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Abstract

The Constraint Handling Rules (CHR) language has become a major spec-
ification and implementation language for constraint-based algorithms and
applications. Algorithms are often specified using inference rules, rewrite
rules, sequents, proof rules, or logical axioms that can be directly written
in CHR. Based on first order predicate logic, this clean semantics of CHR
facilitates non-trivial program analysis and transformation.

Several implementations of CHR exist in Prolog, Haskell, and Java. A
particular emphasis of this first workshop was the comparison, joint develop-
ment, consolidation and common extension of the various CHR implementa-
tions.

The workshop was held May 10-14, 2004 at the University of Ulm. Three
papers were selected for this technical report. Slides of the seven presenta-
tions are available online.

http://www.informatik.uni-ulm.de/pm/veranstaltungen/chr2004/
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1 Introduction

CHR Grammars (CHRG) are a recent constraint-based grammar formalism added on top of CHR analogously
to the way Definite Clause Grammars are defined and implemented over Prolog. A CHRG executes as an
error robust bottom-up parser, and the formalism provides several advantages for natural language analysis
reported elsewhere [4—6].

A notable property is CHRG’s inherent ability to handle abduction in a way that requires no meta-
level interpreter which otherwise is a common way to implement abduction. The technique, first noticed
in [3], consists of a straightforward reformatting of grammar rules so that abducibles are passed through the
constraint store, and this allows other CHR rules to serve as integrity constraints. The principle works best
for grammars without local ambiguity but this is of course too limited as our main target is natural language
analysis. To do abduction with an ambiguous grammar, additional techniques are necessary to avoid mixing
up different sets of abducibles that represent different abductive interpretations. The last thing does not
fit properly with the current paradigm of CHR, and our current implementation, which is based on impure
facilities of the SICStus Prolog version of CHR [12], is not very efficient.

In the present paper we propose an architecture aimed at efficient execution of abductive CHR Grammars.
It is based on a multiple constraint store model which also generalizes to committed choice languages with
disjunction such as CHRY [2]; it is indicated how constraint solving in this model can be optimized using
methods developed for data integration.

2 CHR Grammars and their implementation in CHR

CHRG includes rules that reflect the full repertoire of CHR, including guards, pragma declarations, etc.
Among other features, it includes context-sensitive rules that may refer to arbitrary symbols to the left and
right of the sequence recognized as a specific phrase. The following excerpt of a CHRG for simple coordinating
sentences such as “Peter likes and Mary detests spinach” illustrates CHRG’s propagation grammar rules and
also the use of syntactic context.

subj(A), verb(V), obj(B) ::> sent(s(A,V,B)).
subj(A), verb(V) /- [and], sent(s(_,_,B)) ::> sent(s(A,V,B)).

The first rule is to be understood in the usual way that a complete sub-verb-obj sequence can be reduced
to a sent node. The second rule is an example of a context-sensitive rule: It applies to a subj-verb sequence
only if followed by terminal symbol “and” and another sent node, and in this case the incomplete sentence
takes its subject, matched by variable B, from this following sent node. The marker “/-" separates the subj-
verb sequence from the required right context; a similar marker may indicate left context. The grammar
rules above are compiled into the following CHR rules; variables X0, X1, etc. stand for word boundaries.

subj (NO,N1,A), verb(N1,N2,V), obj(N2,N3,B) ==> sent(NO,N3,s(A,V,B)).
subj (NO,N1,A), verb(N1,N2,V), token(N2,N3,and), sent(N3,N4,s(_,_,B)) ==> sent(NO,N2,s(A,V,B)).

A simplification rule of CHRG (indicated by an arrow “<:>”) is compiled in a similar way into a CHR
simplification rule; however, if context parts are present, the result is a CHR simpagation rule that avoids
the removal of nodes matched by the context. The system may, optionally, be instructed to optimize the
translation by adding passive pragmas; we ignore this in the presentation.

3 Abduction in CHR Grammars and the motivation for introducing multiple
constraint stores

A grammar rule may also refer to constraint symbols that are not treated as grammar symbols. The following
artificial rule indicates the principle.

[bah]l, n(X), {hyp(X,VD} ::> m(Y), {hyp(Y,X)}.



