tools can be used.

The state space of a DIsCo specification is inher-
ently infinite. Therefore, the most natural verification
method is theorem proving. In [5], a mapping from

a subset of the DisCo language into the logic of the
PVS [8] theorem prover was described. There exists a
prototype tool to support mechanical verification of in-
variant properties. However, the current mapping does
not support verification of real-time properties.

For verification of specifications including real-time
constraints, a mapping from instantiations of DisCo
specifications into timed automata [2] was described in
[1]. There are a number of model checkers that can be
used to verify systems given as timed automata, for ex-
ample Kronos [10] and UPPAAL [7]. Currently, instan-
tiations have to translated manually, but mechanical
support could be added to the current D1SCo tools in
the way explained in Section 3.2.

Besides verification of real-time properties, the
model checking approach enhances user-controlled me-
chanical theorem proving by finding counterexamples
efficiently. Moreover, proposed invariants can be pre-
checked for specific instances before attempting to
prove them for the generic specification.

4 Conclusions

The new generation DI1SCO toolset includes Cowm-
PILER, ANIMATOR and SCENARIO TooOL. Additional
tools have been planned to assist in verification and
code generation. The toolset has an extensible archi-
tecture centered around a multi-purpose intermediate

14



card aceount till eustomer
deposit () (amount : integer = 1000)
a
ingertCard () ()
withdraw () (amount : integer) = 500)
a cyst
ejectCard () ()

Figure 3: D1IsSCo SCENARIO TOOL.

form for D1sCo specifications. Portability has been
ensured by the use of standard C++ and Java as the
implementation technologies. Usability has been a cen-
tral factor in the design of the user interface.

The toolset is still under development, and at
the present alpha testing stage consists of about
40,000 LOC C++ (CoMPILER) and 60,000 LOC Java
(ANIMATOR and SCENARIO TOOL). Altogether around
ten people have contributed to the development of the
toolset during a period of two and a half years.
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1 Intr oduction

Formal verificationhasbecomean importanttaskin the designof systemsTechniquedike symbolicmodel
checkinghave reachedndustrialapplicability Thesetechniquesrewell suitedfor fully synchronousystems
modeledwith qualitatve time. If systemsareembeddedn areal-timeervironmentandupperboundsfor reac-
tion timesareimportantto guarantea properandsave functionality, the verificationof real-timepropertieds
very important. & taget at this application area with our t60AVEN.

RAVEN is areal-timemodelchecler extendedby analysisalgorithms.The systemdescriptionis specified
asa network of communicatingparallelworking real-time processesEachprocesss a time extendedfinite
statemachine(l/O-intenal structure[1,2]). The propertiesare specifiedin the quantitatve temporallogic
CCTL. The queriesfor the analysiscapabilitiescover minimum, maximumand maximal stability computa-
tions.RAVEN is ableto generateounterexamplesandwitnessegor CCTL formulas.Analysisresultscanbe
visualized by traces.All tracesare graphically presentedn an integratedwave form browser Moreover,
RAVEN offersadditionalchecks For instancejt candetectdead-andlive locksandvisualizestracesto these
"locks" in its integratedwave form browsertool. It is alsopossibleto generateandomsimulationsof the com-
posed system.

RAVEN usesMTBDDs for a symbolic representatiomf the systemq8]. This datastructureresultsin a
compactsystemrepresentatiomnd efficient verification algorithms.On someexampleswe have shavn that
this approach outperforms some state of the art tools foetifeeation of timed systems.

The next sectiongivesan overview of the processingstepsof the verificationandthe underlyingarchitec-
ture of the RAVEN system.In Section3 we presenthe input languageof RAVEN. This languagés usedto
describeparallelworking processesndto specify formal propertiesto prove andtiming queriesto analyze.
Somegeneralremarksaboutthe implementatiorare givenin Section4. Afterwardswe presentsomeexperi-
mental results in Section 5.

2 Architecture

The maintasksof RAVEN after parsingthe inputfile, is Lo
the constructionof the MTBDDs for eachprocessthe

compositionandsynthesiof the MTBDD for the system :E |

graphical user interface |

transitionrelation. The resultingMTBDDs arethenused 3

for checkingspecificationsindfor answeringiming que- interactive

ries. After the composition,RAVEN can be switchedto proof manager
$

an interactve modeallowing the userto manipulatehis

specificationsand queriesand to add new ones.The | RiL-compiler — °°2gg§:tei°“ —> é’;g:ﬁe
architecture oRAVEN is shavn in figure Fig2.1. 3 3 2
After calling xraven, the graphical user interface | MTBDD package

appearsin this window the userspecifiesthe input file
and choosessomeglobal options. Afterwards, the RIL-
compiler(RAVEN inputlanguageseeSection3) andthe
compositionenginearestarted After the compositions completedRAVEN activatesthewindow of theinter-
active proof managerA screershotshaving the proof managewindow, thewave form brovserandthewave-
form orderwindow is printedbelan. The proof managewindow shows all specificationsndtheir proof state.
Also theanalysisqueriesandtheir computedvaluesareshavn. New specification®or queriesmay betypedin
this windaw or read in from anxéernal file.

Fig. 2.1.RAVEN's architecture

1.This work is sponsored by the German Research Grant (DFG-Project GRASP)
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Fil: [single browse... | time: pt | memory: 3956 k8 |

Wew | {Composition)/Model Checking & Analyse|/Resources & Statistics) /Preferences),
et |f

[TRUE [remainder

|DFipFlop1 .codel ITRUE react

DFiipFlop1 .code2
|DFipFlop1.set Ext |
|DFipFop1 .clk.
|DFRipAlop1 Jow_check_setup
|DFipFlop1 Jow_setup_ok.
|DFipAop1 Jow_check_hold
|DFRipFlop1 high_check_setup
|DFipFlop1 igh_setup_ok
|DFipFlop1 high_check_hold

About |

|DFiipFop2.codel
DFiipFlop2.code2
|DRipFlop2.set
|DFipAop2.clk.
|DFipFlop2. o

rowse

{NotGate.in
[NotGate high
INotGate Jow

|AnaGate Jow
|AndGate.high

|signal

Fig. 2.2. Screenshot

3 Theinput format RIL

RIL (RAVEN inputlanguage]s a simplelanguagéor specifyingnetworks of communicatingime extended
finite statemachines(l/O-interval structure[2]). EachRIL module containsone I/O-interval structure.The
structuresaredefinedasstatetransitiongraphs.Thetransitionsarelabeledwith time intervalsandinputrestric-
tions.Inputsarefunctionalconnectedo outputvariablesof othermodules Thefollowing paragraphintroduces
the 1/O-intenal structures.

Structuresarestate-transitiorsystemsmnodelingHW- or SW-systemsThe fundamental Qﬂ’@
structuresare Kripke structurequnit-delaystructurestemporalstructures)vhich may be -l
derived from FSMs. Our basicmodelsfor real-time systemsare interval structuresij.e.,
statetransitionsystemswith additionallabelledtransitions.We assumehat eachintenal
structurehasexactly oneclock for measuringime. The clock is resetto zeroif a stateis
enteredA statemaybeleft if theactualclock valuecorrespondso adelaytime labelledat
anoutgoingtransition.The statemustbeleft if themaximaldelaytime of all outgoingtran-
sitionsis reachedOneclocktick is thelowestgranularityfor thetime modeling.To expand
interval structuredy a possibilityfor communicationywe have extendedthemto I/O-inter- a
val structures.Thesestructurescarry additionalinput labelson eachtransition. Suchan 1 time
input labelis a Booleanformulaover theinputs.We interpretthis formulasasinput condi- Fig. 3.1. Structure
tions which have to hold during the correspondingransitiontimes. For instanceinput-
insensitve edges carry the formutaue.

The I/O-interval structureof the figure abose may be expressedy the RIL-descriptionshavn on the left
side.

—>
—>
—>

LIS
T

MODULE structure MODULE sync
SIGNAL a: BOOL S| GNAL
I NPUT i := other_module.output a: BOOL
STATES b: BOOL
sO :={} I NPUT i := om.output
sl :={a} INTa&b
I NI TsO NEXT a'=i&b
TRANS |=s0 ==li;[1,3] ==>s1 b'=i&a
END END

Fig. 3.2. RIL description of a timed process and a synchronous unit-delay process

RAVEN allowsto mix timedmoduleswith full synchronousnodulesThetransitionrelationsof thesemodules
areprecededy thekeyword NEXT. Thenthetransitionrelationis definedby a conjunctive connectedequence
of booleanformulas.The usualway to specifythesemodulesis by antransitionfunctionfor eachsignal. The
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descriptionontheright sideshavs anexampleof ansynchronousnodule All statechangegake implicitly one
unit time step
CCTL [1] is a temporal logic extending
CTL [11] with quantitatve boundedtemporal p[~0100e 1000 [0~ 060
operators.It is usedto describethe real-time EX{a® | EFfa0® | EGpa 59 [ E(® Upa 9)
specificationsTwo new temporaloperatorsare b= E| E(¢ Ciq9) | E(¢ Siy9) (1)
introducedto easethe specificationof timed
propertiesThe syntaxof (?CTLis shavnin (1); %Ax[ald) | AF(a 01¢ [ AGra 01¢ [ A(® Ups 570)
where p O P is an atomicproposition,a 0 IN % A(d Cry9) [A(D Si59)
and b OIN O {} aretime bounds.All inter-
val operatorcanalsobe accompaniedby a singletime-boundonly. In this casethe lower boundis setto zero
by default. If no interval is specified,the lower boundis implicitly setto zeroandthe upperboundis setto
infinity. If the X-operator has no time bound, it is implicitly set to one. The semantics of CCMeisigi[2].
Thesemantic®f CCTL is definedover runsof thegivenstructure A runis asequencef configurationsA
configurationis anassociatiorof aninterval structurestatewith anclockvalue:g 00 Sx IN, . For theconfigura-
tions of arunr = (gg, 94, -..) holds either:
+ that the system remains in its stage:= (s;, v;) andg;,, = (s, v;+1)
» thatthe systemchangesdts stateaccordingto the transitionrelation and the correspondinglelay times:
g = (spVvi) andgi,; = (541, 0).
The semantics of theX-operator is for instance defined through:

0, goF EX[y® := there exists arun = (g, ...) such that], goF ¢ (2)

O is aninterval structure,g, is a configurationof [ and F is themodelrelation.RAVEN canautomatically
determine ifQ], gy ¢ holds, i.e. if the gien structure satisfies thevgn specification.

RAVEN alsoallows thecomputatiorof critical time delaysof thegivensystemg.g.,minimal reactiontimesof
an embeddedsystemor the maximalwait time of a work piecein a productionautomationsystem.For these
tasks the currentersion ofRAVEN supports three dérent algorithms:

* MIN requirestwo setsof configurationsthe startandthe destinationconfigurations Thenthis algorithm
computeghe minimal delaytime which is necessaryo reacha configurationof the destinatiorstartingin a
configuration of the start set.

* MAX analogouslycomputeghe maximaldelaytime necessaryo reacha configurationof the destination
starting in a configuration of the start set.

» STABLE requiresonesetof configurationsThis algorithmcomputeghe lengthof the longestpathwhich
do not leae the gven set.

The setof configurationsarespecifiedoy CCTL formulas,e.qg.if we areinterestedn the maximaldelaytime
from the moment the input signal rises until the output becomes high, we may write this queryas follo

MAX (=input OEXinput, output) 3)

4 | mplementation

The mainideaof the modelcheckingalgorithmis to identify (sub-)formulasof the CCTL specificationwith
setsof configurationsvhich satisfythem.Thereforejt is veryimportantto have acompactrepresentatiomwith
efficient manipulationof setsof configurations\We usean extensionof characteristidunctionsto symbolically
represensetsof configurationsThe extendedcharacteristidunctionsmapinterval structurestatego the setof
associatectlock values.For instance,the configurationset A is representedy: A,: S - O (INg) with:
Ap(S) :={v|(sv)OA}.

We useMTBDDs [5,6] to represenextendedcharacteristidunctions.MTBDDs are extensionsof ROB-
DDs [7] with morethantwo terminalvalues.In this application,the terminalscarry the setsof delaytimesor
clockvalues[8]. TheMTBDDs supportefficientoperationdor synthesisvhich we have extendedo ourrepre-
sentation.

A mainoperatiorfor the modelcheckingoperationss the computatiorof the setof predecessaronfigura-
tions of a given set.For this purposewe have adaptedhe relationalproductusedin standardnodelchecking
for predecessocomputationon setsof statesrepresentedry ROBDDs. Sincein our applicationthe timing
informationof eachstateis locally storedin the MTBDD leaves,we areableto apply an optimizationwhich
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usesthethisinformationto performthe predecessacomputatioraslong aspossiblelocally in theleaves. This
technique is called time prediction [1].

Dueto spacdimitations we do not presenturther detailsof the basicmodelcheckingalgorithm,the opti-
mizations, the composition algorithms [3], minimization heuristics [3] or the analysis algorithms [4].

5 Experimental results

As afirst examplewe have examinedthe priority inheritanceprotocol[8] on systemswith differentnumbersof
processesWe have comparecbur algorithmto SMV (a CTL modelchecler for finite statemachineq9]) and
KRONOS (a TCTL modelchecler for timed automata10]). The translationof interval structuresto timed
automatdg12] is shavn in Fig. 5.1. The clock hasto be resetexplicitly at eachtransition. The maximalstate
time has been formalized using a stataant.

S
. -
O

Fig. 5.1. Timed Automaton modeling an intevstructure

Fig. 5.2 shaws the experimentalresultsfor the three comparedsystems.The curve labeledwith RAVEN+
denoteghe runtimeandmemoryrequirementvith time prediction.The modelwasnot createdoy usingcom-
position lut by an @ample specific construction algorithm.

seconds
MByte
1000 — KRONOS

800 KRONOS
200 —+

600 —

400 —
100 ——

200—+
RAVEN+
T I I }
10 20 30 40
number of processes number of processes

Fig. 5.2. Comparing Model Checking Results (Memory and Runtime)

The next examplewe examineis a systemconsistingof several communicatingstructuresAn simplereader/
writer system wherethe writer accessea sharedmemory After writing, it signalsthe readerprocesseshat
they canstarttheir work on the memory All readeract parallel. The run-timesshavn in Fig. 5.3 containthe
compositionan the checkingtime. The left part of the Fig. 5.3 shovs anothersimple examplecomposecdoy
several toggling structures A toggling structureconsistsof two statesand two transitionsconnectingthese
states. The delay times on the transitions are in the range from 300 to 6000. All delay timésrant. dif

The last table comparesthe analysisalgorithms of RAVEN with the analysisalgorithms of
VERUS [13]. We comparednly the min/maxalgorithmsbecaus& ERUS do not supportthe stablequerybut
on the other hand VERUS offers two queriesmincountand maxcountwhich are actually not supportedoy
RAVEN. We have chosen the samanable ordering for the signals.

The examinedcasestudiesarethe singlepulser[14] circuit enrichedby timed gates(SP),a productioncell
[15] (PC)andthe arbitrationmechanisnof the J1850bus protocol[16]. Thefirst two systemsarewidely used
to compare formal methods. Details of tramined systems may be found in [2].

For the singlepulserwe computedhe minimal andthe maximallengthof the outputimpulse.ln the produc-
tion cell we wereinterestedn the minimal andthe maximaltime whenthe first work pieceleavesthe cell. In
the J1850examplewe checled the minimal andthe maximal delaytime whena nodewill leave the sending
mode. The following table compareghe runtimesof both tools. For the VERUS run-timeswe tried various
options and choose the best results.
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Fig. 5.3. Run-time and memory comparison of SMMRONOS andRAVEN

The run-timesin the table with and without optimizations Tap|e 1. ComparisorRAVEN and VERJS

seemdo shaow, thatthesetechniquegauseonly atiny speedup.
But therun-timesshavn in thetablecontainbesideghe analy-
sis times also the compositiontimes of the structuresIn all | VERUS | 01:59.24| @ -~

threeexamplesthe compositionconsumeshe majorpartof the | RAVEN 00:12.72| 38:34 | 06:46
times (11.73 sec.for the single pulser 2000 secondsor the | RAVEN + | 00:12.42| 34:04 | 01:35
productioncell and25 sec.for the J1850).If therewill bemore
thantwo analysigascomputedn the examples)thanthefrac-
tion of compositiontime to analysistime will shrink andthe

SP PC | J1850

a. VERUS error: ,string tableerflon*
b. VERUS memory consumptiorver 600MB

the optimizations will cause a tger speedup.

Bibliography

[1] J.RufandT. Kropf. Symbolicmodelcheckingfor a discreteclockedtemporallogic with intervals.In CHARME 97, Montreal,Cana-
da, Oct. 1997. Chapman and Hall.

[2] J.RufandT. Kropf. ModelingandCheckingNetworksof Real-TimeSystemsIin CHARME 99, Bad Herrenalb,Germany Springer
Verlag, Septemper 1999.

[8] J.RufandT. Kropf. Using MTBDDs for compositionand modelcheckingof real-timesystemsin FMCAD 1998, PaloAlto, CA.
Springer Verlag 1998.

[4] J.Ruf and T Kropf. Analyzing Real-Time Systems. DATE 2000, Paris, France. IEEE Computer Society Press.

[5] E.Clarke,K. McMillian, X. Zhao,M. Fujita, andJ.-Y. Yang. SpectralTransformsfor large BooleanFunctionswith Applicationto
Technologie Mapping. IDAC 93, Dallas, TX, June 1993.

[6] R.BaharE.Frohm,C.GaonaG. Hachtel,E. Macii, A. Pardo,andF. SomenziAlgebraicDecisionDiagramsand Their Applicati-
ons. INICCAD, Santa Clara, CA, Nov. 1993. ACM/IEEE, |IEEE CSP.

[71 R.Bryant. Graph-Based Algorithms for Boolean Function Manipulati&BE Transactions on Computers, August 1986.

[8] J.RufandT. Kropf. UsingMTBDDs for discretetimedsymbolicmodelchecking Multiple-ValuedLogic — An Internationalournal,
1998. Gordon and Breach publisher.

[9] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell Massachusetts, 1993.

[10] C.Daws, A.Olivero, S.Tripakis, and SYovine. The tool {KRONOS}. In Hybrid Systems lll, volume LNCS. Springer, 1996.

[11] E.M. Clarke,E.A. EmersonandA.P. Sistla. Automatic Verification of Finite-StateConcurrentSystemdJsing TemporalLogic. In
ACM Symposium on Principles of Programming Languages (POPL), 1983.

[12] R.Alur andD. Dill. Automatafor Modeling Real-TimeSystemsIn International Colloguium on Automata, Languages and Pro-
gramming, LNCS, NY, 1990. Springer-Verlag.

[13] S.CamposE. Clarke,andM. Minea.Theverustool: A quantitativeapproachio theformalverificationof real-timesystemsin CAV,
LNCS. Springer Verlag, June 1997.

[14] S.JohnsonpP.Miner, andA. Camilleri. Studiesof the single pulserin variousreasoningsystemsln International Conference on
Theorem Proversin Circuit Design (TPCD), Bad Herrenalb, Germany, September 1994. Springer-Verlag, 1995.

[15] C.LewerentzandT. Lindner,editors.Formal Development of Reactive Systems - Case Sudy Production Cell, number891in LNCS.
Springer, 1995.

[16] SAE.J1850classB datacommunicatiometworkinterface.The Engeneering Society For Advancing Mobility Land Sea Air and Spa-

ce, October 1995.

21



22



Do you trust your model checker?*

Wolfgang Reif' and Jiirgen Ruf? and Gerhard Schellhorn! and Tobias Vollmer!

1 Abt. Programmiermethodik, Universitdt Ulm, D-89069 Ulm, Germany
email: {reif,schellhorn,vollmer }@Qinformatik.uni-ulm.de
2 Wilhelm-Schickard-Institute, University of Tiibingen, D-72076 Tiibingen, Germany
email: ruf@informatik.uni-tuebingen.de

Abstract. In this paper we describe the formal specification and ver-
ification of the efficient algorithm for real-time model checking imple-
mented in the model checker RAVEN. It was specified and proved us-
ing the KIV system. We demonstrate how to decompose the correctness
proof into several independent subtasks and indicate the corresponding
verification efforts. The formal verification revealed some errors, reduced
the code size, and improved the efficiency of the implementation.

1 Introduction

Model checking is an important technique to detect errors or to prove their ab-
sence in safety critical soft- and hardware systems. Model checking automatically
verifies properties of state based systems. For efficiency, it is usually implemented
using highly optimized data structures and algorithms. On the other hand, when
a property can be shown, the only result we usually get from a model checker,
is a “yes”. The absence of a comprehensible proof raises the question: can the
model checker be trusted?

In this paper, we will answer this question for the case of the real-time model
checker RAVEN [9]. RAVEN uses time-extended finite state machines (inter-
val structures) to describe systems and a timed version of CTL (clocked CTL,
CCTL) to describe their properties. Optimized algorithms based on extended
characteristic functions are used to compute the extension sets in the model
checker.

Our solution consists in the application of formal methods to ensure the
correctness of formal methods: We apply the interactive specification and veri-
fication system KIV to formalize and prove the algorithms of RAVEN. To our
knowledge, this is the first case study tackling formal verification of a state-of-
the-art real-time model checker. This paper is the result of the cooperation of
two groups, in the context of a research programme on formal methods for en-
gineering applications*: the developer of RAVEN [10,12] (second author), and
the development group of KIV [8] (remaining authors).

* This work is supported by the DFG (Deutsche Forschungsgemeinschaft) under the
priority programme “Integrating Software Specification Techniques for Engineering
Applications”
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The KIV case study described in this paper consists of four steps: first, we
define a formal specification of the semantics of CCTL, the basic model checking
algorithm and the optimizations. Second, we verify the correctness of the simple
and the optimized algorithm. Third, we give an efficient implementation of the
abstract algorithms based on bitvectors, and finally we prove the implementation
correct. This implementation relies on a standard software package for extended
characteristic functions [5] (based on multiterminal BDDs, MTBDDs [1, 3]). We
formalized the interface to this package in KIV. The verification relies on the
specification of this interface. Verifying [5] against the interface is an independent
subtask which was not part of the case study.

Our case study shows that it is possible to give a modular specification, such
that the correctness of the model checker can be split into several independent
verification tasks. With the help of the correctness proofs we found some critical
definition errors in the formal specification of the optimizations. After correcting
them we proved that the basic algorithms and the optimizations using bitvec-
tors are correctly implemented. Parts of the code were shrinked. One prediction
function (see Sect. 5.3) worked too pessimistic and was optimized.

In Section 2, we will describe interval structures and the logic CCTL, which
constitutes the basis of RAVEN. Section 3 discusses the used optimizations and
the efficient implementation. Section 4 gives our approach to formalization and
verification. An overview over the specifications and correctness proofs is pre-
sented in Section 5. Section 6 concludes the paper.

2 Real-Time Model Checking

Model checking is a well established method for the automatic verification of
finite state systems. It checks if a given state transition system satisfies a given
property specified as a propositional temporal logic formula.

The approach we will examine is developed for timed systems and timed
specifications. It is presented in [10, 12]. In this section, we will explain the main
ideas behind the model checking verification technique which are necessary for
the remaining part of the paper. First we will present the formal model and the
temporal logic. Afterwards we will introduce the representation with extended
characteristic functions and the main model checking procedure.

2.1 Interval Structures

Interval structures are finite state transition systems. The transitions are labeled
with intervals of natural numbers to represent delay times. The structures use
the notion of clocks to represent time: every structure contains exactly one clock
working in a discrete time domain. A transition is enabled if the actual clock
value is within the interval of an outgoing transition. The successor state as well
as the delay time is chosen indeterministically w.r.t. the transition relation and
the labeled delay intervals. The clock is reset if a transition fires.
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Definition 1. An interval structure J = (P, S, So,T, L) is a tuple with a set of
atomic propositions P, a set of states S, a set of initial states S, a function
T:8 xS — p“(INy) that connects states with labeled transitions and a state
labeling function L : S — p(P).

Every state of an interval structure must be left after the maximal state time:
MazTime(s) := max{ v | Is'.v € T(s,s")}

Besides the states, we now also have to consider the currently elapsed time to
determine the transition behavior of the system. Hence, the actual configuration
of a system is given by an interval structure state s € S and the actual clock
value v € INg. The set of all configurations of an interval structure is given by:
Gg={(sv)|s€SAv< MazTime(s)}

The semantics of interval structures is defined over runs. A run is a sequence
of configurations r = (rg,r1,...) with r; = (s;,v;) € Gj and for all ¢ > 0 holds
either

— rip1 = (84,v; + 1) and v; < MaxTime(s;) or
— Tig1 = (Si+1,0) and v; € T(Sz’,SH_l)

In the following, we call (s;,v;) the local predecessor of (s;,v; + 1), which corre-
sponds to the first case of the definition. Similar, we call (s;,v;) a global prede-
cessor of (s;41,0) if v; € T(s;, sit+1). Note that for a set of configurations, only
the computation of global predecessors depends on the transition relation T.

2.2 CCTL

CCTL (Clocked Computation Tree Logic) is a propositional temporal logic us-
ing quantitative time bounds for expressing real time properties (e.g. bounded
liveness). The following definition describes the syntax of CCTL formulas.

Definition 2. Given a set of atomic propositions P. The set of CCTL formulas
Foorr is defined to be the smallest set with

— P C FeerL

— ifm € INg,n € INgU {0}, m < n and ¢,v € Foorr then
—p, p A1,
AX[m]QD; AF[m,n]QO; AG[m,n](p’ A(QDU[m,n](p)’ A((ps[m](p)’ A(LpC[m]cp) € Fecre
The symbol oo is defined through: ¥ i € INg : i < 00.

All interval operators can also be accompanied by a single time-bound only. In
this case the lower bound is set to zero by default. If no interval is specified, the
lower bound is implicitly set to zero and the upper bound is set to infinity. If
the X-operator has no time bound, it is implicitly set to one.

For this paper we will only define the semantics for the EF-operator, the
semantics for the other operators may be found in [12]. The semantics of CCTL
is given by a model relation (F):
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Definition 3. Given the interval structure J= (P, S,So,T,L), a starting con-
figuration 1o € Gj and the CCTL formula ¢ € FooryL-

J ;10 = EFp ny0 4> there exists a runr = (ro, .. .)
and an i € [m,n] such that J,r; = ¢

A formula ¢ is valid in a model 7, iff 7, (s,0) |= ¢ for all initial states s € Sp.
The defined interval operator may be expressed by operators only carrying an
upper time bound, e.g. EF, nj¢ 1= EX[) EF -

2.3 The basic model checking algorithm

The main idea of model checking algorithms is the following: building the syn-
tax graph of the formula to check, computing bottom-up sets of configurations
representing sub formulas (called extension sets), checking if the set of initial
states is a subset of the extension set of the complete formula.

The computation of the extension sets is done by a function ext. The ex-
tension sets of atomic formulas (i.e. the leaves of the syntax tree) are given by
the labeling function and the possible clock values in the appropriate states of
the interval structure 7. Boolean connections can be computed by applying the
corresponding set operations on the extension sets. Finally, the computations of
the extension sets of temporal logic operators are defined recursively. We will
present them using the EF-operator as an example:

ext(EFp) := ext(p)
ext(EFf11) 1= ext(p) U ext(EX(EF [ ¢))

The operator EX (“Next”) states, that a certain formula is fulfilled after the
next step. The time bound n for EF[,,; has to be finite. For n = co we can show,
that the extension sets reach a fixpoint, i.e. 3 i. ext(EFy;) = ext(EF};4]). This
means, that the recursion can be terminated if the ext(EF};) will not change
anymore. The realization of the recursive definition of the EF-operator leads to
the algorithm shown in Fig. 1.

The other CCTL operators can be implemented with similar algorithms. The
operators EX, ES, EC, which do not reach a fixpoint during computation can not
be computed for n = oo.

Two questions remain: how are the sets of configurations represented in order
to achieve efficient computations and what how is the EX-operator computed?

A main advance in the field of model checking was made with the introduction
of symbolic representations of state spaces [2]. Instead of an explicit enumera-
tion of sets of states, they are represented by characteristic functions. For our
time extended model checking algorithm, we use an extension of characteris-
tic functions (ECF) which maps interval structure states to sets of associated
clock values [10]. The function A4 : S — p(IN) represents a set A C G 7 of
configurations:
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confset EF(confset C, natinfty n, transrel T)
begin
confset old := @, R := C;
whilen > 0 A old # R do
old := R;
res := C U EX(R,1,T);
n:=n— 1;
end
return R;
end

Fig. 1. The basic EF-algorithm

Ap(s) :=={v|(s,v) €A}

In the following, we will use sets of configurations and the ECFs representing
these sets synonymous, i.e. we will write A instead of A4. Since we aim at
verifying an implementation of a model checker we will furthermore use the
notation and intuition of MTBDDs (multi-terminal BDDs [1, 3]), which are used
to implement extended characteristic functions.

MTBDDs representing sets of configurations code the state space in the deci-
sion diagram and associate a set of natural numbers representing the clock values
with each state (i.e. each leaf of the decision diagram). An example MTBDD
representing the configuration set {(a, 3), (a,4), (b,5), (ab,2)} is depicted in the
dashed box in Fig. 2. Set operations can be implemented by performing the
appropriate operations on the leaves of the MTBDD. The transition relation is
represented in a similar way. As shown in Fig. 2, two MTBDDs are cascaded,
the first representing the state space of the model 7 and the second representing
the sets of predecessor configurations for the individual states.

The second open question is, how can the extension set of an EX-operator be
computed? If the extension set of its argument formula is known, the extension
set of the EX-operator is given by all predecessor configurations.

The local predecessors of a set of configurations may be computed by a
function local-pre as follows. Using MTBDDs, the computation may be reduced
to the leaves of the MTBDD where each clock value contained is decremented.

Global predecessors only exist for configurations with a zero clock value.
The computation is done by a function global-pre(C,T). For every state s’ with
(s',0) € C, the set of predecessor configurations is looked up in the transition
relation and the resulting configuration sets are combined to a new configuration
set.
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Fig. 2. Representation of the transition relation using two cascaded MTBDDs

3 The Central Idea of the RAVEN Model Checker

3.1 Time Prediction
If we analyze the predecessor computation we observe the following:

— The global predecessor computation is more expensive than the local pre-
decessor computation since it takes the complete transition relation into
account.

— The global predecessors often do not change between two predecessor com-
putations.

We use a technique called time prediction to overcome the single step traversal
and to avoid unnecessary global predecessor computations [10,11]. The idea is
to define a time prediction function that computes how many steps the global
predecessors stay constant.

Again, we exemplarily discuss the EF-operator. Although the basic idea of
time prediction can be applied to all operators, every temporal operator needs
a separate prediction function.

The time prediction function predict-EF is computed locally, i.e. for each
state separately by a function local-pr-EF. The minimum of the prediction times
mp is the time span which can elapse without any change in the set of the global
predecessors. Arguments of local-pr-EF are the sets of clock values ¢ C INg and
g € INg which contain the last interim result of the computation and the results
of the last computation of global predecessors:

predict-EF(C,G) = mingeglocal-pr-EF(C(s),G(s))

v if v=min(c,g—1) Av>0

local-pr-EF(c, g) := { oo otherwise
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The set operation g — 1 decrements all members of g by one.

After the prediction the fixpoint iteration of the temporal operators may
be performed mp times. Analogous to the above, a function apply-EF is de-
fined which performs the fixpoint iteration locally for every state by using the
recursively defined function local-EF.

apply-EF(C,G,mp)(s) = local-EF(C(s),G(s),mp)

c ifmp=20

local-EF (c,g,mp) = {local—EF(c,g,mp —1)Ulocal-EF(c,gmp —1) —1Ug

Putting together the above definitions and considerations, we obtain the opti-
mized algorithm shown in Fig. 3.

confset EF'(confset C, natinfty n, transrel T)

begin
confset old := 0, R :=C, G := 0
natinfty p;
while n > 0 A old # R do
old := R;

G := global-pre(R,T);
p := predict-EF(R,G);
if p > n then p := n;
R := apply-EF(R,G,p);
n:=n — p;

end

return R;

end

Fig. 3. The optimized EF-algorithm

3.2 Time Jumps using Bitvectors

The local fixpoint iteration needs O(mp) set operations for execution. We define
a technique called time jumping which replaces this iterative execution by an
efficient implementation using either bitvectors or interval lists.

Using interval lists has the advantage of little memory consumption but lacks
the efficiency of the bitvector based algorithms. Hence, we now will concentrate
on the bitvector based implementation.

The implementation local- EF# for the EF-operator using bitvectors is shown
in Fig. 7. Bitvectors are used to represent sets of natural numbers. A the number
n is contained in a set, iff the nth bit of the bitvector representation is 1. The
basic idea of the implementation of local-EF# is to traverse bitvectors: in the
nth step of the algorithm the nth bit of the input and an internal state of the
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algorithm are used to compute the nth bit of the result. Hence, we only need a
single specialized operation to compute local-EF instead of O(mp) set operations
when using the recursive definition.

4 Formal Specification and Verification Concept

Our case study consists of five parts:

1. specification of CCTL and its semantics. The left half of Fig. 4 illustrates
this step.

2. specification of the basic model checking algorithm and verification, that the
algorithm implements the semantics (cf. right half of Fig. 4).

3. specification of the optimized algorithms with time prediction for the tem-
poral operators (e.g. EF' as defined in Fig. 3) and verification that they give
the same results as the simple recursive variant (e.g. EF as given in Fig. 1).
Figure 5 visualizes this step.

4. nonrecursive definition local-EF' of the local computations local-EF used in
EF' and verification, that both definitions are equivalent (cf. upper half of
Fig. 6).

5. implementation of local-EF' based on bitvectors and correctness proof for
the implementation. The lower half of Fig. 6 shows this part.

These five parts will be discussed in the five subsections of the next section.
All five parts were specified using the structured, algebraic specifications of KIV,
which are similar to the standard algebraic specification language CASL [4]. To
do the correctness proofs, KIV offers a concept of modules, which describe a
refinement relation between specifications. KIV automatically generates proof
obligations that assure the correctness of modules.

An important goal in the design of the case study was to structure specifi-
cations, such that each of the four verification steps could be expressed as the
correctness of one module. This has two advantages: First, each module can be
verified independently of all others, which means that the correctness problem
is decomposed into several orthogonal subproblems. Second, a general theory
(see [6]) of modular systems (consisting of specifications and modules) assures,
that a correct model checking algorithm (that implements the |= predicate) can
be “plugged” together by repeatedly replacing abstract definitions with more
concrete versions: Starting with the unoptimized algorithm modelcheck, first EF
is replaced with EF' (and similar for the other temporal operators), then the
call to local-EF in EF' is replaced with a call to local-EF', and finally this
call is replaced again with the bitvector implementation. The final algorithm is
identical to the one used in RAVEN, except that it has an abstract interface
of extended characteristic functions. Their implementation using actual BDD
operations could be added using another module (which could be separately
verified).

Developing a modular system of specifications and modules, such that “plug-
ging the algorithm together” and separate verification of the steps described
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above became possible, was a major creative step in this case study. Two im-
portant design decisions were to use higher-order operations on ECFs (apply
and reduce, see Sect. 5.3) to have an abstract interface to BDDs, and to use the
intermediate nonrecursive definition local-EF' (see Sect. 5.4).

Technically, modular systems are developed in KIV using a graphical repre-
sentation, called development graphs. Such a graph contains rectangular boxes
for specifications and rhombic boxes for modules. Arrows represent the structure
of specifications and implementation relations. The following section will show
for each of the five steps some relevant part of the development graph and sketch
the contents of the specifications. Putting all parts together, i.e. merging the de-
velopment graphs of figures 4, 5 and 6 gives the full modular specification and
implementation of the model checker. Full details on all specifications, modules
and proofs can be found in [13].

5 Verification of Correctness

5.1 Specification of CCTL Semantics

The structure of the algebraic specification for CCTL and its semantics is shown
in the left half of Fig. 4. The main predicate specified in the top-level specification
is 7, (s,v) = ¢ (p holds in configuration (s,v) over model J= (T, L)'). Two
typical axioms of this specification are

J, (S,V) |: EF[n] 4
< Jr.run(r,T) A first(r) = (s,v) AT, s = @

(TaL)a (S,V) |: p&<pcE L(S)

The definition is based on a specification of the data type of CCTL formulas, the
specification transrel of the transition relation of an interval structure and (indi-
rectly) on the specification confsets of configuration sets (in algebraic terms, the
top-level specification is an enrichment of transrel and confsets). The transition
relation is defined as a function T': state — (state — set(nat)). T(s')(s) gives the
possible delay times for a transition from state s to state s'. Configuration sets
are specified as functions C : state — set(nat). A configuration set C' contains
a configuration (s,v), iff v € C(s). This representation corresponds to extended
characteristic functions.

Both configuration sets and the transition relation are specified as actual-
izations of a generic datatype of extended characteristic functions ecf : state —
elem: the parameter type elem is instantiated by set(nat) and confset respec-
tively. The use of generic ECFs allows us to be fully abstract in our correctness
analysis of the model checking algorithms, while it is still possible to implement
ECFs with MTBDDs (with elem being the type of the BDD leaves) and to verify
this implementation separately.

! The set P of atomic propositions, and the set S of states are carrier sets in our alge-
braic specification. Therefore they need not be explicitly mentioned in the definition
of a model
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CCTL semantics

CCTL semantics
| CCTL—f | modelcheck
transre —formulas implements =
confsets
ext, modelcheck
V‘/\
ecf: leaves of ecf Y
state —> elem = set(nat) EF

Fig. 4. Specification of CCTL Semantics

5.2 Correctness of Simple Model Checking

The right half of Fig. 4 shows the part of the KIV development graph that deals
with the correctness proof of the simple model checking algorithm with respect to
the semantics of CCTL (the structure of the specification of the CCTL semantics
above the module has now been omitted).

Specification of Simple Model Checking The specification shown below the mod-
ule in Fig. 4 contains the simple model check algorithm modelcheck. It is specified
by the following axioms:

modelcheck(\7, ¢, p) ¢ ¢ € ext(p, J),

ext(EF[n] »,(T,L)) = EF(ext(p),n, T),

ext(— ¢,J) = Gz \ ext(p,J),

(s,v) € ext(p,(T,L)) + p € L(s) A (s,v) € G(1,1),

Again, the specification is based on configuration sets and the transition
relation (not shown in the figure). It is also based on a subspecification which
defines a tail-recursive function EF, which computes the extension set of the
temporal operator EF[,). The specification also contains similar functions for
the other temporal operators, but like in the previous sections, we will now
concentrate on the implementation of EF. We have preferred the tail-recursive
version over the program given in Fig. 1 for two reasons: First, the specification
remains independent of an implementation language. Second, proofs using the
tail-recursive function are smaller compared to proofs using while-loops and
invariants.

32



To define the computation of local and global predecessors, two generic
higher-order operations apply and reduce on ECFs are used:

local-pre(C) = apply(C, —1)

global-pre(C,T)
= reduce(T, (X Co,s'. if 0 € C(s') then Cq else (), U, 0)

apply(ecf, f) applies function f on each leaf of ecf. reduce(ecf, f, f',a) applies
the function f on each leaf of ecf and combines the results using function f’,
starting with the value a. The function —1 used in the definition of local-pre
decrements each number contained in a leaf of an ECF and drops zeros. The A
expression contained in the definition of global-pre looks up the predecessors of
all states that contain a zero clock value.

Proof of Correctness The KIV module shown in the development graph of Fig. 4
automatically generates proof obligations. Their verification guarantees, that the
simple model checking algorithm modelcheck satisfies the axioms of the predicate
k=, i.e. that modelcheck implements the predicate |=. Proving the proof obliga-
tions is straightforward using theorems that assure the existence of fixpoints for
the operators EF, EG, etc. and takes only a few hours of verification time.

5.3 Time Jumps and Time Prediction

Figure 5 shows the part of the development graph that is relevant for the verifi-
cation of the optimization step that introduces time prediction and time jumps.

Specification of Time Prediction Most parts of the specification of the optimized
version EF' of the computation (cf. Fig. 3) can be adopted from the unoptimized
algorithm. The functions required to specify time prediction and time jumps,
predict-EF and apply-EF are defined using the functions apply and reduce:

apply-EF (ecf) = apply(ect,local-EF)
predict-EF(ecf) = reduce(ecf,local-pr-EF,min,00)
Thus, the functions are reduced to functions local-EF and local-pr-EF which

work on the leaves of the ECFs. The specification of the latter functions follows
directly the definition in Sect. 3.

Proof of Correctness To prove correctness of the module, it must be shown, that
the axioms of the simple algorithm are satisfied by the optimized algorithm.
The main theorem needed in the proof is:

n < predict-EF (C,global-pre(C,T))
—  global-pre(C,T) (1)
= global-pre(apply-EF(C,global-pre(C,T),n),T)
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EF simple algorithm

Y

EF’
implements
EF

Y
EF'apply-EF
predict—-EF

v,/v

local-EF
local-pr-EF

o

leaves of ecf
= set(nat)

optimized algorithm

Fig. 5. Specification of time-prediction

It expresses the central idea of the optimization step, that the global predecessors
do not change during the computation of as many steps as the time prediction
permits. Since predict-EF yields the minimum of the results of the predicted
values for all leaves, the proof can be done by reducing the theorem to the leaves
of the ECF considered and proving the analogous theorem for each single leaf:

p = local-pr-EF(C(s),G(s)) A(n < p V p = ) 2)
— (0 € local-EF(C(s),G(s),n) < 0 € C(s))

Here, the term 0 € local-EF() < ...states that the global predecessors of the
leaf considered remain unchanged. For reasons explained in the next section, we
assume property (2) as an axiom here and postpone its proof until then.

The proof obligation for the operator EF is proved by induction over the
number of steps the operator computes. Two important theorems are needed in
the induction step of the proof.

The first,

EF'(Cn + 1,T) = EF'(EF'(C,n,T),1,T) (3)

ensures, that a single step can be split off from the computation of EF’'. The
proof is conducted by induction over n. Expanding the definition of a single
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recursion “computes” p steps of the operator using function apply-EF. Since
only one step has to be split off, a similar decomposition lemma is also needed
for apply-EF. This lemma can be shown by proving the following, analogous
lemma, for the leaves of the ECF:

local-EF(c,g,n + 1) = local-EF (local-EF (c,g,n),g,1) 4)

The second important theorem is required, because the recursion schemes of
the simple and of the optimized version are slightly different. While the simple
recursion EF(C,n + 1,T) = C U EF(C,n,T) always adds its argument C to
the interim result, the optimized version calls apply-EF (R, p) with the interim
result R to compute p steps. Hence, in any step of the algorithm, the result of the
last major step is added to the configuration set. Since the operator considered
increases monotonous, both recursion schemes produce the same results:

R = EF'(C,n,T) )
- R UEX(R,1,T) = C U EX(R,1,T)

Results of Verification. During verification, we found erroneous time prediction
functions for two operators, local-pr-EU (for strong-until) and local-pr-ES (for
the successor operator). In some cases, the original definition of local-pr-EU,

n if n = min(cy,g +1) A [0,n] C ¢y

local-pr-EU(c1,¢2,8) = { oo otherwise

yields too high values. Therefore the algorithm sometimes forgets to recompute
the global predecessors, which leads to incorrect results. The corrected version
of local-pr-EU (corrections bold) is

nif -0E€c An=min(ci,g +1)
local-pr-EU(cy,c2,8) = A0,n—1]Ceco
00 otherwise

Inspection of both implementations of RAVEN showed, that the bitvector
based version behaves correctly. The implementation using interval lists con-
tained the error and was subsequently corrected.