It indicates that token “bah” followed by a grammar symbol n(X) gives rise to the recognition of the
symbol m(Y) provided that a constraint hyp(X,Y) is present in the constraint store, and in which case a new
constraint hyp(Y,X) is added to the constraint store. A grammar can also include CHR rules that apply
to such constraints; in the following we refer to such rules as integrity constraints and the indicated CHR
constraints as abducibles.

Abduction in language interpretation means to hypothesize possible facts about the semantic context that
make it possible to explain why a certain utterance can have been honestly given. The following rule indicates
that if the hypothesis have_problem holds, then an utterance “help” is meaningful as an exclamation.

[help]l, {have_problem} ::> exclamation.

Written in this way, the rule is useful only when all contextual facts are known in advance, but it could
in principle be run through an abductive interpreter to produce such facts when needed. In CHRG we can
achieve this effect simply by moving the reference to these facts to the other side of the implication as follows:

[help] ::> exclamation, {have_problem}.

Intuitively it reads: If token “help” is observed, it is feasible to assert “have_problem” and, thus, under this
assumption conclude exclamation.

The creation of a new abducible, being added to the constraint store, may trigger integrity constraints
that refine the set of abducibles or reject an incompatible set. A formalization and explanation why this
trick works and a comprehensive example can be found in [3, 5].

This principle only works correctly when there is no ambiguity involved. Special action needs to be taken
to avoid confusion in the following cases:

— When two different interpretations of a text are possible, one in which a specific token, say “green”, is
read as an adjective standing for a colour and another one in which it is read as the noun synonymous
with “lawn”; a single set of abducibles recording both is meaningless.

— When an abducible includes a variable as in he(X), where X is supposed to match an individual, and
both X=peter and X=paul are feasible assignments, both of which should be tried out.

— In case an integrity constraint identifies a contradiction, e.g., day, night ==> fail, it causes the entire
computation to fail in a committed choice language such as CHR; this is wrong as it prevents other
alternatives to be tried out.

Some, but not all, of these aspects can be handled by the introduction of backtracking, but we do not
consider this a viable alternative as backtracking may lead to a combinatorial explosion due the same choices
being undone and redone over and over again (a phenomenon that can be experienced with DCGs). A way
to approach these problems is to call for multiple constraint stores, one for each (partial) interpretation
under consideration. This is not supported by CHR, but it can be simulated by a straightforward indexing
technique that we have used in a prototype, written in the SICStus Prolog version of CHR [12]. Each
grammar node has a unique index (actually a Prolog variable) that appears as an extra argument which
also is attached to each abducible related to it. Each time a grammar rule is applied to a sequence of nodes
(matched by the head of the rule), copies with a new index are made of all abducibles associated with these
nodes (plus any new abducibles introduced by the given rule). Integrity constraints are modified so they
apply only for abducibles with identical index variable, e.g., £ (F1,C)/f (F2,C)==>F1=F2 is translated into
f(I,F1,C)/f(1I,F2,C)==>F1=F2.

This approach is of course very inefficient as the copying requires a heavy computational overhead when
programmed in Prolog, and it is unavoidable that propagation integrity constraints are applied to the copy
constraints that have already been applied once to the originals. A special control structure is compiled into
the body of the grammar rules so that a failure produced by an integrity constraint is caught and converted
to a silent removal of the given node rather than leading to the termination of the entire computation. In a
grammar with context parts, each rule needs to be equipped with a guard to prevent confusion of different
interpretations of overlapping substrings; this is a bit complicated to explain and is ignored in the following.

4 A tailored architecture with multiple constraint stores for abductive CHRGs

Basically a model is called for in which each grammar node has its own constraint store. Instead of (ab)using
CHR as indicated in the previous, we propose a new implementation in which the underlying data structure
supports the maintenance of multiple and overlapping constraint stores in an efficient way.

There are basically two ways to implement such a structure of overlapping local constraint stores, by
sharing or by copying; a choice needs to be made although hybrid solutions also are possible. A shared
representation indicates that each store is represented by a set of pointers to included substores plus a



local component recording any new constraint included at this level, bindings to variables (at any level as
sideeffects on lower levels will introduce confusion), and finally a table of those constraints below considered
to be deleted (by a simplification rule). Structure sharing is often preferred in order to save space, but in
this case it seems to create long chains so that the matching of head patterns with the constraint store slows
down, not to mention the execution of a unification.

Instead we propose a model based on efficient copying of local constraint stores. In order for this to be
feasible, we have given priority to the following properties:

— A compact representation of terms so that only small amounts of data needs to be copied.
— A representation that avoids the generation of chains of variable references whenever possible.
— Relocation from one position in the RAM store to another should be done without changing pointers.

In the following we sketch the representation that used in a prototype under development.

4.1 Overall structure
The execution pattern is indicated by the following abstract interpreter; for simplicity we consider only
propagation rules without guards and built-in’s.

A multi constraint store is a set of pairs (G, S) where G is a grammar symbol (with phrase boundaries)
and S a constraint store consisting of abducible atoms only. A derivation is a sequence of multi constraint
stores My, ..., M,, with M, called a final state, such that:

— M has one component for each input token as indicated by this example:
M; = {{token(0,1,the), ), (token(1,2,man), ), (token(2,3, walked), )}
— M1 is derived from M; by the application of a rule in one of the following ways:
e There is an instance of a grammar rule Gu,...,Gp,: :>Go, {A} with (G;,S;) € M, for j =1...m;
A is a set of abducibles. Then
M1 = M; U{{(Go,S51U---US,, UA)}
e An integrity constraint can apply to one of the local constraint stores S in M; producing a state S’
and possible sideeffects on variables in G given by substitution o. Then
Mi1 = M\ {{(G, 9)} U{(Go,5)}.
However, if S’ is failed, M; 1 = M; \ {(G,S)}.
— No rule is applied twice to the same constraints.
— No rule can apply to M,,.

The final state, then, contains all possible interpretations of the input text, so for example two alternative
sentence nodes would appear for a sentence that can be understood in two different way.
The following detailed computation rule is imposed:

— Components of the initial store are entered one by one from left to right, each at a point when no rule
can apply.

— Whenever a grammar rule is applied, integrity constraints apply as long as possible before another
grammar rule can apply.

4.2 Representation of terms

We consider a system that is liberated from Prolog so that the representation of terms does not need to
support backtracking: When a failure in a branch of computation appears, its local constraint store can be
discarded immediately in one piece.

The key to achieve efficient copying is to use relative addresses so that a pointer is given as a number
that indicates how many RAM cells away the indicated item can be found. We illustrate the approach by a
small example showing part of a constraint store that holds three terms p(X), q(Y), r(Z), initially with all
variables unbound. We can indicate this by three consecutive records as follows:

p | variable offset=0
q | variable offset=0
r | variable offset=0

The zero offset indicates that the given variables are located in the record for each term. The unification X=Y
aliasing the two variables modifies the store into the following.

p | variable offset=1
q | variable offset=0
r | variable offset=0




The offset=1 indicates that the variable is stored one record below (in practice we would count the distance
in number of bytes as records may vary in length). The unifications X=a, Z=Y lead to the following picture:

p | variable offset=1
q | constant=a
r | variable offset=-1

The indicated representation has the great advantage that its interpretation is independent of the actual
position in RAM; copying it in one piece to another location does not affect its integrity. Furthermore, the
lengths of variable reference chains need never be greater than one.

This model can be extended for complex structures in a standard way, and matching (CHR’s princi-
ple for identifying constraints for the application of a rule) as well as unification can be implemented in
straightforward ways.

The details have not been worked out yet, but it appears that the union of different constraint stores can
be produced basically by copying their different data areas one by one into a new consecutive area.

Deletion of constraints (by a simplification or simpagation rule) can be implemented by adding an extra
bit to each record.

5 Extensions and optimizations

5.1 Incremental integration of local stores and integrity checking

Abductive language interpretation is likely to produce a lot of intermediate candidate interpretations that
are anyhow ruled out by integrity constraints. In fact, we consider it highly important, as part of preparing
an abductive grammar, carefully to prepare a system of integrity constraints that catches nonsense states as
early as possible; this is necessary in order to keep down the explosive complexity of abduction.

We will consider it as the rule rather that the exception that a newly constructed component (G, S) is
discarded due to failure of integrity constraints applied to S. Inspired by our own work on efficient integrity
checking in data integration systems [7, 8] we propose to optimize this step in the following way.

Call the set of integrity constraints I" and assume that the application of a grammar rule involves the
construction of a new set of abducibles Syeyy = S1U---US,,, UA; we can assume that each S; satisfies I" and
the task is to find whether this is also the case for Syew. We understand here a set of integrity constraints
as a function from one or more constraint stores to a new constraint stores or failure.