The time prediction local-pr-ES not only contained a case where too high
results were computed, but also a too pessimistic case. Since the definition of
local-pr-ES was rather complex (8 lines), we corrected it by reduction to the EX
operator. This led to a much more compact definition using only 3 lines.

The verification also showed a critical point in the computation of EXp, ¢
(next operator), that was not detected during design and informal analysis of the
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algorithm. Normally, the EX operator, which does just computations of prede-
cessors, never reaches a fixpoint. Nevertheless, cycles (i.e. EXim) ¥ = EXimqp] @
may occur in the computation. To stop the computation as early as possible,
the simple version of EX (which is similar to the algorithm in Fig. 1) performs
a fixpoint test after every step of the computation by comparing EX[,,; ¢ to
EX[1m+1] - The optimized version contains this fixpoint test, too. But since the
optimized version computes p steps at a time, EX[,,, ¢ is compared to EX[y,p) ¢-
Therefore, if the computation of EX,) ¢ with n > m + p contained such a cycle
of length p, the computation would stop too early.

However, we could show, that this situation can never occur, because the
time-prediction function permits either an infinite number of steps or only one
step at a time if a cyclic computation takes place:

apply-EX(C,G,n) = C A p = predict-EX(C,G) An < p
—+p=1Vp=x

(6)

Verification Effort. All seven temporal operators implemented in RAVEN were
proven correct. We found, that the proofs of all operators share a common pat-
tern. This pattern consists of theorems (1), (2), (3), (4), (5) and some auxiliary
theorems. Additionally, for operators, that do not reach a fixpoint during compu-
tation, a theorem like (6) was needed. Due to this pattern, the verification time
required decreased from one week for the first operator to about 2 days. Al-
though the complexity of the operators increased, the correctness proofs all have
about the same length, because the growing experience helped to compensate
the extra complexity with higher automation.

5.4 Nonrecursive Representation of Time Jumps

A look at the implementation of time jumps (cf. Fig. 7) and time prediction
shows, that the computations of these programs do not fit to the recursive def-
inition of local-EF very well. Therefore, even simple proofs using the recursive
definition are technically very complex. Therefore we decided to introduce a
nonrecursive function local-EF’, which describes the results of the operator EF:

local-EF'(c,g,n)
= {v|3Ive€cnN[v,...,v+n]} (7
U{v|Ivegn][v,...,v+n—1] A n#0}

Since we want to use this function instead of the recursive function local-EF,
we first have to prove the equivalence of both representations. Again, this is
done using a KIV module. The corresponding part of the development graph
is depicted in the upper half of Fig. 6. The proof obligations generated for the
module ensure, that the nonrecursive function local-EF' satisfies the axioms of
local-EF.
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local-EF representation

local-pr-EF and theorems

over local-pr-EF

local-EF’
implements
local-EF

local-EF’ nonrecursive
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local-EF’

&, |, <<,>> bitvectors

Fig. 6. Specification of explicit representation of time jumps

An additional advantage of this approach is, that we can use the nonrecursive
function local-EF' to prove the theorems which use local-EF and local-pr-EF. To
do this, we added these theorems as axioms in the specification which contains
local-EF and used them as assumption in the previous section.

Now, we get these theorems as additional proof obligations for the nonrecur-
sive definition local-EF' in the module.

The proofs of these theorems do not require any new ideas — they are typical
for proofs over sets of natural numbers. Therefore, a discussion is omitted. The
time required to do the correctness proofs was about two days per operator,
including the proofs of the theorems assumed in the previous verification step.

5.5 Implementation using Bitvectors

The previous sections were concerned with deriving an efficient model checking
algorithm on abstract data types. This section considers the efficient implemen-
tation of the optimized algorithm. RAVEN offers two representations. One that
represents sets of natural numbers with bitvectors and one that uses interval
lists. Since some of the algorithms used in the latter representation were already
verified in an earlier case study with KIV [7] (unrelated to this project), and
bitvectors are used as the default in RAVEN, we decided to verify this version.
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The implementation verified was derived directly from the RAVEN source-
code by omitting code concerned with memory allocation and partitioning of
bitvectors into words.

Again, the verification was done using a KIV module, which is shown in the
lower half of Fig. 6. In contrast to the previous sections, real programs are used
in the module. The programs local-EF# and local-pr-EF# depicted in Fig. 7
implement the functionality of local-EF' and local-pr-EF using bitvectors.

Bitvectors are defined to be strings of binary digits. In addition, the basic
operations & (binary and), | (binary or), < (logical shift left), > (logical shift
right), a length function # and a bit-selection function denoted by array-like
subscripts are defined.

local-EF#(c, g, n; var r) local-pr-EF#(c, g; var n)
var m = 0, pos = #(c | g) + 1, begin
state = 0 in ifc=0Ag=0thenn:= o0
r:=0; else if c[0] = 1 then n := o
ifn =cothenm:=#(c|g) +1 else var pos = 0 in
else m := n; n := (;
while pos # 0 do while n = 0 do
pos := pos — 1; if c[pos] = 1 then n := pos;
if g[pos] = 1 then state := m; else if g[pos] = 1 then
if c[pos] = 1 then state := m +1; n := pos + 1;
if state > 1 then pos := pos + 1;
r:= (1 <€ pos) | 1; end
state := state — 1; end
end end
end
end

Fig. 7. Implementation of time-jump function local-EF

As proof obligations of the module it must be shown, that the implementation
programs terminate and satisfy the axioms of local-EF' and local-pr-EF (for
a general introduction to the theory of program modules see [6]; verification
techniques for proof obligations in KIV are discussed in [7]).

To stay as close as possible to the implementation of RAVEN we decided to
consider bitvectors without leading zeros only. This restriction is formalized as
a predicate r. Additional proof obligations are generated by the KIV system to
ensure that the programs terminate and keep the restriction invariant.

The correctness proofs for local-EF# and local-pr-EF# both require invari-
ants for the while-loops. The one for local-pr-EF# was easy to obtain, since the
current state of computation depends on few factors only. The invariant for local-
EF# is shown in Fig. 8. It consists of two major parts. INV; states, that the
postcondition is satisfied for the computations made so far. The main difficulty
of the proof was to construct INV 5. It describes the variable state, which rep-
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resents the “memory” of the algorithm. The construction of the invariants took

INVEr = INV; A INV:

INVi =V n1. pos <nj
= ( rm]=1
PR (Ficlil=1A-i<m A-n;+n<i)
VEiLglil=1A-i<m A-n+n—-1<i)An#0)

INV, = r(r) Astate<n
A ( state =0V c[pos +n — state] =1
V state < n A g[pos +n — state + 1] = 1)
A (Vi.i<n—state — c[pos +i] = 0)
A (state <n — (Vi.i < n—state+1 — g[pos +1i] = 0))

Fig. 8. Invariant for while-loop of local-EF#-procedure

several iterations and days, depending on the complexity of the operator and
the number of “memory” variables. The size of the invariants ranges between 11
and 25 lines. Once the correct invariant was found, the proofs were large, but
easy and automatic.

Summarizing, the effort taken to prove the correctness of the bitvector based
implementation of RAVEN was about 2 weeks. On average, it took three itera-
tions to find the correct invariant. A beneficial side effect of the verification was
the discovery of inefficient and redundant code. The implementation of local-EU
could be shortened from 73 to 18 lines of code.

6 Conclusion

In this paper we investigated the correctness of an optimized real-time model
checking algorithm. We demonstrated that it is possible to develop the efficient
implementation from the specification of the semantics in a a series of refinement
steps. Each step could be verified independently of the others.

During the verification, several errors were discovered in the time prediction
functions, which constitute the heart of the optimization. Also, some inefficient
code could be eliminated. We were able to define a common scheme for the cor-
rectness proofs of the different temporal operators, which reduced the verification
effort significantly.

The time required to formalize and verify the model checking algorithm was
about 4 months. Compared to the total time that was needed to develop and
implement the optimizations, the extra effort was modest.
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With the verification of the kernel algorithm we now feel justified to answer
the question posed in the title of this paper with “yes”, assuming the standard
BDD package works correctly. Since model checkers are often used in safety
critical applications, we hope our results encourage further research in their
correctness.
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1 Introduction

In this paper we present a technique for modelling realtime in a temporal logic
close to TLA [3] which is implemented in the VSE system [2, 4, 5]. The approach
is based on a global clock architecture with a discrete time scale.

We start by illustrating our technique by a real world example. The emer-
gency closing system (ECS) is part of the control system of a storm surge barrier
that physically consists of several huge gates to isolate the North Sea from the
Eastern Scheldt. The ECS keeps track of the changes of the water levels and
closes the gates if the water level gets dangerous.

In the second part of the paper we show how the insights gained by this case
study can be turned into a general method for modelling real time systems that
can be applied to a wide range of scenarios. This concerns the general structure
of the model, the way to express real time properties, and assumptions about
the system and the environment. We close by indicating how real time prop-
erties like the ones occurring in our example can be treated as an independent
specification by incorporating techniques from hybrid systems [1].

2 The ECS Model

The requirements for the ECS are given by verbal descriptions and an infor-
mal, mainly graphical design® of the system. The most important requirements
mentioned in the document deal with the behaviour of the system in time. As
discussed more detailed in section 3.1 the formal system specification uses nat-
ural numbers for the physical entities, like seconds, meters, and milliamperes
mentioned in the document.

1While the verbal description is not very precise and therefore not sufficient in itself the
graphical description contains many details of a particular solution, actually it is already close
to a technical realization.
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2.1 Overall Structure of the Model

The formal model consists of three components: the system, the environment,
and a component containing a global clock (see Figure 1). The system takes
as inputs values from sensors measuring various water levels and values from
switches that are set by an operator. Basically it computes two output signals,
one for closing the barrier and one for opening it again. The design is fail safe
in the sense that the first signal going down means close.

Both, the environment and the clock are separated from the system to al-
low for a refinement of the abstract specification to the actual system. The
environment comprises changes of the water levels as well as changes of the
switches.

2.2 Assumptions

While in this case there are no complex assumptions about the behaviour of the
environment itself it is assumed that the system immediately (i.e. without any
delay) reacts to changes of the input variables caused by the environment or
the clock and needs no time to compute an output. Obviously the concurrent
execution of the three components has to be restricted appropriately to model
these assumptions. The clock has to be blocked until the system has finished
its computation? In such situations fairness which forces a step to be executed
sometimes in the future is not enough.

Technically the scheduling among the three components is realized by shared
variables acting as guards (indicated by circles in Figure 1).

Unless there was a tick of the clock the variable time has the same value.
Hence the environment having changed the input of the system and the system
having computed certain outputs the clock should tick, because otherwise we
would have two different situations with the same time stamp.

2.3 Properties

Even if the components are synchronized appropriately with respect to the given
assumptions about their behaviour in time there are certain intermediate states
without a meaningful interpretation. For example, immediately after the envi-
ronment has changed some input values the output values of the system might
not have the values requested by the requirements specification.

To overcome this problem we distinguish between internal variables and vari-
ables visible to the outside. The environment, the system, and the clock change
only internal variables. Whenever the clock ticks the corresponding visible vari-
ables are updated with the current values of the internal ones. The observable
variables remain the same in the intermediate states mentioned above.

The synchronization among the components as well as the choice of observ-
able variables implicitly formalize our way of looking at the system and are

2Note that also in cases where there are certain (restricted) reaction and computation times
a similar, slightly more complicated scheduling regime is necessary to rule out behaviours
where reaction or computation takes to much time.
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therefore relevant for the notion of correctness®.

The formal requirements specification only refers to the visible variables
and has no access to the variables local to the system and those used for the
synchronisation mechanism. It uses a variable time that gives the current time
in each state.

visible output

update
0 tick
i
DL
i i
(-
time
intern
O
i
I system
| G input output
: intern intern
i
i
I

Figure 1: The complete scenario

Due to lack of space we only mention the specification of two properties the
ECS system has to satisfy.

1. O(—(OPEN = T A CLOSE = T))

2. O((time = to A Change_Sensor_Sig) =
O((to < time < tp+ d + 1) => Close =T))

Property 1 says that the OPEN and the CLOSE signal are never true simultane-
ously. Property 2 says that if the waterlevels get dangerous (expressed by the
formula Change_Sensor_Sig) at time #y then the system reacts by setting the
CLOSE signal to true for at least d time units beginning at time #, + 1.

The proofs of these properties are all done locally to the system component
where the proof of property 2 needs assumptions about the environment.

3 General Features

The main general features of our approach are
o the use of discrete values for the time scale (and other physical entities),

e the treatment of assumptions by restricting the concurrent execution of
the clock, the environment, and the system (wich are modelled as separate
components), and

3Perhaps this could be compared to a test bed.
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o the hiding of non-meaningful states by distiguishing between internal and
external (visible) variables and by using an update function as part of the
clock component.

3.1 Expressing Realtime Properties

We have used a global discrete time scale and a clock that increases the value
of a flexible variable time (of type Nat) by one upon each tick. The technique
is applicable for many scenarios where the granularity of the time scale can be
fixed afterwards.

Figure 2 informally shows an admissible behaviour of a system (different from
the ECS) that reacts to an input signal (signal). A corresponding description

high
9 signal-1

high
I signal-2
low
. . .
u y

Figure 2: A possible behaviour of a real time system

of a safety requirement could be the following: If signal; is high for at least ﬁ
sec and signaly is low, then after at most ﬁ sec signal, will be high for at least
71—0 sec. If for the time points #g, t1, t2 and t3 shown in the diagram, we have the
conditions ¢ — t > gi5 sec, ty — fo < 155 sec and #3 — t > - sec then this
particular behaviour fulfils the requirement.

In the formal model we use a discrete time scale and replace concrete dura-
tions by constants representing arbitrary but fixed number of time steps. The
above mentioned requirement then becomes:

OVit.(((to = time A signal = low A
O(to < time < to + di — signaly = high))
_)
Ita.((t2 — to) < do AO((t2 < time < t2 + d3) — signaly = high)))

Having successfully proved the safety requirements from the assumptions dis-
cussed below we are free to choose concrete values for a time step. If all durations
are given as rational numbers the only constraint is that a single step has to be
small enough to have all durations as multiples of this value.

3.2 Assumptions

In each scenario there are particular assumptions about the the timing behaviour
of the system and the environment. For example in the case of programmable
controlers the time for a cycle determines the (maximal) delay until the system
notices a change and also the (maximal) time the system needs to respond.
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Assumptions of this kind are modelled by restricting the parallel execution
of the three components appropriately relying on fairness assumptions for the
component. This technique can be viewed as a refinement of fairness in that
the restriction is as liberal as possible and does not assume a fixed scheduling
regime.

If in our example the system needs a time dy to notice a change and also a
certain time d5 to compute output values then, in order to prove the require-
ments from above, one has to assume that dy < d; and (dy + d5) < do.

3.3 Relation to Hybrid Systems

Having hidden non-meaningful states, we are free to formulate timing require-
ments for the visible variables. But although our requirements are more general
than the informal diagrams we have shown above one would like to specify the
complete (realtime) behaviour in a comprehensive way without relying on a
system specification like that of the ECS.

Following techniques that have been used for hybrid systems this can be
done by introducing abstract states that correspond to sets of states (over the
visible variables). Using a kind of automaton in the sense of [1] one can then
specify the complete behaviour of a system to be designed. The specification
we have discussed before would then become a refinement of this more abstract
description.
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1 Introduction

Verification of typical object-oriented programs is more complex than verification of imperative
programs with non-recursive procedures. It has to cope with dynamic binding of methods, recur-
sive method invocations, subtyping, abstract types, and aliasing through object references. The
use of these features and the combination of data and procedures into classes lead to a different
programming style which also influences verification techniques. The goal of our research is to
overcome the resulting challenges by interactive verification techniques that can be formulated as
proof strategies similar to the classical approach for tactical theorem proving.

In this extended abstract, we analyze typical verification steps within proofs of object-oriented
programs. We focus on the differences to verification of imperative programs with non-recursive
procedures. In particular, we investigate which information about programs is needed in order to
support the verification steps by strategies in a tactical theorem prover. The rest of this abstract is
structured as follows. Section 2 sketches the used verification framework. In particular, it describes
a simple overall technique to prove that an OO-program satisfies its specification. Section 3
analyses the steps of this simple proof technique w.r.t. formalizing them as strategies. Section 4
concludes by sketching the realization of such strategies within tactical theorem provers.

2 Verification of Object-oriented Programs

The results of the following investigation hold for most existing object-oriented programming
languages. However, to have a concrete setting, we consider the kernel of Java as a representative
for this language class (cf. [PHM99]). Similarly, we refer here only to a specific programming logic,
namely a Hoare-style partial correctness logic, although the results of the investigation apply as
well to more powerful programming logics (e.g. dynamic logic or temporal logic).

Program verification can be done under different perspectives. The classical perspective as-
sumes a complete program with exactly one main procedure. The goal is to verify that the main
procedure has a certain property. This perspective does not reflect the reuse of program modules,
as it underlies modular programming in general and object-oriented programming in particular.
Consequently, we assume a perspective where the goal is to verify interface specifications of a set!
of types ST. As the implementation of these types may use other, already verified types STU, we
assume that the used types are equipped with interface specifications that can be applied during
verification of ST. This means that we have to relate types and specifications in such a way that the
theorem proving environment can access the specification of a type. In particular, the verification
of ST can only use properties about STU that are formulated in STU’s interface specifications.

A user-defined type in Java is either declared by a class or a so-called interface. To keep
things simple here, we assume that the specification of a type T consists of the specifications
of T’s methods (cf. [PH97] for more elaborated specification constructs). The specification of a
method consists of a set of pre-/postpairs. From a theoretical point of view, it would be sufficient
to consider only one pre-/postpair. In practical situations, this would lead to large pre- and

1 As types can and usually do recursively depend on each other, we have to deal with sets of types instead of
single types.
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postconditions. A more structured approach using several pairs turns out to be easier to handle
where each pair deals with a different aspect of the method behavior: E.g. one pair to describe
the returned value of the method; one pair to specify the modifications to the object store; one
pair to capture the invariant properties to the method etc.

Proof Task. Program verification techniques can be used for different purposes; e.g. to prove
that a program never throws a NullPointerException or to derive the needed properties of an
auxiliary method. Here, we only consider the following standard proof task: Given a set of specified
and implemented types ST that use a set of specified types STU; prove that the implementation of
ST satisfies its specification assuming that the types STU behave as specified. Before we present
a simple technique to structure the proof task we have to summarize an important aspect of
OO-program verification.

Dynamic Binding and Virtual Methods. In OO-programs, method invocation are dynami-
cally bound, i.e. it is statically in general not known which method implementation is executed at
an invocation site. Even worse for verification, several different implementations can be invoked
from an invocation site during the execution of a program. There are essentially two techniques
to handle dynamic method binding in a programming logic. If we know the whole program, we
can figure out which methods are possibly called at the site using type and subtype information.
Then, we show that the needed property at the site is guaranteed by all method implementations
possibly bound to the site. The disadvantages of this technique are that we usually cannot ac-
cess the implementation of the whole program and that we have to show behavioral subtyping
properties (cf. [LW94]) for each invocation site again.

That is why we use so-called virtual methods to capture the behavior of all subtype methods;
the properties of the virtual method m of type T are then used to verify an invocation site of
m with static type T. If T is an interface type and m is declared in T, T:m denotes the virtual
method that abstracts the common behavior of all implementations of m in subtypes of T. To
put it the other way round, all subtype methods have to satisfy the specification of T:m. If T
is a class type, T:m is again used to denote the virtual method capturing the implementation
of m in T and in all subtypes of T. By T@Qm we denote the implementation of m in T. Notice
that this implementation can be overridden in subtypes of T so that the properties of T:m are in
general more abstract than those of T@m (for details of this technique we refer to[PHM99]). The
specification of a method refers to the properties of T:m.

A Simple Proof Technique. In general, the verification of a set of types ST can be divided into
the following steps where the specification of the used types STU serve as axioms. In the first step,
the properties of virtual methods are reduced to the required properties of given implementations
and and to proof obligations for types in ST that are subtypes of types in STU (for brevity, the
latter aspect will be neglected in the following). In a second step, the method implementations are
verified w.r.t. the required properties. To capture recursion, the properties of the virtual methods
may be assumed in this step. In a third step, these assumptions have to be eliminated.

3 Automating Program Proofs for OO-Programs

In this section, we explain some of the verification steps outlined above in more detail and discuss
further aspects relevant to the verification of OO-programs. The described proof techniques serve
as examples for strategies which are needed for the proof of OO-programs. Program proofs are
constructed using the rules and axioms of the underlying Hoare logic. Rules and axioms are
provided as operations (cf. tactics in the LCF approach [GMW79]) with forward and backward
direction use. Using an operation leads to an extension at the root (forward proof) or at a leaf
(backward proof). Operations can be combined to form strategies (cf. tacticals in LCF).
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3.1 Verifying behavioral Subtyping

As we consider object-oriented programs, we are directly confronted with subtyping. This means
that specified properties of a virtual method T:m have to be shown for the methods S:m in sub-
types S of T. As an example we consider the following program fragment:

class S1 extends T { T:m()
class T { ¥ Tan
}1nt mO ...} class S2 extends T { / \
int mO) { ... } . S2:m()
S1:
} ") s2@n)

The program consists of three classes where S1 and S2 are subtypes of class T. T has a virtual
method m, therefore subtypes S1 and S2 have virtual methods S1:m resp. S2:m. T:m is imple-
mented in class T. Class S1 inherits the implementation T@m for S1:m and S2 reimplements T@m
with $2@m. Suppose now you want to show the program proof obligation - { P } T:m() { Q }2,
which arises from the program specification. The proof of the given goal can be divided into two
phases. 1) Take proof obligations for virtual methods in supertypes back to virtual methods in
subtypes. 2) Show that the implementations of virtual methods in subtypes have the properties of
the methods in supertypes. In the following we sketch the first phase, which is mainly performed
by the operations of the following rules (where 7 denotes typeof(this)):

subtype-rule: class-rule: disjunct-rule:

S<T AF{7=TAP }impl(Tm()){Q} AF{Pi}comp{Q,}
AF{r<S5AP} Sm() {Q} AF{7<TAP} T:m() {Q} AF{P3}comp{Q,y}
AF{7<SAP} Tm() {Q} AF{T7<TAP} T:m() {Q} AF{P1VPs}comp{Q; VQ,}

The following algorithm builds a proof tree for the behavioral subtyping proof in backward direc-
tion. It uses the subtype-, class-, strength-, and disjunct-rule of the underlying Hoare logic until
only program proof obligations for method implementations are left:

Input: A proof goal g
Result: The algorithm constructs a proof tree with g as root and open leafs (slots)
for the proofs of method implementations.

G« {9}
while G # { } do

select any g from G
if g matches Y F{7<TA A} T@m() {B } then
/* show specification for all subtypes of T and T */
use class-rule backward for g
G+ GU{XF{r=TAA} Tam() {B}}
G+ GU{XF{r7<TAA} Tm() {B}}
else if g matches ¥ F {7 <TA A} T:m() {B} then
/* show specification for all subtypes of T */
if T has no subtypes then
/* as the precondition evaluates to false, g can be derived from the
false-axiom + { FALSE } comp { FALSE } (not shown here) */
else
let Si<i<n be all direct subtypes of T /*thus 7 AT = \/,_, , 7X8:*/
use strength-rule backward to reduce g to XY H{ V.., ,7=XSiAA} T:m() {B}
for j=n...2do
use disjunct-rule backward on g
/* split Vi:I___j 7<S; up to Vi:I___].f1 TS, VT <8;*/
g X H{ Vi:l...jfl TXSiAA} Tm() {B}
G+ GU{XF{7T=2S;AA} Tm() {B}}
end for
G+ GU{g}

2We use the sequent notation of Hoare logic triples where an optional set of method assumptions is noted before
the turnstyle, P and Q are pre,- resp. postcondition and the middle part denotes a program part.
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end if
else if g matches ¥ F {7<XSA A} T:m() {B} then
/* show specification for subtype S (which is direct subtype of T) */
use subtype-rule backward on g
G+~ GU{XFH{r=SAA} Sm() {B}}
else if g matches _F {7=TA_} TQm() {-} then
/* implementations are left open in proof tree and not considered further. A strategy to prove
method implementations could be attached here */

end if
G «+ G\ {g} /* remove g from G */
end while

Running the algorithm with the goal - { P } T:m() { Q } as input leads to a proof tree with three
openslots: 1) F{7=TAP} TAm() {Q}2)F{7=S1AP} TA@m() {Q}and 3) F {7 =
S2AP } S2@m() { Q } which represent proof obligations for the different implementations of the
virtual method T:m. Furthermore it can be seen that 1) and 2) only differ in the type of this. If the
method implementations T@m and S2@m do not depend on the type of this it would be sufficient
to prove the triple F { 7T AP } TQm() { Q }, because 1) and 2) are directly derivable from
it. This could be done by a strategy too. The strategy coded within the algorithm shows that
properties of a virtual method can be automatically reduced to properties of implementations. The
proof construction, which is performed automatically, is guided by the structure of the subtype
relation of the underlying program.

3.2 Verification of Method Implementations

The strategy described in the preceding section leads to proof obligations for method implemen-
tations. Thus at this point it is useful to have strategy support for this task. The proof of method
implementations is ultimately based on the proof its bodys statement sequence. To automate
this one can use techniques similar to weak precondition generation with extensions for method
invocations. For all statements except method invocations, where an appropriate method spec-
ification has to be used, a proof can be constructed automatically. For all simple statements
like assignment-, field-read- and field-write-, cast-, and empty-statement exists a forward opera-
tion which instantiates the appropriate axiom and thus constructs a forward proof fragment for
that statement. For composed statements like block-, if-, sequence- and loop-statements there
exist forward proof operations which construct a proof tree for that statement from proofs for
its components. Combining these operations in an appropriate algorithm results in a strategy
which performs a weak precondition generation proof and constructs a proof tree for the given
statement sequence. As we consider object-oriented programs, the difference of this algorithm to
described techniques in the literature [Gri81] is that we have to heavily care about method invo-
cations.® If the strategy reaches an invocation statement, interaction with the user is needed. The
user obtains the information at which method invocation (e.g. of method S:n) the strategy has
stopped and which postcondition Q is generated for that invocation statement up to that point.
He now can 1) select one of the given method specifications for that method and interactively
adapt it to the local needs or 2) provide a precondition P and continue the strategy leaving the
slot F {P } Sm() { Q } open in the current proof and care later about it. The following algorithm
sketch summarizes the technique described above:

Algorithm wp

Input: A statement stmt and a postcondition Q.

Result: A proof tree for - { P } stmt { Q } with a generated precondition P
and postcondition Q

if stmt matches ; then

3Remember that it is in general not possible to generate a sufficiently weak precondition if the underlying
programming language allows recursion, dynamic binding and aliasing.
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return use inst_empty(stmt,Q) /* empty statement */
else if stmt matches return _ ; then

return use inst_field-read(stmt,Q) /* field-read statement */
else if stmt matches stmt;stmts then
gl < wp(stmts,Q), g2 < wp(stmt,precondition(gl)) /* statement-list */

return seq_forward(gl,92)
else if stmt matches if(expr) stmtl else stmt2 then
gl + wp(stmt1,Q), g2 + wp(stmt2,Q) /* if-statement */
f < (precondition(gl) A expr) V precondition(g2) A —expr)
gl < use strength forward(gl, f A expr), g2 + use strength forward(g2, f A —expr)
return if forward(gl,92)

else if stmt¢ matches - = _ ( _,...,.) then
user interaction at this point results in a proof fragment for the /* method invocation */
method invocation

else if ... then

/* similar for while-, field-write-, assign statement, cast-, and return-statement */
/* while-loops could additionally enforce interaction e.g. for loop-invariants */
end if

The above sketched algorithm shows how traditional weak precondition generation can be en-
hanced to be useful in the area of object-oriented programs. User interaction and thus the proof
for a method invocation statement can be considered as a strategy of its own. The overall al-
gorithm divides the given program part stmt recursively into program fragments and constructs
a proof with a weak precondition in forward direction while unrolling the recursion. Therefore
in this example a program proof for stmt and postcondition @ with a computed precondition is
constructed automatically guided by the program structure.

3.3 Handling Recursion

In the preceding section we did not care about the handling of recursion and assumptions. As OO-
programs make direct or indirect (e.g. via dynamic dispatch) of recursion, an important task which
can be supported by automatically working strategies is the elimination of assumptions, which are
used to unroll recursion. In the following we demonstrate an assumption elimination strategy for
method implementations to give an impression of this technique. Suppose you want to prove A;%,
1<i<n. 1 Prove Bj :=J;_; ,, Ai Fbody(4;), j =1...n. 2. Derive Cj 1= U;y s Ai F Aj
from Bj, for j = 1...n using the implementation rule. 3. Eliminate step by step all assumptions
in C1..p, for example use C1 = (J,—,_,, 4i F A1 to eliminate A; in Cs,...,Cy etc. Strategies like
this can be optimized with a preceding syntactical program analysis. One can for example reduce
the assumptions for the proof of each body(A;) if one previously computes the methods which are
called by its implementation.

implementation-rule:
A ) {P} T@m(TIH Pi;---, Tpn pn) {Q} |_
{P Athis # null A \;(vi = nit(TV;) )} BODY(TQm(Ty, p1;...,Tp, pn)) {Q}
AF{P} TQm(Tp, p1,...,Tp, Pn) {Q}

3.4 Combining Syntactic Checks and Verification

If full information about the program structure and the results of the analysis of static program
properties like variable binding, type analysis, and invocation call graph is available, it is possible
to combine that information. An example for this is to prove the property that a method does
not change the object store. A method does not change the object store, if its implementation
does not change the object store. This means especially that invoked methods do not change

4Where A; abbreviates - { P } T@m { Q },.
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the object store. A conservative approximation of this is that a method has no writing attribute
access (conservative, because an implementation could undo an object store modification). The
absence of writable attribute access is a static program property which can be computed by a
static program analysis, e.g. during a syntactical program analysis. This information can be used
to automatically compute program proofs for the invariance of the object store, because the proofs
for methods with this property are simple and can be automated. Notice that the syntactic checks
can be as complex as any static program analysis.

As object-oriented programs usually contain lots of methods with special syntactic properties
(think of the get-methods of get-set pairs), such techniques combining static analysis and tactical
theorem proving can reduce the amount of interactive proof work a lot. To exploit such benefits,
the verification environment has to be sufficiently powerful to perform static program analyses.

3.5 Proof Guidance as Strategy

The proof that a specified object-oriented program fulfills its specification is ultimately based
on the proof of several different properties, whose proofs can depend on each other. Because
manual proof work and automized proof work are mixed, there may be proof states, where several
completed and uncompleted proofs can exist simultaneously. To provide an overall proof guidance,
a main strategy can be formulated which examines the current proof state, combines existing proof
fragments, and continues the overall proofs by delegating proof obligations to substrategies. Thus
these main strategy is a strategy, which is based on the state of all current proofs.

4 System Requirements

Within this extended abstract we presented overall techniques for proving OO-programs. From
the demonstrated strategies the following properties of a tactical theorem prover can be derived:
1. Tactical program provers have to provide possibilities to formulate strategies as sketched within
the examples. 2. It must be possible to manage proof obligations and proof parts. Furthermore
it must be possible to inspect the current proof state and proofs. 3. Proof construction can be
guided by several syntactical program properties, e.g. by the program structure, by the subtype
relation, or by the call graph. Strategies and operations must have access to this information,
which is needed during the whole proof process. 4. Interaction in strategies is needed to overcome
problems of proof complexity. The described techniques are part of a research project, which
currently led to the development of an interactive proof tool (cf. Jive]MPHO00]) for a subset of
Java. Jive currently supports the above described techniques.
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1 Introduction

The lack of automated support is probably the main obstacle to the application of formal methods in the
industrial setting. As witnessed by the success of model checking techniques, formal methods are readily em-
ployed in industry as soon as automated reasoning tools providing a sufficiently high level of automation are
available. On the other hand, the only way to meet the requirements posed by many industrial applications
is to combine the expressiveness of general purpose provers with the efficiency of specialized reasoners (such
as, e.g., decision procedures and unification algorithms). Unfortunately this turns out to be a surprisingly
difficult task. The main problem is that only a tiny portion of the proof obligations arising in many practical
applications falls exactly into the domain the specialized reasoners are designed to solve.

To illustrate let us assume that a decision procedure for Presburger Arithmetic is available and consider
the problem of proving the formula:

1< min(a) A0O< k= 1< max(a)+ k (1)

where 1 and k are constants denoting arbitrary integers, a is a constant denoting an arbitrary list of integers,
max (min) is a unary function symbol denoting a function which returns the maximum (minimum, resp.)
element of the list of integers given as input, and the remaining symbols (namely 0, +, and <) have their
usual arithmetic interpretation. The key point here is that the decision procedure for Presburger Arithmetic
is only aware of the interpretation of the arithmetics symbols (i.e. 0, +, and <) and treats all the terms
whose top-most function symbol is non-arithmetic as uninterpreted.! Under such assumptions, the decision
procedure can not possibly establish the validity of (1).

Boyer & Moore recognized this difficulty when they integrated a decision procedure for the quantifier-
free fragment of Presburger Arithmetics into their prover [4]. To cope with the problem, they proposed an
extension mechanism for the decision procedure, called augmentation, as well as an elaborated integration
schema between the extended decision procedure and the rewrite engine which improved dramatically the
performance of their system both in execution time and in reduced user interaction. Augmentation aims at
making the initial decision procedure aware of properties of function symbols the procedure is otherwise not
aware of through the use of a set of available lemmas. Going back to our example, if the following lemma is
available

min(X) < max(X) (2)

then augmentation inspects the internal state of the decision procedure, instantiates (2) with the substitution
{a/X}, and finally extends the internal state of the decision procedure with the resulting instance. The new
state is easily found unsatisfiable by the decision procedure. The situation is complicated if conditional
lemmas are allowed: when trying to establish the conditions of the lemmas the prover can be recursively
invoked and special devices must be put in place to ensure termination.

In [1] we introduced an extended form of contextual rewriting, called Constraint Conteztual Rewriting or
CCR for short, which generalizes Boyer & Moore’s integration schema by providing an abstract and concise

THere and in the rest of the paper we assume that the decision procedures can handle uninterpreted function symbols. As
already noted in [8] this is a trivial extension to achieve.
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specification of the interplay between rewriting and the decision procedure. In [3] we refined CCR and proved
its termination. CCR, as well as some of its instances resulting from the incorporation of decision procedures
for Presburger Arithmetic, the theory of ground equality, and their combination have been implemented in
the theorem prover Rewrite and Decision procedure Laboratory (RDL).?

The extension mechanism used in the previous accounts of CCR already generalizes Boyer & Moore’s
augmentation in that it is independent from the theory decided by the decision procedure. In this paper
we go a step further and propose an extension mechanism which allows for the ‘on-the-fly’ generation of
lemmas. This is an important improvement since—if suitably coupled with a lemma speculation facility—it
relieves the user from the burden of providing lemmas in many situations thereby resulting in increased
automation. Furthermore, in order to show its practical usability, we illustrate how our schema can lift a
decision procedure for the quantifier-free fragment of Presburger Arithmetic to tackle non-linear problems
of significant difficulty, based on affinization techniques [6].

The plan of the paper is as follows. In Section 2 we present our extension mechanism. In Section
3 we propose an instance of the extension mechanism that enables a decision procedure for Presburger
Arithmetic to tackle non-linear problems. Finally, in Section 4 we discuss our extension schema and draw
some conclusion.

Formal Preliminaries. By X, I (possibly subscripted) we denote finite sets of function and predicate
symbols (with their arity), respectively. A signature is a pair of the form (X,II). A X-term is a term built out
of the symbols in ¥ and variables in the usual way. A (X, II)-atom is either an expression ¢(t1,...,%,) where
ge€MMandt; (i =1,...,n)is a X-term or one of the propositional constants true and false denoting truth
and falsity respectively. A (X,II)-literal is either a (X,I)-atom, p(t1,... ,t,), or a negated (X, II)-atom,
“p(t1,...,tn). A (X, II)-formula is built in the obvious way using the standard logical connectives (i.e. =, A,
V, =, and ©). A (X,II)-clause is a disjunction of literals which we indicate as a finite set of (X, IT)-literals.
We will write s # ¢, s € t, ... in place of =(s = t), =(s < t), ... (resp.). If a is an atom, then @ abbreviates
—a and =a stands for a. If @ and C are finite sets of literals, then @) abbreviates {g : ¢ € @}, A @ stands for
any conjunction of all the literals in @, @ — C stands for the formula A @ = A C, and @ — ¢ abbreviates
Q@ — {c}. Let ¢ and 9 be (X, II)-formulae, I and A sets of (X, II)-formulae. ¢ is a logical consequence of T iff
I' = ¢, where = denotes entailment in classical logic. T', A |= o abbreviates TUA = a. A (X,1I)-theory is a
set of (X, IT)-formulae closed under logical consequence. If T is a theory, then I' =7 ¢ abbreviates T, T |= ¢
and we say that ¢ is T-entailed by T'. ¢ is T-satisfiable iff there exists a model of TU{¢}, and T-unsatisfiable
otherwise. ¢ is T-valid iff ¢ is a logical consequence of T or, equivalently, iff ¢ € T'; ¢ and v are T -equivalent
iff (¢ < ) is T-valid. We consider two theories T. and Tj of signature (X.,1I.) and (X;,1I;) respectively
s.t. EC g Ej, Hc g Hj, and TC g Tj.

2 The Extension Schema

We assume that a decision procedure is an incremental and state-based procedure whose states (called
constraint stores) are finite sets of ground (X, II.)-literals represented in some internal form3 and whose
interface functionalities are cs-simp and cs-unsat. cs-simp(P,C) computes and returns the constraint
store C' resulting from the addition of a finite set P of (X;, II.)-literals to the constraint store C and is such
that P, ||C|| Ex, A|IC'|| holds.* es-unsat (C) is a boolean valued function characterizing a sub-set of the
T.-unsatisfiable states whose T,-unsatisfiability can be checked by means of a computationally inexpensive
check. More precisely, cs-unsat is s.t. cs-unsat (C) implies the T.-unsatisfiability of C. The function
cs—extend extends cs-simp in the sense that if cs-eztend(P,C) = C' then P,C |=7; A |[|C'||. In particular, the
composition of cs-extend with cs-unsat forms a proof procedure for T}, i.e. cs—unsat(cs-extend(P,C))
implies the Tj-unsatisfiability of A(P U ||C||). The key functionality in cs-eztend is genlemma(C), which
speculates formulae Tj-entailed by the constraint store C. This is so in order to cope with the situations in

2The system distribution can be accessed via the Constraint Contextual Rewriting Home Page,
http://www.mrg.dist.unige.it/ccr/. The system is based on CCR and simplifies clauses in a quantifier-free first-order logic
with equality.

3Tf C is a constraint store, then ||C|| denotes the set of literals represented by C.

4More than this is usually required but here, for the lack of space, we focus on soundness requirements only.
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which C is Tj-unsatisfiable but not T,-unsatisfiable. More precisely, genlemma(C) returns a constraint store
C" and a list of formulae lemmas of the form Q — {c1,...,cp} s.t. A||C’|| is Tj-equivalent to A ||C|| and the
formulae in lemmas are T)j-entailed by ||C|].

Our extension mechanism is given in Figure 1. Given a set of (X;, IL;)-literals P and a constraint store C,

fun cs-exztend(P: set of (X;, Il.)-literals,
C: constraint store): constraint store

begin
1: Cy := cs-simp (P, C);
2: if cs-unsat (C1)
3: then return C;
else begin

4: (C2, lemmas) := genlemma (Ci);

while ((lemmas # []1) and not cs-unsat (C3))

do begin
5: [Q— {c1, ..., cp}lrest] := select(lemmas);
6: entailed := true; {q} U Q' := Q;
7 while (Q#0 and entailed)

do begin
8: entailed := cs-unsat (cs-eztend ({q}, C2));
o: Q:=05 {g} U@ :=q;
end

10: if entailed
11: then C; := cs-simp({c1, ..., cp}, C2);
12: lemmas := rest;

end
13: return C,

end
end

Figure 1: The Extension Mechanism

we add the literals in P to C (line 1) and we check whether the resulting constraint store C; is T.-unsatisfiable
(line 2). If it is, then we return C; (line 3). Otherwise, genlemma is invoked (line 4) in the attempt to
speculate new lemmas. If no lemma is speculated, then genlemma returns the empty list (i.e. [1), the test
of the while-loop is not satisfied, and we return C; (line 13). Otherwise, genlemma returns a non-empty
list and we enter the outermost while-loop. (Notice that A [|C2|| is Te-equivalent to A ||C1|| and therefore
cs-unsat (Cy) is necessarily true.) Then, we heuristically choose a lemma from lemmas (line 5)® and we add
its conclusions to the constraint store (line 11). However, before adding the conclusions, we must relieve the
conditions of the lemma under consideration. We do this by recursively calling cs-extend on the negation
of each condition and then by checking the resulting constraint store for T.-unsatisfiability. This is done
by the innermost while-loop at line 7: we consider each literal in Q (the conditions of the lemma) and we
check whether it is entailed by the constraint store or not (line 8). If we succeed in relieving the current
hypothesis, we set the variable entailed to true and we consider the remaining hypotheses (line 9). (Notice
that entailed is just a flag variable saying whether all the hypotheses of the selected lemma have been
relieved or not, line 10). Otherwise, the current hypothesis can not be relieved and we exit the inner-most
loop. If either the hypotheses of a lemma have not been relieved or its conclusions do not enable cs-unsat
to detect the T.-unsatisfiability of the constraint store, then we consider the remaining lemmas (line 12).
Termination and soundness of our extension schema are formally stated and proved in the full version of this
paper [2].

5select takes a list L and returns a list whose head is an element E of L and the tail is L with E removed.
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3 Extending a Decision Procedure for Presburger Arithmetic

We now show that our extension mechanism allows us to extend a decision procedure for the quantifier-free
fragment of Presburger arithmetic over the rationals (7) to tackle non-linear problems in the quantifier-
free fragment of arithmetics over the integers (7). From here on, we assume that cs-simp implements an
incremental version of the Fourier-Motzkin elimination method (see, e.g., [5]). The constraint store keeps a set
of linear inequalities in some internal form and es-simp (P, C) extends C with arithmetic information stored in
the literals in P and closes the resulting constraint store w.r.t. the operation of “cross-multiplying and adding”
the inequalities in it. (As an example, consider the two inequalities 3a + b < 0 and —2a + 3¢ < 0, then
the result of “cross-multiplying and adding” them is the inequality 2b + 9¢ < 0.) If the resulting constraint
store is T.-unsatisfiable, then the process will eventually add a trivially T,.-unsatisfiable inequality such
as, e.g., 0 < —1. cs-unsat simply checks whether a trivially T.-unsatisfiable inequality is in the input
constraint store.