Whenever S and S are two constraint store, both known to satisfy I, the methods of [8] can produce an
optimized version I for the specific problem of determining the result of I'(S U S’); we write its application
I'’(S,S"). Roughly stated, I applies rules only to combinations of constraints coming from both S and S’
(combinations exclusively in S or exclusively in S’ have been tested at earlier stages). Let in a similar way
I'"(S,S’) represent another optimized version that assumes consistency of S but not necessarily of S’. (In
fact, [8] considers only integrity constraints that are pure testers, so the methods need to be adapted to CHR
rules that are “active” in the sense that they may add extra abducibles, recursively triggering other rules.)

The following algorithm shows how Sy can be constructed in an incremental and optimal way from the
component stores.

1= ]-7 Sncw = Sl;

Snew = F/(SneW7 Sz)7

if Shew = failure then failure-exit;

if i < m then {i:=1i+ 1; go to 2};

Shew = F//(Snewa A),

if Shew = failure then failure-exit else normal-exit;

SOt W=

5.2 Explicit state splitting

The proposed architecture can be extended to handle a split operator which can be used in rule bodies; it
is similar to disjunction in CHRY considered by [1,2]. We denote it here by an infix symbol “or”. If, for
example, ¢; or ¢y is executed, it means that the given component (grammar symbol with local constraint
store) immediately splits into two, one including ¢; and another one including co, and execution continues
separately in each of the two components. With our state model it is obvious to have ¢; continue in its
current component after a clone has been produced for the processing of cs.

As shown by [2], it is possible to represent any Prolog program as a set of simplification rules with splits
in the body, one alternative for each defining clause. First of all, this shows that a variant without grammar
symbols of our architecture can provide an efficient implementation of CHRY.

Secondly it allows to extend our system with a common principle for obtaining minimality of abductive
answers (measured in the number of literals), which is applied in many abductive systems, e.g., [10]. Whenever



two abducibles a(s) and a(t) occur simultaneously, the interpreter tries to unify s and ¢, and, if this leads to
a failure, the alternative s # t is tried out, typically under backtracking. This principle can be implemented
in our system by adding, for each abducible predicate, a rule such as a(X)/a(Y) <=> X=Y or dif (X,Y).

However, we cannot recommend this principle as a standard for abduction as it it implies exponentially
many combinations to be tried out. We do not go into a detailed discussion here, but we see it as a symptom
of a badly specified abductive problem if this principle is essential for keeping the number of abduced atoms
small: carefully designed integrity constraint that describe essential domain properties need to be added
to the specification. We believe that an explicit split operator is a very useful device in the development of
abduction based language interpretation systems. It allows integrity constraints and grammar rules explicitly
to state that alternative choices should be tried.

6 Summary and related work

We have proposed a new implementation of CHR Grammars which is intended to make abductive language
interpretation possible in an efficient way. Together with the high flexibility and expressibility in this formal-
ism, including integrity constraints written as CHR rules and a new splitting operator, we hope to provide
a setting that makes abduction more attractive and realistic for language processing.

The approach to abduction taken here appears to be considerably more efficient that other known ap-
proaches; the price to be payed, however, is a limitation on the use of negation. Only so-called explicit
negation simulated by integrity constraints is possible at present.

A prototype implementation is currently under development and benchmark tests will be made in the
future in order to see whether our expectations about efficiency are fulfilled.

We still need to compare the proposed implementation architecture with other committed choice logic
programming languages such as Parlog [9], Guarded Horn Clauses [13], and Concurrent Prolog [11].
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The K.U.Leuven CHR system: implementation and application

Tom Schrijvers!*, Bart Demoen!

Dept. of Computer Science, K.U.Leuven, Belgium

Abstract. We present the K.U.Leuven CHR system: what started out as a validation of a new attrib-
uted variables implementation, has become a part of three different Prolog systems with an increasing
userbase.

In this paper we highlight the particular implementation aspects of the K.U.Leuven CHR system, and
a few CHR applications that we have built with our system.

1 Introduction

For this paper we expect the reader to be familiar with Constraint Handling Rules in general and their
implementation on Prolog systems in particular. We refer the reader to [6,7] and [9] for more background
on the respective topics.

CHR has been around for several years now, but the number of CHR implementors and variety of available
implementations is surprisingly small. The best known CHR implementation is the one within SICStus Prolog
[10]. It was also ported to Yap [1]. We are familiar with only one different implementation, namely the one
in ECLiPSe [8], but which seems to be lacking features, like multi-headed propagation rules.

Our work adds one more CHR Prolog implementation to the shortlist. The host system was originally
hProlog, but it is now also available in XSB [16] and SWI-Prolog [17].

In the next Section, we present our CHR system: its evolution, current state and particular implement-
ation aspects. Next, in Section 3 we mention several of our applications for which CHR has proven to be
the right tool. Two of them are discussed in more detail. Finally, in Section 4 we discuss future work on our
CHR compiler, challenges we see for the language and application domains we wish to tackle with CHR.

2 Implementation

The K.U.Leuven CHR system consists of two parts:

— The runtime is strongly based on the SICStus CHR runtime written by Christian Holzbaur.
— The preprocessor compiles embedded CHR rules in Prolog program files into Prolog code. The compiled
form of CHR rules is similar to that described in [9].

Initially the CHR system described in this paper was written for the hProlog system. hProlog is based on
dProlog [4] and intended as an alternative backend to HAL [3] next to the current Mercury backend. The ini-
tial intent of the implementation of a CHR system in hProlog was to validate the underlying implementation
of dynamic attributes [2].

After the completion of the main functionality of the CHR system, it was ported to XSB. This port
was rather straithforward because we first introduced into XSB the hProlog attributed variables interface.
We have then integrated CHR with the tabled execution strategy of XSB [15] to facilitate applications with
tabled constraints. In that context we have studied optimization via generalised answer subsumption of CHR,
constraints.

Jan Wielemaker - the implementor of SWI-Prolog - recently became interested in attributed variables as
a basis for co-routining and constraint facilities in SWI-Prolog. He decided to adopt the attributed variables
implementation of hProlog. Once these were in place, it required little work to also adopt the K.U.Leuven
CHR system to SWI-Prolog.

Some noteworthy optimizations of the compiler are:
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— Inference of functional dependencies between arguments of constraints that takes guards into account.
This allows to stop search for passive constraints in multi-headed rules after a first solution has been
found.

— Classification of left-hand constraint as passive for rules C1 \ C2 <=> true | Body where C1 and C2
are identical modulo the arguments that are functionally dependent on other arguments.

— Automatic detecting of constraints that are never inserted in the constraint store. One of the corollaries
of this information, is that other constraints appearing in rules with never inserted constraints can be
considered passive.

— Heuristic reordering of passive constraints in multi-headed rules to increase the sharing of variables and
interleaving with cheap guards.

— Avoidance of redundant locks in guards.

2.1 Experimental evaluation

In this Section we compare the performance of our CHR systems with that of Christian Holzbaur on their
respective systems. To do so we compare the results of eight benchmarks which are available from [13].
The following causes for performance differences are to be expected:

— Firstly, we expect the outcome to be mostly determined by the relative performance difference on Prolog
code as the CHR rules are compiled to Prolog. For plain Prolog benchmarks, we have found average
runtimes of 78.2 % for Yap, 76.2 % for hProlog, 146.8 % for XSB and 488.2 for SWI-Prolog. These times
are relative to SICStus.

— Secondly, the results may be influenced by the slightly more powerful optimizations of our CHR pre-
processor. To eliminate these effects we have disabled all advanced optimizations not performed by the
SICStus CHR, compiler. In addition, the checking of guard bindings has been disabled in both systems.
This does not affect the benchmarks, since no binding or instantiation errors occur in the guards. This
increases the fairness of comparison since our analysis of redundant checks is more powerful and at the
same time our system does not intercept instantiation errors.

— Thirdly, the low-level implementation and representation of attributed variables differs between the
systems. The global constraint store of CHR is represented as an attributed variable and it may undergo
updates each time a new constraint is imposed or a constraint variable gets bound. Hence, the complexity
and efficiency of accessing and updating attributed variables may easily dominate the overall performance
of a CHR program if care is not taken. Especially the length of reference chains has to be kept short and
nearly constant, as otherwise accessing the cost of dereferencing the global store may easily grow out of
bounds.