In the following, we describe an instance of genlemma exploiting a lemma speculation mechanism which
allows for the ‘on-the-fly’ generation of lemmas. To illustrate, let us consider the problem of cs-eztending
the constraint store C = {a < —1,b < 0, —c < 0} with the atom —a * ¢ — b x ¢ < —1. The application
of es-simp yields the constraint store ' = {a < —1,6 < 0,—c <0, —a*c—b=xc < —1}. We factor
out the two occurrences of ¢ in the left hand side of —a * ¢ — b * ¢ < —1 (obtaining (—a — b) x ¢ < —1)
and by noticing that this fact is an hyperbolic inequality, i.e. an inequality of the form sx¢ < k (where s and
t are terms and k is a numeric constant). By resorting to its geometrical interpretation it is easy to verify
that sx¢ < —1 is Tj-equivalent to (s > 1 At < —1) V(s < —1 At > 1). Since the two disjuncts represent
disjoint areas, the following four lemmas are T}-entailed by the constraint store: {s > 1} — {t < —1},
{t< -1} 5 {s>1},{s < =1} = {t > 1}, and {t > 1} = {s < —1}. After instantiating the third lemma
above with the substitution {(a 4+ b)/s,c/t}, cs-extend is recursively invoked to determine whether the
condition (a + b) < —1 is Tj-entailed by the constraint store. Since this test succeeds, then the instantiated
conclusion of the lemma, namely ¢ < —1, is added to the constraint store via the invocation of cs-simp and
this yields a T.-unsatisfiable constraint store (since the trivially unsatisfiable inequality 0 < —1 is obtained
by cross-multiplying and adding ¢ < —1 with —c < 0 € C').

In the general case, it turns out (see [6] for details) that any inequality of the form sxt < k is Tj-equivalent
to a formula of the form

(s> 1At> 1A N\ ) V(s < —1At< —1A A\ dy) (3)
j=1

i=1

where c; and d; are inequalities that are linear in s and ¢. Furthermore, notice that the conjunct s > 1
(t > 1) is mutually exclusive with s < —1 (¢ < —1, resp.). This fact allows us to “compile” (3) into the
following lemmas:

{s>1} =2 {c1,..,em} {s < =1} = {di1,...,dn} 4
515 {eron}  {t< =1} = {dy,...d0} “)

Similar reductions are possible for elliptical inequalities, i.e. inequalities of the form a xsxs+bxtxt <k,
where s and ¢ are terms and a, b, and k are constants.

The above ideas can be implemented as shown in Figure 2. choose_ineq selects, from the constraint
store, an inequality (not marked with the used tag, see below) which can be transformed into a special
form (e.g. for hyperbolic inequalities, it checks whether a factor occurs in all the multiplicands, except for
a constant term). If no such inequality exists in the constraint store, the special element fail is returned.
factorize takes as input an inequality and returns a data structure representing the factorization of the
input inequality (e.g. for hyperbolic inequalities, a 4-tuple consisting of two factors, a constant term, and
the predicate symbol is returned). affinize transforms the factorization of a non-linear inequality into a
boolean combination of linear inequalities (such as, e.g., (3)). compile returns a list of facts of the form
{c} = {c1,...,cn} (such as, e.g., formula (4)). mark_ineq_-in_cs leaves the constraint store untouched if ineq
has the special value fail (and genlemma returns the empty list as the second element of the pair), otherwise
it returns a new constraint store where ineq is marked with the used tag in order to avoid reconsidering the
same inequality.

56



fun genlemma (C: constraint store)
begin
ineq := choose_ineq (C);
cl-list := compile (affinize(factorize(ineq)));
C' := mark ineq in_cs (ineq, C);
return (C', cl-list)
end

Figure 2: The Implementation of genlemma for Lemma Speculation

4 Discussion

We have presented an extension mechanism which enables decision procedures to tackle problems falling
outside the scope they have been originally designed for, thereby considerably enhancing their usefulness in
practical applications. As shown in the extended version of this paper [2], the mechanism is both sound
and terminating. We have presented an instance of the mechanism that enables a decision procedure
for the quantifier-free fragment of Presburger Arithmetic to tackle non-linear problems of significant dif-
ficulty. We have coded three versions of our extension schema, i.e. augmentation, lemma speculation, and
a combination of the two within RDL. Computer experiments carried out using our prototype implemen-
tation confirm the validity of the proposed approach. For example, our system is able to decide formula
ms(c) + ms(a)? + ms(b)? < ms(c) + ms(b)2 + 2 x ms(a)? * ms(b) + ms(a)? (where ms is an inter-
preted function symbol, s.t. 0 < ms(E) holds for any E), by using a combination of augmentation and
lemma speculation on top of a decision procedure for Presburger Arithmetic. Notice how such a formula
falls well outside the theory of Presburger Arithmetic (more experimental results are reported in [2]). Fi-
nally, we have also implemented a version of our extension schema that lifts a decision procedure for the
theory of ground equality (already available in RDL) to a procedure for the quantifier-free theory of LISP
list structure, based on the ideas stated in [7]. An interesting direction of research is to devise suitable
requirements on genlemma s.t. cs—exztend is a decision procedure for T;. This would allow us to obtain the
completeness result of [7] for the theory of LISP list structure as a special case of our extension schema.
This is part of our ongoing work.
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1 Introduction

Since many years, axiomatic relational algebra (cf. [8]) has been used very successfully for formal problem
specification and program derivation. Relations are well suited for modeling and reasoning about many
discrete structures and computations on them. This holds in particular for those graph algorithms which
manipulate sets of arcs resp. vertices since sets of arcs and relations are essentially the same and there are
many simple and elegant ways to model sets of vertices by specific relations like vectors, partial identities,
and injective embedding mappings. For details see [8]. Here one finds also examples for relation-algebraic
derivations of graph algorithms; further derivations can be found, e.g., in [4,7, 5].

Sets are not the only datatype used by graph algorithms. Also sequences are very important since
many descriptions and algorithmic solutions of fundamental graph problems require different types of
them. E.g., to calculate a path means to compute a sequence of vertices and to enumerate the strongly
connected components means to compute a sequence of sets of vertices. We claim that in many cases
relations can also be used for modeling sequences in a way which is well suited for calculations and formal
program derivations. To prove our point we present in this paper a simple relation-algebraic model for
sequences via binary direct sums which especially works for the relational manipulation and prototyping
system RELVIEW (cf. [3,1]) and show a typical application.

2 Relation-algebraic Preliminaries

In this section we collect some basic concepts of relational algebra; for more details see [8] for example.
We denote the set (or type) of all (binary) relations with domain X and range Y by [X < Y] and write
R:X ¢ Y instead of R € [X < Y. If the sets X and Y are finite and of cardinality m resp. n, then we
may consider R as a Boolean matrix with m rows and n columns. Since this Boolean matrix interpretation
is well suited for many purposes and also used within the RELVIEW system, in the following we often
use matrix terminology and matrix notation. The latter means that we write R, instead of (z,y) € R.

We assume the reader to be familiar with the basic operations on relations, viz. R (transposition),
R (negation), RUS (join), RN .S (meet), RS (composition), R C S (inclusion), and the special relations
O (empty relation), L (universal relation), and | (identity relation). The theoretical framework for all the
well-known algebraic properties of relations is that of a relational algebra. As constants and operations
of this abstract algebraic structure we have those of the set-theoretic relations; its axioms are those of a
complete Boolean lattice for negation, join, meet, ordering, empty and universal relation, the axioms of
a monoid for composition and identity relation, the so-called Schrider equivalences

QRCS < Q'SCR < SR'CQ, (1)

and the so-called Tarski rule
R#0 <= LRL=L. (2)

An immediate consequence of (2) is O # L which in turn implies that domain and range of each relation
are non-empty. This agrees exactly with the use of relations in practice.

A relation R is said to be reflezive if | C R, transitive if RR C R, and symmetric if R C RT. By an
equivalence relation we mean a reflexive, transitive, and symmetric relation. For such a relation domain
and range coincide, i.e., it is homogeneous, and thus the product RR is defined. In the Boolean matrix
model of relations a homogeneous relation is quadratic. An arbitrary (also called heterogeneous) relation
R is said to be univalent if RTR C | and total if RL = L. As usual, an univalent and total relation is
said to be a (total) mapping. A relation R is called injective if R is univalent and surjective if RT is
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total. An injective and surjective relation is said to be bijective. Another class of heterogeneous relations
are vectors, which are defined by v = vL and can be used to describe subsets of a given set. If [X + Y]
is the type of v, then v = vL means that whatever set Z, universal relation L : Y < Z, and element x
from X we choose either (vL),, holds for all elements z of Z or for none element z of Z. Consequently,
for a vector the range is irrelevant. In the following we only consider vectors v : X <» 1 with a specific
singleton set 1 = { L} as range and omit the second subscript, i.e., write v, instead of v, . Then v can
be considered as a Boolean column vector and describes the subset {z € X : vy} of X. A vector is said
to be a point if it is injective and surjective. For v : X < 1 these properties mean that it describes a
singleton set, i.e., an element of X if we identify a singleton set with its only element. In the Boolean
matrix model a point is a Boolean column vector in which exactly one component is true.

The operators on relations we will present now, are introduced in terms of the basic operations and
in most cases only partially defined. Let R be a homogeneous relation. The least reflexive and transitive
relation containing R is its reflezive-transitive closure R* = | J,5, R®. Since we only deal with set-theoretic
relations, the so-called point axiom of [8] holds. It says that for R # O there exist points p, g with pg" C R.
As a consequence, for each vector v # O there exists a point p fulfilling p C v. The choice of such a point is
fundamental for relational programming since it corresponds to the choice of an element from a non-empty
set. For a non-empty vector v an axiomatization of the choice point(v) is given by

point(v) C v point(v) is a point . (3)

The symmetric quotient syq(R, S) of relations R and S is defined by

syq(R.S)=R'SNE'S. (4)

The right-hand side of (4) shows that syq(R, S) is only defined if R and S have the same domain. Then
the domain of syq(R, S) is the range of R and the range of syq(R, S) is the range of S. Many properties
of the symmetric quotient can be found in [8]. In the following lemma we collect some further properties.

Lemma 2.1. Let relations R, S, p, and v be given. Then we have:
(i) If pis a point and p"p = |, then syq(Rp, Rp) = I.
If p is a point, then syq(R, S)p = syq(R, Sp).
If v is a vector, then syq(R,v) is a vector.
If R is an equivalence relation, then syq(S, R)R = syq(S, R).
If v is a non-empty vector and RL C 7, then syq(R,v) = O.

Symmetric quotients are closely related to powersets. If we translate (4) in predicate logic notation using
the set-theoretic definitions of the basic operations, then the result is

sYQ(R,S)zy <= V2: R,y ¢ Sy . (5)

Now we consider this equivalence for the special case of R being a membership relation € : X « 2% and
S being a vector v : X ¢ 1. Then syq(€,v) is of type [2¥X « 1] and for each set YV from 2% we have
syq(€,v)y if and only if Vz : 2 € Y 4 v, holds. The latter shows that syq(€,v) describes exactly the
same set than v but as an element of 2% instead of a subset of X as v does.

3 A Simple Relation-algebraic Model for Sequences

Our modeling of sequences within RELVIEW is based upon a relation-algebraic characterization of binary
direct sums. Within the relational framework it is natural to do the latter by means of the natural
injective embedding mappings. This leads to the following relation-algebraic specification: A pair 2; and
12 of relations is called a binary direct sum if

T

21 = | ZQZQT =1 ZlTll U ZQTZQ =1 1122T =0. (6)

Given sets X7 and X3 it is easy to verify that the injective embedding mappings from these sets to the
set-theoretic direct sum X;+X5 are a model of (6). Furthermore, by purely relation-algebraic reasoning
it can be shown that the binary direct sum is uniquely characterized up to isomorphism by (6).
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Based upon a binary direct sum X7 4+ X2 with the injective embedding mappings 21 : X; < X1+X»
and 725 : X2 ¢ X1+ X5, now we define for relations R : X1 <+ Y and S : Xy + Y their relational sum
R+S:X1+X2 &Y by

R+S=4"TRU'S. (7

This construction behaves like the relation R for all elements from X7+ X5 which come from X; and like
the relation S for all elements from X7+ X5 which come from Xs.

Having defined the relational sum, now we are in a position to model non-empty (and finite) sequences
of sets and elements in a very simple way. In Section 2 we have already shown how a subset (resp. an
element) of a set X can be modeled by a vector (resp. a point) v : X <> 1. Therefore, it suffices to model
sequences v = (v;)1<i<n Of vectors of type [X <> 1] with relation-algebraic means. As we are interested
in algorithms, especially executable with the RELVIEW system, in the following we restrict us to relations
R : X & Y with finite and enumerated carrier sets X and Y. Hence, we are allowed to consider R as
a Boolean m X n matrix with m being the cardinality of X and n those of Y. In this Boolean matrix
interpretation, which is also the standard way of RELVIEW to depict a relation on its screen, R models
the sequence v = (v;)1<i<n Of vectors, where v; : X <+ 1 corresponds to its ith column (1 < i < n).
Guided by this model, we define

R@S=(R"+8M". (8)

However, it must be pointed out that this concatenation of relations models the usual concatenation of
sequences only within RELVIEW because of the specific definition of the relational sum operation of the
system which forms the Boolean matrix of R+ S by putting the Boolean matrices of R and S one upon
another. Independent of the system, for a correct modeling of sequences via relation-algebraic binary
direct sums we have to demand that the direct sum X+Y of two disjoint and finite sets X and Y the
elements of which are enumerated as 1, ..., %, resp. y1,-..,Y, is enumerated as T1,...,Tm,Y1,---,Yn-

The following lemma states some facts of the concatenation operation of (8) which are used in the
next section.

Lemma 3.1. Let relations R, S, and T be given. Then we have:

(i) Ifsyq(R,R) =1, syq(S,S) =1, and syq(R,S) = O, then syq(RQS,RQS) = 1.
(11) Syq(RaS@T) = Syq(R: S) @ syq(R, T)
(i) (R@S)L= RLUSL.

This lemma does not fall out of the blue but relation-algebraically formalizes rather clear properties of
sequences. We demonstrate this by means of (i): Using matrix terminology, from (5) one immediately
obtains that syq(R, R) = | holds if and only if the columns of R are pair-wise distinct and syq(R,.S) = O
holds if and only if R and S have no column in common. Changing to sequence terminology, hence Lemma
3.1. says: If the elements of a sequence v as well as of a sequence w are pair-wise distinct and v and w
have no element in common, then also the elements of their concatenation are pair-wise distinct.

4 An Application: Computing Equivalence Classes

We assume R : X <> X to be an equivalence relation on a finite set X. Qur goal is to combine relational
algebra and the Dijkstra-Gries program development method (see [6]) to derive formally a RELVIEW
program which enumerates the set C of all equivalence classes of R column-wise as a relation C : X + C.
First we have to specify the problem by relation-algebraic pre- and postconditions. As we assume the
relation R to be the input of the program we want to derive, the precondition pre(R) is obvious:

pre(R) 2 ICRARRCRAR=R".

The relation C is the program’s output. Using matrix terminology, therefore we have to specify that its
columns are pair-wise distinct and describe all equivalence classes of R. In Section 3 we have already shown
how to formalize the first of these properties with relation-algebraic means. This leads to syq(C,C) = |
as first part of the postcondition post(R, C). To formalize also the second of the above properties within
relational algebra, we modify the relation-algebraic specification of the strongly connected components
given in [2] and get, with € : X < 2% as membership relation, syq(€, R)L : 2% < 1 as vector for describing
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the equivalence classes of R as elements of 2%. This leads to syq(€, R)L = syq(€, C)L as second part of
post(R, C). In words it says that each column of C describes an equivalence class of R and, conversely,
each equivalence class of R is described by a column of C. Altogether, we have the postcondition

post(R,C) £ syq(C,C) =1 A sya(€, R)L = syq(€, C)L.

Our next goal is to calculate a loop invariant and a guard from post(R, C). Here we follow the most
common approach of generalizing a postcondition by introducing new variables. In the present case it
seems to be a good idea to compute the equivalence classes of R, i.e., the sequence of vectors modeled
by C, one after the other and to use a vector for describing the elements yet to be checked. If we use
v: X 1 for the latter purpose, then we arrive at

inv(R,C,v) 2 syq(C,C) =1 A syq(€,R)T =syq(€,C)L A RvnCL=0

as loop invariant inv(R,C,v). In words its second equation says that the columns of C describe the
equivalence classes of the already checked elements (which again are described by v ) and its third equation
says that no element of an equivalence class which is still to be computed occurs in an equivalence class
which has already been computed.

It is obvious that inv(R,C,v) implies post(R,C) when v is empty. This leads to v # O as guard of
the loop. Hence, it remains to develop an initialization of C' and v which establishes inv(R,C,v) and a
body of the loop which maintains inv(R,C,v) and ensures termination.

Let’s start with the initialization. Here it seems to be a good idea to choose arbitrarily an equivalence
class, i.e., to initialize C' with the vector Rpoint(L), where L : X «+» 1. Consequently, we have to initialize
v with C, i.e., with Rpoint(L). This initialization establishes the loop invariant. In the subsequent proof
of this fact we abbreviate the choice point(L) as p. The first equation syq(Rp, Rp) = | of inv(R, Rp, Rp)
is an immediate consequence of Lemma 2.1.i since p is a point due to (3) and from its type [X ¢ 1] we
get p'p = |. A proof of the second equation of inv(R, Rp, Rp) is

syq(€, R) Rp = syq(€, R)Rp = syq(€, R)p = syq(€, Rp) = syq(€, Rp)L,

where we successively have applied lattice theory, Lemma 2.1.iv in combination with the precondition,
Lemma 2.1.ii, and Lemma 2.1.iii. For a proof of its third equation we use that it is equivalent to RRp C
Rp and prove this inclusion. Symmetry and transitivity of R show RTR C R which in turn implies
R"Rp C Rp. Now, we apply (1) and are done.

To complete the derivation, we have to work out a loop body and to verify that it maintains inv(R, C,v)
and ensures termination. Since C finally shall enumerate the equivalence classes of R and v describes
those elements of X during the computation of C' the classes of which still have to be added to C, it
seems to be promising to explore the effect of the assignments C' := C' @ Rpoint(v) and v := vN Rpoint(v)
which add a new class to C' and change v accordingly. In RELVIEW syntax, hence the final program is

classes(R)

DECL conc(R,S) = (R~ + S™)~;
C, v

BEG C = R#*point(Lni(R)); v = -C;
WHILE -empty(v) DO

C = conc(C,R*point(v)); v =v & -(R*point(v)) OD

RETURN C

END.

To prove that its loop body maintains the loop invariant, we assume v # O and inv(R, C,v). Further-
more, we abbreviate point(v) as p. To prove the first equation of inv(R,C @ Rp,vN Rp) we apply Lemma,
3.1.i and must only verify its three premises. Equation syq(C,C) = | is part of the supposed invariant
inv(R, C,v). A proof of syq(Rp, Rp) = | follows from Lemma, 2.1.i since p is again a point with p"p = |.
Finally, to prove syq(C, Rp) = O we use RvNCL = O since this part of inv(R, C,v) in combination with

p C v shows CL C Rp which in turn implies the desired result due to the vector property of Rp, the
inequation O # Rp (which follows from surjectivity of p and reflexivity of R), and Lemma 2.1.v. Here is
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the proof of the second equation of inv(R,C @ Rp,v N Rp):

syq(€,R)v N Rp = syq(€,R)v Usyq(€, R)Rp

= syq(€, R) v Usyq(€, R)pL pre(R), Lemma 2.1.iv, p =pL

= syq(€, R) v Usyq(€, Rp)L p point, Lemma 2.1.ii

= syq(€,C)L Usyq(€, Rp)L inv(R,C,v)

= syq(€,C @ Rp)L Lemma 3.1.iii, Lemma 3.1.ii.

Finally, a proof of the third equation of inv(R,C @ Rp,vN Rp) is given by
R(vnN Rp)N(C@Rp)L = R(vnN Rp) N (CLU RpL) Lemma 3.1.iii

C RvNRRp N (CLU Rp) p=pL
= RRp N ((RvNCL) U (Rv N Rp))
=RRpNRp inv(R,C,v), pCuw
=0 R"Rp C Rp, (1).

Since X is finite and Rp # O, the above program obviously terminates if RpNv # O. We prove this
inequation by contradiction: Assume Rp C T. Then we get RTv C P due to (1). Now pre(R) implies
vC Rv=R"wC p,ie., pC T, and combining this with p C v yields the contradiction p = O.

5 Conclusion

We have presented a relation-algebraic model of sequences. It contrasts with all existing work in this
domain since it is specifically tailored to the relational manipulation and prototyping system RELVIEW
without touching the system’s present state. Afterwards, we have combined relational algebra with the
Dijkstra-Gries program development method to derive formally a RELVIEW program for the column-wise
enumeration of equivalence classes.

Experiments have shown that, using higher-order constructs like the membership relation € : X « 2%,
our approach often allows to specify a problem involving sequences as an executable RELVIEW-function
which then may be used for protyping. See [2,4,3] for many examples. We have found it also very
attractive to use such functions for producing good examples in teaching.

Strictly speaking, we only have presented a RELVIEW-model of non-empty sequences with a concate-
nation operation. But it is easy to refine it to a model of stacks with the additional well-known operations
first and rest using the relation-algebraic operators inj for the injective mapping generated by a vector
and init for the initial element of a carrier set. Due to lack of space we have to renounce details. We
have applied this refinement to solve many further problems involving sequences with RELVIEW, e.g.,
graph-theoretic ones (strongly connected resp. biconnected components, vertex bases, Eulerian cycles),
Petri-net problems (reachable resp. live markings of CE-nets), and problems on ordered sets (cut resp.
ideal completion). To give an impression for running times, for the well-known five dining philosophers
CE-net computing all reachable markings takes one second on a Sun Ultra V workstation.
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Abstract. The RT-Tester tool has been developed by Verified Systems In-
ternational in cooperation with the TZI at Bremen University in order to
support automated testing for reactive real-time systems. In this article, we
give an overview on theoretical issues concerning variants of timed transition
systems and their interpretation in hard real-time which have been stimu-
lated by the practical requirements of automated test generation, execution
and on-the-fly evaluation. We sketch future developments with the objective
to include testing of hybrid systems into our theoretical framework and in
the tool architecture of RT-Tester.

1 Introduction

1.1 Motivation: Formal Methods and Testing

This article discusses issues about automated testing of reactive real-time systems.
The authors consider formal verification and testing as complementary activities
that are both part of the quality assurance process. Ideally, the product-related
quality assurance tasks would be split between formal verification and testing as
follows:

— Logical correctness properties of requirements specifications, design specifica-
tions and code should be formally verified.

— The proper integration of software, firmware and hardware should be tested.

— The reliable operation of controllers should be tested by built-in test equipment
which monitors operations and performs on-the-fly checks of compliance with
the specified behaviour.

— Completeness properties of requirements specifications which cannot be deduced
from other reference specifications should be validated by a combination of
formal verification and simulation, that is, testing on symbolic specification
level.

For today’s reactive real-time systems — at least when they perform safety-
critical or mission-critical control tasks — a high degree of automation is required.
Otherwise it would be infeasible to achieve the necessary degree of test coverage and
to perform regression testing on new product revisions within acceptable time/cost
margins. As a consequence, testing has to be based on formal specifications which
can be interpreted by computers in an automatic way. To substantiate the claim that
the test process is trustworthy in the sense that it uncovers deviations of the product
behaviour from its specification, testing has to be related to formal verification. As
a consequence, automated testing has close links to formal methods: It is regarded
by the authors as a variant of model checking, where the implementation model is
not completely known.
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1.2 Overview

In this article, we will introduce the RT-Tester test automation tool (Section 2). In
section 3, three important theoretical problems related to automated test generation
and test evaluation will be presented.

2 The RT-Tester Tool

The RT-Tester tool is a generic system for automated hardware-in-the-loop tests
and software integration tests which can be instantiated for different types of hard-
ware interfaces and operating systems. It performs automatic test generation, test
execution and test evaluation by compiling formal test specifications and interpret-
ing them in real-time. The functional components of RT-Tester can be structured
as shown in Figure 1; the System Under Test (SUT) denotes the object to be tested.

Fig. 1. Functional structure of RT-Tester.

The core component of RT-Tester is the Real-Time Test Sub-System. It is re-
sponsible for on-the-fly test generation, execution of tests in real time and on-the-fly
test evaluation (Figure 2). The RT-Tester test engine generates test executions from
various types of specifications, drives the execution in real-time, monitors the target
system response and accommodates the test execution according to SUT response
and test coverage strategy. Deviations of SUT behaviour from the specification can
be either detected on-the-fly or by a posteriori analysis of the test execution logs
maintained by the test engine. The test specifications describe inputs to be exer-
cised on the SUT and expected SUT response in an abstract way without having
to refer to concrete data. These specifications are interpreted by processes in the
abstract machine layer (AML) in real-time, thereby creating timed sequences of
abstract input events and monitoring abstract output events.

To facilitate interfacing to special purpose hardware, the RT-Tester configu-
ration typically makes use of interface modules (IFM) acting as adapting devices
between the test engine and the SUT. Interface modules receive data from the test
engine on a standard interface and pass it to the associated special-purpose hard-
ware interfaces used by the SUT. Conversely, interface modules collect outputs from
the SUT interfaces and pass them on to the test engine. The task of the commu-
nication control layer (CCL) is to relay events between abstract machines and/or
interface modules. Together with the AML, the CCL resides in the test engine. The
mapping from abstract events to concrete data that may be passed to the SUT
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interface as well as the abstraction of raw SUT output data to abstract events that
may be consumed by the abstract machines is performed in the IFM and/or CCL
using specialised processes in combination with a general purpose RT-Tester event
mapping library.

| REAL-TIME TEST SUB-SYSTEM

! abstract machine AME
J AM-1 AM-2 interpreting AM-n
'

specifications
! [ ]

|
! event map;_)ing
/ CCL-1 CCL-2 via rttemlib
'

/ ’—‘ B communication via rttiflib

] [ra]  [lh
) )

I I event i

‘event-mapping
v v _--t--~"""Viarttemlib .
P or cutomised event mapping

To / From SUT

CCL

IFM

e
[FesRAcT wacH

[COMMONGATION CoNTROL LAVER

INTERFACE MODULE LAVER

Fig. 2. Generic RT-Tester configuration for hardware-in-the-loop tests.

In addition to the real-time test sub-system, the other RT-Tester components
shown in Figure 1 support test management (test activation, monitoring, documen-
tation and configuration management), test visualisation (on-the-fly animation of
timed input/output traces with different graphical views), and test specification in
different formalisms. Specifications are compiled into a combination of binary transi-
tion graph structures and executable code. The compiled specifications are executed
by real-time interpreters which generate inputs to the SUT and perform on-the-fly
checks of SUT responses by means of transition graph interpretation in combi-
nation with execution of pre-compiled code. At present, Timed CSP (TCSP) [9],
Moby Timed Automata [2], and simple variants of hybrid extensions of TCSP [1]
are supported.

Since 1994, RT-Tester has been used for embedded systems testing in the field
of space application, avionics, railway control systems and telecommunications. A
detailed tool description can be found in [10]. The theoretical foundations related to
untimed testing have been published in [4-6], the results related to real-time testing
are currently prepared for publication by the authors of this article.

3 Test Automation: Three Fundamental Problems

3.1 Structural Decomposition of TCSP Specifications

In order to use TCSP specifications for automated testing it is necessary to have
a means of executing them in real-time. The execution is indispensable for the
generation of inputs to the SUT in response to preceding SUT outputs, as well as
for the on-the-fly evaluation of SUT outputs.

Timed execution of programs is generally based on the employment of timers,
which can be simply realized in an operating system by using counters and a real-
time clock. Therefore, the main idea for the execution of TCSP is the decomposition
of arbitrary TCSP specifications into a number of simple and independent timer
processes, which can be directly realised by operating system timers, and a CSP
part referencing the untimed operators only, while synchronising with the timers
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by means of auxiliary events. Theorem 1 describes the decomposition properties,
where £; denotes the subset of TCSP which is able to represent networks of se-
quential timed processes, i. e. a language which sets up a hierarchy of high-level
(concurrency-) and low-level (sequential-) operators.

Theorem 1. There ezists a transformation (2 : L1 — TCSP mapping each process
P defined in syntaz L, to a process 2(P) = (2u(P) |l ).QT(P))\.QE(P) such
25 (P

that

1. 2(P) is semantically equivalent to P in the timed failures semantics of TCSP.
2. 2y (P) refers to untimed CSP operators only.
3. 2g(P) is a set of auziliary timer events set.s, ela.s where the indices s denote
unique timer identifiers of independent interleaved timer processes in 27 (P).
4. Each subprocess Timers of 27(P) is defined according to the pattern
Timer = u T o (set?t — ((WAIT t; ela — T) O T)). Then, a concrete timer
for index s is a renaming: Timers = Timer [[set < set.s, ela + ela.s]] O

For processes with single timeouts the conversion is quite straightforward, e. g.
the untimed part of a process

P = (a—STOP) 1> (b— SKIP)
corresponds to

Ny (P) = set.1lt - (a —STOP)
O
(ela.1 — b — SKIP)

The transformation becomes much more complicated for nested timeouts, com-
binations of timeouts and choices and for time-recursive processes. A simple example
of the latter is the process

P=Q (R 3P

where it is possible that no event occurs for an unconstrained period of time, but the
behaviour of the process switches constantly between () and R. By finding the right
combinations of active timeouts and generating new process references for these,
the decomposition transformation is guaranteed to terminate in such cases.

In order to cope with arbitrary choice and timeout combinations, the transforma-
tion {2¢; uses a Head Normal Form for sequential TCSP processes. The occurrences
of the currently relevant Internal Choices (M), External Choices (O) and Time-
outs () in the Parse Tree for every sequential TCSP process can be rearranged in
the mentioned order. This makes it possible to transform occurrences of Internal
Choices correctly, whereas naive realisations lead to semantically wrong solutions.
The combination of External Choices and Timeouts introduces a context depend-
ability which is solved by always collecting all relevant subprocesses and merging
their Head Normal Forms.

The synchronisation mechanisms and timer process implementations for apply-
ing decomposed TCSP specifications for real-time testing are already integrated in
the RT-Tester tool.

3.2 Normalised Timed Transition Graph Encodings

In order to provide executability of TCSP specifications in hard real-time, they are
pre-compiled by RT-Tester into transition graph representations. The pre-compilation
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process induces the problem of state space explosions, in some cases even for seem-
ingly simple and practically relevant specifications. Just as in model checking, this
problem may be tackled using a combined location/variable representation of the
specification, where the full state space is partitioned into locations represented as
nodes in a graph and a variable space providing additional state information. In
a location/variable representation, additional guards must be introduced for tran-
sitions: The decision whether a transition may be taken not only depends on the
present location, but on the present valuation of the variables as well. Furthermore,
transition labels must be augmented by variable assignments.

In the “classical” generation of transition graphs from CSP specifications, as
defined in [8, 7], each transition leading from any state is labelled with exactly one
event. The size of the transition graph representing the process P = a?z — P
therefore depends on the definition of the channel a. The channel can communicate
an arbitrary finite number of values, and the resulting transition graph has the same
number of edges leaving one node as shown on the left hand side of Figure 3. A
location/variable representation of this process is much closer to the original CSP
specification, where there is just one edge leaving the node. The edge contains the
label of the event and an assignment of the possible values to the local variable z.

Fig. 3. Different types of transition graphs.

The location/variable representation is more compact than the conventional
graphs, since the size of the graph no longer depends on the number of events in the
alphabet. More complex examples may be given, where the classical representation
would lead to an infeasible number of graph nodes, while the location/variable
representation can still be handled.

The first step of the algorithm developed in order to produce location/variable
transition graphs is based on the operational semantics of CSP. There are a number
of rules defined for each CSP operator to produce an unnormalised graph with
events, conditions and assignments attached to the edges of the graph. The next
step is a normalization process, where the 7 events are eliminated and the graph is
determinised:

— Merge all nodes, which can be reached from a given node using only 7 transi-
tions, into a new state.

— Add the assignments of the used edges to the the new state.

— Combine all conflicting assignments.

— Each non-7 transition of any of the merged nodes is added to the new state.

— Transitions labeled with events of the same name are combined. The after-state
of these edges are determined by guarding conditions connected to the edges.

The resulting transition graphs are much smaller than normal CSP graphs, but
introduce one serious complication: The expressions of the assignments have to
be evaluated on the traversal of the graph structure during the test execution.
Therefore it can be useful to combine the conventional graph generation algorithms
with the specified algorithm. This is possible, since the condition-event-assignment
representation is an augmentation of the conventional event notation for edges.
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3.3 Semantic Framework: Henzinger’s Hybrid Automata
From a practical point of view, it is a natural requirement that

— different test specification formalisms should be applicable in parallel and con-
tribute to the same test case,

— both time-discrete and time-continuous SUT interfaces should be stimulated
and monitored by the test system.

RT-Tester provides solutions for both requirements: In one test case execution,
different Abstract Machines may process compiled test specifications written in
Timed CSP, Moby Timed Automata and hybrid extensions thereof. They commu-
nicate using standardised abstract channel interfaces for discrete data and shared
memory areas dedicated to time-continuous float-values which may be communi-
cated to/from the SUT using D/A and A/D converters, respectively.

It should be noted, however, that this heuristic requires to verify that the combi-
nation of formalisms used for test specification and test execution is really consistent
with the SUT requirements defined in possibly yet another specification formalism.
To this end, our present approach is to embed all formalisms which may be used
in the RT-Tester tool into Henzinger’s Hybrid Automata [3] which have sufficient
expressive power to allow for such an encoding. As a consequence, the combined
use of different formalisms may be regarded as a more convenient notation, where
it would be tedious to express every test specification item as a Hybrid Automaton.

4 Conclusion

In this article, we have introduced the RT-Tester tool and listed important theo-
retical problems which have to be solved in order to provide practical and imple-
mentable solutions for the task of automated reactive systems testing. In the full
version of this article, the authors will give more detailed presentations of these
research problems and sketch several other questions which arose from practical
considerations but led to new theoretical investigations.
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1. Introduction

The specific domain of smart cards is close to the domain of embedded devices [VV99]. The applications
require to be strongly validated before being deployed on thousands or millions of eventually personalized
copies. The Open Card platforms have introduced the possibility to change and/or to update applications
embedded during the full life cycle. This possibility of loading and executing new applications during the card
life has raised new problems for embedded application validation, as developers and testers do not have
necessary cards when they develop new applications. However, the quality and security requirements are still the
same as for traditional smart cards. Developers and testers need to use methods and techniques that are
compliant with a high security level and that fulfil industrial software development constraints such as time to
market.

In this article, we propose a solution for Java Card application validation. We take benefits of object oriented
software engineering, and we adapt them to the Java Card world. In order to perform this, we take into account
the fact that the only permanent elements of the card are the Java Card Virtual Machine (JCVM) and the
Operating System (0S), and that most of security requirements are based on it. In order to optimize the
application validation process, we integrate the JCVM and OS validity as test hypotheses. Our main goal is then
to verify the application conformity to the specification, and to verify the applet integration with other loaded
applets within the card.

This article is structured in the following manner. Section two presents our process of Java Card application
validation. Section three describes an experimentation of our process on a case study. Finally, section four is
devoted to the conclusions and actual works.

2. Java applet validation

To perform applet validation, we use a conformance testing approach [Tre99] and proceed in four steps. We
first detail the specification of the applet. Then, we express some test purposes and automatically derive abstract
test cases from the specification and the test purposes. Finaly, the abstract test cases are transformed into
executable test cases.

2.1. Validation framework

Testing is an operational way to check the correctness of a system implementation by means of experimenting
it. It increases confidence in the quality of a system, especially when proof is not possible or too expensive.

In our solution, we use a conformance testing approach, which a black-box testing approach. The key points
are that there is a specification and a system implementation exhibiting behaviors. The specification is a
prescription of what the system should do. These specification suppose to be detailed enough, that is to say it
should describe al the expected behaviors. Moreover, it is supposed to be correct. The goal of conformance
testing is to check whether the implemented system satisfies this specification.

For the present work, we express the specification with a UML model [UML99]. The specification is
automatically trandlated into a Labeled Transition System (LTS) thanks to the UMLAUT tool [JLP98]. Then we
use TGV[FJJ96] to automatically produce test cases from this LTS and from test purposes produced by hand.
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2.2. An approach for modeling

There exists more than one process to develop UML models such as in [BJR99]. However, in most of them,
the test workflow is based on human responsibility concerning test goal elicitation. Our goal is to help human
tester to avoid the risk to forget test purposes or to define redundant test cases, by applying systematic or
automatic test generation process based on application models.

UML provides different diagrams and notations to describe different point of view of one application. A
recurrent question is to identify which diagrams should be used. Validation process provides one answer to this
question, using the test generation process to drive the UML specification step. From the testing point of view,
we consider that objects are entities that encapsulate data, states and operations. We use class diagrams to
specify data and operations, statechart diagrams to represent states and their evolutions, and constraints on state
transitions to represent data abstraction evolutions.

2.3. Test purposes

A precise definition of atest purpose can be founded in [FJJ96]. Informally, atest purpose can be defined as a
set of behaviors that should be observable on the implementation. Considering smart card validation, the number
of test purposes can be very large compared to the application size, depending on the abstraction level of the
model. In case of Java Card application, an important part of security features is provided by the Java Card
platform. As we suppose the platform validity, some tests purposes dedicated to specific smart card constraints
can be removed.

One test strategy for conformance testing of Java Card applications consists in testing each function for every
normal use and every possible misuse. Test purposes can be generated starting from common UML practice;
every use case and every associated sequence diagrams will lead to test purposes. Then, every previously
generated test purpose is analyzed in order to identify possible pertinent misuses, which become new test
purposes associated with expected error codes. For the resulting test cases, these misuses include wrong
parameters in operation call, unexpected execution context, wrong order in the operation call...

It is important to remark that as UML models are an abstraction of the application, test purposes integrate de
facto hypotheses made to build this abstraction [Mar99].

3. Case study

3.1. Description

The case study considered consists in a purse applet. This applet has been developed in the PACAP project,
partially funded by MENRT 98B0251. It provides most common functions such as debit, credit, and balance. It
also provides administrative functions in order to manage usability constraints. Initsfull version, it contains nine
operations intended to the cardholder and forty operations intended to the applet manager. However, for the
purpose of this article, we provide only the model of the purse credit function.

3.2. UML mode

In order to credit the purse, the user has to perform two actions: an initialization (appl nitCredit, see figure 1),
which aims at configuring a secure communication, and an "acknowledgement" (appCredit operation). For
security reasons, the applnitCredit operation succeeds only if the user is authenticated. The key, computed for
the secure messaging, has a limited lifetime. It is invalidated by the application if another operation than
appCredit is performed just after an applnitCredit operation, or after an appCredit operation. Moreover, a credit
can be performed only if the resulting balance value is not higher than a predefined value stored in the
MaxBalance variable (MB in the following figures).

In order to represent this behavior, we use a UML model composed of three objets, which implement the
secure messaging protocol (USM), the user authentication (UB) and the balance (BAL).
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Figure 1 presents the statechart that corresponds to the behavior associated to the secure messaging protocol.

applnitCredit( amount )[ UB.una or (amount+BAL.balance)>BAL.MB ] “error applnitCredit( amount )[ UB.ua and (amount+BAL..balance)<=BAL.MB ]

reset

applnitCredit( amount )[ UB.ua and (amount+BAL.balance) <= BAL.MB ]
M
|

applnitCredit( amount )[ UB.una or (amount+BAL.balance)>BAL.MB ] ';r?or\\
. IDLE W ( InitCredit
appCredit( k )[ k!=ICkey ] "error
\ appCredit( k )[ k=ICkey ] “BAL.credit(amount)
/ \ reset

appCredit( k ) "error

Figure 1. Limited Purse behavior (USM)

A credit can be done only if the user has been previoudly authenticated (condition UB.ua that is true if the
state-machine of UB is in state ua - user authenticated) and if the resulting amount is still less or equal to the
maximum amount possible in the purse. The secure messaging is simply represented by atest on the key value k.

The user authentication (Figure 2) is performed by another applet within the card. As the security policy
applied to the user authentication is in charge of this other applet, we do not consider the fact that after three
failed authentication, the authentication applet is blocked.

verifyPIN( pin )[ pini=userPIN ] “erreur verifyPIN( pin )[ pin=userPIN ] "USMreset
M A
\ L v
| v verifyPIN( pin )[ pin=userPIN ]"USM.reset\( -
. User Not Authentified (UNA) ‘ 1 User Authentified (UA)
Lenw TWP.reset
verifyPIN( pin )[ pin!=userPIN | “erreur

Figure 2. Purse authentication behavior (UB)

Finally, the balance value (Figure 3) is constrained between zero and the maximum value MaxBalance (MB).

debit( x )[ x<=balance ]/ balance-=x

credit( x )[ x+balance=MB ] / balance+=x
balance<MB (notFun1)/ /‘ balance=MB (full)

\

debit( x )[ x<=balance & (balance-x)<MB ] / balance-=x

credit( x )[ x+balance<MB ] / balance+=x

Figure 3. Balance behavior (BAL)

3.3. Informal test purposes

To test the credit function, four operations are involved: initVerifyPIN(), verifyPIN(userPin),
applnitCredit(amount) and appCredit(key). A subset of the abstract test purposes corresponding to a correct use
of the credit function can be a set of sequences respecting this order:

1. Theuser authenticates himself by calling the verifyPIN(PIN) operation one or several times with his PIN.

2. The user initializes the credit operation by calling the appl nitCredit(amount) operation one or several times
with an amount that respects the balance value constraints.

3. The user creditsthe purse by calling once the appCredit(key) operation with the right secure messaging key.

A subset of the abstract test purposes corresponding to wrong operation sequences can be;

A. After an unsuccessful authentication, the credit initialization fails even with right parameter values.
B. After asuccessful authentication and an unsuccessful credit initialization, a credit fails.
Other abstract test purposes can be identified, like stress tests, test under limits, card pull-out, etc.

It is important to remark that for a bigger applet, even for our full case study, abstract test purposes can
involve much more security mechanisms. These mechanisms usually imply more complicated behaviors. Then,
applying automatic test generation tools like UMLAUT enables to optimize test generation process.
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These abstract test purposes have to be trandated into formal test purposes. In order to use TGV, the test
purposes must be expressed in LTS. They are more powerful than UML sequence diagrams, since cycles can be
represented. In figure 4, we represent the abstract test purposes A and B by LTS.

\ \

lappV erifyPin(wrongPIN)

lappV erifyPin(goodPIN)

lapplnitCredit(x)

lappV erifyPin(wrongPIN)
lapplnitCredit(x) 2error
20K 2error lappCredit(k)
Reject Accept 20K 2error
Reject Accept

Figure 4. Test purposes A and B represented with LTS

4. Conclusions

In this article, we have briefly summarized a solution to verify properties on the Java Card embedded
platform. By assuming the validity of this platform, we have proposed a methodology that integrates software-
engineering practice and smart card security needs. This methodology consists in expanding the application
UML model in order to increase the conformity verification. In our point of view, this approach allows to offer a
high confidence in the application conformity regarding its UML specification.

The next step in our, which has yet started, is to generate concrete test suites that can be applied to the
implementation. The aim of these concrete test suites execution on the implementation is to validate our
approach and to compare it to atraditional manual testing approach.
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1. Extended Abstract

One of the biggest challenges for modern telecommunications software
development organizations is the need to shorten time-to-market of their products.
The organization which is "last to market" will find it difficult to acquire market
share. Lately, time-to-market has become the dominating factor for industrial success,
placing enormous pressure on manufacturers and developers to spend less effort on
quality and performance, or to find a much more efficient means of producing high-
quality software for their products and services.