Table 1 shows the results for the benchmarks. All measurements have been made on an Intel Pentium
4 2.00 GHz with 512 MB of RAM. Timings are relative to SICStus. The Prolog systems used are SICStus
3.11.0 and Yap with Christian Holzbaur’s CHR system on the one hand and hProlog 2.4, our extension of
XSB 2.6 and SWI-Prolog 5.3 with our CHR system on the other hand.

Table 1. Runtime performance of 8 CHR benchmarks in 5 different Prolog systems.

Christian Holzbaur K.U.Leuven
Benchmark||SICStus|  Yap hProlog| XSB |SWI-Prolog
bool 100.0% 74.1%|| 43.3%| 86.0% 207.0%
fib 100.0% 61.7%|| 76.5%|154.9% 538.9%
fibonacci 100.0% 59.6%|| 35.4%| 82.2% 270.0%
leq 100.0% 96.0%|| 81.6%(151.1% 454.4%
primes 100.0%| 104.8%|| 51.3%139.5% 520.3%
ta 100.0% 82.6%|| 53.1%(106.2% 380.4%
wis 100.0% 63.6%|| 52.5%(125.9% 309.3%
zebra 100.0% 52.6%|| 21.3%| 50.8% 139.1%
average 100.0% 74.4%| 51.9%(112.1% 352.4%




We see that the relative performance difference between SICStus and Yap is more or less the same for
both CHR and plain Prolog. On the other hand, the relative speed for CHR compared to SICStus is 1.31 to
1.47 times better than that of plain Prolog for the other three systems. We believe that this is partly due
to the more efficient implementation of attributed variables. Another important factor is the code quality:
we have found that careful tuning of the generated code and runtime system, based on profiling results,
considerably improves runtimes.

3 Applications

Our experience with CHR is not limited to developing the system, we have also experienced the power of
the CHR language itself in several applications.

In previous work [15] we have already reported on two model checking applications where a rapid CHR
prototype has replaced the adhoc constraint manipulations.

We have also assisted master thesis students in writing a simple formula simplifier in CHR as part of a
precondition checker for Object Oriented programs.

In the following we will give a brief overview of two other applications, a wellfounded semantics generator
and a generative memory model implementation.

3.1 Wellfounded Semantics Generator

To illustrate the power of CHR for general purpose applications, we have implemented an algorithm that
computes the wellfounded semantics of simple logic programs. Simple logic programs consist of clauses with
an atom in the head and both positive and negated atoms in the body.

The algorithm proceeds by repeated application of two steps until nothing changes anymore. In the first
step as many atoms as possible are decided to be either true or false. In the second step, only the clauses
of the still undefined atoms are considered. In those clauses only the positive body literals of atoms not
previously proven true are considered. All those remaining atoms that cannot be proven true under those
circumstances are considered false in the wellfounded semantics. We carry this information over to step one
and continue.

This algorithm is quite a challenge for CHR:

— The sequencing of the two different steps has to be enconded.

— The second step only considers a subset of the information. It disregards the negative literals.

— The information inferred in the second step has a different meaning in the first step. Undefined atoms
in the second step are considered false for the first step.

To tackle this problem, we heavily rely on the actual operational semantics of CHR: the order of the rules
is important for the correct execution of the program.
Several typical CHR idioms used are:

— Use special flag constraints to indicate a certain step is active and to enable certain CHR rules.

— If-then-else through order of rules: the first rule removes key constraint if it commits. The second rule
applies if key constraint is still around.

— Effect change of semantics by replacing constraints with others, e.g. pos/2 with pos2/2, such that other
rules apply to them.

This program, called wfs, is available from [13]. It shows that the impure features of CHR can be put
to good use, even to compute pure logic results. The fact that CHR permits these kinds of techniques
considerably improves its usability and suitability for a wider range of problems. However, more syntactical
support for alternating between phases with different semantics, e.g. by enabling and disabling certain rules,
would be helpful.



3.2 JMMSOLVE: a generative CCM Machines implementation

Because the current Java memory model shows several flaws, JSR-133 calls for a new memory model for
Java. A memory model describes the allowed interactions between different threads via main memory, in
particular the relation between reads and writes to main memory.

One proposal is the Concurrent Constraint-based Memory Machines [12] framework which allows the
expression of several memory models in terms of constraints. The two main CCM concepts are events, like
reads, writes, locks etc., and constraints on events. Constraints on events are either ordering constraints or
constraints on values read or written.

In a CCM Machine threads submit events and corresponding constraints to the constraint store which
functions as the main memory that merges them with the previous submissions. According to the rules of
the underlying memory model the CCM then adds ordering constraints between events, links reads to writes,
and checks the unique solution criterion of the linking, i.e. whether every value read and written has one
unique instantiation.

With JMMSOLVE [14] we prove the claim of the CCM proposal that it is generative, i.e. JMMSOLVE is
capable of generating all valid orderings and linkings according to the rules of the memory model.

JMMSOLVE currently uses CHR in two places:

— For a minimalistic integer constraint solver with constraint implication and equality. This only serves
as a proof of concept. We could have used just as well another full blown integer solver. However, this
observation was not clear at the beginning and CHR, has allowed us to go ahead without worrying over
possible interoperability problems. Now that the prototype has been established, it is fairly easy to indeed
improve efficiency and use a genuine integer solver.

— For the event ordering constraint (<<)/2 together with the ordering and linking rules of the memory
model. As the ordering constraint is subject to application-specific ordering rules, this definitely calls for
CHR. Indeed, it has proven to be rather easy to translate the rules of memory models into CHR rules.

We do exploit the actual operational semantics of CHR for tasks which may be considered impure in
traditional constraint logic programming, such as collecting all constraint of a particular kind from the store
and relying on the order in which constraints are added to the program.

JMMSOLVE was released and is currently under scrutiny of the Java Memory Model community.

4 Future Work

Future work on our compiler will investigate more optimizations. In particular, we are considering the
usefulness of intelligent backtracking techniques, perhaps combined with backmarking. In addition, ideas of
other rule-based languages, like the Rete algorithm [5], may be adapted to the CHR setting.

Because of the current wider acceptance of CHR we see as one of the more important challenges of
the CHR community the standardisation of syntax, features and operational semantics. Toghether with its
availability on a wide range of popular Prolog systems a single standard should make CHR a good candidate
for acceptance in the Next Logic Programming Language, about which discussion have recently started [11].

Two of the issues that should be considered in a standard are:

— CHR currently seems to lack structuring features, which are essential for programming in the large. The
requirement of multiple phases in Section 3.1 is an example where the need for more structuring features
is revealed.

— Another issue are the options and pragmas supported by different systems. Some syntactical difference
should be made between those with an impact on semantics versus efficiency. In that way, unsupported
efficiency options can safely be ignored while unsupported semantical options should be reported to the
user.

To support further research in optimizations for CHR, a publicly available benchmark suite with a
balanced mix of interesting properties is another discussion topic for CHR implementors.

As to future CHR applications, we are interested in further investigating the usefulness of tabled CHR
for model checking with constraints. We also inted to experiment with CHR for execution control based on
high-level application specific constraints in multi-agent systems.
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The Chameleon System

Peter J. Stuckey *, Martin Sulzmann fand Jeremy Wazny *
April 22, 2004

Abstract

We give an overview of the major features of the Chameleon programming language, as well
as use of the system, from a Haskell programmer’s point of view. Chameleon supports type-
class overloading a la Haskell. The novelty of Chameleon is to allow the programmer to specify
almost arbitrary conditions on type classes in terms of Constraint Handling Rules (CHRs). In
fact, Chameleon’s entire type inference system and evidence translation of programs is phrased
in terms of CHRs.

1 Introduction

Chameleon is a Haskell-style language to experiment with advanced type extensions. Chameleon
covers most of the Haskell syntax [Has]. In contrast to Haskell, we only support singly-overloaded
methods.

Example 1 For instance, consider the following Haskell 98 type class and instance declarations.

class Eq a where (==) :: a->a->Bool

instance Eq a => Eq [a] where
(==) [1 [1 = True
(==) (x:xs8) (y:ys) = ((==) x y) && ((==) xs ys)
(==) _ _ = False

The above example is written as follows in Chameleon.