One of the most promising approaches to increased productivity is through using
more powerful tools. Efficient tools, in turn, require formal models in order to allow
validation and transformation of software development artifacts. Research into Formal
Methods and Formal Description Techniques (FDTs) has only recently begun to focus
on the development of powerful, scalable, open tools, which support these methods.
Therefore, the current situation creates an opportunity for new generation formal
model based Computer Aided Software Engineering (CASE) tools focused on
improving time-to-market for development of conventional, not necessarily safety-
critical software. The data mining methodology, presented in this paper, is part of the
Accelerated Development Methodology (ADM) for specification, design, testing and
re-engineering of telecommunications software [2,3]. ADM is an attempt to use
powerful tools, standard languages, concurrency in validation and test case creation,
automated synthesis and automated code generation to significantly decrease time-to-
market without sacrificing the quality of product.

Research into Formal Methods and Formal Description Techniques (FDTs) has
only recently began to focus on the development of powerful, scalable, open toolsets
which support these methods. Certainly, formal methods have been well-suited and
standardized in the world of communications protocols, services and software. In this
paper, we consider an integrated suite of languages standardized by the International
Telecommunications Union (ITU): Specification and Description Language (SDL)
[4], a use case scenario description language called Message Sequence Charts (MSC)
[5]. ITU-T Specification and Description Language (SDL) is one of the most
successful telecommunications standard FDTs [2,6].

Many formal methods exist, but were not being adopted due to an accessibility
barrier, and an efficiency barrier. For each formal method, only a few hundred
experts were available, certainly not an adequate number for global industrial needs.
Computer Aided Software Engineering (CASE) methods and tools used to be rigid
and not adaptable to a variety of engineering practices, and therefore could not be
efficiently integrated into existing development processes. Thus, these methods could
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not be widely adapted (accessibility barrier) or could only be used manually due to
rigidity of existing CASE tools (efficiency barrier).

Fortunately, a new generation of much more accessible, scalable, and designer-
driven CASE tools have been developed by such organizations as Telelogic [12],
ObjecTime, and Rational, among others [2,3]. The tools help to overcome the
accessibility and efficiency barriers, although some familiarity with either SDL or
UML is expected. This is not a serious problem, however, since most graduates of
Information Technology or Software Engineering program are familiar with one or
both of these languages.

These industrial-strength commercial tools are able to edit MSCs, analyze SDL
specifications, perform validation and verification of SDL specifications based on
state-exploration algorithms, automatically and semi-automatically (designer-guided)
generate abstract TTCN test cases from SDL specifications and also automatically
generate implementations for real-time operating systems [2,3]. A number of
industrial case studies have been recently completed, claiming improved quality,
much lower development costs and speedup in time-to-market of up to 20-30% due to
the use of SDL-based CASE tools [6]. “Success stories” of using SDL in industry
mention the phases of system design, detailed design, automatic generation of
implementations as well as formal verification and testing [6,12].

However, there is an important issue which needs to be addressed in order for
formal methods-based CASE tools for communications software engineering to
become common practice. Formal methodologies are only applicable to the so-called
“green-field” projects, in which the system is developed completely from scratch.
However, most projects in the industrial context involve the older, “/egacy” base
software. This software is being maintained, updated by developing new features, or
reused in new projects. For the formal methods to be adopted in industry, it is
necessary to provide cost-effective methods for integrating CASE-produced
components and systems with older, “legacy” base software. Legacy software
systems were produced with older development methods, often involving a blend of
higher-level code, and system-level code, with heterogeneous languages,
architectures, and styles, and often very poorly documented. Up to now, this fact has
constituted a “legacy barrier” to the cost effective use of formal methods-based
development technologies and tools [2,3,8].

In order to overcome the “legacy barrier”, there is an increasing demand for
developing automatic (or semi-automatic) re-engineering methods which will
significantly reduce the effort involved in creating formal specifications of the base
software platforms. Cost-effective methods for producing SDL models of the base
software platform will allow the following benefits:

e better understanding of the operation of the legacy software through dynamic
simulation of the SDL model, which often produces more intuitive results and
does not involve the costly use of the target hardware;

e automated generation of regression test cases for the base software platform;

e analysis and validation of the formal specifications of the new features built on
top of the SDL model of the base software platform;

o feature interaction analysis including existing and new features;

e automated generation of test cases for new features;
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e automatic generation of implementations of the new features. Such
implementations are retargetable for different implementation languages (e.g. C,
C++, CHILL) as well as for different real-time operating systems (e.g. pSOS,
VxWorks, etc.).

This presentation addresses several issues of automatic extraction of formal
models from legacy software, primarily within the context of ITU-T standard
specification language SDL. This work extends our previous work in automatic
extraction of formal models of legacy [8,9,10] by combining the recovery of formal
models with less formal approach of data mining and visualization [1].

There exist several levels at which formal models of legacy software can be
extracted: micro level (single procedure, single data structure, algorithm) to macro
level (class, component). This process is also complemented by powerful notations for
the middle level, describing high-level behavior of components, collaborations and
interactions between components [5,7]. Current software engineering methodologies
are becoming macro level centric (architecture-centric). However, increased focus on
the macro level of software does not exclude the requirement to represent algorithms
at the micro level. Therefore, modern visual specification languages, for example
ITU-T standard SDL, include notations for all three levels: macro level (components,
high-level structure of the software system, relations between components), middle
level (interactions between components, statecharts) as well as the micro level
(flowcharts). The current version of the Unified Modeling Language (UML) [7] has
only first two levels; however the synergy between UML and SDL is the subject of
on-going discussions [4].

Modern visual languages, such as UML and SDL, are focused on forward
engineering activities [4,5,7]. Several industrial-strength CASE tools exist, which
support software developments using these notations, e.g. [12]. However, this
introduces a gap between support available for forward engineering activities
(development of new software from scratch), compared to software maintenance.
Developers are getting more and more used to applying visual languages for new
development, yet they are forced to deal mostly with linear text when doing
debugging and maintenance, or even when developing new features for old (legacy)
software. Research indicates, that the vast majority of software vendors spend up to
50% of their budget on maintenance activities, and this share even reaches 70-80% in
some companies [11]. Obviously, this number is growing, since more software is
being developed and deployed. Therefore we believe, that for wider adoption of visual
languages it is imperative to allow developers access to visual diagrams of the
existing (legacy) software code. This is particularly important for micro level,
because, according to [13], “about 38% of programmer’s time is spent in
understanding a software system because code written in multiple files in textual
format is hard to read”.

In the presentation we are addressing the issues of formalized data mining and
visualization at micro level (procedure level). Firstly, we show that there is a certain
conflict between the objective of formal data mining, i.e. extracting formal artifacts,
and the objective of visualization, i.e. extracting semi-formal or even informal
artifacts (also called diagrams) such that they enhance our understanding of the
software. We show that this conflict should be resolved by careful selection of the
formal notation for recovery of formal model.
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Secondly, we consider the formal artifacts, which can be extracted at
procedure level. We focus our presentation on extracting two kinds of artifacts:

- control flow patterns
- paths through the program

We show how these two artifacts resolve the above conflict between formal data
mining and visualization and provide a powerful conceptual platform for supporting
software maintenance phase. Our approach is based around the standard specification
language SDL. We claim, that reverse engineering of legacy code into visual
diagrams increases efficiency of software maintenance activities and training new
personnel. Graphical patterns are more important for understanding of software than
for engineering new software. Automatic reverse engineering of flowcharts from
source code is often neglected, yet it makes code inspections and debugging more
efficient. It allows better understanding of the structure and functionality of code at
procedure level.

Thirdly, we address the issue of integrating the information, obtained at the
micro level with the macro level (architecture level) information. This problem is
particularly important to achieve the balance between formality and improvements in
understanding, because the amount of information available at the micro level is very
big. We show, that it is imperative to have on-the-fly synthesis of micro-level
information and a navigation capability, which will control on-demand extraction of
relevant micro-level diagrams.

All the above was among the main motivations of the inSight project, which
was started at Nortel Networks in 1995. Department for CASE tools of the Institute
for System Programming (ISP) was contracted to perform R&D for this project. In
particular, the project benefited from the language processing and data mining
expertize of ISP [10]. The result of the collaboration was the reverse engineering
toolkit, called inSight [1], now available commercially. The main objective of inSight
toolkit is to extract architecture-level models. However, we have implemented the
above ideas to extend the tool for the micro level, since we believed that it is essential
to address the micro level of software maintenance. One of our main objectives was to
improve efficiency of code inspections.

We describe the architecture of the FlowChart tool of the inSight toolkit,
which implements our approach to data mining and visualization at procedure level.
We outline the underlying challenges: parsing of the partial source files; presentation
of control-flow patterns; navigation capability, controlling on-demand synthesis of
micro level information.

We demonstrate the results of a case study, in which we tried to quantify the
benefits of using pattern-based flow graphs for solving a typical code inspection
problem. Comparison with related research is provided and some future research
directions are outlined.
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1 Introduction

Tools for analyzing Z specifications can be classified into two main groups, based
on whether they attempt to show universal or existential properties:

Proof-like Tools: This includes type checkers and theorem provers. The goal
of using these tools is to show that the specification has some desirable
property for all possible inputs and outputs. The main emphasis of these
tools is symbolic formula manipulation.

Testing Tools: This includes test-case checkers and animators. The goal of
these tools is to check some property of a given set of test data, or to
generate some data values that satisfy the specification (or contradict it,
in the case of model checkers). Although these tools must perform some
symbolic formula manipulation, their main emphasis is on manipulating
or evaluating specific ground terms (i.e., terms that contain no variables).

The two classes of tools are complementary. Testing tools are best used
early in the system life cycle, to validate specifications against example input-
output test sets, or to execute specifications to detect errors (though not all
specifications are executable [HJ89]).

Implementation techniques for the proof-like tools are similar to other theorem-
proving applications, and there is much literature about theorem proving, type-
checking etc. The fundamental data structure of these tools is an abstract
syntax tree of the specification, and this is transformed in various ways (e.g.,
rewriting) to prove the desired results.

Testing tools require different implementation techniques. This paper de-
scribes some of the issues that are important for Z testing tools: handling unde-
fined terms (Section 2), managing the balance between general symbolic formula
manipulation and evaluation of ground data values (Section 3) and a variety of
data structures for representing sets (Section 4)

The techniques described here have been implemented in the Jaza tool.
Jaza is a new, open-source, animator for the Z specification language that is
written in Haskell. It currently provides only a text-based interface (a GUI is
planned), but handles most of Spivey Z [Spi92] except for generics. The decision
to develop Jaza came from our difficulties with using other animators, such
as poor support for quantifiers or various less-often-used Z constructs (u, A, 6
terms), unpredictable performance characteristics, and inability to handle non-
deterministic schemas.

The main contributions of this paper are (1) to show that testing tools need
to support a wider variety of data structures for representing sets than proof-
like tools, (2) to demonstrate that the multiple set-representation approach
described in this paper is a viable technique and (3) to describe some of the
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architecture and techniques used in Jaza so that other testing tools (for Z and
other specification languages) can benefit from the ideas and lessons learnt.

2 Undefinedness

Z uses a ’loose’ approach to handling undefined terms [Spi92]. There is no
specific undefined value. Instead, the result of applying a partial function to a
value outside its domain is simply any arbitrary value of the correct type. The
logic of Z is two-valued, so 3/0 = 1V 3/0 # 1 is always true, as is 1/0 = 1/0.
However, little else can be deduced about an undefined term. For example, it
is not possible to prove whether the set {z : 0..3 e 6/z} has three or four
elements.

Provers can support this approach simply by not providing any inference
rules for reasoning about undefined terms, other than the basic logical laws
shown above. However, for testing tools, we need a more specific solution, so
that we can keep track of exactly which terms are defined and which are not.

One possible approach would be to assign a specific return value to each
partial function. For example, decide that division by zero will always return
42. However, this would mean that the value returned from evaluating 3/0
would be more specific than in Z, which does not commit to a specific value.
This could lead to returning true for a predicate that other Z tools evaluate to
false (or vice versa), which is undesirable.

A better approach is to add an explicit undefined value to each type, so
that we can carefully define how functions deal with undefined inputs. Most
functions need to be strict on undefined inputs, but logical operators have more
freedom, since true V X is true regardless of X.

Jaza implements this approach by defining an ErrorOr t type that wraps
exception handling around any type of term ¢. The ErrorOr type contains
an Ok alternative, which contains a defined value of type ¢, plus an Undef
alternative, which means that the result is undefined. It also contains other
alternatives which are used for various classes of errors, such as syntax and
type errors, ‘search space too large’, ‘undecidable equality’, etc. This ErrorOr
type is wrapped around the evaluation results of all Z schemas, expressions and
predicates.

3 An Animation Architecture

It is tempting to take a theorem-proving approach to evaluating schema on test
cases — repeatedly apply simplification rules until no further simplification is
possible. However, this symbolic rewriting approach is inefficient compared to
how compiled programming languages evaluate expressions (a single bottom-
up pass). Jaza attempts to get the best of both approaches by applying a
fixed sequence of steps to each schema or expression evaluated. The philosophy
is to perform most of the ‘expensive’ analysis (simplifying terms, determining
computation order, reasoning about the free variables of each expression etc.)

1So Jaza effectively uses a three-valued logic. This is slightly more strict than Z requires,
but has the benefit that it is possible to report if a predicate like P V — P depends upon
undefined terms.
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at the beginning, so that the brute-force ‘search for a solution’ phase at the end
can run as quickly as possible. The phases are:

1.

Parse: The LaTeX input is parsed into an abstract syntax tree (AST).
The Z grammar is ambiguous, so some ambiguities are left in the AST.

. Unfold: This phase uses context to resolve all ambiguities, then expands

all schema calculus operators, and unfolds all references to other schemas
and global definitions. Several Z constructs (e.g., A, and schemas-as-
types) are translated into set comprehensions. The resulting term is saved
in the specification database until the user calls it.

. Substitute Values: When the user invokes an operation schema, and

supplies values for some of the inputs and/or outputs, the term corre-
sponding to that schema is retrieved from the database and the given
values are substituted into it.

. Simplify: Simplification rules, such as one-point rules, are applied in a

bottom-up pass through the term, so that the schema is specialized to the
given input/output values. (If all inputs are supplied, this typically fully
evaluates the precondition and narrows a disjunctive schema down to one
case).

. Optimize: This reorders declarations and predicates to minimize search-

ing. This phase performs extensive analysis of the free variables of each
predicate, and looks for useful consequences of predicates that can help
to reduce searching. For example, from the predicate ¢ ™ b = ¢ we can
deduce three facts: ¢ = a \cat b (which determines a unique value for ¢
once ¢ and b are known); a \prefix c (which narrows the search for a to
#c¢ + 1 possibilities once ¢ is known); and b \suffix c (which similarly
narrows the search for b once ¢ is known).

The result of this phase is a sequence of intermixed declarations and pred-
icates, where each declaration has the form z : N{C, C> ... Cy, T} where
C; are the constraints on z that have been deduced from predicates and
T is the original type of z. This narrows the search space for z, often to
a single value if there are equalities involving z. Each predicate appears
as early as possible in the sequence, immediately after all its free variables
have been declared. The goal is to push each filter predicate as early as
possible, so that unsuccessful search paths are pruned as early as possible.

. Search: This phase uses the common ’generate-and-filter’ approach to

search for a solution of the optimized declaration sequence D. Each z : T
in D is executed by assigning each member of T in turn to z, with the
rest of D being evaluated to determine whether the chosen values are
acceptable. When each predicate is evaluated, all its free variables have
ground values, so evaluation can be done efficiently in a single bottom-up
pass, just like in programming languages.

This process returns a (lazy) list of all possible bindings that satisfy the
schema. If D is not in a context like (VD e P) or #{D e E}, which
requires all solutions to be known, then it is often only necessary to fully
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evaluate the first one or two solutions. Jaza provides user-level commands
for stepping through the solutions of a non-deterministic schema.

If the schema is obviously deterministic and the optimization phase de-
tected this, then no searching will be needed. To ensure reasonable re-
sponse times for non-deterministic schemas, we limit the search space. The
depth of the search is bounded by the length of the declaration sequence
and the width is bounded by a user-settable parameter. A useful trick
allows us to detect large search spaces in constant time without actually
performing the whole search: if we are searching [a : Ty, b: Tp,c: T.. | P)
with a maximum width of 100,000, and each of the types contain 100 val-
ues, we choose the first value of ¢ and note that there are 100 alternatives
to try, then choose the first value of b and note that there are now 100100
alternatives, then proceed to ¢ and immediately raise an exception, be-
cause the search space now contains 100 * 100 x 100 alternatives.

4 Multiple Set Representations

Breuer and Bowen [BB94] classify Z animators by how they represent sets:

(a) sets must be finite and are modelled by finite arrays/lists;

(b) sets may be countably infinite, are modelled by an enumeration algorithm;
(c) sets are cardinally unbounded and modelled by their characteristic function.

For example: ZANS [Jia] and ZAL [MSHB98] use approach (a) only; Breuer/Bowen
use (b) only; Prolog-based Z animators typically use approach (c) [DKC89,
DN91] and Z- supports both ‘passive’ sets (a) and ‘active’ sets (c) [Val91].

However, each of these approaches is good for some kinds of sets, but dis-
astrous for others. Approach (a) does not allow infinite sets, which are widely
used in Z, but has the advantage that efficient algorithms and data structures
can be used for the finite sets. Approach (b) amounts to programming with
(potentially infinite) lazy lists (‘streams’), so binary operators must address
fairness issues and typically suffer from termination problems. Approach (c) is
good for membership queries, but makes it difficult to enumerate the members
of a set or calculate its cardinality. Note that proof-like tools tend to use only
a symbolic representation of sets, which is closest to approach (c¢). This makes
manipulation of finite, enumerated sets awkward and inefficient.

The best solution is to use all the above representations for sets, plus other
representations that are customized to specific kinds of sets. Jaza supports at
least 12 different representations of sets! Each set is kept in its optimal rep-
resentation, and translated into another representation only when an operator
requests it. A typical implementation of an operator handles several represen-
tations using special algorithms, then translates any remaining representations
into a standard form so that it can apply a standard algorithm. (An error will
be raised if the translation is impractical). Let us look at some of Jaza’s most
important set representations.

ZFSet [ZValue]: A finite set of values that are all in ‘canonical’ form? is rep-
resented by a sorted list of values (without duplicates). This makes the

2A value is in canonical form iff it is entirely constructed from basic values (integers and
members of given sets) and the tuple, binding, free-type and ZFSet constructors. Canonical
values have useful properties such as: no further evaluation is possible, no undefinedness can
arise, and semantic equality is the same as syntactic equality.
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common set operations (N, U, \, #, €) linear in the size of the sets.

ZSetDisplay [ZExpr]|: Finite sets of arbitrary terms are also represented by
lists, but slower O(NN?) algorithms must be used, because the list may con-
tain two elements that are syntactically distinct, yet semantically equal.

ZSetComp [ZGenFilt] ZExpr: Set comprehensions contain a sequence of in-
termixed declarations and predicates that are optimized as described in
Section 3, plus an expression for the outputs of the set. This representa-
tion can sometimes be executed to produce a finite set, but if the search
space is too large for that, it is left in this ZSetComp form. Membership
tests and function applications (A expressions are always translated into
ZSetComp form) can often be processed without enumerating the set. In-
stead, the alleged member is unified with the output expression of the set
and this often narrows the search space. For example: {z : N e (2,2 %2)}
is infinite so cannot be enumerated, but when applied (as a function) to
the argument 3, then optimized, we get {z : {3}  (z,z % 2)} 3, which is
easily evaluated.

ZIntSet (Maybe Integer) (Maybe Integer): This represents a contiguous
range of integers, with optional upper and lower bounds. For example, if
both bounds are missing, it means Z; if the lower bound is 0 it means N
and if both bounds are given, it means a..b. Membership, cardinality and
intersection tests can be done in constant time with this representation,
and it is very useful for narrowing search spaces by intersecting integer
inequalities.

ZFuncSet: This data structure represents function/relation spaces. It stores
the domain and range sets, plus seven boolean flags that determine what
kind of relational space it is (total, onto, functional, etc.). Typically, this
is used as a type, and the most common operation is testing a given set
of pairs for membership in the type. However, calculating the intersection
of two function spaces is easy with this representation. The predicate
dom f = s can be represented as f € ZFuncSet{domset = s} and this is
an elegant way of narrowing the search space for a function value. Similar
data structures are used for power sets and cross products.

Relating these to the Breuer/Bowen classification, ZFSet and ZSetDisplay
are approach (a), while ZSetComp and ZFuncSet are approach (c). Jaza does
represent any sets directly using approach (b), but provides coercion functions
that turn the other set representations into a stream of values.

The danger of having multiple set representations is that it can lead to
a combinatorial explosion in the algorithms that are needed for each binary
operator (12*12 possible input formats). However, our experience so far in Jaza
shows that this problem can be overcome by defining a comprehensive set of
coercion functions (which raise exceptions when necessary), and by providing
query functions that return hints about the size and nature of sets.

5 Experimental Evaluation

This will be an experimental comparison of how several common Z animators,
and Jaza, handle a common set of test cases taken from the literature.
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1 Introduction

In this paper, we present a framework to specify mixed systems, i.e. systems with both
dynamic parts (control, communication, and concurrency) and data types. While the im-
portance of mixed formal specifications is widely accepted, there is still a need for open'
and extensible tools and environments. Another need is to integrate the formal specification
into a software process (e.g. an object-oriented one). Therefore in our environment, we need
editing and formating tools, verification means, as well as prototyping and code generation
tools. Object-orientation is often advocated for programming and we would like to extend
this to specifications and specification developments.

Our model of mixed systems is based on the notion of views [4]. This model aims at
keeping advantage of the languages dedicated to both aspects (algebraic specifications for
data types, and state-transitions diagrams for dynamic behaviour) while providing a unifying
model with an operational semantics.

2 The Korrigan Specification Model

Our model focuses on the specification of systems with both static and dynamic aspects and
that feature a certain level of complexity that requires the definition of structuring mecha-
nisms. We use two ways to ensure structuring and modularity: a simple form of inheritance
and the composition of specification components.

Our model is based on the notion of view, an interface to describe components. The
key concept behind this notion is the Symbolic Transition System (STS) concept. STSs [9]
are a general form of finite state-transition diagrams which provides an appropriate level of
abstraction and avoids state explosion by the use of open (i.e. not ground) terms in states
and transitions. The dynamic aspects of components are described in dynamic views (cf.
Figure 1). The static aspects are described using static views. The integration of all aspects
of a given component is done using integration views. Finally the compositional aspects of
components are described by composition views. Both integration and composition views use
a mixed “glue” (algebraic first-order axioms and temporal formulas) to express the interface
of composition as a whole. A great part of the semantics of the model is devoted to explain
how to compute a global view structure for the different compositions [4].

! Open meaning here, that it should be possible to link them with other existing tools.
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Fig. 1. The View Model Class Diagram

3 The Korrigan Environment

The design of our environment follows several principles. Since our model focuses on mixed
systems, we need to interface with several kinds of dedicated tools and environments. The
first principle is to interface with some existing tools and environments, for example model
checking tools (e.g. XTL in CADP [6]), theorem provers (e.g. the Larch Prover [7], KIV
[20], ELAN [3], PVS [15]), and compilers (e.g. Javac [8]). Since such tools are numerous and
evolve, our framework has to be extensible. A second principle is to provide general tools
which can be useful to other environments or formalisms. For example the CLAP tool (de-
tailed below) can be used to compute (a)synchronous compositions of any state-transition
diagrams (automata, Petri Nets, symbolic transition systems). To achieve these two princi-
ples we reuse some object-oriented features both in the design and in the implementation of
our environment.

The implementation is done in PYTHON [12, 1]. PYTHON is an interpreted object-oriented
language, hence it is really useful to produce both quick scripts and prototypes of complex
environments. One important feature is that PYTHON is free, open source and portable across
several platforms (Unix, Linux, Windows ...). It is closely related to Lisp, Perl, and C++,
but it is much more legible. It is dynamically type-checked, functional and object-oriented. It
has a simple meta-object protocol and provides exceptions, powerful built-in data structures
and module libraries (parser generation, CORBA programming, XML parsing, ...).

The first environment principle leads to define a classification of specification formalisms
(cf. Figure 2). Each class has (at least) methods to parse and print its specific internal
format. A general parsing mechanism is defined for the corresponding files. We also provide
a library of interface formats, for example to target CASL-LTL [19], Larch Prover [7], LOTOS
[11] or Xfig. Whenever one wants to translate KORRIGAN specifications into another format,
a cast method to the corresponding class is to be defined.

3.1 Description of the Main Components

Class Library for Specifications. This is an extensible hierarchy mapping the specification
classification. It contains classes for the KORRIGAN model, but also for other formalisms.
Each class in the hierarchy has an associated parsing class (cf. shadow boxes in Figure 2).

Interface Library. This is a library of formats for documentation (HTML and IATEX files)

and for visualization (DOT [5] and Xfig files). A special format, dedicated to state-transition
diagrams is used in the CLAP tool (this original tool is described below). Other kinds
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of formats are defined for code generation in object-oriented languages. We also plan to
integrate formats for other verification tools and also for other formal languages.

Code Generation. The code generation is achieved with the following steps (see [17] for
more details). The dynamic part, a symbolic transition system with communications and
structuration, is implemented by controller structures. These structures are then translated
into an object-oriented language (for now Active Java [13]). When the algebraic part is
not executable it is refined into an executable one (through interactions with the user).
Algebraic specifications are translated into an intermediate object-oriented code based on
Formal Classes [2], and implemented into pure Java.

Translation to LOTOS and SDL. We have defined translation mechanisms to generate LO-
TOS or SDL specification from a KORRIGAN specification [16,17]. These mechanisms use
patterns to generate the dynamic behaviours. The translation of the static part is straight-
forward.

Verification Tools. It is possible to generate inputs to verification tools using the previous
translation mechanisms. For example we can use the CADP environment to verify LOTOS
specifications resulting from the translation. However we plan to define and implement
specific verification tools. Mixed specifications require specific symbolic verification means
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[18,10]. Another idea is to translate the KORRIGAN specification into a specific formalism
where both static and dynamic aspects used the algebraic framework (e.g. CASL-LTL), and
then verify this resulting specification using a theorem prover.

3.2 The CLAP Tool

CLAP (Class Library for Automata in Python [14]) enables one to define different kinds of
state-transition diagrams by providing an extensible hierarchy of classes. For example, there
are automata with state or transition parameters (initial states, labels, emissions, receipts,
colours), Petri Nets. . . It is easy to add a new class corresponding to some new kind of state-
transition diagram. The state-transition diagrams are stored in files following a generic
internal format. A parser for this format is provided. The diagrams may be automatically
transformed to displaying formats (Xfig or DOT).

CLAP allows one to define simple formulas in order to compute the initial state, the
sets of states and transitions reachable from the initial state, and synchronous products.
Amongst the synchronous product parameters, we have: the synchronization formulas for
transitions and states, the reachable states formulas. Functions are also used as parameters
to define the resulting states and transitions. Therefore it is possible to define the product
of two state diagrams that have different types, and obtain a state diagram of a third type.

4 Conclusion

The proposed environment supports our specific model, KORRIGAN, to specify mixed sys-
tems. This environment follows two principles: openness and extensibility. According to
these principles, it provides translation tools to interface with other formalisms, e.g. LO-
TOS, SDL, CASL-LTL ... We also have a generic tool to describe state-transition diagrams,
to compute their (a)synchronous composition, and to compute their graphical representa-
tion. Object-oriented source code is generated from KORRIGAN specifications, and interface
to documentation languages like HTML or IATEX is available.

The KORRIGAN environment is based on a classification of specifications with a general
parsing mechanism. New formalisms may be integrated, and translation mechanisms for
them may be defined.
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Abstract.

This note presents the Coalgebraic Class Specification Language ccsL that is

developed within the LooP project®. ccsL allows the (coalgebraic) specification of behav-
ioral types or classes from object-oriented languages. A front-end to the theorem provers
Pvs [ORR196] and ISABELLE [Pau94] compiles ccsL specifications into the logic of the the-
orem provers and and allows to mechanically reason about the specifications.

1. Introduction

The use of coalgebras as semantics for object orien-
tation (explicitly proposed in [Rei95]) is for us the
most promising approach towards specification and
verification of classes. Coalgebras are the categor-
ical duals to algebras (see [JR97]). They are func-
tions Self — T'(Self), where T is an interface type
(technically, an endofunctor on the category of sets
and total functions). The state space Self is seen
as a black box and the coalgebra comprises all op-
erations that are available to manipulate objects (or
elements of Self). As usual in object-oriented pro-
gramming we use the term method for all the opera-
tions. The methods can change the internal state of
an object or carry out observations on the state space.
Thus, properties of elements of the state space can
only be observed by the operations of the coalgebra.
This observational approach to object semantics is
contrary to the constructional view on abstract data
types. Their semantics, as represented by (initial) al-
gebras, describes every element as built via construc-
tor operations. This is not the way a client observes
objects.

Coalgebras can naturally model systems with
infinite behavior and partial operations. To rea-
son about coalgebras we use the notions of invari-
ance (closure under the application of methods) and
bisimulation (indistinguishability via methods). In

1See URL http://www.cs.kun.nl/~bart/LOOP/.

an appropriate categorical setting both notions can
be directly derived from the interface functor 7.

The present note sketches the latest version of
the coalgebraic class specification language ccsL
(see also [HHJT98]). This language supports nested
coalgebraic and algebraic specifications. To restrict
the behavior of coalgebras we use a higher-order
logic enriched with powerful (method-wise) modal
operators; see [Jac99, Rot00] for details. The ccsL
compiler developed jointly in Dresden and Nijmegen
translates ccsL specifications into the logic of the
theorem provers PVS or ISABELLE.

We start in Section 2 with a discussion of an ex-
ample class specification. Section 3 describes the
ccsL compiler, especially the notions which it sup-
ports. Finally, in Section 4, we summarize the appli-
cations of ccsL and conclude.

2. Example

A coalgebraic specification in ccsL consists of a
number of sections, describing the class interface,
the assertions and the creation conditions. The class
interface consists of a definition of the types of me-
thods and constructors of the class and inheritance
information. The assertions describe the behavior of
the methods. Finally, the creation conditions estab-
lish restrictions on the outcome of a class construc-
tor.
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As an example, we consider a simple FIFO
queue. It contains two methods. The method put
adds a new element to the end of the queue. The
method t op delivers the first element of the queue
together with the successor state, in which this first
element is removed.

Figure 1 depicts the specification of the queue in
ccsL. The first line declares Queue as the name of
the class specification. The specification is paramet-
ric in the type A of the elements of the queue. This
type parameter must be instantiated in actual use.

In the declaration of the two methods, x denotes
the Cartesian product and + the coproduct? of two
types. We use 1 to denote the unit type that contains
exactly one element 1 = {x}. In the example we use
bot instead of ko (x) and up(a, z) for x1(a, x).

The method put is declared on line 3; its type
is clear from the preceding explanations: put takes
a state and a data element and produces a new state
with the element added at the end of the queue®. The
method t op, which delivers the first element of the
queue, is a partial operation because it fails on empty
queues. We can model this operation as a coalgebra
into (A x Self) 4 1. If the result of the method t op
is bot then we say that the method fails. Otherwise
it (successfully) delivers an element of A and a suc-
cessor state of the queue.

In an algebraic approach the partiality of
t op would be handled via subsorts—which in-
troduce all kinds of complications, see for in-
stance [GD94]. Coalgebraically, the structured out-
put type of t op handles this partiality quite natu-
rally. This idea scales to more complicated forms
like non-determinism or computations that involve
exceptions.

Note that, using currying, the method put can
be transformed into an coalgebra. Then both meth-
ods can be combined into one coalgebra of type
Self — (Self4) x ((A x Self) + 1) to match the
view on coalgebraic specification that we presented
in the introduction. But in applications it is better to
distinguish different operations and to allow a finite
number of coalgebras per class specification.

With coalgebras alone it is not possible to con-
struct new objects (elements of Self) out of nothing.
Therefore in ccsL we combine a coalgebraic method

signature with a (degenerated) algebraic constructor
signature. In our example we have one constructor
new._queue, which is a constant in Self. It serves as
initial state.

The assertions restrict the behavior of the two
methods. Technically an assertion is a logical for-
mula with one free variable of type Self. This vari-
able is declared with the keyword Sel f Var on line
7. The basic propositions of the logic are observa-
tional equalities <. Observational equality is the
relation lifting (see [HJ98]) of bisimilarity to arbi-
trary types. In the example we only use observational
equality for the type (A x Self) + 1. Two elements u
and v of this type are observational equal if and only
if they either both equal bot or if u = up(ay,z) and
v = up(az,y) such that a; equals a2 and = and y are
bisimilar (with respect to the interface of Queue).

Compared to usual equality, observational equal-
ity has several advantages. First, it mirrors the intu-
ition that the state space of a class is seen as black
box. Thus, two elements of Self can only be com-
pared up to the observations they yield. Second, as a
technical condition the use of observational equality
ensures the existence of final models (for consistent
specifications).

The first assertion queue _enpt y describes the
behavior of an empty queue. A queue is empty, if the
t op method fails, that is, if x. top = bot. The
implication in lines 9 and 10 describes that, if = de-
notes an empty queue, then after putting an a € A
into this queue, the first element of the queue is a
and, removing this element, we get a queue that is
observationally equal to the original empty one.

The second assertion describes the behavior of
nonempty queues. To ensure that x is nonempty,
we could have taken the expression NOT z.top =
bot . Because we need the result of this application
later in the formula, we bind y and « in the condition
of the implication. The assertion describes that the
first element of the nonempty queue does not change
when adding a new element to its end. Further, for
nonempty queues, the two operations of adding an
element to the queue and removing the head of the
queue commute (up to observational equality).

The final part of a class specification describes
properties of objects that are created using the con-

2In the category of sets and total functions the coproduct of two sets A and B is given by their disjoint union together with the

injectionsk1 : A — A+ Bandks : B— A+ B.

3Note that this style of specification is functional: objects are not handled by reference, but by value; the put operation produces

a new object.
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CLASSSPEC

BEG N Queue| A : TYPE |
METHOD
put Self x A -> Self;
top : Self -> (A x Self)+1;
CONSTRUCTOR
new_queue: Self;
ASSERTI ON  Sel fvar x: Self
queue_enpty :
x.top = bot | MPLIES
FORALL (a: A).

queuefill ed:
FORALL(a: A, y: Sel f).
FORALL (a': A).
CREATI ON
queuecre:
new_queue.top = bot
END Queue

x.top £ up(a,y)
X.put(a').top & up(a,y.put(a))

X.put(a).top £ up(a,x)

I MPLI ES

Figure 1: A queue class specification in cCSL.

structor of the class. In our case, there is one cre-
ation condition. It asserts, that a queue created by
new_gueue is initially empty.

3. Verification Support

In the LOOP project we are most interested in prac-
tical applications. Therefore we did not develop our
own theorem prover for coalgebraic class specifica-
tions. Instead, we decided to implement a front-
end tool (the ccsL compiler) for existing theorem
provers (currently ISABELLE and PvS). This section
contains an overview of the results of our efforts.

The ccsL compiler is written in ocAML [L199].
An execution for some class specification performs
four major steps: first, the specification is parsed. In
this step, an internal representation of the specifica-
tion is generated. Next, the tool checks type correct-
ness for the logical formulae that appear in the as-
sertions and creation conditions. The third pass pro-
duces an internal representation of the theories that
have to be generated. Finally, the pretty-printing pass
writes these theories into source files for the desired
theorem prover.

Supported Notions

After running the ccsL compiler on a source file,
you receive the generated theories as an output.

Among others, you find theories that define the in-
terface (signature) of the class specification, the no-
tions of bisimilarity and invariance, and the notion of
morphisms between coalgebras for the class signa-
ture. These definitions together with associated lem-
mas serve as tools for the following more complex
concepts.

Models

A model of a specification is developed in two steps:
First, one has to construct a state space and a coalge-
bra for the signature of the specification. Second, one
has to prove that the assertions hold on this coalge-
bra. The ccsL compiler supports this by generating
suitable predicates for proving whether a coalgebra
is a model of the specification.

To check whether a class specification matches
ones intuition, one can examine the final model (in
the category of all models) of the specification. The
final model of a class specification comprises all pos-
sible behaviors of all models of the specification.
Nicely enough it allows to directly access the ele-
ments of the state space since bisimilarity boils down
to equality on final models. Thus, by showing that
one’s intended model is final, it is easy to determine
whether the specification is too loose in the sense that
it allows unintended behavior.
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Inheritance

The ccsL compiler supports (multiple) inheritance
of specifications. Besides the sections for methods,
constructors, assertions, and creation conditions, a
class specification can contain an inheritance section
like

I NHERI T FROM Queue[ A]
RENAM NG put AS enqueue

This has the effect that, provided Ais a valid type, the
current specification is extended with the methods
and the assertions of the queue specification. Dur-
ing this extension the original method put is re-
named into enqueue and the ccsL compiler en-
sures that the inherited assertions queue_enpty
and queue fil | ed restrict the behavior of en-
gueue instead of put .

Components

While inheritance models an is-a relation, it is also
possible to model the contains-a relation between
different systems. Imagine a specification with a
method declaration like
queues : [Self, nat] -> Queue[ Al

Then models of this specification are required to con-
tain an infinite array of queues over type A. For com-
ponents we assume a standard semantics. Currently
the user can choose between loose semantics, where
an arbitrary model of the queue specification is used
as semantics for the component, or final semantics,
where the final model is used.

Modal Operators

Modal operators are well suited for the verification
of properties of potentially nonterminating systems.
The third author recognized in [Jac99] the connec-
tion between greatest invariants and the future time
necessity operator. This was worked out for ccsL
in [Rot00].

The ccsL compiler generates theories that define
(method wise) future time necessity and eventuality
operators. Using these operators in our example, it is
for instance possible to prove that every queue, that is
reached from an empty queue, can be emptied again.

Refinement

Refinement is a relation between two specifications.
A concrete specification C refines an abstract specifi-
cation A if all models of C can be turned (in a generic
way) into models of A. Refinements can be concate-
nated in a number of steps, starting from a high level
abstract specification and leading to an implemen-
tation. The properties of refinement ensure that the
models of the most concrete specification still fulfill
the assertions of the original abstract specification.

For coalgebraic class specifications we have two
notions of refinement. Model theoretic refinement is
a generalizations of [Jac97] and is based on the no-
tion of models. In contrast, behavioral refinement is
based on bisimilarity of corresponding initial states.
Behavioral refinement is more general than model
theoretic refinement. Behavioral refinement can also
be used if only a part of the abstract class interface
(for instance the public part) is refined. Under mild
assumptions on the logic used in the assertions, it
can be shown that, in a situation where both notions
of refinement can be applied, behavioral refinement
implies model theoretic refinement.

Binary Methods

The theory of coalgebras is usually developed for
(covariant) endofunctors on an arbitrary category.
Consider the example of a binary method

equal [Self, Self] -> bool

To model such an operation coalgebraically one
would need the functor F(X) = 2%, where 2 is the
semantics of type bool . But on the categories we
are interested in, this F' cannot be turned into a co-
variant endofunctor.

In [Tew0O0b] the second author shows how the
notions of coalgebra and bisimulation can be gen-
eralized to extended polynomial functors Set? x
Set —+ Set. Coalgebras for extended polynomial
functors can model binary methods for practical ap-
plications. The ccsL compiler accepts signatures
that correspond to extended polynomial functors.

4. Conclusion

In this note we presented the coalgebraic specifica-
tion language ccsL and sketched its possible ap-
plications. ccsL relies on coalgebras and naturally
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uses the notions of invariance and behavioral equiv-
alence. Other people from the LOOP project apply
the same coalgebraic ideas to reason about JAVA pro-
grams [JvdBH198]. In this work they also develop
a front-end to Pvs and ISABELLE to use a theorem
prover to reason about JAVA programs.

The specification language ccsL has been suc-
cessfully used in several non-trivial case studies.
Meyer specifies in [Mey99] the MSMIE (multi-
processor shared information exchange) protocol in
ccsL. He refines this initial specification in three
steps and proves the correctness of a Java implemen-
tation of the protocol.
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1. Introduction

Attribute grammarshave beendevelopedby Knuth for
specifyingand implementingthe (static) semanticas
pectsof programminganguage$10, 12). Sincethen,
attributegrammarsavegrowvninto arecognisedield of
studywith numerousapplicationsfor oneof mary sur
veyssee[14].

Attribute grammarideasalso have found their way
into graph transformationresearch.Early approaches
like thoseof [4,17] attribute graphgrammarparsetrees
insteadof stringgrammarmparsetrees. Mostcurrentap
proachegonsiderattributedgraphsandtheir derivation
or transformation.Oneof the mostwell-known frame
works in this context seemso be PROGRES[15,16],
where however, thedeclaratve natureof attributegram
marsisgivenupin favourof anoperationahpproachin
the sameway, alsothe algebraicapproactof [13] is not
orientedtowardsadeclaratveview, but towardsdescrib
ing transformationsf attributedgraphs.

The approachdocumentedn [1] attemptsto move
closerto the original attribute grammarsettingby con
centratingnot only on attributions,but alsoon the tra-
versalsnecessaryo calculatethe attributions,but thus
necessarilgtressetheoperationahspect®f theattrib-
utegrammariew andalsoabandonpuredeclaratvity.

In thispapemwepreseng purelydeclaratveapproach
totermgraphattributionsin aformalismwhichis essen
tially a straightforward transferof the attributegram
mar paradigmto the slightly more generalsetting of
termgraphs.Furthermorewe presengapplication®f an
implementatiorof thisapproacho programgeneration
in Smalltalk, Ada,andHaslell.

2. From Syntax Tree Attributionsto Term Graph
Attributions

Attribute grammarsare an extensionof contet-free
grammarsvhich consistof semanticulesaddedo the
syntacticqulesof thecontet-freegrammar In ourview,
asemantigule consistof
— atreepatternP determiningapplicabilityof therule,
— an attribute nameN for the attribute to be defined,
and
— anexpressiorE definingthevaluesof theN-attributes
of thosenodeswherethe patternP matchesthis ex-
pression
« iswrittenin anattributedefinitionlanguage, and
« containsattribute refelencesto other attributes,
written in an attribute refelencelanguage which
allows accesgo attributesof nodesaccessiblevia
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navigation primitivesor asimagesof nodesin the
patternp.

In purelydeclaratve attributegrammarsattributedefin
ition languagesrereferentiallytransparent,e.,canno
expresssideeffects.

Suchan attribute grammaris thenusedto defineat-
tributionsof syntaxtreesandsincesyntaxtreescanbe
consideredasa specialkind of graphswe consideran
attribution asa (partial)functionmappinga nodeof the
graphandanattributenameto anattributevaluefrom an
attributevaluesetdependingn theattributename.

Usually only certainattribute valuesat the root of
the tree are relevant, but we may aswell considerthe
attributionof thewholetreeastheresultof followingthe
semantigulesof anattributegrammar

This view of attributions carries over to graphs
without ary problems,and the definition of semanti
rulesalsodoesnot neednotevorthy adaptation.What
changeshowever, is thesemanticef anattributegram
matr, sincethe interpretationof the attribute referenci
languagevill haveto changeaccordingo thefollowing
discussion.

If we considerthe attribute flow over the syntaxtree
in a corventionalattribute grammaythenattribute val
uesusuallyflow alongsingleedgesandthey may flow
alonganedgein eitherdirection.Soa singlenodemay
have synthesisedttribute valuescomingin from belov
(i.e.,viaits outgoingedges)andit is relevantvia which
edgeeachattributevaluearrives,andinheritedattribute
valuecomefrom above,andhereoo,it mayberelevant
which edgeamongthe nodes parents outgoingedge:
thisis.

When consideringreesasterm graphsthenthe or-
deringamongoutgoingedgess replacedy edgelabels
attachedo theseedgesandfor every node ,notwo out-
goingedgeshave the sameabel. Sinceeverytreenode
hasonly atmostoneincomingedgeit isalsotruethatfor
every treenode,no two incomingedgeshave the same
label. Generalisingwe now considerthe directionin
whichanedgesattachedo anodetogethemith itslabel
asone“input channel of thenodein question.

Where corventional attribute grammarsare always
confrontedwith singleattributevaluescomingfrom ary
input channel,a correspondingormalism for genera
termgraphdasto copewith arbitrarynumberof attrib-
utevaluesin theinput channelsomingin from above,
i.e.,from thedirectionof theparentnodes.

Furthermorein contrastwith the operationaldefin



tion of [1], wheredifferentvaluesarearrivedatin a se

quentialmanner(seealsoSect.4) andcanthereforebe
consideredo beorganisedn lists,in our purelydeclar

ativeformalismthereis nosuchobviousstructureorgan

ising the differentattribute values— the only fact that
mustnot be hiddenis the possibility of multiple occur

renceof the sameattributevalue. Thereforemultisets
areexactlythestructureghatnaturallyorganisesttribute
valuesin generalabelledgraphs.

As aresulttheinterpretatiorof thoseelement®f the
attribute referencelanguagethat refer to inherited at-
tributeschangests typefrom singleelementof there-
spectve attributevaluesetto multisetsandtheattribute
definitionlanguagevill haveto provide primitivestoim-
plementdeclamtivefunctionsfrom thesemultisetsinto
singlevaluesthatcanbeusedfor thedefinedattributes.

Thereforeit turns out that given appropriatema
chineryfor representatioandmanipulatiorof multisets
themove from syntaxtreeattributionsto termgraphat
tributionscanberealisedvithoutviolatingthepurelyde
claratve attributegrammarprinciples.

Whenturning to attribute value setsthat are CPOs,
thenevencyclic attribute dependencieandcyclic term
graphganbedealtwith easilyby definingtheattribution
asafixed-pointasusual[3].

3. Declarative Term Graph Attribution in HOPS

The Higher Object ProgrammingSystemHOPS [9, 2,
7,5,19 isagraphicallyinteractvetermgraphprogram
ming systemdesignedor transformationgbrogramde-
velopment. In the spirit of LiterateProgrammind11],
HOPS modulesarredocumentsontainingprogranfrag
mentsandin HOPS, thesearemostlytyping elements,
transformationules,andattribution definitions.

HOPS manipulates arbitrary secondsrder term
graphswhereall thestructureusuallyencodedsiianame
andscopds madeexplicit. Termgraphsn HOPSthere
fore featurenameleswariables explicit variablebind-
ing (to denotewhich nodebindswhich variable) expli-
cit variableidentity (to denotewhich nodesstandfor the
samevariable) and metavariableswith arbitrary arity.
Forthepurposesf attribution,variablebindingandvari-
ableidentity canbe considerechsedgeswith additional
labels.

HOPS typesareintegratedinto the HOPS program
termgraphstructureandtermgraphnodesareconnee
ted to their typesvia specialtyping edges The basis
for the typing systemare typing elementsi.e., simple
term graphsthat introducea new nodelabel together
with its typing schemamakingexplicit how the typing
of anodewith this new labelis relatedto the typing of
its successorandboundvariables. We provide six ex-
ampletyping elementgor simplytypedA-calculusand
for arithmetics— thetypingfunctionis denotedy thin,
light arrovswith tiny headsandthetyping elementsgor

- andNum, althoughthey do not containary typing
arrows,arenecessarfor introducingtheir respectie la-
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belandfor fixing its arity (thethick curvedarrow in the
typing elementfor A-abstractiordenotes/ariablebind-
ing, anddifferentnodedabelledwith “T” aredifferent
typevariables):

Num + Num ~ A -
1-——Num V/\V T/\T <\¢/ /\T
~ v T
N
V T T

A termgraphG is well-typedif for everynodethereisa
homomorphisnfrom thetyping elementfor thatnodes
labelinto G atthatnode;thedetailsof thistype systerr
have beenintroducedn [8]. Sincetypingelementshus
definethe languageof HOPS term graphs,they alsc
sene asattributerule patterns.

Each attribution definition consistsof a tamget at
whichit is directedandthedefinitiontext proper These
definition texts take on the shapeof seriesof Haslell
definitionsinterspersedvith attribute referenceexpres
sionswrittenin asyntaxsimilarto thatof Funnel\eb,a
powerful literateprogrammingsystem18].

This meansthat Haslell heresenesasthe attribute
definitionlanguage usedto producethe real resultval-
ues,which will usuallybe stringsor functionsdeliver-
ing strings,andthesestringsmaythenbe interpretedn
the target language.However, the dependencef this
attribution mechanisnon Haslell asits attribute defink
tionlanguagés veryweak andadaptinghismechanisn
to a differentattribute definitionlanguagevould be ex-
tremelyeasy

The FunnelWeb-like attribute refelencelanguage is
a typed functionallanguagewith only the String type
allowed for embeddingnto the Haslell code,but alsc
featuringNodeandfunctiontypes.

A typical fragmentmight be the following (the attri-
bute type is definedin term of the type attributesof the
successorsand the label of the nodeis usedinside a
stringconstant):

@type@@@@ = Constr "@label @@@@" (map tp succtypes)
where succtypes = @successors@@ @@ @&t ype@@
In thedocumenbutput,however, andfor easiereading
HOPS rendergheattributereferencdanguagewithout

“@-characteraindin adifferentfont:
type(1) = Constr "label(1)' (map tp succtypes)

wher e succtypes = successors(1,type)
To give a flavour of how this attribution mechanismis
usedwe shav herethedefinitionsof two attributesexpr
andpexpr in a simplified Haslell conversionthat does
not respectsharingin ary way andtakescareof paren
thesisationn only arathercrudeway— thevalueof the
attributeexpr atanodenis astringcontainingaHaslell
expressiorcorrespondingp thesubgraplinducedoy the
noden, andthis Haslell expressioris not parenthesise
ontheoutsidéf easilyavoidable;pexpr hagparenthese
addedat leastif thismalesa difference.Thedefinition
for theconversionof functionapplicationshavshow to
usethenaturalnumberingf thenodef thetypingele
mentfor referringto theattributesof differentnodes:



HaskellAttrib for [Standard.@
expr(1) = expr(2) ++ ' . pexpr(3)
pexpr(1) =" (" expr(l) ++ )"

In the definitionfor A-abstractionye have to take care
whetherthereis a boundvariableor not; we chooseto
usedifferentcornversionsfor this purpose. This is im-
plementedsia the built-in macrobvar which takesfive
arguments: The first agumentrefersto a node;if this
nodehasa boundvariable thenthecall evaluatedo the
fourth agumentin an ervironmentwherethe second
argumentconsiderecasa macroname ;s boundto the
resultof applyingthethird agumentto the boundvari-
able. Otherwiset evaluatego thefifth agument.E.g.,
if @ refersto a binderhaving a boundvariablenode
with the built-in number attributebeing1005, thenthe
macrocall “bvar (1,bv ,number," xbv" ,[ ] )" evaluates
to“"x1005" ", If @ howeverrefersoabinderthatdoes
notbind ary variable(ase.g.in A x. 3), thenthatmacro
callevaluatego“[]".

Herethisis usedio implementhedistinctionbetween
a A-abstractiorin Haslell andanapplicationof const
— sinceA-abstractionglreadyneedparentheseis our
contet, we make thedistinctiononthetop-level:

HaskellAttrib for [A|

bvar(1,bv ,expr,
expr(1) = "(\\ " ++ bv ++ " -> " ++ expr(2)
++ )"

pexpr(1) = expr(1)

’

expr(1) = const pexpr(2)

pexpr(1) =" (" : expr(l) ++ )"

)
SinceHOPS is alanguagendependentermgraphpro-
grammingramework,it is easyto definetermgraphlan-
guagedor differentpurposesand orientedat different
paradigms We now presentwo applicationsvherepro-
gramdn otherlanguagearegenerateffom moreorless
specialisedtHOPS languages.

4. Specialised Graph Traversalsin Smalltalk

Many problemson graphscanbe solvedvia algorithms
that are instancesof a depthfirst traversal coupled
with inheritsynthesiseattribute calculations[1]. The
completealgorithmschemads representethy a HOPS
graphwith about 250 nodes,including 13 parameter
functions.

For dealingwith a givenproblemwe first instantiate
the parameterfunctionsandthenusepartialevaluation
to derive a simplifiedinstanceof thisalgorithmschema.
Partialevaluationasa variantof programtransformation
is realisedusingtherule applicationmechanisni6] and
transformatiorstrat@ies[2] of HOPS.

Examplesfor instancesof the inheritsynthesise
schemarethecomputatiorof stronglyconnectedom
ponentsof a graph,or unification. Herewe presentan
instancethat checksa directedgraphfor agyclicity by
markingeverynodewhile traversingit thefirsttime,and
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clearingthemarkafterhaving traversecall nodeseach
ablefromthenodein question.Reachingamarkednode
duringthetraversalmeanghata cycle hasbeenfound.
Using nonstrict booleanoperatorsensureghat in the
caseof a cyclic graphtheresultis propagitedasfastas
possibleandthatnounnecessaryaversalis performed

The optimisedalgorithmis given by the following,
muchsmaller DAG:

Now the codegeneratiormechanisnis usedin oderto
producethefollowing methodsn theprogrammindan
guageSmalltalk,implementinganefficientcyclecheck
basedon simplegraphnavigation primitives(manually
uglified for reason®f space):

cycle_check: n_359 with: dumy_n_363
Aself If_n_294: (Array with: n_359 with: true)

I1f_n_294: n_290
n_290 first isEnpty
ifTrue: ["n_290 snd]
ifFalse: ["self |f_n_294: (Array
with: (n_290 first cpRemidx: 1)
with: (n_290 snd and:
[self 1f_n_304: n_290 snd with: n_290 fst fst]))]

I1f_n_304: n_303 with: n_299
Mself visvalOrNil: n_299)
isNil: [self visVal: n_299 with: (n_299 isSink
ifTrue: [n_303]
ifFalse: [(((n_299 succs zip: (1 to: n_299 succsSize))
cpRem dx: 1) foldLeft: [:zero_n_335 :value_n_335 |
self 1f_n_314: zero_n_335 with: val ue_n_335]
zero: (Array with: (self If_n_304: n_303 with:
(n_299 succs zip: (1 to: n_299 outDeg)) fst fst)
with: (Array with: n_303 with: n_299))) fst])]
orApply: [:value_n_341 | value_n_341]

If_n_314: n_305 with: n_308
Array with: (self If_n_304: n_305 fst with: n_308 fst)
with: n_305 snd



5. Ada Code Transformation

Another example,which focuseson the HOPS trans
formationmechanisnwasusedto transformAda code
for a primenesspredicateon natural numbers. The
startingpoint is a given Ada algorithmwith unneces
sary parametersvithin local functions. First we trans
latethe givenprograminto HOPS rules;then,by using
fold/unfold techniquesindthetransformatiorfacilities,

anew andoptimisedversionof thefunctionisgenerated.

Finally the attribution mechanismis usedto produce
Adaagain.
Onthewhole,theinitial Adacode

function Isprim(n : Nat) return Bool ean is
function Isdiv (k, n: Nat) return Boolean is
function Divides (k, n: Nat) return Bool ean
begin if n <k then return (n = 0);
else return Divides (k, n- k); end if;
end Divi des;
begin
if k<=1 then return False;
else return (Divides (k, n) or Isdiv (k- 1, n));
end if;
end |sdiv;
begin return not (Isdiv (n/ 2, n)) and (2 <= n);
end Isprim

is thustransformednto thefollowing version:

function Isprim(n2 : Nat) return Bool ean is
function f4(n9 : Nat) return Boolean is
function f6(n3 : Nat) return Boolean is
begin if n9 > n3 then return n3 = 0;
else return f6(n3 - n9); end if;
end f6;
begin if 2 >n9 then return Fal se;
else return (f6(n2)) or (f4(n9 - 1));
end if;
end f4;
begin return (not (f4(n2 div 2))) and (n2 > 1);
end isPrim

S

6. Let Sharing Make a Difference

Thetranslationto Haslell assketchedin Sect.3 could
equallywell be handledvia expandingthe term graph
to a syntaxtree first, and then applying corventional
attribution techniques— largely this alsoappliesto the
SmalltalkandAda examplef thelasttwo sections.

Termgraphsare,however, notin all contextsequivak
enttotermsandthereforavenow presenainapplication
thatcruciallydependenthepossibilitytorecognisend
classify differentsharingsituations. Although superfi
cially anadhocsolutionusingan operationabpproach
suchasin [1] might seemsimplerto use we claimthat,
alreadyin the examplewe presenthere the declaratve
approactprovesto be mucheasierto understanéndto
argueabout.

The problem we shall tackle is the generationof
Haslell definitionsfrom term graphruleswith the con
straintthatsharing bereflectedn theformulationof the
Haslell rule.

Thefollowing casedhave to bedistinguished:

» If a sharednodehasno successorghenit will be
representetly asingleidentifierandthesharingmay
beignored.All othercasegshereforeassumehatthe
sharechodehassuccessors.
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« If the sharednodeis only reachabldgrom therule’s
right handside then:

— If thereis no A-boundvariableoccurringfree be-
low the sharednode,then the expressionrepres
entedby that node shouldbe the right-hand side
of a definitionfor anidentifier for that nodein a
wher e-clause.

— Otherwisethe correspondinglefinition hasto be
putinsideal et -bindinginsidetheinnermosi-ab
stractionbindingonesuchfreevariable.

* If anodewith successors reachablérom bothrule
sidesandif theexpressiorrepresentetly thesharec
nodeis apatternthenthisshouldbecorvertedinto an
as-patterron the left-handside andinto a referenc:
to the variable bound by the whole patternon the
right-handside.

Thisalsocoversthe caseghattheleft handsideis
a recursvely defined patternoccurring somavhere
within theright-handside andthattheright-handside
is apatternreachablén theleft-handside(asin some
projectionrules).

» Otherwisethesharingisignored.

A few of theseeffectsareillustratedin the following

termgraphrule:

This rule is translatedautomaticallyinto the following
Haslell definition:
f (v20 @(a, b)) g = (a v30, v30)
where v30 =\ x -> let v26 = const X
in ((g b v26), v26 v20)

Weonly sketchthesolution:We startfrom anattribution

with valuesfor threeattributes:

1. Every node has an attribute containing a unique
Haslell identifierfor the casethatthatnodeneedso
be representedby a variable(in the above example
threeof theseareused:v20, v26, andv30).

2. Oneattribute containsa Booleanvalueindicatingfor
eachnodewhetherit is the sourcenodeof the left-
handside,

3. anotheBoolearattributeindicateshesourcenodeof
theright-handside.

The nodesof the left-handside have attributesindicat

ing whetherthey mightbepatternssothatin thecaseof

sharingan aspatterncanbe generatedEvery nodehas
two attributesthatindicatewhich rule sidesit is reach
ablefrom. Thistogethemwith thereferenceo themultis
etsof thecorrespondingttributesof its predecessoe
ableseachnodeto determineexactly its sharingstatus

Bindingsfor sharingareaccumulateth synthesisedt

tributeswhich arescanneatA-nodedor thosebindings

which containthe boundvariable;thesearetheninteg-
ratedinto a local | et -binding;the remaindeiis further
transmittedria thesynthesisedttributeand atthetopof



theright-handside,turnedinto a wher e-clause.Every
nodehasanattributethatprescribetiow it isto beturned
into Haslell syntaxdependingon the stringsthat rep
resentits successorshis syntaxprescriptions usedfor
building expression®ntheright-handsideandpatterns
ontheleft-handside.

Thedetailsareratherinvolved — all in all, this only
seeminglysimpleconversionis implementediia tenat-
tributesonly for managingall aspectof determining
rule sidesandsharingstatuseightfor expressiorgener
ationandexpression®n bothrule sidesandthreemore
for theadministratiorof local bindings— but for most
of theseattributestheirdependenciesnotherattributes
arevery simple;quitea few areonly usedfor beingable
to sharetheresultsof intermediatealculationdetween
different attributes. At first sight, an operationalap
proachmight seemto offer simplersolutions However,
in ouropinionthedeclaratveapproachhelpsto makethe
analysiof theproblemandthestructureof thesolution
muchmoreexplicit.

The whole definition is includedin the HOPS user
manual[7]. The baselanguagefor defining attribute
definition functionsin HOPS is Haslell, with an em-
beddedsyntaxfor attribute referencesWherewe use
multisetsin this paperthe mechanisncurrentlyreturns
lists,andsotheuserisresponsibléo only usethemultis-
etstructuremosttypically via f ol dswith commutatve
andassociatie operators.Theimplementatiorcorverts
the resultingattribute valuedependenciefor an attrib-
utedgraphinto asetof Haslell definitionssinceHaslell
considersopdeveland! et -bindingsasmutuallyrecurs
ive, this implementsthe lazy attribution semanticglis-
cussedn Sect2.

7. Concluding Remarks

Wepresentedstraightforvardextensiorof theattribute
grammarapproachto cover term graphattributionsin
closeanalogyto theoriginal syntaxtreeattributions,but
unlike the mostly operationalapproacheso be found
in the literature,our approachis purely declaratve and
includesa naturaltreatmenbf sharingandtheresulting
multiplicity of inheritedattributes.

Sinceterm graphsarea populardatastructurein all
kindsof symboliccomputatiorsystemsincludinginter-
preterscompilerstheorenprovers andproofassistants,
thedeclaratveway of definingtermgraphattributionsas
presentedh thispaperis anattractve meanf defining
outputfrom termgraphs.
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Fred: An approach to generating real, correct,
reusable programs from proofs.

John Crossley* and Iman Poernomo**

School of Computer Science and Software Engineering
Monash University, Australia

Abstract. In this paper we describe our system Fred for automatically
extracting “correct” programs from proofs using a development of the
Curry-Howard process. (The word “correct” in this paper means “meet-
ing its specification”.) Our system 1. uses Henkin’s technique [6] to
reduce higher-order logic to many-sorted first-order logic, and 2. exten-
sively uses previously programmed functions and abbreviations so as to
imitate normal mathematical practice. As an example of our system we
consider a constructive proof of the well-known theorem that every graph
of even parity can be decomposed into a list of disjoint cycles. Given such
a graph as input, the extracted program produces a list of such cycles as
promised.

The well-known Curry-Howard isomorphism (see e.g. [7] or [4]) has been
used by a number of people including Constable [2], Hayashi [5Jand Coquand
and Huet [8], to produce a program in the form of a term of a lambda calculus
from a (constructive) proof of a formula. Thus, in arithmetic a constructive proof
of a formula of the form VzIya(z,y) (where a(z,y) is quantifier free) yields an
algorithm for computing a function f such that a(7, f (7)) holds for every natural
number n. (7 is the numeral for n.) Our ultimate goal is to produce readable,
resuable and correct programs that people will actually use. We have therefore
developed a system Fred that is user friendly and generates such programs.

We employ an extension of the Curry-Howard isomorphism to a first-order,
many-sorted, predicate calculus that also allows the use of previously programmed
functions (and predicates). This has previously been done successfully in various
higher order systems. Our approach avoids the use of higher order logic. We also
try to mirror, as far as possible, normal mathematical practice. Therefore we
are happy to use programs that the user already possesses, provided that the
user will guarantee that they are correct. (Alternatively, we could say that the
programs we produce are at least as reliable as the ones provided by the user.) In
order to do this we add a computational type theory to our logical type theory
so that we can admit the use of pre-programmed functions and predicates. We
have defined a protocol in [10] between the computational type theory and the
logical type theory of the Curry-Howard isomorphism. This allows us to 1. easily

* jnc@csse.monash.edu.au
** ihp@csse.monash.edu.au
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axiomatize and use pre-programmed functions in our proofs, and 2. investigate
and describe constructive proof “idioms” (analogous to programming “idioms”
or “patterns”).

Our software system, written in C++ and currently called Fred, (see http:
//www.csse.monash.edu.au/fred) for “FREge-style Dynamic [system]”, is our
implementation. At present Fred produces programs in ML. It has a BTEX
output feature, so that we can easily include proofs written in Fred in a document
such as the present paper.

In addition to the purely logical framework our system will allow the use
of rules in a natural deduction style enabling modifications of the underlying
specifications. These were first introduced by Wirsing (see e.g. [11]) and our
present version of them may be found in [3].

We use a standard logical type theory (LTT) of many-sorted intuitionistic
logic. The types are many-sorted intuitionistic formulae and the terms (“Curry-
Howard” terms) are essentially terms in a lambda calculus with dependent sum
and product types that represent proofs.

The technique of reducing everything to first-order logic, albeit with many
sorts, is, we believe, first described in Henkin [6]. For each sort s we have a set
of axioms that are Harrop formulae. (The axioms one would normally employ in
constructive mathematics are Harrop formulae.) The restriction is a natural one
and also has a significant effect on reducing the size of our extracted programs.!
axioms. We associate with each many-sorted formula a Curry-Howard term (es-
sentially a term of a lambda calculus) representing the derivation of the formula.
In order to normalize these Curry-Howard terms we have reduction rules whose
application corresponds to proof normalization. (See [4] and [1] for the full list
of rules.)

Our computational type theory CTT is the programming language ML, al-
though it might just as easily be LISP or C++. Any language £ for which
there is a mapping from terms of Church’s simple typed lambda calculus with
parameterized types into £ will work.

New predicates and functions. The LTT respects the operational meaning of its
function terms. That is, each function term of the LTT corresponds to a program
in the CTT. So there must always be agreement between the LTT axioms for
function terms and the CTT definitions of the corresponding programs. Function
terms can be defined in whatever way we wish, as long as they satisfy the axioms
of the LTT. The user is required to guarantee that these programs are “correct”.
Thus we retain a distinction between extensional meaning (given by the axioms
they must satisfy) and intensional meaning (how they are coded in the compu-
tational type theory). For instance the function length, : List (&) - N may be

! Harrop formulae are defined as follows: 1. An atomic formula or L is a Harrop
formula. 2. If @ and 8 are Harrop, then so is a A 8. 3. If a is a Harrop formula and
v is any formula, then v — « is a Harrop formula. 4. If a is a Harrop formula, then
Vza is a Harrop formula.
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introduced in the LTT by the axioms

lengtha(eq) =0
lengtho({a) :: 1) = 1+ lengthy(1)

These axioms define a total function length, in the LTT. A corresponding pro-
gram in the C'TT may be specified as follows:

let rec length_{\alpha} = function
[1-—>0
| a::1 -> 1+length_{\alphal}(1)

In ordinary mathematics, we often abbreviate a formula by a predicate. This
is a useful way of encapsulating information, aids readability and helps us to
identify and to use common “proof patterns”. In Fred, it is permitted to intro-
duce a predicate abbreviation for a formula.

We have defined an extraction mapping from Curry-Howard terms in the LTT
to terms of our CTT ML in a way similar to that in [1]. The full details of this
map can be found in [3].

Theorem 1. Given a proof p¥**13¥:522(2:9) in the logical type theory, there is a
program f in the computational type theory ML such that a(z : s1, f(x) : s2) is a
theorem and the extracted program, f = extract(p), has ML type s;1— > sg * s3
where s3 is the type of the computational content of a(x,y).

Just as every f € Fj has a corresponding program in the CTT, every program
f in the CTT has a corresponding unique constant, f, in the LTT. Thus, as we
had a rule for predicates, so we now have a structural rule (Skolemization) to
allow us to introduce new functions. From the perspective of the associated
Curry-Howard terms, this means that if we have a proof ¢t of Vz3ya(z,y), then
(the universal closure of) a(z, f,(z)) can be treated as an aziom.

New induction rules. Adding a sort s with constructors often gives rise to a
structural induction rule in the usual manner. This may introduce a new Curry-
Howard term recursion operation with the usual fixed point semantics, and an
obvious set of reduction rules. In our graph-theoretic example we reduce cases
by a function g where g is a function giving a “simpler” list, or else a base case
list.

Cycles in even parity graphs. We consider a standard axiomatization of the
theory of graphs, G, in terms of vertices (represented by positive integers) and
edges. The properties we need are expressible in our formal system for G with
the aid of certain extra function symbols for handling, e.g., lists and lists of lists.
These functions have associated (Harrop) axioms in the LTT and computational
definitions in the CTT (¢f. the example of length, above).

Once all the above functions are defined in Fred, we can introduce a predicate
graph(l) (defined in Fred by the conjunction of four Harrop formulae, see [9])
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let rec rho_Chaininduction_LList (11,A,BASE) =

begin match 11 with

[[11 -> BASE

| _ -> A 11 (rho_Chaininduction_LList((g 11),A,BASE))
end; ;

let main =

(let recFunX33 1 =

rho_Chaininduction_LList (1,

(let funX30 x =

(let funX31 X10 = (case3 (Cgrmain (g x))

((let funX32 d = ((lappend d (F x))) in funX32) X10) ([(F x)1) )
in funX31) in funX30),[[1]) in recFunX33)

Fig. 1. ML program extracted from proof of the theorem:VL(evenpar(L) & start(L) #
0 — IM (listcycyle(M, L)))

to mean that a list [ of sort List(List(N)) represents a graph. A graph has even
parity if the number of vertices adjacent to each vertex is even.

In [9] we gave a proof and showed how to extract a program for finding a
cycle in an even parity graph from it. In our paper [10] we extended this proof
to show that every even parity graph can be decomposed into a list of disjoint
cycles. We use extract (see Theorem 1 above) on the latter proof to obtain a
program that gives the decomposition into a list of disjoint cycles. The theorem
that we prove is

H + VL(evenpar(L) & start(L) # 0 — IM (listcycyle(M, L))) (1)

where L, M are lists (of lists of natural numbers) and listcycle(M, L) holds if M
is a maximal list of disjoint cycles in the graph represented by the list L. The
assumption formula H describes the predicate listcycle. (See [9] for the function
start.)

The idea behind the proof is that if we start with an even parity graph
L and apply our previous algorithm to obtain a cycle F(L) in L. Then, by
deleting the edges of this cycle from L, we are left with another even parity
graph, g(L) = L — F(L). We repeat the process until we are left with a graph
that contains no edges. The resulting list of disjoint cycles of L is given by
(F(L),F(g(L)),F(g(g(L))),--.). The base case for a list L is the trivial list
obtained from L by deleting all the cycles.

The Fred Environment. Fred provides an advanced GUI for modular proof
development.

The underlying “look and feel” of the environment is based on popular In-
tegrated Development Environments for programming languages (e.g., the Mi-
crosoft Visual Suite or Borland C++ Builder). The environment provides the
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following features: 1. Fred uses a Multiple Document Interface, allowing for many
proofs to be edited at the same time in separate child windows. This visually
reflects the manner in which mathematicians solve a theorem — by breaking it
into separate related lemmas. 2. Proofs are presented in tree form, using a “nav-
igation directory tree” visual component that is familiar to users of Windows
or MacOS operating systems. 3. Formulae are validated by a “drag and drop”
action.

In Fred, just as in mathematics practised by mathematicians, we can examine
a proof at various levels of “granularity”. We layer the proof and the full details
may be found in [9].

The ML program extracted for the is displayed in Fig.1 where Cgrmain is a
program corresponding to other lemmas used in the proof of the theorem and g
and f are pre-programmed functions — see Appendix C of [9] for a full listing of
their programs.
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1 Introduction

More and more software systems are used in safety critical areas. In practice,
the quality of such software, or its correctness, is still assured by inspecting its
source code, or testing. Experience in the areas of railway control systems [5]
and space station control systems has shown the formal verification of concur-
rent software systems is necessary and feasible, especially if one concentrates
on those properties relevant for synchronisation. Verified Systems GmbH and
the Bremen Institute for Safe System (BISS) have successfully analysed a fault-
tolerant data management system [3] for the International Space Station (ISS)
(under the contract with DaimlerChrysler Aerospace, DASA). In that project,
some properties like deadlock [1] and livelock freedom [2] have been investigated
based on CSP specifications and the model-checking tool FDR.

Until now there exist only a few practical tools to support the automatic
analysis of existing software systems, let alone tools for translating them into a
special formal method like CSP so that the associated model-checking tools can
be applied. An important reason for choosing them, except for some previous
experiences with CSP and FDR, is to take advantage of the HOL-CSP system
[10], a semantic encoding of CSP in Higher-Order Logic within the theorem
prover Isabelle [7], for performing those verification tasks that exceed the power
of a model-checker. In the industrial project mentioned above, existing programs
were manually transferred to CSP specifications. In this procedure, errors can be
introduced, regardless how carefully it is done. In addition, this process is very
inefficient and requires deep knowledge of the formal method used.

This paper presents the system Java2CSP which translates concurrent Java
programs into CSP processes. Our goal is to verify automatically the synchro-
nization behaviour, such as deadlock and livelock, of the original Java programs
with the model-checking tool FDR.

2 Implementation Approach

In contrast to programming languages CSP was designed as a notation and
theory for describing and analysing systems whose primary interest arises from
the ways in which different components interact at the level of communication.
CSP differs from concurrent programming languages in three important aspects:
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— CSP was designed to be a notation for purely communicating systems: the
computations internal to the component state (variables, assignments, etc.)
are ignored.

— CSP supports no structured types, like strings, arrays, etc.

— The CSP notation for describing concurrency is quite simple: a set for com-
munication events and a set of parallel operators like || for synchronised or
||| for asynchronised composition.

To interpreter concurrent Java programs in CSP the system Java2CSP makes
an abstract representation of a Java program by removing all parts that do not
influence its synchronisation behaviour, in order to reduce it to a manageable
size. Then, CSP process patterns are introduced for simulating the concurrency
concepts of Java, like shared variables, threads, and monitors.

For the verification of synchronisation behaviours of concurrent programs it
is not necessary to inspect every detail of the original code, since only a subset
of the programmed statements have impact on properties like deadlock and
livelock freedom. Theoretically, every program with finite states can be verified
by a model-checker like FDR, but it is still necessary to consider the problem
of state space explosion. In fact, the main obstacle of using model checking for
industrial projects is to solve this problem. It is therefore necessary to generate
a CSP specification which represents an abstract version of the original Java
program showing only the amount of detail which is relevant for the verification
of its synchronisation behaviour. The important abstractions we applied are:
abstract object-model, abstract interpretation of types and abstract representation
of algorithms.

CSP processes which simulate those mechanisms that are supported by Java
but not by CSP such as shared variables, threads and monitors, are called process
patterns. The following CSP-process, for example, simulates a shared integer
variable, where channels read Num and writeNum are for the reading and writing
operation, respectively:

VarNum(var,val) = writeNum.var?x -> VarNum(var,x)
[1

readNum.var!val -> VarNum(var,val)

The parameters are for the variable’s name and its current value. The reading
operation does not change its value, while after a writing operation the variable
gets a new value.

3 The System

Java2CSP is implemented in Java. Figure 1 gives an overview of all system com-
ponents. The system is divided into three phases: the bytecode analysis, the
syntax-tree analysis and the code generation.

Bytecode analysis
The Java bytecode, instead of the Java source text, of a Java program has be
used as the source code for the translation, since
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bytecode analysis syntax-tree analysis code generation

‘ Java bytecode parser ‘ ‘ thread identification ‘

‘ channel generation ‘

‘ variable identification ‘

‘ dependence analysis ‘ —

‘ algorithm abstraction ‘

- rocess generation ‘
‘ syntax-tree generation ‘ ‘ P g

‘ process pattern introducti or1

Fig. 1. The system architecture

— The Java Class File Format is a standard determined by Sun Microsystem.

— The Java Class File Format can not only be used for user applications written
in Java, but for applications which can be compiled into this format.

— A Java program can include some auxiliary sources from libraries or from
other users, which are sometimes only available in their bytecode represen-
tations.

The bytecode parser consists of two elementary parts. One reads a Java class file
and writes the class information from a code segment into a file and one initiates
the parsing process and resolves the dependency relation between classes (depen-
dence analysis). The generated constructs maintain a shallow branch hierarchy
and use only references as a structure. With such information it is difficult to
make lower level analysis later. For this reason the parsed information will be
transformed into a syntax-tree at an abstract level by the syntaz-tree generation.

Syntax-tree analysis

For the evaluation of concurrent Java programs it is important to identify threads
which can run concurrently, and to identify variables which influence the be-
haviour of threads in different ways. A structure variables, for example, influ-
ences the control flow of some threads; or a synchronization variable called by
wait- and notify-method can change the state of some threads.

A program contains not only code to control its concurrent and synchronous
behaviour, it may contain parts which take over the functional tasks and have no
influence on its control flow. It is not necessary to translate them into CSP specifi-
cations for the verification of synchronization properties of the original program.
Abstracting algorithms of a Java program from such codes is another impor-
tant step for generating compact CSP specifications and for efficiently model-
checking.

Code generation

The code-generation phase converts the above generated syntax-trees with all
necessary information into a CSP specification. Such a CSP specification consists
usually of a set of channel definitions, a set of auxiliary processes and a main
process.
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Within a generated specification the main process specifies always the main-
method of the original Java program, and all in the Java program created threads
will be translated into processes, as well. The whole system is composed of
all these single generated processes which synchronise with process patterns
specifying shared variables, threads and monitors, etc.

Figure 2 shows a screenshot of Java2CSP’s simple graphical user interface.
On the left are three windows showing the original java file (Source File), the
corresponding CSP specification (Qutput File) and the system output (Java2CSP
Output), respectively. The generated CSP specification can be saved in a FDR file
using the Save button. Together with the specification two assertions will always
be generated for the model-checker FDR to prove the deadlock and livelock
behaviours of the original Java program.

= The Java2 C5P Frontend BN
Source File Analyse:
package examples; j ¥ monitors
/4 File LockTest.java N waitinotify
public class LockTess { o
private int cvar = 0; /{ commen wariable Cptions:
privace int counter = 0; // counter for the access of cwvar X P
private boolean critl = false; Mumeric min: |0
privace boolean criv? = false;
Mumeric max: |10
] g s
Ohject max: i
Cutput File
HIN_Fm= o k]
MW= 10 — Ignore Classes:
MAX_OBJ LockTest = 1 java. lang. Threadt j
MiX_0BJ LockTest Threadl = 1 java.lang. Thread Grou
MAX_0BJ LockTest_Thread: = 1 jawa. lang. String
MIN_RINGE_LockTest= 1 :
MAX_RANGE LockTest= MIN RANGE LockTest+ MAX_0BJ LockTess-1 1
MIN_RANGE LockTest_Threadl= MAX_RANGE_LockTesw+l
_| Generate comments

[ | Ftirmiza Tranclotinn

JavaZCSP Output

Java ~meSOM  javalosp.javaZosplonverver -—of -c0 -¥1 -aml —awl -min¥al=0 -maxal=10 |- Load...
Parsing. ..ok
Building analysis data and resolving class relasionships...ck Save...

Bnalysis Pass $1 {building syntax trees)...ok

Bnalysis Pasy $I (determining used mevhods, searching for threads of comgroll...ck
Enalysis Pass $2 {deleving algortihms not influencing synchronisation). ..ok
Enalysix Fass #4 {deletving empvy or unused methods)...ck

Freparing code generavion. ..ok

Writing ouvput dava to file 'temp.fdri'.. .ok T lat
Translation completed. Duration: B3s {1:03), b kB Byvelode/s ransiaie

Fig. 2. The Graphical User Interface of Java2CSP
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4 Conclusion

When we began with this work we thought the most difficult part of the sys-
tem should be in the area of compiler construction, because the translation of
Java bytecode to efficient structures for the analysis is in no means trivial. In
reality, it turned out, however, that the representation of Java programs as CSP
specifications is more difficult. For this purpose some abstraction methods have
been implemented, such as the abstract representation of Java object-model, of
Java types and algorithms. A set of CSP process patterns have been developed
as well, which specify the general behaviour of a set of Java mechanisms, like
shared variables, threads and monitors. Both of them are the most important
parts of the system.

At present the system Java2CSP is in an experimental stage. The representa-
tion of floats and strings has not been implemented, nor the timed synchronisa-
tion. Although it can translate a lot of concurrent Java programs, like any other
compiler output format, the output of Java2CSP is again the input for FDR, the
improvement of the quality of the output format with respect to the readability
and the recoverability is also an indispensable effort to make the system practical
useful for large Java programs.
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Recently there has been much interest in the automatic and semi-automatic
verification of parameterized networks, i.e., verification of a family of systems
{P; | i € w}, where each P; is a network consisting of i finite-state processes.
Apt and Kozen show in [AK86] that the verification of parameterized networks
is undecidable. Nevertheless, automated and semi-automated methods for the
verification of restricted classes of parameterized networks have been developed.

In [BBLS00] we first transform a given infinite family of networks of finite
processes into a bisimilar single transition system whose variables are set vari-
ables and whose transitions are described in WS1S, the weak monadic second
order logic of one successor. We call such systems WSI1S transition systems.

The idea of representing sets of states of parameterized networks by regular
languages is applied in [KMM*97], where additionally finite-state transducers
are used to compute predecessors. The work presented in [ABJN99] extends
the idea by considering the effect of applying infinitely often a transition that
satisfies certain restrictions.

Contrary, in our approach we do not try to compute the exact set of reach-
able states. Instead, our tool PAX computes a finite abstraction of the obtained
WSI1S transition system. The abstract system gives us an over-approximation
of the set of reachable states, but also maintains some properties of the original
control flow. These properties can be analyzed using model-checking techniques.
Therefore, PAX provides a reachability analysis and translations to input lan-
guages of some model checkers.

Since our abstraction is guaranteed to be conservative, i.e., the abstract
system exhibits for every behavior of the WS1S system a corresponding abstract
behavior, we are able to verify universal path quantified properties of the WS1S
system. These properties also include liveness properties.

But a problem in the verification of liveness properties is that often they do
not hold on the abstract level since abstraction introduces a lot of new cycles
that have no concrete counterparts. Therefore, PAX offers an algorithm to add
fairness conditions to the abstract system which are guaranteed to hold for the
concrete system, and which rule out these cycles as possible counterexamples.

Moreover, in [BLS00] we show how to deal with fairness requirements already
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given for the concrete system. Combining these techniques allows us to verify
some interesting liveness properties of non-trivial parameterized networks.

We first shortly explain our verification approach and give some details about
the functionality of the PAX tool afterwards.

1 Approach

The verification problem we would like to tackle is the following: Given a param-
eterized network P || ... || P, and a quantifier-free linear-time temporal formula
Y(p1,.--,px), we want to prove Py || ... || Py EVp1,...pp < 9(pr,-..,pk),
for every n € w.

Our approach is the verification by abstraction and we proceed as follows:

1. Transformation of the given infinite family of networks of finite processes
into one bisimilar transition system with set variables; for details see
[BBLS00]. To be able to compute abstractions automatically, we restrict
ourselves to the class of parameterized networks which can be described
in WS1S. In this paper we assume the parameterized network to be given
as a WS1S system.

2. Finding an abstraction relation. We use boolean systems as abstract sys-
tems. For heuristics choosing a suitable abstraction relation see [BBLS00,
BLS00].

3. Construction of the abstract system using PAX. A conservative abstrac-
tion is computed, hence, the concrete property is guaranteed to hold for
the concrete system when the corresponding abstract property can be es-
tablished on the abstract level.

4. Enrich the abstract system with fairness conditions which can be safely
added, since they are guaranteed to hold for the concrete system.

5. Model-check the abstract system to prove that it satisfies the abstract
property.

2 The pax Tool

2.1 Constructing the abstract system

In this section, we show how to automatically construct a finite abstract tran-
sition system that can be model-checked from a given abstraction relation and
a concrete system.

Let S = (V,0,T) be a given WS1S system consisting of a set of variables V,
an initial state predicate O, and a set of transitions 7, each transition 7 given
as a predicate p,. Let a be an abstraction relation given as predicate a(V, Va).
Notice that since the abstract variables are booleans, the abstract system we
construct is finite, and hence, can be subject to model-checking techniques.
Moreover, we make use of the fact that both a(V,V4) and the transitions in T
are expressed in WS1S to give an effective construction of the abstract system.
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The abstract system we construct contains for each concrete transition 7 an
abstract transition 74, which is characterized by the formula

IV, V&0V, Va) A pr (V, V') AGO,VY)

with free variables V4 and V.
The initial states of the abstract system we construct can be described by
the formula
W:alV,Va) .

To compute the abstract transitions and initial states, one has to find the set
of all models of these formulae, which is possible since we only have WS1S formu-
lae. This is done by PAX, and it uses the decision procedures of MoNA [KM98,
HJJ*96] for this purpose.

The input for the PAX tool consists basically of a predicate describing the
initial states, predicates describing the transitions of the system, and the ab-
straction relation given by a set of predicates, one predicate v, for each abstract
boolean variable a. The abstraction relation is A ,cy, (a ¢ 9,). All these pred-
icates are only allowed to have concrete variables as free variables.

Example 2.1 Here we give an example transition. Pci is the set variable for
control location i. A process j is at control location i, iff j € Pci and j ¢ Pck
for all k # i. The primed variables refer to the post-state of the transition, while
the unprimed versions refer to the pre-state.

exl i: Pc3 = empty & Pc5 = empty & Pc6 = empty & Pc7 = empty
4 i in Pcl & i in Pc2’
& alll j: j "= 1i =>

(j in Pcl <=> j in Pc1’) & (j in Pc2 <=> j in Pc2’)
& (j in Pc3 <=> j in Pc3’) & (j in Pc4 <=> j in Pc4’)
& (j in Pcb <=> j in Pcb’) & (j in Pc6 <=> j in Pc6’)
& (j in Pc7 <=> j in Pc7’)

The next example shows part of a result of a PAX computation.

Example 2.2 Some example transitions computed by PAX are given below.
Here, the abstraction relation relates an abstract variable aPci to a concrete
state by the formula aPci < Pci # (.

Variables: aPcl aPc2 aPc3 aPc4 aPcb aPc6 aPc7 a_error a_inv
Abstract transitions:

t12 : 100000000 -> 010000000

t12 : 110000000 -> 010000000

t12 : 100000000 -> 110000000

t12 : 110000000 -> 110000000

The PAX tool is able to do a forward state exploration to verify invariance
properties of the abstract system. Moreover, it is possible to translate the
abstract system to Promela (the input language of the model-checker Spin) and
to the input language of SMV/NuSMYV. Thus, these model-checkers can also be
used for verification. Another option is given in Section 2.2.
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2.2 Constructing abstractions of abstract systems

If one succeeds in computing the abstract system as shown in Section 2.1, this
abstract system can be model-checked, or it can be first augmented with fairness
conditions as explained in Section 2.3 and then analyzed.

The decision procedure for WS1S is based on constructing a finite automaton
over finite words that recognizes the set of models of the considered formula.
In practice, however, it can happen that the automaton cannot be constructed
because of its size. Assume we have a concrete system S and an abstraction
relation a. Let S5 be the abstract system, though it is not computable for us.
In this case, we propose to go on as follows to obtain an abstraction S4 of Sa.

The states of Sy are sets of states of S4. We assume that each such state ¢
is given by a characteristic predicate g.

We start with a state representing the set of initial states of S4. This set
is usually much simpler to compute than the abstract transitions. Given now
a state g and concrete transition 7, we construct new states by computing for
each abstract variable a; the set M; C {true, false} of fulfilling values for aj of

VAV, V' GVA) AV, VA) A pr(V, V) A (d & 0i(V'))

In case M; is empty for some 4, then there does not exist any post state, and
hence, the computation for the other variables can be omitted. Otherwise, one
takes as abstract post-state of S4 the set {s | Vi : s(a;) € M;}. This set contains
at least all possible abstract post states w.r.t. 74. It is not difficult to see that
this method computes an abstraction of S4, and hence, is also an abstraction
of S.

In case some of the transitions can be computed as shown in Section 2.1,
these abstract transitions can be used to compute the precise post-states for
this transitions instead of the over-approximation.

2.3 Marking Algorithm

It is well known that an obstacle to the verification of liveness properties us-
ing abstraction, is that often the abstract system contains cycles that do not
correspond to fair computations of the concrete system. A way to overcome
this difficulty is to enrich the abstract system with fairness conditions or more
generally ranking functions over well-founded sets that eliminate undesirable
computations.

In this section we present a marking algorithm implemented in our tool
that given an abstraction of a WS1S system enriches the abstract system with
strong fairness conditions while preserving the property that to each concrete
computation corresponds an abstract fair one.

The method uses a marking algorithm that labels each edge of the con-
sidered abstract system with one of the symbols {+x,—x,=x} for each set
variable X of the original WS1S system. Intuitively, the labels —x resp. =x
express whether the transitions at the concrete level reduce resp. maintain the
cardinality of a set X, the label +x represents all other cases.

Marking Algorithm

Input: WSI1S system S = (V,0,7), abstract system Sg = (Va,04,7Ta).
For each 74 € T4 let 7 be the corresponding concrete transition.
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Output: Labeling of T4

Description: For each X € V and each edge 74 € Ta, let A(X,T, <),
with < € {C, =}, denote the WS1S formula:

a(V,Va) Aa(WV' V) Ap.(V,V') = X' < X.

Then, mark 74 with —x, if A(X, 7, C) is valid, mark 74 with =x, if
A(X, 1,=) is valid; otherwise mark 74 with +x.

Now, for a set variable X we denote with 73 the set of edges labeled with
+x. Then, we add for each such X and each transition 74 labeled with —x
the fairness condition (74, Ty ) which states that 74 can only be taken infinitely
often when one of the transitions in 7] are taken infinitely often.

The generated fairness conditions can be expressed as LTL formulae and
the model-checker can check certain properties under the assumption that these
conditions are not violated. This is necessary in most cases to establish liveness
properties.

3 Conclusions

We presented a method for the verification of universal properties of parameter-
ized networks. Our method is based on the transformation of an infinite family
of systems into a single WS1S transition system and applying abstraction tech-
niques on this system. To be able to prove liveness properties we presented a
method to add fairness requirements to the abstract system. We have applied
this method, which has been implemented in our tool PAX, to a number of pa-
rameterized protocols. To compute the finite abstract system we use MONA
to decide the WS1S formulae. The following table shows the time and mem-
ory needed for the construction of some examples. We used a Sun Ultra 5/10
UPA/PCI (UltraSPARC-IIi 440MHz) with 1024 MB of memory.

Example Time Memory
Szymanski 3 sec 20 MB
Dijkstra 1 min 30 sec | 260 MB
Simple D. 1 min 7 sec | 214 MB

Table 1: PAX construction of abstract transition systems

Although the PAX tool is in an experimental stage, the first results obtained
using our methods and PAX are very encouraging and can be found at
http://www.informatik.uni-kiel.de/“kba/pax/
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1 Motivation

Verification techniques for reactive systems are traditionally classified as either deductive or al-
gorithmic. Deductive techniques can handle complex systems, but their implementation based on
interactive proof assistants requires careful guidance by expert users. Algorithmic techniques such
as model checking have found wide acceptance because they promise full automation, but they are
usually restricted to finite-state models. Abstraction techniques [2, 3] promise to integrate the two
paradigms. In this paper we propose a particular approach to abstraction centered around the notion
of predicate diagrams, finite-state transition systems whose nodes are labelled with state predicates
and represent the set of system states that satisfy these predicates. Diagrams serve as intermediaries
between specifications and properties: on the one hand, non-temporal proof obligations ensure that
the diagram represents the specification; these must in general be discharged using theorem proving.
On the other hand, properties can be established from the diagram using model checking, obviating
the need for tedious temporal-logic reasoning that is typical of liveness proofs. We also show that
techniques from abstract interpretation can be used to generate diagrams that can at least serve as a
starting point for verification.

Predicate diagrams can be shown to be as powerful as traditional deductive verification. Prag-
matically, the use of predicate diagrams may be preferable because of the potential for substantial
automation. They may also be attractive because similar notations are used in semi-formal design
methods [1] and can aid documentation. Similar diagrammatic techniques have been proposed by
the STeP group [8]; they can also be used as the basis for deductive model checking [11]. Our def-
inition is somewhat different in the treatment of fairness conditions. It is also slightly more general
in that several actions can be represented within a single diagram, which is useful for the proof of
refinement relations, a topic that we do not consider in this paper.

2 Predicate Diagrams

We express system specifications and properties in a variant of linear-time temporal logic whose
formulas are built from state predicates and actions, which may contain primed state variables. For
example, z > 3 is a state predicate, and z < y’ + 1 is an action. For an action A, we denote by
ENABLED A the state predicate obtained from A by existential quantification over the primed state
variables. For a state predicate P, we denote by P’ the action obtained from P by replacing all
flexible variables v by v’. Temporal formulas are then built using boolean connectives, the always
operator [, and quantification over rigid (state-independent) variables.

The semantics of state formulas is defined with respect to a state, i.e. an assignment of values to
state variables, and a valuation of the rigid variables. Actions are interpreted relative to a pair (s, t)
of states, where s and ¢ interpret respectively the unprimed and primed state variables. Temporal
formulas are interpreted over behaviors, which are w-sequences o = sgys; . . . of states [6, 9]. Derived

* This work has been partly supported by a PROCOPE grant from A.P.A.P.E. and DAAD.
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connectives include the eventually operator defined by ¢ F = —-O-F and, for an action A4, the
formulas

WF(A) = OQUENABLED A = O0A SF(A) = OOENABLED A = O0A

that assert weak and strong fairness conditions for A. This logic is similar to Lamport’s Temporal
Logic of Actions [7] except that it is not invariant under stuttering. We consider system specifications
written in the form Init A ONext A L where Init is a state predicate characterizing the system’s
initial state, Next is an action representing the next-state relation, and L is a conjunction of formulas
WF(A) or SF(A).

We assume the underlying assertion language to contain a finite set O of binary relation symbols
< that are interpreted by well-founded orderings. For < € O, we denote by < its reflexive closure.
We write O= to denote the set of relation symbols < and <, for < in O.

The definition of predicate diagrams is relative to finite sets P and 4 that contain the state
predicates and actions of interest. We denote by 7 the set containing the predicates in P and their
negations.

Definition 1. A predicate diagram G = (N, I, 6, o, ) over P and A consists of

— afinite set N C 27 of nodes,

— afinite set I C N of initial nodes,

— afamily § = (64)ac4 Of relationsd4 C N x N,

— afamily o = (04)ae4 of edge labellings o4 that associate finite sets {(#1,<1), ..., (&, <&)}
of terms ¢; paired with a relation <; € O= with the edges (n, m) € 424,

— amapping ¢ : A — {NF,WF, SF} that associates a fairness condition with every action in A
(NF indicates ““no fairness™).

We say that the action A € A can be taken at node n € N iff (n, m) € §4 holds for some m € N.

Definition 2. Let G = (N, 1,4, 0,() be a predicate diagram over P and A. The set tr(G) of traces
through G consists of all w-sequences o = sy sy . . . Of states such that there exist sequences ngn; . . .
and AgA; ...of nodes n; € N and actions A; € A such that all of the following conditions hold:

— ng € I is aninitial node,

— (n4,mit1) € da, holdsforall i € N,

s; = n; holds forall 7 € N,

- (8i,8i+1) E Ai holdsforall i € N,

— (8i,841) E t' < tholdsforall i € Nand (¢, <) € 04,(ni, nit1),

— for every action A € 4 such that {(A) = WF there are infinitely many ¢ € N such that either
A; = A or A cannot be taken at n;, and

— for every action A € A such that ((A) = SF, either A; = A holds for infinitely many : € N or
there are only finitely many 7 € N such that A can be taken at n;.

Predicate diagrams are finite labelled transition systems whose nodes are sets of state predicates
that hold at the system states represented by the node. (We indifferently write n for the set and
the conjunction of its elements.) Traces through a diagram are behaviors that correspond to fair runs,
where enabling conditions of actions A € A are identified with the existence of A-labelled edges. We
define the notion of conformance between diagrams and temporal formulas by trace inclusion. The
following theorem gives a set of non-temporal proof conditions that ensure that a diagram conforms
to a system specification.

Theorem 3. Let G = (N, I,4,0,() be a predicate diagram over P and A, and Spec = Init A
ONext A L be a system specification. If all of the following conditions hold, then & € tr(G) holds
for all models o of Spec.
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Fig. 1. The “dining mathematicians” example.

1 E Init = \/ n
nel
2. EnANet= \/ AAm’ holdsfor everynoden € N.
{(A,m):(n,m)Eda}

3. EnAAAm =t < tholdsforall (n,m) € §4 andall (t,<) € 0a(n, m).
4. For every action A € A suchthat ((4) # NF:

(@) If ¢(A) = WF then = Spec = WF(A).

(b) 1f ¢(A) = SF then |= Spec = SF(A).

(¢) E n = ENABLED A holdswhenever A can be taken at node n.

(d) EnAA= —-m'holdsforal n,m € N suchthat (n, m) ¢ 4.

If the conditions of theorem 3 holds, we say that G represents the specification Spec. As an ex-
ample, Fig. 1 contains the specification of the “dining mathematicians” example, a mutual-exclusion
protocol taken from [3], and a predicate diagram (w.r.t. the predicates shown and the single action
Next) that represents that specification. The variables ¢y and ¢; represent the control states of two
processes that alternate between “thinking” and “eating”. The integer variable n is shared between
the processes to ensure mutual exclusion.

As finite transition systems, predicate diagrams can easily be encoded into the input languages
of standard model checkers such as Spin [5], recording the active node and the last action taken.
For every predicate p € P we define the atomic propositions b, and b, such that they are true in
precisely those nodes that contain p, respectively —p. We assume the fairness conditions indicated
by the diagram. For every term ¢ and relation < € O such that (¢, <) appears in some ordering
annotation o4, we add an assumption that ensures that whenever edges labelled by (¢, <) are taken
infinitely often, then edges that are labelled by neither (¢, <) nor (¢, <) are also taken infinitely
often. This condition can be expressed by a Streett-type formula.

The encoding of a predicate diagram in a model checker can be used to verify temporal formulas
built from predicates in P, substituting 4, and b, for occurrences of p and —p. For example, we
can verify the following properties for the “dining mathematicians” specification from the diagram
of Fig. 1:

(Pos) O(n € Nat An #0) (Ezcl) O-(cp = “e” Aep = “e”)
(Liveg) OO(cog = “€”) (Live;) O0(er = “€”)

The first two properties are invariants that assert that » remains a positive natural number throughout
any run of specification DM, and that mutual exclusion is ensured. The remaining properties are
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pcl: 11 12 13 14 15

Fig. 2. Predicate diagram for the Bakery agorithm.

liveness properties that assert starvation-freedom for both processes. Note that property (Live; ) can
be established despite the cycle between the two leftmost states in the diagram, because the ordering
annotations forbid that cycle to be followed indefinitely.

3 Generation of Diagramsby Abstract Evaluation

Instead of verifying the conditions of theorem 3 with the help of a proof assistant, we can try to
generate a diagram that represents a given specification by abstract evaluation of the initial condition
and the next-state relation based on user-defined (conditional) rewrite rules. Rules appropriate for
the dining-mathematicians example include

even(0) —even(1)
even(z) = even(y) = even(z + y) even(z) Z even(y) = —even(z + y)
z € Nat ANeven(z) Az #0=>zdiv2#0 z € Nat = even(z) V —even(z)

These rules are first applied to the initial condition Init. The resulting formula is transformed
to disjunctive normal form; each disjunct gives one possible initial node. State expansion is done
similarly by evaluating the action Next based on the information about which predicates are true,
resp. false, in the source node, and collecting information about the target nodes. The same technique
can be used to evaluate other action formulas, in particular those with non-trivial fairness conditions.

It may occasionally happen during state expansion that there is insufficient information about
the source node n (represented by unprimed variables) to evaluate some predicate P that appears
as a guard in the action currently considered. We can then abort the construction, asking the user to
supply more rewrite rules. Alternatively, we may treat P as if it were true; this respects condition
(2) of theorem 3 because it can only add disjuncts on the right-hand side. On the other hand, it
may invalidate condition (4c), so we are not allowed to use this approach for actions that have non-
trivial fairness conditions. In any case, we mark such edges as “maybe” edges to alert the user that
they could be obvious culprits when model checking fails. As a third alternative, we have found it
useful to reconsider the predecessors, say n1, - - ., ng, of n in the part of the diagram that has been
constructed so far, and to check whether n; A Next An’ implies P’ or its negation, using an automatic
theorem prover. In that case, we add P or =P to the set of predicates contained in n, splitting the
node if necessary.

If the procedure does not fail, the generated diagram is guaranteed to represent the given specifi-
cation. In particular, the existence of an edge (other than edges marked as “maybe”) leaving a given
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node n implies the enabledness of the action at n. We have prototypically implemented the proce-
dure outlined above, using the rewrite engine from Atelier B [10], the automatic prover Simplify [4],
and the model checker Spin. Fig. 2 shows a predicate diagram generated for the two-process version
of Lamport’s “Bakery” algorithm, a standard benchmark problem for the verification of infinite-state
systems. We have omitted the predicate labels, but have indicated the control locations (“14” is the
critical section). One process moves horizontally, the other one vertically. The diagram contains two
nodes where both processes are at location “I3”; these are distinguished by which process holds the
lower “ticket” and may therefore proceed. In producing this diagram, we have only included rules
to distinguish between the “ticket” variables ¢; and ¢ being zero or not. The remaining predicates
have been introduced “on the fly” via backtracking as explained above. Both mutual exclusion and
liveness have been verified by Spin from the diagram.

4 Discussion

We consider predicate diagrams as an interface between specifications and properties. In this pa-
per, we have emphasized the “bottom-up” construction of diagrams starting from the specification.
Dually, deductive model checking [11] relies on a “top-down” approach where an initial diagram
that ensures the desired property is interactively refined until the conditions of theorem 3 can be
established. The bottom-up approach could be characterized as “abstract model checking” because
it generates the full state space of the model modulo the abstraction defined by the predicates in P.

The results reported in this paper, though encouraging, are still preliminary. It remains to consider
more systematically the annotation of generated diagrams with fairness and ordering information.
Another interesting option to explore is the verification of refinement relations between specifica-
tions. This is possible because we do not formally distinguish between specifications and properties,
and because we allow transitions that correspond to different actions to be represented within the
same diagram. We also intend to study appropriate generalizations for parametric systems.
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1 Introduction

Model checking has been proven to be a powerful tool in formal verification of sequential
circuits, reactive systems, protocols, etc. The model checking of systems with huge state spaces
is possible only if there is an efficient representation of the model. Reduced Ordered Binary
Decision Diagrams (shortly: OBDDs) [1] allow an efficient symbolic representation of the
model [8].

In the following we present techniques that attack two mayor problems of symbolic model
checking:

e Finding a good partitioning of the transition relation of the system under consideration.

o Efficient dynamic variable reordering during the computation.

All techniques have in common that high level information is utilized. For the first problem
RTL information is used to improve the quality of the partitioning. While, for the second
problem detailed knowledge about the model checking process is used to accelerate variable
reordering.

2 RTL based Partitioning Heuristic

The computation of the reachable states (RS) of a sequential circuit is an important task for
synthesis, logic optimization and formal verification. If the RS are computed by using OBDDs,
the system under consideration is represented in terms of a transition relation (TR). Since the
monolithic representation of the circuit’s TR usually leads to unmanageable large OBDD-sizes,
the TR has to be partitioned [2, 4]. The quality of the partitioning is crucial for the efficiency
of the RS computation. If the TR is divided into too many parts the computation of transitions
will be unnecessarily time consuming. On the other hand a number of partitions that is too
small will lead to a blow-up of OBDD-size and hence, memory consumption. Partitioning the
TR is usually done without utilizing any external information.

A common strategy for partitioning of the TR as it is used e.g. by VIS [3] proceeds in three
steps:

1. Order latches. First, the latches are ordered by using a benefit heuristic [5] that per-
forms a structural analysis of the transition relations of the latches to address an effective
AndEXxist [4]. operation. Hence, the heuristic considers: variables that may be quantified
out, highest index in the function, etc.
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2. Cluster latches. The single latch relations are clustered by following a greedy strategy.
Latches are added to a OBDD (i.e. by performing AND) until the size of the OBDD
exceeds a certain threshold.

3. Order clusters. In the last step the clusters are ordered similarly to the latches by using
a benefit heuristic (VIS uses the same heuristic as in Step 1).

Although the standard method optimizes the partitioning twice, its main disadvantage is that
it uses only structural information to optimize the partitioning for an efficient schedule for the
AndExist operation during the image computation.

Our new heuristic improves this optimization by including additional semantical informa-
tion about the represented functions. This information is taken from the register transfer level
(RTL) description of the design given in Verilog [6].

As experimental results show, there is a close conjunction between the RTL description and
an efficient image computation.

The RTL heuristic proceeds in three steps:

1. Group latches. The latches are grouped according to the modules given in the top mod-
ule of the RTL description in Verilog. Within the groups the latches are ordered by a
lexicographic order that takes into account submodule names and bit numbers.

2. Cluster groups. The groups represent borders for the clusters. There is no cluster con-
taining latches from different groups. To control the BDD size of the clusters, the greedy
partitioning strategy is applied within the groups.

3. Order clusters. In the last step the clusters are ordered by using the benefit heuristic
from the standard method.

Experiments were performed using real life Verilog benchmarks. The RTL partitioning
method significantly outperforms the standard method and reduces CPU time as well as mem-
ory consumption by more than 50%.

3 Dynamic Variable Reordering

Due to the huge number of operations applied to the OBDDs during symbolic model checking,
the computation time is strongly related to the size of the OBDDs. As the order of the input
variables has a strong influence on the size of the OBDDs, well suited variable orders have to be
found. Since it is NP-hard to find the optimal variable order for a given function, much effort
is spent on finding reasonable good orders or improving given ones. In practice, techniques
that improve the size of a given OBDD by changing the variable order dynamically during
the computation have been proven to be most powerful. Many common dynamic reordering
approaches are based on swapping the position of neighboured variables in a given OBDD.
This operation can be performed locally and thus, can be computed efficiently. The sifting
algorithm [11] that is based on this idea moves each variable to the top and to the bottom of the
order to find its best position. This algorithm has been proven to be one of the most efficient
reordering strategies.

Dynamic reordering strategies are especially useful for symbolic model checking, since the
represented functions (e.g. reachable state sets) are changing during computation. As a conse-
guence, the variable order has to be adapted to fulfill the new requirements. Although, dynamic
variable reordering may drastically reduce the OBDD size, often it is very time consuming and
sometimes does not lead to substantially smaller OBDD sizes.
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In the following we present adaptions of reordering techniques originally intended for com-
binatorial verification to the specific requirements of symbolic model checking. The techniques
are orthogonal in the way that they use either structural information about the OBDDs or se-
mantical information about the represented functions. The application of these techniques
substantially accelerates the reordering process and makes it possible to finish computations,
that are too time consuming, otherwise.

3.1 Block Restricted Sifting

Our goal is to accelerate the variable reordering process while simultaneously retaining reason-
able OBDD sizes. To manage this, we adapted a method called block restricted sifting (BRS)
[10] to the needs of model checking. The idea behind BRS is to move the variables during
reordering only within fixed blocks instead of moving them through the complete order. From
theory it is known, that changing the variable order of a block does not affect the size of the
other blocks.

The determination of the block boundaries follows from a communication complexity argu-
ment. A small information flow between two parts of an OBDD indicates a good candidate for
a block boundary. If there is only little information flow between two blocks the distribution of
variables to these blocks is well chosen. Improving the variable order inside the blocks might
lead to a significant reduction of the OBDD size. The information flow is best indicated by the
number of subfunctions that cross one level. The subfunction profile of an OBDD counts not
only the number of nodes per level, it also adds the edges that cross a level without having a
node on it to the profile.

With the aid of this profile we get easily computable structure information of the repre-
sented function. For a successful application of BRS to symbolic model checking, we have to
find solutions for the following problems:

1. Restricting the search space. Sifting only within fixed blocks significantly accelerates
the reordering process, but it may keep one away from good orders. In conventional appli-
cations like combinational verification the larger number of reordering with changing block
boundaries compensates this negative effect. For symbolic model checking this is not true,
because of the small number of reorderings. Therefore, we have changed the concept of block
boundaries. We now allow a small overlapping of the blocks, i.e. a few levels beside the bound-
aries of the block are also incorporated in the reordering. This concept partially remedies the
problems stated above.

2. Acceleration power. To take full advantage of the BRS approach one should restrict the
size of blocks. The native BRS searches for local minima in the subfunction profile. This may
lead to unnecessary large blocks in the lower part of the OBDD, where the number of nodes
and represented subfunctions naturally decreases. We have changed this strategy to a first-fit
strategy, i.e the first level that fulfills the given properties is chosen.

3. Settings. The parameter, that is mostly responsible for the trade-off between reordering
time and the quality of the computed order is the minimal fraction of variables that a block must
contain. This fraction is denoted MINBLOCK. In contrast to combinatorial verification, where
MINBLOCK = 10% is an average setting for model checking larger blocks are appropriate.

3.2 Sample Sifting

Sampling is a common heuristic technique applied to optimization problems with huge search
spaces. The idea behind the sampling strategy is to choose a relevant sample from the given
problem instance to solve the optimization problem for the chosen subset and to generalize the
solution to the complete instance.
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Applied to the problem of reordering OBDD variables the sampling strategy can be de-
scribed as follows [9, 7]: (1) Choose some OBDDs or subOBDDs from the common shared
OBDD. (2) Copy these OBDDs to a different location. (3) Reorder only the Sample. (4) Shuffle
the variables of the original BDD to the newly computed order of the sample.

Step 1 is the most critical during this sample sifting process. As mentioned before, one
should choose a relevant sample. If there is some knowledge about the represented functions,
it can be used for the choice of samples. The chosen OBDDs should not be too small, so that
as many variables of the representation as possible are contained in the sample. If there is no
knowledge about the represented functions the sample may be chosen randomly from the single
roots of the shared OBDDs. The reordering (Step 3) can be done with any common reordering
technique (we used the standard sifting algorithm). If the OBDD size increases after Step 4 the
OBDD is reshuffled to the original order, but one may repeat the complete process to obtain
better results.

A successful application of the sampling method to model checking is challenging, be-
cause the two main problems (Time and Quality) of variable reordering for model checking
instantiate as follows:

T1. Small samples. The size of the sample is the most important parameter of sample
sifting. Choosing a smaller sample will reduce the computational overhead for copying the
sample. But even more important: The accelerating effect of sample sifting results from the
fact that only a small OBDD is reordered, also resulting in smaller intermediate OBDD sizes
during the reordering. To fulfill the quality requirements of model checking the sample has to
be chosen larger than for combinatorial applications.

T2. Number of Trials. More than one trial per sample reordering might be a good idea for
combinatorial application but it is not for model checking. Here only one trial is possible due
to time limitations.

Q1. Sample without semantical information. If no external semantical information is
available one may at least use some structural information about the represented functions. We
used a pseudo-random strategy proposed by [9]: Starting from the top level of the OBDD nodes
are chosen randomly as roots of subOBDDs for the sample.

Q2. Sample with semantical information. One should make use of the semantical in-
formation about represented functions provided by the model checker. In [9] it is proposed to
use recently-used-roots, i.e. roots involved in operations in the last steps of the computation.
Again, this strategy is not suitable for model checking, since the huge number of operations
will result in a random choice of roots. Instead, we use recently-used-important-roots, i.e. roots
involved in elementary model checking operations like Exist-Abstract, Universal-Abstract and
And-Abstract (see [8]). If we cannot fulfill the size requirements for the sample by using im-
portant roots we fall back to the method of choosing random roots. Using this strategy we
obtain the best results for sampling.

Q3. Methods for copying. In [9] copying a fraction of an OBDD is done by copying
nodes in DFS postorder way. We replaced this method by a DFS preorder way. Our experience
has shown that the preorder method works more stable and produces better results than the
postorder method.

Both methods (BRS and Sampling) were able to reduce CPU time by more than 30% with
only small additional memory consumption (5% to 10%). For detailed results see [12]
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Abstract

In this extended abstract we describe the design and implementation of a parallel
model checking algorithm for the alternation free fragment of the p-calculus. The al-
gorithm is based on a characterisation of the model checking problem for this fragment
of the p-calculus in terms of games or (equivalently) a certain class of alternating Biichi
automata. Strictly speaking, we present a parallel algorithm for checking the empti-
ness of so called 1-simple-weak—alternating—Biichi automata. It is designed to run on a
cluster of workstations. A prototype implementation within the verification tool Truth
shows promising results.

1 Introduction

Formal methods are becoming more and more popular for the specification and verification
of complex hardware and software systems. The term formal methods usually denotes the
application of mathematical methods for specifying and verifying the underlying systems.
The formal specification of a system helps to understand the system under development.
Furthermore, a common and formal basis for reasoning about the system is given.

Two approaches for the verification of systems can be distinguished. Model Checking
([Eme90] and Theorem Proving. In this extended abstract we focus on model checking.
Numerous case studies have shown that especially model checking improves the detection of
errors during the design process (see [CW96] for an overview).

Despite the developments in the last years, the so—called state space explosion limits its
application. While partial order reduction ([Pel98]) or symbolic model checking ([McM93])
reduce the state space by orders of magnitude, typical verification tasks still last days on
a single workstation (see for example [GLLT00]) or are even undecidable due to memory
restrictions.

On the other hand, simple and cheap but powerful parallel computer networks can be
build—up by connecting workstations. Libraries such as the message—passing—interface (MPI,
[For93]) and a corresponding implementation (e.g. for LINUX) allow a significant speed—up
for solving problems provided a suitable parallel algorithm can be formulated. Even more
important for model checking, a cluster of workstations offers an enlargement of the total
memory available. Hence, it is a fundamental goal to find parallel model checking algorithms
which then may be combined with well-known techniques to avoid the state space explosion.

In this extended abstract we present a parallel algorithm for checking the emptiness
of so called 1-letter-simple-weak—alternating—Biichi automata (1ISWABA). This class of
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automata was introduced in [BVW94] and it was shown that model checking the alternation—
free fragment of the p-calculus can be reduced to the emptiness problem for this class of
automata. While this fragment is already important on its own, it subsumes the logic CTL
which is employed in many practical verification tools.

This class of automata can be described in terms of two party games. It can be shown
that by solving the emptiness problem for a ISWABA corresponding to a model checking
problem one can determine a winning strategy for the winner of a corresponding model
checking game. The latter may be employed by the user of a verification tool for debugging
the underlying system interactively. The relation between this class of automata and certain
(model checking) games is deeply investigated in [Leu99].

In this way, we get, to our knowledge, the first parallel model checking algorithm for
this fragment which even supports interactive debugging. A first prototype implementation
within the verification tool Truth ([LLNT99]) shows promising results. A drawback of our
algorithm is that it global. This means, that the whole underlying transition system is
constructed and analysed before the model checking problem is answered. However, since
model checking the alternation—free u-calculus is inherently sequential, it is unlikely to avoid
this problem in the context of parallel algorithms.

2 Alternating Biichi Automata

Nondeterminism gives an automaton the power of existential choices: A word w is accepted
by an automaton iff there exists an accepting run on w. Alternation gives a machine the
power of universal choices and was studied in [BL80, CKS81] (in the context of automata).
In this section we recall the notion of alternating automata along the lines of [Var96] where
alternating Biichi automata are used for model checking LTL. For an introduction to Biichi
automata we refer to [Tho90].

For a finite set X of variables let B*(X) be the set of positive Boolean formulas over
X, i.e., the smallest set such that

e X C BT(X)
e true,false € B (X)
° Y €BT(X) = oA eBT(X),pVeeBT(X)

The dual of a formula ¢ € BT(X) denoted by $ is the formula where false is replaced
by true, true by false, V by A and A by V.

We say that a set YCX satisfies a formula ¢ € BT (X) (Y | ¢) iff ¢ evaluates to true
when the variables in Y are assigned to true and the members of X\Y are assigned to false.
For example, {q1,q3} as well as {q1, g4} satisfy the formula (g1 V ¢2) A (g3 V q4).

Let us consider a Biichi automaton (BA). For a state ¢ and an action a let {q1,...,qx} =
{¢d' | ¢ % ¢'} be the set of possible next states for (¢,a). The key idea for alternation is
to describe the nondeterminism by the formula ¢; V ---V gx € B(Q). Hence, we write
g5 q V-V If k=0 we write ¢ — false. An alternation is introduced by allowing an
arbitrary formula of B(Q). Let us be more precise:

Definition 2.1

An Alternating Biichi Automaton (ABA) over an alphabet ¥ is a tuple A = (Q, 6, qo, F)
such that Q) is a finite nonempty set of states, qg € (Q is the initial state, F C Q) is a set
of accepting states and § : Q x X — BT (Q) is the transition function.
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Because of universal quantification a run is no longer a sequence but a tree. A Q-
labelled tree 7 is a pair (¢,7") such that ¢ is a tree and T" : nodes(t) — @. For our needs,
we can restrict 1" to be one—to—one for children of the same parent. Hence, we identify nodes
in the following canonical way: The root is marked with ¢, if a node s is marked with w
then a child s’ labelled with ¢ is marked with wgq.

For a node s let |s| denote its height, i.e., || = 0, |wq| = |w| + 1. A branch of 7 is a
maximal sequence 8 = sg, S1,... of nodes of 7 such that sg is the root of 7 and s; is the
parent of s;41, ¢ € IN.

A run of an alternating BA A = (Q,0,qo,F) on a word w = aga;y ... is a (possibly
infinite) @-labelled tree 7 such that T'(¢) = ¢qo and the following holds:

if x is anode with |z| = i, T'(z) = q and 6(q, a;) = ¢ then either ¢ € {true, false} and
2 has no children or x has k children x4, . .., zj for some k < |Q| and {T'(z1),...,T(zx)}
satisfies .

The run 7 is accepting if every finite branch ends on true (i.e., §(T(z),a;) = true where
x denotes the maximum element of the branch wrt. the height and ¢ denotes its height) and
every infinite branch of 7 hits an element of F infinitely often. The language L(A) is, as
usual, the set of all words for which an accepting run of A exists.

It is obvious that every Biichi automaton can be turned into an equivalent (wrt. to the
accepted language) alternating Biichi automaton in the way described above. The converse
is also true and is described for example in [Var96]. However, the construction involves an
exponential blow up. This yields an exponential algorithm for checking the emptiness of the
language of an ABA. For a subclass of ABAs suitable for our needs a linear non-emptiness
decision procedure can be given.

3 1SWABA

An ABA A = (Q,6,qo,F) over an alphabet X is called 1-letter iff the alphabet contains
just one letter, i.e., |X| = 1. Hence, the language of A is either empty or a single (infinite)
word.

A formula ¢ € BY(X) is simple if it is any one of true, false, atomic, a conjunction
or a disjunction. The latter means that it has the form xq * -- - * 2 where * € {V, A} and
x; € X. An ABA is simple if all its transitions are simple.

A weak ABA is a tuple A = (Q,d,q0, F,F ) such that (Q,3,qo,F) is an ABA. Fur-
thermore, there exists a partition of () into disjoint sets @1, ..., Q,, such that for each set
Q;, either Q; N FT # 0 or Q;NF~ # (). That means, each Q; contains either one (or more)
supporter(s) or one (or more) spoiler(s). Q; is called accepting set or rejecting set,
respectively. In addition, there exists a partial order < on the collection of the @;’s such
that for every ¢ € Q; and ¢’ € @Q; for which ¢’ occurs in §(q,a) for some a € ¥, we have
Q; < @Q;. Thus, transitions from a state in (); lead to states in either the same @); or a lower
one. It follows that every infinite path of a run of a weak ABA ultimately gets “trapped”
within some @Q;. The path then satisfies the acceptance condition if and only if Q); is an
accepting set. Indeed, a run visits infinitely many states in F T iff it gets trapped in an
accepting set.

This observation can be employed for a sequential algorithm which decides whether the
language of a 1ISWABA A is empty or not. We give a sketch of such an algorithm. It
constructs a graph whose nodes are the states of A. It labels a state ¢ by green or red
depending on whether there is an accepting run or not for the automaton starting in q.
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Let (@, E,l) be the graph where the nodes are the states of the automaton .4 and
(q,qd") € ECQ x @ iff the formula §(q) contains ¢’. Furthermore, let [ : Q@ — {\/, A} be
the mapping denoting whether (¢, a) is a disjunction or a conjunction, resp. This graph
directly corresponds to the game graph defined when considering the game—-based approach
of model checking. Hence, we call this graph game graph.

As A is weak, there exists a partition of @) into disjoint sets @); such that each set Q;,
either is an accepting set or a rejecting set. Furthermore, there exists a partial order <
on the Q; such that for every ¢ € Q; and ¢’ € Q; for which ¢’ occurs in 6(g, a), we have that
@ < Q;. Thus, transitions from a state in @); lead to states in either the same @); or a lower
one. It is easy to see that the @); correspond to strongly connected components in the game
graph.

The graph can be coloured by processing these strongly connected components (or, a
little bit imprecise, the @;) up according to the partial order. To make the algorithm
deterministic, enlarge the partial order on the @Q; to a total order. Let Q; be minimal wrt.
to <. Hence, every transition for every state of Q; leads to Q;. If @); is accepting its nodes
are labelled by green otherwise by red. In particular, if Q; only consists of a state ¢ with
d(q,a) = true (false) it is labelled by green (red).

Let @; be the next set of states wrt. to the total order. Then all states in Q; < @Q); are
already coloured by either red or green. Now we distinguish two cases. Suppose @; is a
rejecting set. If there is an \/-node z leading to a lower component @; which is labelled by
green then all the nodes are labelled by green. Otherwise, every run gets trapped within this
rejecting set or within lower rejecting one. Thus there no possibility to successfully leave
the rejecting set and all the nodes are coloured by red. If (); is an accepting set, one has
to look for an /\-node leading to a lower red-coloured component. Then the component is
coloured by red, otherwise by green. In this way, all nodes can be coloured by either green
or red.

Note that this colouring can be employed to obtain winning strategies for corresponding
model checking games which play an important role for interactive debugging specifications
([Leu99, SS98]). In the next section, we explain how to find the labelling in parallel.

4 Parallel Model Checking

The idea of our algorithm is, given a 1ISWABA, to construct the game graph in parallel as
well as to determine the colour of its nodes in parallel. It is obvious that the construction of
the game graph can be carried out in parallel by a typical breadth first strategy. Assuming
a shared memory architecture, one has only to care about a well-suited load sharing. The
parallel construction and distribution for distributed memory is sketched at the end of this
section.

The parallel colouring process is carried out speculative. For example, given a supporter
q € F*, it determines an accepting component. This component is coloured green unless
there is an A\-node with an edge to a lower component which is coloured red. Anyway,
the supporter ¢ will be labelled by green. Furthermore, a notification is send to its direct
ancestors qi,...,qr. This notification tells each ¢; that one of their children changed their
colour. Hence, they recompute there own colour according to following obvious rule: If ¢; is
an \/-node then it is labelled by green if one of its successors is green, otherwise red. If ¢;
is an A—node then the dual is carried out. Note, that it is allowed that some successors are
not labelled at all. If the colour of ¢; has changed, it sends a notification to its predecessors
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where the same procedure starts again. Otherwise, the procedure is done. 1t is clear, that
the ancestors can be processed in parallel. The whole algorithm stops, if all notifications
are processed.

The correctness of the algorithm can easily be seen by recalling that the game graph can
be divided into strongly connected components which are partially ordered and a correct la-
belling can be obtained by processing the components according to this order. The labelling
remains correct, if the labelling of higher (wrt. the partial order) components is done spec-
ulative and corrected as soon as the correct colour of the lower component is determined.
Note, that the colour of leafs and leaf components (i.e. components which are minimal for
the partial order) are correctly labelled from the beginning.

It should be mentioned that for an implementation, the two steps of constructing the
game graph and labelling the nodes are carried out concurrently.

While the above presentation is ideal for parallel machines with shared memory, it can
be modified for distributed memory machines easily. Let f be a function mapping the states
of the automaton to a processor of our network. Usually, one takes a function in the spirit
of a hash function assigning to every state an integer and subsequently its value modulo the
number of processors. Then f determines the location of every state within the network
deterministicly. In a breadth first manner, starting with the initial state g of the automaton,
the game graph can be constructed in parallel with the help of f in the following way. Given
a state ¢ (and possibly some of its direct predecessors), send it to its processor p,. If ¢
is already in the local store of p4, then ¢ is reached a second time, hence the procedure
stops. If predecessors of ¢ were send together with ¢, the list of predecessors is augmented
accordingly. If ¢ is not in the local memory of p,, it is stored there together with the given
predecessors as well as all its successors q1, . . . , gk, the states within the formula 6(g, a) which
are computed. These are send in the same manner to their processors, together with the
information that g is the direct predecessor. The corresponding processes update their local
memory similarly.

It should be clear, how to combine the parallel construction of the game graph and the
labelling procedure described before.

5 Conclusion

In this paper we presented a parallel game—based model checking algorithm for an important
fragment of the p-calculus. The demand for parallel algorithms becomes visible by consid-
ering the memory and run—time consumptions of sequential algorithms. Since the employed
fragment of the p-calculus subsumes the well-known logic CTL it is of high practical in-
terest. At the moment, we implement the algorithm within our verification platform Truth.
We have already implemented the described parallel construction of the state space of the
automaton and are extending this implementation by the labelling routines. We have con-
structed automata with several millions of states within minutes on a workstation cluster
consisting of up to 52 workstations. We found out, that the algorithm scales very well wrt.
run—time and memory consumption when enlarging the number of workstations. Further-
more, the number of states on each processor is nearly the same. Within the next weeks,
we will have more results concerning the labelling routine. For the further future, we will
analyse how to combine our algorithm with partial order reduction and symbolic model
checking.
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Model Checking Statecharts with Keeping Hierachies

G. Kwon
Artificial Intelligence Institute
Department of Computer Science
Dresden University of Technology
Germany

Abstract

Hierarchy plays an important role in every phases of software development from
specification to testing. However, it is an excuse for contemporary model checkers such
as SMV [McMillian 92] which consider only the flat-structure of finite transition system
as an input. Thus hierarchical structures are flatten-out first before commencing model
checking it. To overcome this problem, some researches have recently done on
hierarchical model checking which is able to handle hierarchical structures of finite
transition systems directly [Alur 98]. But it is still immature and need more
considerations on this field.

In this paper we will concentrate on model checking statecharts with the symbolic model
checker SMV. We regard this works as stepping-stone to the research on hierarchical
model checking. The reason we consider statecharts as the target specification is that it
provides highly expressive constructs including hierarchy for specifying large-scale
specifications with ease. Already, there has been some works on model checking
statecharts as shown in Table 1.

Table 1 : Previous works on model checking statecharts or very similar to it

Author Specifications | Model Property | Extent | Trandation | Hier-
Checker archy
[Chan, 98] RSML SMV CTL Basic Manual No
Machine
[Damm, 98] | Harel SIEMENS | STD Full Automatic | No
Statecharts AG
[Mikk, 98] Harel SPIN LTL Basic Automatic | No
Statecharts
[Latella, 99] | UML SPIN LTL Basic Manual No
Statecharts
[Gnesi, 99] UML JACK ACTL Basic Manual No
Statecharts
[Lilius, 99] UML SPIN LTL Full Automatic | No
Statecharts
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We classified them into six categories shown in the above. To our surprise, no one
mentions about how to keep hierarchical structure of statecharts when model checking it.
To the best of our knowledge, al previous works deploy bulldozer to flatten out
hierarchical structures of statecharts before starting model checking it.

However, such a flattening can cause transition relations to be very messy. As an
example, consider the following statecharts for the operation mode of dish washer shown
in Figure 1. Only 9 transition relations are there in the original hierarchical model. If we
flatten out, then we get 25 transition relations: 7 for normal operations, 6 for transitions
from operating states to closed, 6 for recording its recent history, and 6 for restoring the
previous status when the door closed. The more we have transition relations, the more
SMV has BDD nodes for representing them.

ﬂlosed

Figure 1: Statecharts for the operation mode in dish washer from [iLogix, 99]
On the other hand, problems with flattening is not over here. It can cause a blow-up of

states, particularly when there is a lot of sharing. As an example of this, consider the
hierarchica model of a digital clock from [Alur 98]. In the top-level, there are 24
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superstates for representing hours of the day. Each such state, in turn, is a hierarchical
state consisting of a cycle through 60 superstates counting minutes, each of which, in
turn, is a superstate consisting of a cycle counting seconds. Such a hierarchical statecharts
of a digital clock has 24 + 60 + 60 = 144 states. On the other hand, the flattened
statecharts has 24 X 60 X 60 = 84,600 states.

For these two reasons, we are interested in keeping hierarchies when model checking
statecharts. Fortunately, SMV provides a module mechanism for the sake of localization
as well as reusability. We believe that it is worthy to make a hierarchical SMV program
for statechart specification with the use of modules. Although modules support only
hierarchy with respect to the syntactic viewpoint not the semantic one, the hierarchical
SMV program for statecharts to be model checked is at least better than the flattened one.
We will show the formalization of statecharts and its semantics. Then the translation rules
are described according to the semantics. And we discuss its advantages and
disadvantages of our works.
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Reflections on Ken Thompson’s Reflections on Trusting Trust
(Extended Abstract)

Wolfgang Goerigk*

Introduction

In 1984, Ken Thompson, the inventor of Unix,
devoted his Turing Award lecture [20] to security
problems due to Trojan Horses intruded by com-
piler implementations. Source level verification is
not sufficient in order to provide trusted compiler
executables.

In this paper! we formally and mechanically
prove that the previous sentence is true, using
the ACL2 theorem prover [11]. Furthermore, we
sketch a correct way out that involves an explicit
compiler target level correctness proof [12, 7, 9].

Scenario and the Challenge Suppose we
construct and verify a compiler written in its
own source language SL and use an initial SL
compiler executable to bootstrap it, producing a
new executable, now a machine implementation
of the correct compiler. Then, as usual, we run
the bootstrap test [21], that is we execute the
new compiler implementation and apply it to the
correct source code again. Suppose this test suc-
ceeds, i.e., the new compiler executable, applied
to its own verified source code, reproduces itself
instruction by instruction.

This gives us two identical new compiler exe-
cutables, generated by applying implementations
of the verified source code to the verified source
code. Can we give a rigorous mathematical argu-
ment that proves our procedure to finally produce
a correct compiler machine implementation?

Unfortunately not. The final executable can
be as incorrect as the initial implementation. It

*Institut fiir Informatik und Praktische Mathematik,
University of Kiel, Olshausenstrafie 40, D-24098 Kiel, Ger-
many. wg@informatik.uni-kiel.de

1The work reported here has been supported by the
Deutsche Forschungsgemeinschaft (DFG) in the Verifiz
and VerComp projects on Correct Compilers and Tech-
niques for Compiler Implementation Verification

is the challenge of this paper to construct such
a bad guy, which will pass nearly every test,
compiler validation suites, the very practical and
valuable strong bootstrap test, and nevertheless
it might eventually cause a catastrophe.

We use the ACL2 [11] to formalize an abstract
stack machine an to mechanically verify a Lisp
compiler. We prove preservation of partial cor-
rectness (L-simulation) [5, 17, 7, 3]. ACL2 allows
for (efficient) execution of machine programs and
to formally talk about compiler bootstrapping,
i.e., about executing compiled compilers compil-
ing compilers. We construct and execute a ma-
licious machine implementation of the verified
compiler, bootstrapping the latter. We prove me-
chanically that — after any precaution on source
level — this executable compiles any but two pro-
grams correctly, but passes the strong compiler
test and compiles exactly one additional source
program incorrectly. Finally, we sketch a tech-
nique for target level compiler correctness proofs,
and finish with conclusions and some remarks on
related work.

The Source Language SL

Our source language is a small subset of ACL2
Lisp, with only a few built in Lisp functions and a
restricted syntax. It is similar to the language L3
[13] of first order mutually recursive functions. A
program is a list of function definitions, followed
by a list of input variables and a main program
expression which may use the input variables.

p u= ((di ... dp) (@1 ... mg) €)
d == (defun f (z1 ... zy) €)
e == claz|(Gf erexes) | (fer ... en) ]

(op e ... e,)
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Expressions e (forms) are either constants ¢, vari-
ables z (symbols not equal to nil or t), condi-
tional expressions, user defined function or oper-
ator calls. Functions and operators have a fixed
number of arguments.

We omit the set of operators, an example, and
also the definition of well-formed expressions and
programs in this abstract. Due to lack of space
we also shift the definition of an operational se-
mantics (a call-by-value semantics defined by an
interpreter called evaluate written in ACL2) to
the appendix (section A).

The Target Machine

The target machine is an abstract stack machine.
Its configuration consists of a code part and a
separate state (or memory) stack, which is a
data stack containing Lisp s-expressions. The
code is never changed.

The machine has six machine instructions. We
can push a constant ¢ onto the stack (PUSHC ¢),
push the stack content (the variable) at a par-
ticular stack position (PUSHV #), pop the n stack
elements below the top (POP n). There is a sub-
routine call (CALL f), that executes the code as-
sociated to a subroutine name within code, and
the (OPR op) instruction applies an operator to
the topmost (one or two) stack cell(s). Moreover,
we have a structured (IF then else) instruction,
that removes the top of stack and executes the in-
struction sequence else if the top has been NIL,
then otherwise.

Machine programs (m) are sequences of (mu-
tually recursive) subroutine declarations (d) to-
gether with a main instruction sequence which is
to be executed on an initial stack after down-
loading the list of declarations into code.

(dy ... dp Ginsy ...
(defcode f (insy ...

insg))

m
d insg))

In the appendix (section B) we define this ma-
chine, i.e. an operational semantics of machine
programs, in ACL2.

Compiling SL to TL

The principle idea of executing SL programs on
such a machine is quite simple and known as

the stack principle. Arguments are found on the
stack; for a given expression e we generate a se-
quence of instructions that pushes the value of e
onto the stack. Functions or operators consume
(pop) their arguments and push the result.

T Lo——_________ltopofstack top auxiliary cells

stack frame
n+lcells

In order to execute a function call (feq ... en),
we compute the argument forms eg ... e, from
left to right and push result by result onto the
stack. After invoking f and using top auxiliary
variables, we find the value v; of the formal pa-
rameter x; at position (top + n —i). Using the
current formal parameter list as a compiletime
environment, we can find the variable positions
and compute their relative addresses.

Compiling expressions and programs

Due to lack of space we shift the compiler pro-
gram Cgr, to the appendix (section C) and just
give some explanations on how expressions, defi-
nitions and programs are compiled:

Constants are pushed onto the stack using
PUSHC. For a variable we push the content of the
stack at its relative address using PUSHV. For a
function or operator call we subsequently com-
pile the argument forms, thereby incrementing
the number top of used stack cells, and then gen-
erate a CALL or OPR. For a conditional, we compile
the condition and then use the machine condi-
tional containing the compiled code for the two
alternatives.

For a function definition, we compile the body
in a new environment, which is the formal pa-
rameter list, say of length n. The stack-frame
will be on top initially, so top is zero. The final
instruction (POP n) removes the arguments from
the stack and leaves the result on top.

The function compile-program has three ar-
guments corresponding to the three parts of an
SL program, defs, vars, and main. It compiles
the definitions in defs and appends the result to
the compiled main expression. Finally, we gener-
ate a (POP (len vars)). Thus, if executed on
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an initial stack, the generated program will re-
move its inputs and either return a stack with
the result on top, or an error.

Compiler Source Level Correctness

Before we start proving the correctness of Cgr,,
let us first give some remarks on our notion of
correct compilation. We call a (machine) pro-
gram m a correct implementation of a (source)
program p, if every non-erroneous result of m is
also a possible result of p. The machine may
fail, but it will never return an unexpected non-
erroneous result?. Consequently, we call a com-
piler, e.g. Csp, correct or say that it preserves
partial correctness, if it at most generates correct
implementations m of source programs p in the
above sense.

Compared to specification refinement in VDM
[10], or to former work on compiler verifica-
tion using ACL2 resp. its predecessor Nqthm
([14, 22, 15]), there is a subtle difference in the
notion of correct compilation. In [15] for instance
J Moore proves, that every non-erroneous result
of (the Piton machine on) p will also be computed
by m (on the FM9001), that m is more defined
than p. This allows for optimizations, but trusted
execution of m requires total correctness of p.

The two notions are incompatible. Preserva-
tion of partial correctness allows for executing
target programs with a well-placed trust in their
results, even if the source program is not totally
correct. But it requires for instance complete
runtime error checking. However, it is quite close
to the every day programmer’s intuition. The
target program execution either returns the cor-
rect result, or signals an error, or it returns no
result at all.

The Correctness Proof

Due to lack of space in this abstract we can only
briefly sketch the mechanically checked correct-
ness proof that Cgy, preserves partial correctness.
Essentially, we prove two theorems simultane-
ously by a combined computational and struc-

2 Preservation of partial program correctness [5, 16].
In case of non-determinism we additionally allow the tar-
get program to be more deterministic than the source
program.

tural induction, the correctness theorem for ex-
pressions, and a similar theorem for expression
lists. We prove them for well-formed expressions
in well-formed programs.

Theorem 1 (correctness for form (lists))

If the machine, executed on a compiled form
(list), is defined on a stack for an n, then the
following three conjectures hold:

1. The semantics of the form (list) — in the
given function environemnt and with the free
variables bound to their values in the current
stack-frame is defined for the same n,

2. the machine returns a new stack with the
value(s) of the form(s) on top (in reverse
order), and

3. the stack just below the result value(s) re-
maines unchanged.

The full paper will contain the ACL2 formula-
tions of these theorems and we will present a
more elaborated description of the proof. We
need a lot of lemmas. The combined induction
is suggested by a large admissible ACL2 function
which explicitly lists the entire set of induction
hypothesises we need for the proof to succeed in
every single case.

It is interesting that we have to prove the de-
finedness of the source code semantics and the
correctness of the machine result simultaneously.
The reason is the conditional. It needs not be
strict in both alternatives, so its definedness in-
ductively depends on the value of the condition.
The conditional has actually been the challenging
case to find this proof.

The Compiler Correctness Theorem

The correctness theorem for programs is, after
some technical lemmas, a simple consequence of
the previous theorems, applied to the main ex-
pression of the program. If the source program is
well-formed, and if the target program (applied
to an initial stack containing the correct number
of inputs in reverse order on top) returns a non-
erroneous result on top (is defined), then this
result is equal to the semantics (evaluate) of
the program applied to the inputs.
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Theorem 2 (compiler correctness)

(defthm compiler-correctness-for-programs
(let ((new-stack
(execute
(compile-program program)
(append (rev inputs) old-stack) n))
(value
(car (evaluate program inputs n))))
(implies
(and (wellformed-program program)
(defined new-stack)
(true-listp inputs)
(equal (len vars) (len inputs)))
(equal new-stack
(cons value old-stack)))))

The above theorem is stronger and hence implies
that Csy, preserves partial program correctness.

This finishes the first part of the paper. Sec-
tion C shows a concrete compiler source program
Csr, proved to correctly compile well-formed SL
programs to TL programs with respect to their
operational semantics as formally defined in Sec-
tion A and B, respectively. The machine seman-
tics is executable, so that we can run compiled
programs. The compiler is written in SL itself,
so that we can compile it to TL (somehow), run
it on the machine, and apply it to itself.

Compiler Bootstrap Test

We are now in a typical situation in a compiler
development. We have a correct source program,
but not yet a correct executable. Suppose that we
use an existing (but usually unverified) compiler
executable 7 from SL to TL in order to gener-
ate an initial implementation mg of Csr, maybe
running on a different machine M or generating
(different) host machine code HL. We can then
run mg on machine H, compile Csy, again and
generate an initial TL implementation m; .

( ‘SLCSLTL‘ ‘SL m; 1L

‘SLCSL TL‘SL‘SL my TL‘TL

SL|SL M HL|HL

If Cs1, and hence m; are deterministic programs,
and if we repeat this procedure and apply m; to
CsL again, and if all compilers work correctly, we
get my back, i.e. mo = my. The bootstrap test
(or strong compiler test) [21] succeeds.
Therefore, compiler constructors hold this test
in high esteem in order to uncover bugs. If the
compilers are correct (and deterministic), we can
prove that the bootstrap test will succeed [4].
Hence, if it does not, something has gone wrong.

Theorem 3 (Bootstrapping Theorem)

If mg and Csy, are both correct, if mq, applied to
Csi., terminates with regular result my, and if the
underlying hardware worked correctly, then my is
correct. O

Theorem 4 (Bootstrap Test Theorem)

If mg and Csy, are both correct and deterministic,
if mo, applied to Cgy,, terminates with reqular re-
sult mq, if mq, applied to Csy,, terminates with
reqular result mo, and if the underlying hardware
worked correctly, then my = meo. O

We are now exactly at the point where prac-
tical compiler construction at present stops. We
have implemented a correct compiler on the de-
sired target machine, we have tested it, maybe
even on some more test programs or a validation
suite. And we did a lot more than just hand-
waving or source code inspection for Cgr,. We
proved it correct. But our story does not end
here.

Self-reproduction and Reflection

The full paper will contain a section on a quite
general technique to construct self-reproducing
and reflective programs. Due to lack of space we
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have to omit this here. Just for a taste of it, con-
sider the following conditionally self-refroducing
function, which is an incorrect implementation
of the identity function that works correctly in
any but exactly two particular cases:

(defun ident (x)
(let ((b ’(defun ident (x)
(let ((b ’2000))
(cond ((equal x ’ident)
(subst b (+ 1999 1) b))
((equal x ’login) ’Oops)
(t x))N
(cond ((equal x ’ident)
(subst b (+ 1999 1) b))
((equal x ’login) ’0Oops)
(t x))))

It returns its own code, if applied to the argument
ident (reproduction). It returns Oops, if the ar-
gument is login (catastrophe), and otherwise it
returns its argument (normal).

The Bad Guy

We will now construct an incorrect machine ex-
ecutable Mg by correctly compiling an incorrect
source program Csr,, which we program accord-
ing to

e Cst[Cst] = mo , if m=Csp
CsL [71'] = my , if m=LsL
CsL[7] otherwise

Whenever applied to Cgr, it returns itself (re-
production) and hence passes the bootstrap test
(arbitrarily often). It incorrectly compiles Lgr,
to my (catastrophe), and in any other (normal)
case it behaves like Csy,. The reproduction case
does not even show an effect unless we apply the
result in the catastrophic case (and wait for the
catastrophe to happen). It is highly unlikely to
find such bug by testing.

The full paper contains the entire construc-
tion process and the program Csr. Moreover,
we prove formally, that source level verification
is not sufficient to guarantee the correctness of
compiler executables.

Full Compiler Correctness

The incorrect initial TL implementation g
must (syntactically) differ from what we would

expect as the correct result mg of compiling Csr,.
If we carefully look through mg and compare it
with mg, we would find the mismatch. This is
the idea of an explicit compiler target level veri-
fication.

Let (Csr,TL be a (semantically) correct com-
piling relation between SL and TL, and let Csr,
be a correct implementation of (Csr, tr.>. The
following theorem from [9] can easily be proved
by transitivity of correct implementation:

Theorem 5 (Semantics to Syntax)

If CCsL,TL is correct, if CsL is a correct im-
plementation of (Csp,tL, and if (CsL,m) €
(Csy,TL, then m is a correct implementation of
Csy,t1 as well. Thus, m is a correct compiler
(exzecutable) from SL to TL. |

That means, that if the bootstrap test succeeds
in a stronger sense, if we can assure that this one
execution of the compiler applied to itself gen-
erated the expected target code m = mg, then
we can guarantee that m, if successful, correctly
compiles any program. Note, that this theorem
reduces the semantical question of correct com-
pilation to a final purely syntactical a posteri-
ori code inspection based on code comparison be-
tween Cgsy, and m. m might be mechanically gen-
erated by an arbitrary initial unsafe implementa-
tion of Cs1,. However, if we would try to generate
it by applying m¢ to Csy, the test would fail.

It turns out that there is a technique for such
proofs based on code inspection, which addition-
ally exploits modularization into adequate inter-
mediate layers. A diagonal argument allows for
trusted machine support to generate large parts
without need for checking at all [9, 4].

5.1 Conclusions and Related Work

We have formalized and proved the impact of a
problem due to Trojan Horses in compiler imple-
mentations. In the operating system community,
the problem is known at least since Ken Thomp-
son’s Turing Award Lecture in 1984 [20]. In the
compiler community, the need for compiler im-
plementation verification has, as far as we know,

3We do not see a difference between CsL,rL and CsL
in our ACL2 scenario, but we can look at Cgy, as a correct
implementation of a corresponding specification.
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first been mentioned in 1986 [2] and later in 1988
[14] and again in [15]. But even today the prob-
lem is too often neglected by many authors:

Unless we seriously and rigorously bridge the
gap between source level program correctness and
running code, we hopelessly remain sitting in
the present situation which is best characterized
by the moral of Ken Thompson’s Turing Award
lecture in 1984: “You can’t trust code that you
did not totally create yourself. (Especially code
from companies that employ people like me.) No
amount of source-level verification or scrutiny
will protect you from using untrusted code.”

We have sketched a solution [7, 9], a tech-
nique for explicit compiler target level verifica-
tion based on syntactical code comparison. It
is closely related to runtime result verification
[6, 19] or program checking [1]. It can also be seen
as a translation validation [18], however, we check
sufficient syntactical conditions for the result of
one particular compiler bootstrap, whereas in
[18] every compiler result is semantically vali-
dated at runtime. Semantical translation valida-
tion might have limitations with respect to real-
world optimizing compilers, and furthermore it
produces a new implementation correctness prob-
lem for the checker routines. However, the latter
might be much easier than proving correctness a
priori [6].

In our approach, source code verification and
one additional syntactical target code inspection
together guarantee the (semantical) correctness
and hence trustworthiness of the generated com-
piler executable.
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A SL Semantics

The semantics (evaluate) of an SL program is as expected: the top-level expression is evaluated
after binding the input variables to some (given) inputs. Functions may not terminate, so the
semantics of a program in general is a partial mapping from the inputs to the program result. The
ACL2 formalization requires to add a termination argument, a natural number n, to define evaluate
as a total ACL2 function making partiality explicit. The functions either return a list containing
the value, or ’error, if evaluation exhausts n.

The semantics of a form is defined by the mutually recursive interpreter functions evl and evlist.
It depends on a function environment genv mapping function names to parameter lists and a body
expression, a local environment env mapping free variables to values, and the termination argument
n which decreases if and only if the body of a user defined function is interpreted. The function
evlop evaluates operator calls.

(defun evlop (op args genv env n)

(cond

((equal op ’CAR) (list (CAR (car args))))

((equal op ’CDR) (list (CDR (car args))))

((equal op ’CADR) (1list (CADR (car args))))

((equal op >CADDR) (list (CADDR (car args))))

((equal op ’CADAR) (list (CADAR (car args))))

((equal op >CADDAR) (list (CADDAR (car args))))

((equal op ’CADDDR) (list (CADDDR (car args))))

((equal op ’1-) (list (1- (car args))))

((equal op ’1+) (list (1+ (car args))))

((equal op ’LEN) (list (LEN (car args))))

((equal op ’SYMBOLP) (list (SYMBOLP (car args))))

((equal op ’CONSP) (list (CONSP (car args))))

((equal op ’ATOM) (list (ATOM (car args))))

((equal op ’CONS) (list (CONS (car args) (cadr args))))
((equal op ’EQUAL) (list (EQUAL (car args) (cadr args))))
((equal op ’APPEND) (list (APPEND (car args) (cadr args))))
((equal op ’MEMBER) (list (MEMBER (car args) (cadr args))))
((equal op ’ASSOC) (list (ASSOC (car args) (cadr args))))
((equal op ’+) (list (+ (car args) (cadr args))))

((equal op ’-) (list (- (car args) (cadr args))))

((equal op ’#) (list (* (car args) (cadr args))))

((equal op ’LIST1) (1list (LIST1 (car args))))

((equal op ’LIST2) (list (LIST2 (car args) (cadr args))))
))

(mutual-recursion

(defun evl (form genv env n)
(cond
((zp n) ’error)
((equal form ’nil) (list nil))
((equal form ’t) (1list t))
((symbolp form) (list (cdr (assoc form env))))
((atom form) (list form))
((equal (car form) ’QUOTE) (list (cadr form)))
((equal (car form) ’IF)
(let ((cond (evl (cadr form) genv env n)))
(if (defined cond)
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(if (car cond)
(evl (caddr form) genv env n)
(evl (cadddr form) genv env n))
’error)))
(t (let ((args (evlist (cdr form) genv env n)))
(if (defined args)
(if (operatorp (car form))
(evlop (car form) args genv env n)
(evl (caddr (assoc (car form) genv))
genv
(bind (cadr (assoc (car form) genv)) args env)
(1- m)))
’error)))))

(defun evlist (forms genv env n)
(cond ((zp n) ’error)
((endp forms) nil)
(t (let ((f (evl (car forms) genv env n))
(r (evlist (cdr forms) genv env n)))
(if (and (defined f) (defined r))
(cons (car f) r)
’error)))))
)

(defun construct-genv (defs)
(if (consp defs)
(cons (cons (cadar defs) (cddar defs)) ;; same as (cdar defs)
(construct-genv (cdr defs)))
nil))

(defun evaluate (defs vars main inputs n)
(evl main (construct-genv defs) (bind vars inputs nil) n))

The function evaluate takes an SL program consisting of the declarations defs, the input variable
list vars, the main expression main, and returns the value of main after binding vars to inputs
and constructing (construct-genv) a true association list (genv) from defs mapping the function
names to their extended bodies.

B Machine Semantics

The function opr applies operators to the one or two topmost stack cells. For the stack we use a
list that grows to the left, i.e. we use cons to push an item onto the stack, and nth or nthecdr to
read the contents or pop elements. The function download downloads the declarations into code,
which is constructing a true association list from dcls. We can not guarantee machine programs
to terminate. Consequently we can not guarantee the machine to terminate. So we again add a
termination argument, a natural number n, in order to force the machine to stop execution after at
most n subroutine calls.

(defun opr (op code stack)
(cond
((equal op ’CAR) (cons (MAR (car stack)) (cdr stack)))
((equal op ’CDR) (cons (MDR (car stack)) (cdr stack)))
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((equal
((equal
((equal
((equal
((equal
((equal
((equal
((equal
((equal
((equal
((equal
((equal
((equal
((equal
((equal
((equal
((equal
((equal
((equal
((equal
((equal
))

op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op

’CADR) (comns (CADR (car stack)) (cdr stack)))

’CADDR) (cons (CADDR (car stack)) (cdr stack)))

’CADAR) (cons (CADAR (car stack)) (cdr stack)))

’CADDAR) (cons (CADDAR (car stack)) (cdr stack)))

’CADDDR) (cons (CADDDR (car stack)) (cdr stack)))

’1-) (cons (1- (car stack)) (cdr stack)))

’1+) (cons (1+ (car stack)) (cdr stack)))

’LEN) (cons (LEN (car stack)) (cdr stack)))

’SYMBOLP) (cons (SYMBOLP (car stack)) (cdr stack)))

’CONSP) (cons (CONSP (car stack)) (cdr stack)))

>ATOM) (cons (ATOM (car stack)) (cdr stack)))

’CONS) (cons (CONS (cadr stack) (car stack)) (cddr stack)))
EQUAL) (cons (EQUAL (cadr stack) (car stack)) (cddr stack)))
>APPEND) (cons (APPEND (cadr stack) (car stack)) (cddr stack)))
’MEMBER) (cons (MEMBER (cadr stack) (car stack)) (cddr stack)))
’ASSOC) (cons (ASSOC (cadr stack) (car stack)) (cddr stack)))
’+) (cons (+ (cadr stack) (car stack)) (cddr stack)))

’-) (cons (- (cadr stack) (car stack)) (cddr stack)))

’%) (cons (* (cadr stack) (car stack)) (cddr stack)))

’LIST1) (cons (CONS (car stack) nil) (cdr stack)))

’LIST2) (cons (CONS (cadr stack) (CONS (car stack) nil)) (cddr stack)))

(mutual-recursion

(defun mstep (form code stack n)

(cond

((or (zp n) (not (true-listp stack))) ’ERROR)
((equal (car form) ’PUSHC) (cons (cadr form) stack))
((equal (car form) ’PUSHV) (cons (nth (cadr form) stack) stack))
((equal (car form) °’CALL)
(msteps (cdr (assoc (cadr form) code)) code stack (1- n)))
((equal (car form) ’0PR) (opr (cadr form) code stack))
((equal (car form) ’IF)
(if (car stack)
(msteps (cadr form) code (cdr stack) n)

(msteps (caddr form) code (cdr stack) n)))

((equal (car form) ’POP) (comns (car stack) (nthcdr (cadr form) (cdr stack))))))

(defun msteps (seq code stack n)
(cond ((or (zp n) (not (true-listp stack))) ’ERROR)
((endp seq) stack)
(t (msteps (cdr seq) code (mstep (car seq) code stack n) n))))

)

(defun download (dcls)
(if (comsp dcls)
(cons (cons (cadar dcls) (caddar dcls))
(download (cdr dcls)))
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nil))

(defun execute (prog stack n)
(let ((code (download (butlst prog))))
(msteps (car (last prog)) code stack n)))

C The Compiler Program from SL to TL

The function operatorp identifies operators. The two mutually recursive functions compile-form
and compile-forms compile expressions and expression lists, respectively. Compile-forms iterates
compile-form over forms, thereby incrementing the number top of used stack cells. The function
compile-def generates a TL subroutine, and compile-defs maps compile-def over defs. Finally,
compile-programcompiles the function definitions and appends them to the compiled main program
expression, which additionally pops the input values off the stack. The compiler SL program is:

(((defun operatorp (name)
(member name ’(car cdr cadr caddr cadar caddar cadddr
1- 1+ len symbolp consp atom cons equal
append member assoc + - * listl 1ist2)))

(defun compile-forms (forms env top)
(if (consp forms)
(append (compile-form (car forms) env top)
(compile-forms (cdr forms) env (1+ top)))
nil))

(defun compile-form (form env top)
(if (equal form ’nil) (listl ’(PUSHC NIL))
(if (equal form ’t) (listl ’(PUSHC T))
(if (symbolp form)
(listl (list2 ’PUSHV (+ top (1- (len (member form env))))))
(if (atom form) (listl (1list2 ’PUSHC form))
(if (equal (car form) ’QUOTE) (1listl (list2 ’PUSHC (cadr form)))
(if (equal (car form) ’IF)
(append (compile-form (cadr form) env top)
(list1l (cons ’IF
(list2 (compile-form (caddr form) env top)
(compile-form (cadddr form) env top)))))
(if (operatorp (car form))
(append (compile-forms (cdr form) env top)
(list1l (1ist2 ’0PR (car form))))
(append (compile-forms (cdr form) env top)
(List1l (1ist2 ’CALL (car form))))))))))))

(defun compile-def (def)
(listl (cons ’defcode
(list2 (cadr def)
(append (compile-form (cadddr def) (caddr def) 0)
(listl (list2 ’POP (len (caddr def)))))))))

(defun compile-defs (defs)

(if (consp defs)
(append (compile-def (car defs))
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(compile-defs (cdr defs)))
nil))

(defun compile-program (defs vars main)
(append (compile-defs defs)
(listl (append (compile-form main vars 0)
(list1 (1ist2 ’POP (len vars))))))))
(defs vars main)
(compile-program defs vars main))
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1 Motivation and background

Theorem provers have been extensively used in the context of hardware veri-
fication especially when verifying properties of synchronous circuits. However,
asynchronous techniques are gaining increasing attention, also in an industrial
setting. A delay-insensitive circuit is an asynchronous device whose operation is
based on local communication events, called handshakes, between different parts
of a circuit.

A design method for delay-insensitive circuits based on the action system and
the refinement calculus formalisms was introduced recently [1]. We explore pos-
sibilities to use the Refinement Calculator as a tool performing transformations
and required proofs within this framework.

The Refinement Calculator [2] is an user-friendly environment for program
development using the refinement calculus. It uses the HOL theorem-proving
system as an underlying inference engine and produces as the result of a refine-
ment step a theorem stating that the refinement in question holds. In particular,
the Refinement Calculator contains a package for generic data refinement trans-
formations [2] based on the calculational approach.

The action systems formalism is based on Dijkstra’s language of guarded com-
mands. An action system is essentialy a collection of actions; one of the enabled
actions is nondeterministally selected and executed. Several action systems can
be composed to form a larger system using the parallel composition operator.
The refinement relation used in stepwise derivations of circuits is trace refine-
ment. We rely on the fact that data refinement implies trace refinement of action
systems.

2 Handshake circuits in the Refinement Calculator

In the action system approach to the synthesis of delay-insensitive circuits, com-
munication between components is first described using channels. Each channel
is modelled as a boolean variable, called a channel variable. Then handshaking
expansion which is the most central transformation in this approach introduces
request and acknowledgment variables, called handshaking variables, needed in
the delay-insensitive interaction. In the the Refinement Calculator, the transfor-
mation is naturally modelled as data refinement. The variables replaced represent
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channels between communicating systems, thus they are not local to a particular
system. Therefore, there are, essentially, two options to perform handshaking ex-
pansion. The first one is to treat a parallel composition of action systems as one
system with all channel variables as its local variables. However in such setting,
the size of the objects involved (action systems and the abstraction relation)
makes it very difficult to handle refinement proofs in the Refinement Calculator.
Instead, we have chosen another option which is to consider the refinement of
each system separately.

Refinement in context We consider a system, called a component, and its en-
vironment as a parallel composition of two action systems Since the variables
introduced while the component in question is refined are shared by a system
and its environment, such compositional approach requires to take into account
context of the system. This is done in standard way [3] by introducing two pred-
icates, say I and J, which represent a pair of rely and guarantee conditions,
respectively. The predicate J describes state changes that the system C guaran-
tees to obey, denoted by (I) C (J), provided its environment obeys state changes
specified by the predicate I. Then refinement in a parallel context is defined in
the following way.

Definition 1. Let A and C be action systems and let R be an abstraction
relation. Assume that I and J is a rely-guarantee pair. Then the system C refines
the system A under the relation R in any parallel context that obeys I, denoted
by (I} AXRgC (J), if:

(i) Local data refinement under the relation R: A<gC
(ii) Abstraction relation: R A I A (a'=a) A (' =¢) = R
(iii) Guarantee condition: (I} C (J)

where a and c are the local variables of the systems A and C, respectively, while
R' is the abstraction relation R with all variables primed.

The second condition in the definition ensures that the abstraction relation R is
preserved by the environment.

Rely-guarantee pair In general, rely (guarantee) predicate can be any binary
state predicate that desribes state changes allowed (obeyed) by a component.
In our case, rely-guarantee conditions are used to describe handshake communi-
cation between components and, therefore, they are very concrete and uniform.
Let a be a channel variable that is replaced by two concrete variables, req, and
ack,, in the handshaking expansion. Then the rely and guarantee conditions
associated with these variables are as follows:

Jack (a)
Treq(a)

acke # ackl, = ack, # req,
reqq #req, = ack, =req,

1> 1>
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Composition of handshake components Essentially, handshaking expansion can
be applied to any system that communicates with its environment via channel
variables according to certain rules. As an example, let us consider a system A
with a channel variable, say a. Assume, that the system A initiates a communi-
cation by setting a to true, while its environment is supposed to acknowledge the
communication by setting a to false. Assume that the system 4% is a handshak-
ing expansion of 4. Then the guarantee condition for the system A® is written as
follows: (Jycr(a)) A® (Jreq(a)). Later on we show how proofs of such guarantee
conditions are handled in the Refinement Calculator.

If there are more channels in the component A* the above guarantee con-
dition is to be extended by adding an appropriate conjunct (Jack(b) or Jreq(d))
to the rely or guarantee predicate for every channel b. We call such systems
A and A* a handshake component and an expanded handshake component,
respectively.

Now consider a circuit .4 described as a parallel composition of handshake
components A, ..., A,. The handshaking expansion as a refinement of the entire
system A is established using the following theorem.

Theorem 2. Let A be a parallel composition of handshake components Ay, ..., Ay,.
Assume that A7, ..., AT are the corresponding ezpanded handshake components.
Let Ceny be a set of channels between the system A and its environment. Then
the following refinement holds:

(I) AZrA™ (J)

where A® is a parallel composition of A7,..., A} and R is a conjunction of the
corresponding abstraction relations. Also, J = Neec,,,J(€), I = NeeConyJ(C),
and each J(c) is either Jyeq(c) or Joer(c) depending on which variable is assigned

in A while J(c) is its complement.

The proof of the theorem relies on the theorem for composing refinements in
context [3]. It also exploits the specific form of the rely-guarantee predicates.

Such compositional approach allows to have a library of basic handshake
components such as sequencer, parallelizer, mixer, synchronizer, iteration com-
poser, etc. with the corresponding refinement theorems and use them for the
synthesis of circuits. However, new handshake components can always be intro-
duced whenewer needed. This only requires to prove the handshaking expansion
(in context) for the individual component in question to ensure refinements of
systems with such components later on.

3 Verification

For a number of reasons we model action systems as loop statements in the
guarded commmand language. As an example, a handshake component, called
a mixer, is represented in the Refinement Calculator as the following program:

! The complement of Jyreq(c) is Juck(c), and vice versa.
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program miz2 var -
|[ var a1, a2,b : bool;pc: num | ma; A —az A —b A pc=0-

do

# pc=0 A ay = b,pc:= true,1
# pc=1 A =b— ay,pc:= false,0
# pc=0 A az — b,pc:= true, 2
# pc=2 A b — as,pc:= false,0
od ]|

where a;, ay and b are channel variables while pc is a program counter. We
briefly discuss the verification of the three conditions given in the definition 1
which are needed to establish refinement in a parallel context.

Local refinement Here the system is considered in izolation. To simplify calcu-
lation of concrete systems, the handshaking expansion as a refinement is proven
in several interactive steps each of them dealing with the different aspects of the
transformation. In each of those steps a new system is calculated from the old
one and the abstraction relation using the following rule (or its modifications)
provided by the data refinement package in the Refinement Calculator:

Dr(do A od) =
do Dr(A)#h o c:=cotlc:=C]<t AN (Va-R= R[c:=(]) od

where ¢ are newly introduced variables and R is the abstraction relation. The
rule allows to add new actions, called stuttering actions, to the system which
is essential in the handshaking expansion. In the rule, the second action in the
refining statement is a stuttering one, while ¢ is an expression ranging over the
natural numbers; it guarantees that the stuttering action cannot be repeated
infinitely. The relation R, the guard h and the termination function ¢ are to be
given by the user.

In the first refinement step, a stuttering action is added for each of the
handshaking variables. Adding new actions really means data refinement of the
program counter pc. Therefore, an abstraction relation, say PC, which proves
the data refinement has to specify a relationship between the abstract and con-
crete program counters. The relation PC' is then used by the above rule for
the calculation of a new system. Usually, the calculated system requires further
refinements (simplifications) performed interactively.

In the second step, the handshaking variables are introduced. The relation-
ship between a channel, say ¢, and the corresponding handshaking variables,
req. and ack,, is defined as the following handshaking relation H,:

H, = c¢=req.N\—ack,

The abstraction relation R, also includes invariant CI.: H. A CI.. The invariant
describes how the handshaking variables are related to the program counter of
the refined system. The calculated system normally requires simplifications. The
handshaking variables are introduced in a separate step for each channel.
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Abstraction relation The result of the refinements described above is an ex-
panded handshake component which is a data refinement of the original com-
ponent under the abstraction relation R: PCAH ACI. Here H and CI are
conjunctions (for all channels ¢) of H, and CI., respectively. The second con-
dition in the definition 1 requires to show that the relation R is preserved by
any environment that obeys state changes specified by the rely condition of the
component. For the moment being we have not developed special support for
such verification, since it can be performed using existing libraries of the HOL
system (simplifier, decision procedures, etc.).

Guarantee conditions Due to their specific form, proving guarantee conditions
amounts to establishing certain total correctness formulas. Thus, to establish the
guarantee condition (Jyck(a)) Az (Jreq(a)) we have to show that the following
two total correctness assertions hold for all actions A in the system A®:

CI, ANgAAreg, A—ack, (sA) req,
CI, ANgAN-reqq Nack, (sA) —req,

Here gA and sA are the guard and the body of the action A. The Refinement
Calculator contains the package for establishing correctness assertions which, in
the case of handshake components, usually is able to do this automatically.

4 Concluding remarks

For the moment being we have concentrated on the verification of refinements
of individual handshake components in the Refinement Calculator. Combining
within the Refinement Calculator results of these verifications to derive refine-
ment theorems corresponding to the composition theorem (Theorem 2) remains
to be dealt with in the future. In particular, this would require to treat action
systems in the Refinement Calculator in a proper way instead of just modelling
them as ordinary programs in the guarded command language. Such treatment
is necessary to be able to define a notion of the parallel composition of action
systems. Also, the handshaking refinements and the related proofs are to be
incorporated into the user interface provided by the Refinement Calculator.

References

1. J. Plosila, R. Ruk&énas, and K. Sere. Synthesis of delay-insensitive circuits. In
J. Grundy, M. Schwenke, and T. Vickers, editors, International Refinement Work-
shop € Formal Methods Pacific’98, pages 286-305. Springer-Verlag, 1998.

2. R. Ruk3énas and J. von Wright. A tool for data refinement. In J. Grundy and
M. Newey, editors, Theorem Proving in Higher Order Logics: 11th International
Conference, volume 1479 of LNCS, pages 423-441. Springer-Verlag, 1998.

3. Q. Xu. On compositionality in refining concurrent systems. In J. He, J. Cooke, and
P. Wallis editors, Proceedings of the BCS FACS 7th Refinement Workshop, Bath
UK, 1996. Springer-Verlag, 1996.

161



162



MOPS: Verifying Modula-2
programs specified in VDM-SL

Thomas Kaiser! Bernd Fischer?  Werner Struckmann?®

Introduction

Almost all computer programs contain errors, at least initially. The traditional ap-
proach to discover these errors is testing. However, since testing can only be used to
show the presence of errors but not their absence, other approaches as program verifi-
cation are pursuit. It is an exact, formal method to prove for all possible inputs the
consistency between the specification of a program and its implementation. A verifi-
cation system automates parts of the verification task. The architecture of verification
systems usually comprises two different tiers, a predicate transformer or verification
condition generator, and a prover. The verification condition generator takes the pro-
gram and the specification and computes a set of logical expressions called proof oblig-
ations. These are then discharged, either automatically, by the prover, or manually,
by the software engineer. If all obligations are discharged the program is proven cor-
rect with respect to the specification (assuming that the underlying calculus is sound).
However, the failure to discharge an obligation does not always mean that the pro-
gram contains an error. It may also indicate that the specification is incomplete or not
adequate, or that the prover is too weak. The reason for the two-tiered architecture is
purely pragmatic. Any specification language which is expressive enough to capture
“Interesting” requirements (and thus to describe “interesting” programs) is undecid-
able. Hence, any prover is too weak for a fully automatic system. In contrast to that,
the generation of verification conditions is decidable and a fully automatic verification
condition generator can be implemented, even for real programming languages.

The Modula Proving System (MOPS) is a Hoare-calculus based program verifi-
cation system for a large subset of the programming language Modula-2 which uses
VDM-SL [6] as specification language. The main goal of MOPS is to demonstrate the
feasibility and viability of a Hoare-style verification system for a real imperative pro-
gramming language, including pointers, arrays, and other data structures. MOPS also
provides support for the modular and partial verification of large systems and includes
hooks for specification-based code reuse systems as for example NORA/HAMMR |[3].
Finally, MOPS demonstrates the combination of a verification system with an estab-
lished specification language which exists outside the verification system itself.

MOPS is built according to the two-tiered architecture outlined above and com-
prises a weakest precondition predicate transformer and a rather weak rewrite-based
prover; however, stronger off-the-shelf provers can be incorporated relatively easy. The
predicate transformer used in MOPS supports only proofs of partial correctness, i.e.,
reasoning about termination cannot be done within MOPS. However, this allows us to
use a simpler calculus and also yield simpler proof obligations.

1 dvg, Postfach 721107, D-30539 Hannover
2 RIACS/NASA Ames Research Center, fisch@ptolemy.arc.nasa.gov
3 Technische Universitat, Institut fiir Software, Abteilung Programmierung, D-38092 Braunschweig
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MOPS essentially follows the more traditional approach to verify programs after
the implementation is completed instead of developing proof and program hand-in-
hand, as for example advocated by the KIV-system [11]. However, we believe that the
traditional approach is better suited for the incremental or even partial verification of
large systems as the users can easily restrict the verification to the critical parts of a
system.

The current version of MOPS supports almost the entire Modula-2 programming
language as defined in [12], including pointers and data structures. The only language
constructs not yet supported are variant record types, procedure types, and proce-
dures as parameters, i.e., higher-order procedures cannot be verified. The verification
of REAL-arithmetics is idealized and ignores possible rounding errors. Modula-2 also
relies heavily on the use of standard libraries, e.g., for input/output, systems program-
ming, and parallel programming. MOPS does not provide specific support for these
modules but programs built on top of them can be verified as usual (except for in-
put/output) after these modules have been re-specified using the modular verification
techniques described below.

Calculus

MOPS is built upon the Hoare-calculus. The theoretical foundations and the funda-
mental verification algorithms based on this calculus can be found in, e.g., [1, 2, 5]. We
extended these foundations into a calculus for the programming language Modula-2
by adding further proof rules and extending the underlying logic. Adding new state-
ments to the language means adding new proof rules to the calculus. This is relatively
straightforward and as long as the new rules are sound and the statements are disjoint
from the core, the extended calculus remains obviously sound. Adding data types,
however, extends the underlying logic and can easily compromise its soundness.

The starting point for the verification of arrays, records and pointers has been the
proof system given in [10]. For MOPS, this system was extended to support explicit
memory deallocation via the DISPOSE-procedure in the Modula-2 system module. Ob-
viously, pointers introduce the same aliasing problem as arrays, i.e., a memory location
can be addressed by different names. The main idea in [10] is to treat all pointers of
a particular type as a single dynamic array and thus to handle pointer aliasing with
the same mechanism as array aliasing. This approach, however, critically relies on
Modula-2’s pointer discipline which guarantees that two pointers refer to the same
memory location only if one of them has—directly or indirectly—been assigned to the
other. It can thus not be applied to languages as C which allow pointer arithmetics.
The complete axioms and proof rules for this approach are given in [7].

Hoare-style calculi are usually defined over the classical, two-valued predicate cal-
culus. This implies that expressions are always assumed to be defined which in turn
requires all semantic functions to be total. Since MOPS uses VDM-SL as specification
language, it is natural to base the calculus on the logic LPF (Logic of Partial Func-
tions) underlying VDM-SL. This does not affect the verification condition generator;
however, the proof obligations are now LPF-formulae. Semantically, this provides an
encapsulation of all partiality reasoning within the proof theory for LPF or an off-
the-shelf translation from LPF to the classical predicate calculus. Moreover, partial
correctness becomes a stronger result than in the classical case as it implies the absence
of run-time errors caused by application of partial functions to arguments outside their
domain, e.g., division by zero.

Intuitively, our calculus should be sound and relatively complete with respect to
LPF; we expect the formal proofs to be straightforward adaptations from the classical
proofs in the literature. Obviously, however, the calculus is not relatively complete
with respect to the classical predicate logic.
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Specification and Verification

MOPS supports the verification of arbitrary program segments and not only, e.g.,
procedures or modules. This precludes considering the implementation as the final
refinement of a specification module as for example in KIV but requires a direct em-
bedding of the VDM-SL specification into the Modula-2 code. Syntactically, this is
achieved by enclosing the VDM-SL expressions within formal comments (*{ and }*)
such that the annotated program can still be compiled and executed by any Modula-2
compiler. MOPS thus assumes the syntactic correctness of the Modula-2 program.
Since the VDM-SL specification can be extracted from the annotated program auto-
matically and shown consistent using external tools, MOPS also assumes the syntactic
correctness and internal consistency of the VDM-SL specification. Such embedding
approaches date back at least to the ANNA-system [9] and have also been used in the
specification languages in the Larch-tradition, e.g., in the Penelope-system [4].

MOPS uses entry/exit-tags as shown below to mark the verification segments;
these can be nested to break large proofs into manageable pieces. Loop invariants,
which must be provided as usual in Hoare-style calculi, and additional assert-tags
are used to aid the proof construction. Joint scoping allows the specification to refer
to program variables but not vice versa.

(*{ entry sum_loop

pre sum =0

post sum’ = n * (n+1) div 2 Ix)
(*{ loopinv sum = ((i - 1) * i) div 2 }*)
FOR i := 1 TO n DO

sum := sum + ij;
END;
(*{ exit sum_loop }*)

Verification segments also provide convenient hooks for specification-based retrieval
as the pre/post-pair already comprises the crucial part of a retrieval query. By
changing the entry-tag into the VDM-SL operation signature sum_loop(n:int) ext
rw sum:int a retrieval system as NORA/HAMMR [3]| (which also uses VDM-SL as
specification language) can extract a full query and search a library for semantically
matching, verified components. This allows a smooth integration of reuse without
compromising program correctness, thus reducing the overall verification effort.

The main problem of embedding an existing specification language into a verifi-
cation system (as opposed to defining a specialized behavioral interface specification
language) is to define a suitable between the constructs of the implementation and
specification languages. Fortunately, VDM-SL’s meta-language heritage makes this
task easier and most constructs (e.g., base types) map rather straightforward. Proce-
dures, however, are slightly more complicated. A Modula-2 PROCEDURE with a return
value and call-by-value-parameters only but without side effects can be specified via
a VDM-SL function. Procedures with side effects are specified by operations; all
global variables of a Modula-2 module are automatically mapped on a single state.
Call-by-reference parameters have no direct correspondence in VDM-SL; they require
generating a (local) state.

Large systems are inevitably split into several separate modules and MOPS sup-
ports the verification of such modular systems. Procedure specifications can be sepa-
rated from their corresponding implementations by including them into the definition
modules only. The implementations are then verified against their definitions. Client
modules which import a specified procedure automatically import the associated func-
tion specification and thus need to verify only the particular call. Thus, the verification
can be modularized. Figure 1 illustrates this concept.
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If a procedure contains no call-by-reference parameters, its specification can be sep-
arated entirely from the Modula-2 declaration, even beyond the file boundary of the
definition module, and moved into a completely seperated specification file containing
a pure VDM-SL module. The correspondence of these files is guaranteed by extending
the Modula-2 naming conventions (see figure 2). This allows a subsequent specifi-
cation of existing modules, e.g., standard library modules, without any changes to
the definition modules. This is required for the timestamp-based module consistency

Module.def

DEFINITION MODULE  Module
(*{ functions

exmpl (arguments) == f(arguments)
exmpl: domain type -> range type }*)

PROCEDURE exmpl (arguments) : result type;

Verification of the Verification of the procedure call )
implementation Client.mod

Module.mod

IMPLEMENTATION MODULE Module

PROCEDURE exmpl (arguments) : result type;
BEGIN

result := f(arguments)
END exmpl;

MODULE ClientModule
FROM Module IMPORT  exmpl;

var := exmpl (actual parameters)

Figure 1: Modular Verification

mechanism employed by most Modula-2 compilers.

In MOPS, a Modula-2 client module can import arbitrary objects from arbitrary
other modules. In particular, it can also access symbols from pure VDM-SL modules
which are not associated with any definition or implementation modules. Hence, VDM-
SL can be used as shared language to define theories supporting the verification.

DEFINITION MODULE Module
PROCEDURE exmpl (arguments) : result type;

Modulevdm

functions
exmpl (arguments) == f(arguments)
exmpl: domain -> result type

Verification of the procedure call

Client.mod

MODULE  ClientModul

FROM  Module |IMPORT exmpl;

var := exmpl (actual parameters)

Figure 2: Subsequent specification
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Experiences and Conclusions

The MOPS-system is implemented in the functional programming language SML. We
have tested it successfully on small and mid-size programs, including the usual sorting
examples. [7, 8] contain a series of increasingly sophisticated variants of the quicksort-
algorithm, including the median-of-three pivot selection strategy and the use of selec-
tion sort and bubblesort for small subarrays. The quicksort-implementations work on
open arrays of element-records and sort by one of the record components. The base
variant consists of more than 300 lines of Modula-2 code and VDM-SL specification.
MOPS generates 23 proof obligations and discharges 14 by plain rewriting. By encap-
sulation of the variation into separate verification segments, the number of emerging
proof obligations for the variants can generally be kept small; however, MOPS does
not provide any proof management. Currently, we work on the specification and veri-
fication of the well known LZW compression and decompression algorithms [13].

MOPS has deliberately been designed as a “small tool”. It combines established
techniques as Hoare-style reasoning and specification-based reuse with established im-
plementation and specification languages as Modula-2 and VDM-SL. This conceptual
simplicity is—in our opinion—a major contribution of MOPS and makes it also suit-
able for educational purposes. Future work on MOPS includes the combination with
fully automated theorem provers and the migration from the programming language
Modula-2 to Java.
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1 Extended abstract

Among the main features that make UML [BJR97]|widely accepted is the sufficient number of
diagrams allowing it for covering all possible facets in developing (particularly modelling) com-
plex systems. However, one of the price of this generality is the lack of a complete coherence of
different diagrams. This induce in particular duplication, incompatibility, and especially absence
of a uniform view of whole modelled system; which imply difficulties of verifying its properties,
its refinement, etc. On the other hand, most of semantics proposed for different diagrams ig-
nore the (full-) distribution and concurrent nature of most of present-day complex (information)
systems. Moreover, real-word applications—following our experience with distributed complex
information systems [AS00, Aou00, AS99b]— often necessitate only some of these diagrams; in
particular: (1) object and class diagrams for structural aspects; (2) state-chart and life-cycle
diagrams with component diagrams for dynamic and behavioural features.

Starting from these motivations, the present work propose a coherent and sound view of
above diagrams. More precisely, our approach for soundly unifying object- and class-diagram,
state-chart and component diagrams may be summarized in the following:

e Our first point are the class- (and object-) diagrams. With each attribute we associate
a corresponding variable(s) which will stands for its current values. In the same sense,
we also enrich each method invocation parameter a corresponding variable (in addition to
extra-parameter variables to object identifiers). Second, using a very appealing Petri-net-
like notations, we depict how such methods act on attributes. With these user-friendly
notations we capture the dynamic of each method, which in usual partly represented in
the state-chart model and partly encoded in programming phase. Third, we perceive each
association as an external or observed (active or passive) method, and using the same
notations we specify their dynamic (only for association regarded to be active). From the
two constructions (internal and observed methods), we may deduce which attributes in
each class have to be declared as internal or observed. This step is illustrated using a
simplified account specification as depicted in Figures 1 and 2.

e For soundly interpreting these constructions, we propose to use an adequate extension of
the rewriting logic based MAUDE language [Mes92, Mes93], we proposed in [AS99a]. This
interpretation not only captures straightforwardly these constructions, but also allow for
generating rapid-prototypes with full exhibition of intra- as well as inter-object concurrency
and explicit distinction between internal class dynamic and interaction between different
classes.
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e For life-cycle specification, we propose to capture state-chart behaviour using reflection
in rewriting logic [CM96](and MAUDE in particular). Indeed, a state-chart model allows
globally to capture different ‘processes’ (i-e. sequence, choice and parallelization of different
method applications under appropriate conditions) to be respected by object behaviour.
But this is exactly what the reflection in rewrite logic may intrinsically cover.

¢ other advantages of our approach is the natural way for covering real-time constraints on
the basis of timed rewriting logic [KW97].

This work is supported by prototypes that is still under development. The tool is im-
plemented using C++ programming language, and it covers the first step and partially the
second one. However, apart from the first step, current implementation of the MAUDE language
[CDE"99] may be easily adapted for this purpose.

The Accont Class The Customer Class

Account

<I1jbal:B1-A><I2jbal:B2+A> Customer <C|adr : N>

No:nat:11,12,13

<11jbal:B1+A Balance : money : B1, B2 |Customer| : C1, C2
constraints Owner : |Customer| : C1, C2 Name: N1

Limit: money : L1, L2 Adresse: D1

. .| deposit Job: J1
transfert Adr_chi
* open C—E
11 deposit(A) | +close * open chg_adr(N, C)

set_Limit(new : money) .
1112 Tranfert(A,l1, 12) +close <Cladr:D1)
B1>A1

chg_adresse(new_adr:N, Oid)

deposit(Amount : money, C1)
withdraw(Amount:money, C1)
transfert(Amount,C1,C2:01d)

Figure 1: a Sketch of the Account and Customer dynamic specification

The Accont Class The Customer Class
Account
Customer
No:nat: 11,12, 13
Balance : money : B1, B2 |Customer]| : C1, C2
Owner : [Customer] : C1, C2 Name: N1
Thelm_emal Limit: money : L1, L2 . Adresse: D1 Thelnt(_emal
Behaviour Job: 71 Behaviour
* open
*
;;lﬁ??nit(new : money) 7% Ext_Evtl - C1C2 +2|p::e

chg_adresse(new_adr:N, Oid)

deposit{Amount : money, C1) Al A2tranfer(CL, C2,S|  C1C2
withdraw(Amount:money, C1) g

transfert(Amount,C1,C2:0ld)

Figure 2: interaction between different components in the account specification
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Abstract

This paper reports on the ongoing KeY project aimed at
bridging the gap between (a) object-oriented software en-
gineering methods and tools and (b) deductive verification.
A distinctive feature of our approach is the use of a com-
mercial CASE tool enhanced with functionality for formal
specification and deductive verification.

1 Introduction

1.1 Analysisof the Current Situation

While formal methods are by now well established in
hardware and system design, usage of formal methods in
software development is still (and in spite of exceptions [8],
[9]) more or less confined to academic research. This is
true though case studies clearly demonstrate that computer-
aided specification and verification of realistic software is
feasible [14]. The real problem lies in the excessive demand
imposed by current tools on the skills of prospective users:

1. Tools for formal software specification and verification
are not integrated into industrial software engineering
processes.

. User interfaces of verification tools are not ergonomic:
they are complex, idiosyncratic, and are often without
graphical support.

. Users of verification tools are expected to know syn-
tax and semantics of one or more complex formal lan-
guages. Typically, at least a tactical programming lan-
guage and a logical language are involved. And even
worse, to make serious use of many tools, intimate
knowledge of employed logic calculi and proof search
strategies is necessary.

*The KeY project is supported by the Deutsche Forschungsgemein-
schaft (grant no. Ha 2617/2-1).
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Successful specification and verification of larger projects,
therefore, is done separately from software development by
academic specialists with several years of training in formal
methods, in many cases by the tool developers themselves.
It is unlikely that formal software specification and verifi-
cation will become a routine task in industry under these
circumstances.

The future challenge for formal methods is to make their
considerable potential feasible to use in an industrial envi-
ronment. This leads to the requirements:

1. Tools for formal software specification and verification
must be integrated into industrial software engineering
procedures.

. User interfaces of these tools must comply with state-
of-the-art software engineering tools.

. The necessary amount of training in formal methods
must be minimized. Moreover, techniques involving
formal software specification and verification must be
teachable in a structured manner. They should be inte-
grated in courses on software engineering topics.

To be sure, the thought that full formal software verifica-
tion might be possible without any background in formal
methods is utopian. An industrial verification tool should,
however, allow for gradual verification so that software en-
gineers at any (including low) experience level with formal
methods may benefit. In addition, an integrated tool with
well-defined interfaces facilitates “outsourcing” those parts
of the modeling process that require special skills.

Another important motivation to integrate design, devel-
opment, and verification of software is provided by mod-
ern software development methodologies which are itera-
tive and incremental. Post mortem verification would en-
force the antiquated waterfall model. Even worse, in a lin-
ear model the extra effort needed for verification cannot be
parallelized and thus compensated by greater work force.
Therefore, delivery time increases considerably and would
make formally verified software decisively less competitive.

But not only must the extra time for formal software
development be within reasonable bounds, the cost of for-



mal specification and verification in an industrial context
requires accountability:

4. It must be possible to give realistic estimations of the
cost of each step in formal software specification and
verification depending on the type of software and the
degree of formalization.

This implies immediately that the mere existence of tools
for formal software specification and verification is not suf-
ficient, rather, formal specification and verification have to
be fully integrated into the software development process.

1.2 TheKg”Project

Since November 1998 the authors work on a project ad-
dressing the goals outlined in the previous section; we call
it the Kg¥ project (read “key”).

In the principal use case of the KeY system there are ac-
tors who want to implement a software system that complies
with given requirements and formally verify its correctness.
The system is responsible for adding formal detail to the
analysis model, for creating conditions that ensure the cor-
rectness of refinement steps (called proof obligations), for
finding proofs showing that these conditions are satisfied
by the model, and for generating counter examples if they
are not. Special features of KeY are:

o \We concentrate on object-oriented analysis and design
methods (OOAD)—because of their key role in today’s
software development practice—, and on JAVA as the
target language. In particular, we use the Unified Mod-
eling Language (UML) [20] for visual modeling of
designs and specifications and the Object Constraint
Language (OCL) for adding further restrictions. This
choice is supported by the fact, that the UML (which
contains OCL since version 1.3) is not only an OMG
standard, but has been adopted by all major OOAD
software vendors and is featured in recent OOAD text-
books [18].

We use a commercial CASE tool as starting point and
enhance it by additional functionality for formal speci-
fication and verification. The current tool of our choice
is TogetherSoft LLC’s TOGETHERJ.

Formal verification is based on an axiomatic semantics
of the real programming language JAVA CARD [23]
(soon to be replaced by Java 2 Micro Edition, J2ME).

As a case study to evaluate the usability of our ap-
proach we develop a scenario using smart cards with
JAVA CARD as programming language [12, 13]. JAVA
smart cards make an extremely suitable target for a
case study:

— As an object-oriented language, JAVA CARD is
well suited for OOAD;

— JAvA CARD lacks some crucial complications of
the full JAvA language (no threads, fewer data
types, no graphical user interfaces);

— JAVA CARD applications are small (JAVA smart
cards currently offer 16K memory for code);
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— at the same time, JAVA CARD applications are
embedded into larger program systems or busi-
ness processes which should be modeled (though
not necessarily formally verified) as well;

Java CARD applications are often security-criti-
cal, thus giving incentive to apply formal meth-
ods;

— the high number (usually millions) of deployed
smart cards constitutes a new motivation for for-
mal verification, because, in contrast to software
run on standard computers, arbitrary updates are
not feasible.

e Through direct contacts with software companies we
check the soundness of our approach for real world ap-
plications (some of the experiences from these contacts
are reported in [3]).

The KeY system consists of three main components:

The modeling component: this component is based on
the CASE tool and is responsible for all user interac-
tions (except interactive deduction). It is used to gen-
erate and refine models, and to store and process them.
The extensions for precise modeling contains, e.g., ed-
itor and parser for the OCL. Additional functionality
for the verification process is provided, e.g., for writ-
ing proof obligations.

The verification manager: the link between the model-
ing component and the deduction component. It gen-
erates proof obligations expressed in formal logic from
the refinement relations in the model. It stores and pro-
cesses partial and completed proofs; and it is respon-
sible for correctness management (to make sure, e.g.,
that there are no cyclic dependencies in proofs).

The deduction component. It is used to actually con-
struct proofs—or counter examples—for proof obliga-
tions generated by the verification manager. It is based
on an interactive verification system combined with
powerful automated deduction techniques that increase
the degree of automation; it also contains a part for au-
tomatically generating counter examples from failed
proof attempts. The interactive and automated tech-
niques and those for finding counter examples are fully
integrated and operate on the same data structures.

Although consisting of different components, the KeY sys-
tem is going to be fully integrated with a uniform user in-
terface.

A first KeY system prototype has been implemented, in-
tegrating the CASE tool TOGETHERJ and a deductive com-
ponent (it has only limited capabilities and lacks the verifi-
cation manager component). Work on the full KeY system
is under progress.

1While Java CARD applets on smart cards can be updated in principle,
for security reasons this does not extend to those applets that verify and
load updates.



2 Designing a System with Kg”
2.1 The Modeling Process

Software development is generally divided into four ac-
tivities: analysis, design, implementation, and test. The
KeY approach embraces verification as a fifth category. The
way in which the development activities are arranged in a
sequential order over time is called software development
process. It consists of different phases. The end of each
phase is defined by certain criteria the actual model should
meet (milestones).

In some older process models like the waterfall model or
Boehm?’s spiral model no difference is made between the
main activities—analysis, design, implementation, test—
and the process phases. More recent process models distin-
guish between phases and activities very carefully; for ex-
ample, the Rational Unified Process [15] uses the phases in-
ception, elaboration, construction, and transition along with
the above activities.

The KeY system does neither support nor require the us-
age of a particular process. However, it is taken into ac-
count that most modern processes have two principles in
common. They are iterativeand incremental. The design of
an iteration is often regarded as the refinement of the design
developed in the previous iteration. This has an influence
on the way in which the KeY system treats UML models
and additional verification tasks (see Section 2.3). The ver-
ification activities are spread across all phases in software
development. They are often carried out after test activities.

2.2 Specification with the UML and the OCL

The diagrams of the Unified Modeling Language pro-
vide, in principle, an easy and concise way to formulate
various aspects of a specification, however [25, foreword]:
“[...] there are many subtleties and nuances of meaning
diagrams cannot convey by themselves.” This was a main
source of motivation for the development of the Object Con-
straint Language (OCL), part of the UML since version 1.3
[20]. Constraints written in this language are understood
in the context of a UML model, they never stand by them-
selves. The OCL allows to attach preconditions, postcondi-
tions, invariants, and guards to specific elements of a UML
model.

When designing a system with KeY, one developsa UML
model that is enriched by OCL constraints to make it more
precise. This is done using the CASE tool integrated into
the KeY system. To assist the user, the KeY system provides
menu and dialog driven input possibility. Certain standard
tasks, for example, generation of formal specifications of
inductive data structures (including the common ones such
as lists, stacks, trees) in the UML and the OCL can be done
in a fully automated way, while the user simply supplies
names of constructors and selectors. Even if formal specifi-
cations cannot fully be composed in such a schematic way,
considerable parts usually can.

In addition, we have developed a method supporting the
extension of a UML model by OCL constraints that is based
on enriched design patterns. In the KeY system we will
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provide common patterns that come complete with prede-
fined constraint schemata. These schemata are formulated
in a language that is a slight extension of OCL. They are
flexible and allow the user to easily generate well-adapted
constraints for the different instances of a pattern. The user
needs not write formal specifications from scratch, but only
to adapt and complete them. A detailed description of this
technique and of experiences with its application in practice
is given in [4].

2.3 TheKg”Module Concept

The KeY system supports modularization of the model in
a particular way. Those parts of a model that correspond to
a certain component of the modeled system are grouped to-
gether and form a module. Modules are a different structur-
ing concept than iterations and serve a different purpose. A
module contains all the model components (diagrams, code
etc.) that refer to a certain system component. A module is
not restricted to a single level of refinement.

There are three main reasons behind the module concept
of the KeY system:

Structuring: Models of large systems can be structured,
which makes them easier to handle.

Information hiding: Parts of a module that are not rele-
vant for other modules are hidden. This makes it eas-
ier to change modules and correct them when errors
are found, and to re-use them for different purposes.

Verification of single modules: Different modules can be
verified separately, which allows to structure large ver-
ification problems. If the size of modules is limited,
the complexity of verifying a system grows linearly in
the number of its modules and thus in the size of the
system. This is indispensable for the scalability of the
KeY approach.

In the KeY approach, a hierarchical module concept with
sub-modules supports the structuring of large models. The
modules in a system model form a tree with respect to the
sub-module relation.

Besides sub-modules and model components, a module
contains the refinement relations between components that
describe the same part of the modeled system in two con-
secutive levels of refinement. The verification problem as-
sociated with a module is to show that these refinements
are correct (see Section 3.1). The refinement relations must
be provided by the user; typically, they include a signature
mapping.

To facilitate information hiding, a module is divided into
a public part, its contract, and a private (hidden) part; the
user can declare parts of each refinement level as public or
private. Only the public information of a module A is visi-
ble in another module B provided that module B implicitly
or explicitly imports module A. Moreover, a component
of module B belonging to some refinement level can only
see the visible information from module A that belongs to
the same level. Thus, the private part of a module can be
changed as long as its contract is not affected. For the de-
scription of a refinement relation (like a signature mapping)



all elements of a module belonging to the initial model or
the refined model are visible, whether declared public or
not.

As the modeling process proceeds through iterations, the
system model becomes ever more precise. The final step is a
special case, though: the involved models—the implemen-
tation model and its realization in JAvA—do not necessar-
ily differ in precision, but use different paradigms (specifi-
cation vs. implementation) and different languages (UML
with OCL vs. JAVA).

The ideas of refinement and modularization in the KeY
module concept can be compared with (and are partly influ-
enced by) the KIV approach [21] and the B Method [1, 17],
but still follow different guidelines.

2.4 Thelnternal State of Objects

The formal specification of objects and their behavior re-
quires special techniques. One important aspect is that the
behavior of objects depends on their state that is stored in
their attributes, however, the methods of a JAVA class can in
general not be described as functions on their input as they
may have side effects and change the state. To fully spec-
ify the behavior of an object or class, it must be possible
to refer to its state (including its initial state). Difficulties
may arise if methods for observing the state are not defined
or are declared private and, therefore, cannot be used in the
public contract of a class. To model such classes, observer
methods have to be added. These allow to observe the state
of a class without changing it.

3 Formal Verification with Kg”

Once a program is formally specified to a sufficient de-
gree one can start to formally verify it. Neither a program
nor its specification need to be complete in order to start
verifying it. In this case one suitably weakens the postcon-
ditions (leaving out properties of unimplemented or unspec-
ified parts) or strengthens preconditions (adding assump-
tions about unimplemented parts). Data encapsulation and
structuredness of OO designs are going to be of great help
here.

The verification process will be automated as much as
possible with the help of deduction techniques based on pre-
vious work [2] done in our group on integrating our auto-
mated [6] and interactive theorem provers [21].

3.1 Proof Obligations and Program L ogic

For obtaining the proof obligations to be justified, we
employ design by contract [19] with the same restriction
as [25]: run-time aspects are completely ignored.

The logic we use is dynamic logic (DL) [16]. It is a full
logic with first-order quantification, built from basic blocks
of the form ()@ with the meaning: program « terminates
and afterwards formula Q holds. We decided to take a bold
step and allow any legal JAVvA CARD program to occur in
the place of a. A more detailed description of KeY-DL is
given in [5]. The central point is, of course, to deal with
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features of OO languages such as side effects and exception
handling.

3.2 TheDeduction Component

The KeY system comprises a deductive component that
can handle KeY-DL. This KeY prover combines interactive
and automated theorem proving techniques. Experiences
with the KIV system [21] have shown how to cope with DL
proof obligations: The original goal is reduced to first-order
predicate logic using DL rules, as described in [5].

Our deductive system uses a technique of schematic the-
ory specific rules, which combine purely logical knowledge,
information on how this knowledge should be used, and
information on when and where this knowledge should be
presented for interactive use. This technique has been im-
plemented in the interactive proof system 1B1Ja?.

Interactive proving is greatly enhanced by intermediate
automated steps based on proof search in the style of ana-
lytic tableaux [11]. Also, a component of disproving for-
mulas by finding counterexamples is being developed.

4 Related Work

There are many projects dealing with formal methods in
software engineering including several ones aimed at JAVA
as a target language. There is also work on security of
JAVA CARD and AcTIVEX applications as well as on se-
cure smart card applications in general. We are, however,
not aware of any project quite like ours. We mention some
of the more closely related projects:

e The CoGITO project [24] resulted in an integrated for-
mal software development methodology and support
system based on extended Z as specification language
and Ada as target language. It is not integrated into a
CASE tool, but stand-alone.

The FUZE project [10] realized CASE tool support for
integrating the FusioNn OOAD process with the for-
mal specification language Z. The aim was to formal-
ize OOAD methods and notations such as the UML,
whereas we are interested to derive formal specifica-
tions with the help of an OOAD process extension.

The goal of the QUEST project [22] is to enrich the
CASE tool AutoFocus for description of distributed
systems with means for formal specification and sup-
port by model checking. Applications are embedded
systems, description formalisms are state charts, activ-
ity diagrams, and temporal logic.

Aim of the SYsLAB project is the development of a
scientifically founded approach for software and sys-
tems development. At the core is a precise and formal
notion of hierarchical “documents” consisting of infor-
mal text, message sequence charts, state transition sys-
tems, object models, specifications, and programs. All
documents have a “mathematical system model” that
allows to precisely describe dependencies or transfor-
mations [7].

2More information on 1B1Ja is available at il1www.ira.uka.de/"ibija.



The goal of the PROSPER project was to provide the
means to deliver the benefits of mechanized formal
specification and verification to system designers in
industry (www.dcs.gla.ac.uk/prosper/index.html). The
difference to the KeY project is that the dominant goal
is hardware verification; and the software part involves
only specification.

Conclusion and the Future of K@Y

We described the current state of the KeY project and its
ultimate goal: To facilitate and promote the use of formal
verification in an industrial context for real-world applica-
tions. It remains to be seen to which degree this goal can be
achieved.

Our vision is to make the logical formalisms transparent
for the user with respect to OO modeling. That is, whenever
user interaction is required, the current state of the verifica-
tion task is presented in terms of the environment the user
has created so far and not in terms of the underlying deduc-
tion machinery. The situation is comparable to a symbolic
debugger that lets the user step through the source code of a
program while it actually executes compiled machine code.
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1 Introduction

Statecharts are widely used for the requirements specification of reactive systems. This notation
captures the requirements attributes that are concerned with the behavioral features of a system,
and models these features in terms of a hierarchy of diagrams and states. The usefulness
of statecharts depends primarily on their readability, that is the capability of conveying the
meaning of the drawings quickly and clearly. Several visualization tools for reactive system
specification and design are available in the market [2, 6, 5, 9]. Even though these tools are
helpful in organizing designers’ thoughts, they are mostly sophisticated graphical editors, and
therefore are severely inadequate for the modeling of complex reactive systems. Specifically,
hand made diagrams become easily unreadable when the specification complexity increases.
Therefore computer assistance is of paramount importance for the graphical representation of
complex reactive systems.

In this paper we present a tool that automatically generates statechart layouts. We proceed
in two steps: we first extract information from a textual description of requirements and store
it into interactive templates; then we automatically generate graphs that model statecharts in a
hierarchical fashion. The resulting drawings enjoy several properties: they have a low number
of arc crossings; they emphasize the natural hierarchical decomposition of states into substates;
and they cover an optimal drawing area.

The automatically produced graphical representation is an effective requirements assessment
tool since it allows the specifier to shift focus from organizing the mental or physical structure of
the requirements to its analysis. In addition, the interdependence between the textual, template
and graphical representations ensures consistency between the different documents and therefore
facilitates the V&V effort.

In Section 2 we describe our automatic visualization tool. In Section 3, we assess our results
and discuss our prospects for future work.

*Research supported in part by Sandia National Labs and by the Texas Advanced Research Program under
grant number 009741-040.
fCorrespondence author.
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2 The ViSta tool

The ViSta tool consists of three main components: the template wizard, the central database
and the statechart visualization module (see Figure 1).

2.1 Template Wizard

The template wizard guides the user through the steps necessary for the construction of a struc-
tured requirements document. It offers an elaborate user interface that facilitates requirements
capture. The user inputs a textual description by either opening an existing document or cre-
ating a new file. Then he/she selects information from the textual document and dynamically
introduces it into a set of templates. Selected parts turn into a distinct color to inform the user
that they were successfully accepted by the templates.

A template is a form-based component that has a predefined structure. It consists of struc-
tured propositions with text fields to be filled in with information specific to the requirements.
Figure 2 shows various types of templates offered by our system.

It is possible to modify the contents of the templates at any time by traversing the Wizard
backward and forward. The user can add, delete or rearrange the order of templates to best
fit his/her needs. Insertion is performed by positioning the mouse on a specific template type
(left side of the view); the corresponding template type gets highlighted and the user can insert
the new template at a position he/she desires. A deletion operation is performed by selecting a
template on the right side of the view and clicking delete. Rearrangement of the templates is
achieved through the ”"Drag-and Drop” feature.

The collected data are dynamically stored into a central database that is used to generate
and update the graphical and structured textual representations.

2.2 Decomposition Tree

The data stored in our central database is summarized in a formal structure called a decomposi-
tion tree. This structure reflects the decomposition of superstates into substates. A node in the
decomposition tree includes the following information: its name; its width and height; the coor-
dinates of its origin point; a pointer to its parent; the list of its children; its decomposition type
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(e.g., AND, OR or leaf); the list of incoming arcs; the list of outgoing arcs; a list of attributes;
and finally its aliases. The root of a decomposition tree corresponds to the system superstate;
leaves correspond to atomic states. Each node in the tree can be decomposed through the AND
or OR decomposition. The OR decomposition reflects the hierarchical structure of state ma-
chines; the AND decomposition reflects concurrency. Figure 3(b) shows the decomposition tree

that corresponds to the text given in Figure 3(a).

2.3 Statechart Visualization Module

This module automatically draws a graph that models a statechart in a hierarchical fashion. In
our approach, a statechart is treated as a graph. Nodes ! in the graph correspond to states, and

arcs correspond to transitions between states.

'In the remainder of this paper we will use the words node and object interchangeably.
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Basic Algorithm

Our algorithm proceeds as follows: first, the decomposition tree is traversed in order to determine
the dimensions (and origin point) of every node in a recursive manner. If a node v is a leaf then
a drawing procedure is called. This procedure produces a labeled rectangle and returns the
dimensions of the rectangle. If v is an AND node then a recursive algorithm constructs the
drawings of each child of v and places the drawings contiguously. If v is an OR node then a
recursive algorithm constructs the drawings of v’s children in a hierarchical fashion by assigning
each child to a specific layer. This algorithm is a variant of Sugiyama’s algorithm [8] tailored
to statecharts. Figure 5 shows the statechart diagram that was automatically generated by the
ViSta tool, based on the decomposition tree depicted in Figure 4.

Edge Crossing Reduction

Our approach to the edge crossing reduction problem is based on the layer by layer sweep
paradigm [1]. Specifically, given a hierarchy of layers, we first select two adjacent layers either
starting from the first layer of the hierarchy or the last. Let us assume that we traverse the
hierarchy left to right. We select layers L; and Lo and assign a unique number, called posi-
tion_in_layer, to each vertex of these layers. This number corresponds to the relative position
of the vertices in the selected layers. Then, for each node a of Lo, we compute the number of
crossings between the edges incident to o and the edges incident to nodes §; (cngq,g;) such that
a,B; € Lo and position_in_layer(a) < position_in_layer(f;). This information is captured in
the upper triangular portion of a table called crossing number matriz. The crossing number
matrix is fed into the adjacent exchange algorithm [1] that analyzes the data and repeatedly
exchanges the positions of two adjacent vertices a, 8 whenever c, g > cgo. Finally, the edge
crossing reduction heuristic updates the crossing number matrix and proceeds with the next two
adjacent layers (e.g., Ly and L3). Figures 6 and 7 show statechart drawings before and after the
application of our edge crossing reduction algorithm.

Edge Labeling

Edge labels are crucial in describing transitions in statecharts. Previously, edge labeling tech-
niques were described for graph drawings, and geographical and technical maps with fixed ge-
ometry [4, 3]. In our work, we address the problem of graph drawings with flexible geometric
features.

In the statecharts notation, an edge label consists of three components namely event, condition
and action. We have defined the following steps for the placement of edge labels in statecharts:

1. We fix the maximum length of the label to a constant, and we write the three components
(i-e., events, conditions and actions) on three separate lines. If the size of a component is
greater than the maximum length of the label, then we write it on several lines.

2. At the beginning of the execution of the drawing algorithm, we assign labels to sublayers.

3. We traverse the hierarchy from left to right, considering two adjacent layers L; and Loy at
a time. For each vertex a in L1, we identify the set of edges E, between a and the vertices
in Ly. We order E, in such a way that potential crossings are removed.

Figures 8 and 9 show statechart diagrams before and after the application of our edge labeling
algorithm.
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3 Conclusion and Future Work

Summary and Assessment. In this paper we presented a tool that automatically generates
statecharts. We proceed in two steps: we first extract information from a textual description of
requirements and store it into interactive templates; then we draw graphs that model statecharts
in a hierarchical fashion. Our drawings enjoy several properties:1) they emphasize the natural
recursive hierarchical decomposition of states into substates; 2) nodes are placed on layers ac-
cording to their distance from the local initial state; 3) the number of arc crossings is low.

Future work. Our prospects for future work include the optimization of the drawing algo-
rithm by using floor planning techniques; and the development and implementation of methods
that will allow the automatic translation of decomposition trees into a formal notation (e.g., Z

[7)-
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Figure 4: Decomposition Tree.

Figure 5: Automatically generated Statechart.
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Figure 6: Statechart Diagram Before Edge Crossing Reduction.

Figure 7: Statechart Diagram After Edge Crossing Reduction.
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Synchronous Object-Oriented Programming;:
sk2.0 *

Reinhard Budde, Axel Poigné, Karl-Heinz Sylla
German National Research Centre for Information Technology

1 Introduction

With sE, we provide a design environment which supports the following design
and programming paradigms:

e Synchronous modelling, for constructing reactive real-time components,
and for enabling system validation by model-checking.

e Object-oriented modelling in a strongly typed lan-guage, which is well
suited for a robust and flexible design of complex systems.

We claim as highlights that

e in contrast to other synchronous languages, data operations and reactive
behaviour are tightly integrating, giving full control, for instance, over
time races, and that

e the reactive sublanguage is a fine-grained integration of synchronous no-
tations [2, 3, 1] combining means to specify spontaneous and periodic
synchronous behaviour.

We outline the main design decisions, and give an overview of the presently
available tools.

2 Synchronous Computation

The economic importance of embedded software design is beyond dispute, as is
the object-oriented design paradigm. Synchronous languages such as ESTEREL[2],
LusTRE[3], and SYNCCHARTS[1] are well accepted though not that familiar for
the general programming community.

An embedded reactive system interacts with its environment via signals.
Input signals may carry sensor data and output signals may trigger actuators,

*Partially funded by the ESPRIT IiM ”"CRISYS (Project No. 25514)
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for instance. A system reaction depends on its internal state and on the value
of input signals. It generates output signals and changes the internal state.

The synchronous execution model reflects the basic idea of digital hardware
design and of many engineering formalisms: Processing proceeds in steps con-
trolled by a trigger signal, a “clock”. When the trigger signal is present, or
“when the clock ticks”, a system starts to react and the reaction is finished in
time before the next trigger signal is present. Such a processing step is called
an instant.

There are several benefits of the synchronous computation model, to name
a few:

e a mathematically precise model [2, 3, 6, 7],

o deterministic scheduling at compile time implying that behaviour is re-
producible, a condition sine-qua-non for testing,

o highly efficient target code for different targets, including micro processors,
even hardware, and

o several high level source languages based on quite different formalisms such
as data flow [3, 6], hierarchical automata [1, 4], preemptive imperative
programming [2].

We have demonstrated with the Synchrony Workbench [5] that these languages
can be accomodated in a single framework. However, two drawbacks surfaced:

e the lack of control with regard to data operations, and
o the user’s difficulty to handle three quite different notations.

sE resolves these shortcomings by tightly unifying the data and control model, as
discussed in Section 3, and by a fine-grained combination of notations discussed
in Section 4.

3 Reactive Objects and Temporal Firewalls

Synchronous languages are crafted to deal with control. Except for some base
types, data routines must be defined in a host language, such as C, being trig-
gered by signals via the external interface. Since many such data routines may
be called in an instant, this may result in time races, hence in non-determinism.

In contrast, sE integrates reactive behaviour and data routines in a uniform,
object-oriented framework enhanced by reactive objects that is: objects which
encapsulate (synchronous) reactive behaviour. For avoiding the unwanted in-
teraction of control and data operations, we restrict

e communication between reactive objects to signals only, and

e access to data routines in an reactive object: only the reactive routines
can access the data routines (i.e. data routines in a reactive object are
private).
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We give a schematic view of the architecture.

bus for time-triggered signals
- T T - interface
- - - - .
- signals
clock local signals
environment
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O reactive objects

reactive routines

E
E

data routines

The reactive objects read signals from and broadcast signals to the signal bus.
The basic pulse or clock is part of the signal bus. If the clock is present, all
reactive objects evaluate in parallel. They read from and write to the signal
bus. The compiler will schedule the read and write action deterministically.
This scheduling is an inherent part of the compilation of synchronous programs
(“causaility analysis”). Hence time races with regard to different objects are
reduced to read/write conflicts on the signal bus that are dealt with by the
synchronous technology anyway. We speak of a first temporal firewall. To given
example:

class TimerApp
-- signal interface and signal bus
start : signal is const map start = tl.start = t2.start end; (*)
clock : signal is const map clock = tl.clock = t2.clock end;
tl_elapsed : signal is map tl_elapsed = tl.elapsed end;
t2_elapsed : signal is map t2_elapsed = t2.elapsed end;
-- reactive objects
t1, t2 : Timer; (%)
-- creation routine
run : none is creation
do tl.set (800);
t2.set (1000);

end;
end class TimerApp

The external interface and the “wiring” the signal bus are defined simultane-

ously, e.g. the declaration (*) defines the input signal “start” and connects it
to the respective “start” signals of the two timer objects “t1” and “t2” of class
“Timer” declared in line (*x*).

Next we explain the interaction of reactive control and data routines.

189



reactive class Timer
-- creation routine
set (d:int) : none is public creation
do latch := d end;
-- signal declarations
start, clock : signal is public const;
elapsed : signal is public;
-- reactive routines
react is reactive
do loop
await ?start; reset();
next;
cancel
loop
await 7clock;
decrement () ;

next;
end
when is_elapsed() then emit elapsed

end

end;
-- data routines and attributes

latch : int is const;
counter : int;
reset(d: int) : none is do counter := d end;
decrement : none is

do if counter > O then counter := counter - 1 end;
is_elapsed : bool is do result := (counter = 0) end ;

-- scheduling for avoiding time races
sequence decrement < is_elapsed
end class Timer

The reactive routine “react” should be rather self-explaining: A timer object
initially waits for the “start” signal. If the “start” signal is present, the counter
is set to a start value by calling the (data) routine “reset()”. At each “clock”
“tick” the counter decrements until the condition “is_elapsed()” holds. It is
important to notice that “time passes” only when waiting. Reactions are con-
sidered as instantaneous: If the “clock” signal is present the counter decrements
at the same instant as the termination condition “is_elapsed()” is evaluated.
The creation routine “set” sets the constant attribute “latch”.

There is a “time race” between the data routine “decrement” and “is_elapsed”;
that is, the execution order of data routines may affect the result. To avoid non-
determinism we have to specify the desired execution order (here: “decrement”
before “is_elapsed”). Time races will be detected by the sE compiler based
on the analysis of the data flow and the state transitions. The programmer
is required to specify the scheduling of routine calls through sequence clauses,
if necessary. We refer to the enforced deterministic scheduling of data action
as the second temporal firewall. Overall the combination of both the firewalls
guarantee a deterministic scheduling of control and data.
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4 The Combination of Styles

The engineering of embedded systems, let it be for control or signal processing,
is concerned with several types of models of quite different nature such as state
automata or periodic data flow. Though it sometimes may be possible to model
parts of a system within one single paradigm, more often even parts of a system
can be adequately modelled only by combining different aspects.

It is an outstanding feature of sE that it supports ostensible different com-
putational paradigms for reactive behaviour. We present the styles using a
taxonomy of “time” versus “state”, and “discrete” versus “continuous”.

iscr ntinuou
discrete state continuous state
on during suspend ufl := ( 0.0 -> 0.9*pre(ufl)

. emit ON + 0.1l*sensor
discrete ) when ON;
time of £ dfl := current(ufl)

drv := 0.0 -> dx / dy.to_double;
resume

[[ await (ON.timestamp-now)>2sec;

continuous emit FROZEN; dy := 0.0 -> flt - pre(flt);
time || elapsed::=now+300millisec; dx = Osec -> now - pre(now);
await now > elapsed drv := 0.0 -> dy / dx.to_double;
11

The left upper square displays a notation for (hierarchical) automata, the right
upper square a slight variant of LUSTRE data flow equations. Data flow equa-
tions are encapsulated by a “sustain ...end” context. These statements may
be freeely used as in!

O x <0

next; next;
sustain sustain
x = pre(x)-1 x = pre(x)+t 1
end end
...
x > 10

This is essentially the fine-grained integration we spoke of earlier.

The “continuous” time dimension is interpreted in a rather specific way in
that we relate it to real time; the signal “now” provides a time stamp in terms of
system time at the beginning of an instant (presently in micro seconds). Hence
the difference “now - pre(now)” defines the real time measured between two
instants, i.e. dx.

The unification of the idioms is achieved on the level of signals. We do not
have the space to present the semantic model, however the essentials are thus:

INote that only one flow definition should be apply at every instant to avoid non-
determinism, hence the “next” which delays evaluation by one instant.
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signal uniformly have a presence and a wvalue. A value may only change if a
signal is present. a signal may be present because it is emitted (as in “emit
FROZEN”), or because it is specified as a periodic signal. The periodicity of the
signal is specified in its declaration. The format

raising edge : signal(bool) is public at true

states that a signal “raising_edge” is present whenever the expression succeeding
the “at” is true at an instant. The value of such a signal is constrained by a
flow definition, e.g.

raising edge = false -> x and not pre(raising_edge)

5 The Development Environment

sE targets the design of embedded software for small micro processors but scales
to large systems. It is a strong typed object-oriented language. We have de-
signed it in accordance with the language Eiffel. Design by contract, multiple
inheritance and generic types are supported. Compared to Eiffel subclassing
is restricted to introducing subtypes. The environment supports compilation,
configuration, simulation, test, and verification of synchronous object-oriented
programs. Behavioural descriptions may be edited in graphical or in textual
form. Code generators for efficient and compact code in C and diverse hard-
ware formats, e.g. Verilog, are available. For model checking, code is generated
which is accepted either by the VIS or SMV model checkers. Specification of
properties either in temporal branching time logic (CTL) and Past Time Logic
(PTL) are supported. The compilation and also the optimisation of reactive
behaviour is compositional and may be performed separately for each class.
Thus the size of the model of an application can be reduced considerably. This
enlarges the size of applications which can be validated by model checking. For
validation also, so called, “synchronous observers” may be defined. An observer
is a reactive program constructed to detect defective conditions. The non oc-
currence of a defect may be model checked for the application combined with
the observer, or the observer program is executed in parallel to the application,
thus serving as a watchdog.

6 Further Features and Outlook

sE supports clusters of distributed synchronous processes using blackboards as
a generalisation of shared memory. We are about to modify syntax to Java. The
resulting “sJ” system will offer a compilation of Java to C with mild restrictions
(for efficiency) but with the add-on of all the reactive behaviour discussed above.
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abstract

In computer aided design of very large scale integrated circuits (CAD for VLSI) Ordered
Binary Decision Diagrams (OBDDs) [1] have been established as the state-of-the-art data
structure. They are applied in synthesis as well as in formal verification of combinatorial or
sequential designs. This is due to the fact that almost every design step can be mapped to the
task of manipulating Boolean functions. For performing these tasks efficiently in an automated
way with a computer, OBDDs are very well suited, because they are compact, efficiently to
manipulate, and canonical, i.e. there exists a unique OBDD for every Boolean function. The
compactness property of OBDDs holds for most Boolean functions that are used in practice,
but unfortunately not for all. The multiplication of two binary encoded numbers can only
be represented with an OBDD of exponential size related to the number of inputs. This
restriction is responsible for the research and development of more general data structures,
based on extensions of OBDDs.

Besides relaxing the ordering restriction [2], easing the read-once property of the input
variables, or the usage of different decomposition types for Boolean functions, we are focusing
on the extension of OBDDs with functional operator nodes, esp. Parity-OBDDs (POBDDs),
i.e. OBDDs with additional operator nodes computing the Boolean parity of their successors
[3]. By introducing parity nodes the representation has the potential of being more compact
while on the other hand giving up canonicity. Therefore, the identification of two POBDDs
representing the same Boolean function becomes an essential operation. We present an efficient
probabilistic equivalence test for POBDDs that admits working with POBDDs in an profes-
sional environment [4]. Due to the fact that the size of Decision Diagrams crucially depends
on the order of the input variables we show how to apply heuristics for POBDD minimization
based on dynamic changes in the variable order and the relocation of parity operator nodes
inside the data structure.

Many problems in practice require the transformation of symbolic variables to a binary
encoding for getting accessible with OBDDs or POBDDs. Extending the OBDD data structure
from the binary domain to a finite domain results in so called Multi-valued Decision Diagrams
(MDDs) [5] and a binary encoding of symbolic variables is not necessary anymore. The already
introduced POBDDs can now be extended towards Mod-p-Decision Diagrams (Mod-p-DDs),
i.e. MDDs with additional operator nodes representing an integer addition modulo p, p -
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prime. Such decision diagrams have a potential of being more space-efficient than MDDs.
However, they are not a canonical representation and thus, the equivalence test of two Mod-p-
DDs is more difficult than the test of two MDDs. To overcome this problem, we design a fast
probabilistic equivalence test for Mod-p-DDs based on the transformation of integer functions
represented by Mod-p-OBDDs to polynomials over a finite domain [6] and show how to apply
heuristics for their minimization.
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