Example 2

overload eqC

instance EqC (a->a->Bool) => EqC ([a]l->[a]l->Bool) where
eqC [1 [1 = True

eqC (x:xs) (y:ys) = (eqC x y) && (eqC xs ys)

eqC = False

rule EqC a ==> a=t->t->Bool
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In Chameleon each constraint Method t refers to an overloaded use of identifier method at type t.
Hence, the statement overload eqC is similar to class EqQC a where eqC :: ain Haskell. The
novelty of Chameleon is to write almost arbitrary programs (on the level of types) in terms Con-
straint Handling Rules (CHRs) [Fri95]. The Chameleon programmer can introduce such CHRs via
the rule keyword. For example, the above CHR rule EqC a ==> a=t->t->Bool (in combination
with overload eqC) essentially mimics the Haskell class declaration class Eq a where (==
a->a->Bool. Note that in Chameleon we do not impose any conditions on type class constraints
appearing in the instance context. E.g. Haskell 98 demands that all type class parameters must
be variables.

In the following, we present an overview of the major features of the Chameleon programming
language, as well as use of the system. In Section 2 we give an overview of the kind of CHRs found
in Chameleon. In Section 3 we consider type inference whereas in Section 4 we consider translating
Chameleon, i.e. replacing uses of overloaded methods by some specific instances. In Section 5 we
consider some extended examples which make use of Chameleon’s CHR-based type programming
capabilities. In Section 6 we show how to make use of existing Haskell code within Chameleon.
Finally, in Section 7 we show how to use the system to execute Chameleon programs.

The latest Chameleon distribution is available via

http://www.comp.nus.edu.sg/ sulzmann/chameleon

2 Constraint Handling Rules

In general, type inference works by generating and solving constraints. Here, constraint solving is
performed w.r.t. the relations imposed on overloaded identifiers which are specified in terms of
CHRs. For example, in Haskell the declaration class Eq a where (==) :: a->a->Bool states
that any use of (==) must be of shape t->t->Bool where the constraint Eq t refers to a particular
instance of the equality type class. In Chameleon, we can simply write

rule EqC a ==> a=t->t->Bool

to achieve the same behavior (keep in mind that constraints in Chameleon refer to exactly one
method). Via the rule keyword the Chameleon programmer can introduce the following two forms
of CHRs.

rule Methodl t1, ..., Methodn tn ==> s=t
and
rule Methodl t1, ..., Methodn tn ==> Method t

Both kinds are referred to as CHR. propagation rules. The first kind allows us to impose stronger
conditions on the shape of types. The second kind of CHRs is useful to impose dependencies among
overloaded instances.

Example 3 For instance, consider the following Chameleon program.

overload ordC

rule OrdC a ==> EqC a

rule 0rdC a ==> a=t->t->Bool

instance 0rdC (a->a->Bool) => 0rdC ([a]->[a]->Bool)

Note that if the instance body is omitted we assume the instance definition is undefined. The
constraint symbol 0rdC refers to an ordering relation. Hence, it is natural to require that each
such instance implies an equality instance EqC. Indeed the above CHRs are pretty much equivalent
to class Eq a => Ord a where (<) :: a->a->Bool in Haskell.



2.1 Confluence
In Chameleon, CHRs are checked for ”consistency” before we proceed with type inference.

Example 4 Consider the following Chameleon example where we have dropped 0rdC (a->a->Bool)
from the instance context.

overload eqC
overload ordC

instance EqC (a->a->Bool) => EqC ([a]->[a]->Bool) where -- (E1)
eqC [1 [1 = True

eqC (x:xs) (y:ys) = (eqC x y) && (eqC xs ys)

eqC _ _ = False

rule EqC a ==> a=t->t->Bool
instance {-0rdC (a->a->Bool)=>-} 0rdC ([a]l->[al->Bool) -- (01)
rule 0rdC a ==> a=t->t->Bool

rule OrdC a ==> EqC a -- (E2)

Chameleon complains that CHRs are "non-confluent”. Note that each instance C => U t implies
a (single-headed) simplification CHR of the form rule U t <==> C (the programmer does not have
to specify such simplification rules explicitly, they are automatically generated from instances). We
generally require that CHRs are confluent, i.e. the order of CHR applications does not matter.
This is not the case for the above example. In case we encounter 0rd([a]->[a]->Bool), we can
either apply rule (O1) which yields the empty constraint represented by True. Alternatively, we
can apply rule (E2) which yields 0rd([a]l->[a]l->Bool),Eq ([a]l->[al->Bool). Applications of
rules (E1) and (O1) finally leads to Eq (a->a->Bool) which is different from True. Hence, CHRs
are non-confluent. In fact, a similar check is enforced in Haskell, however, the notion of confluence
is more general. Note that if one may wish, the confluence check can be switched off via the
”—no-conf” option.

2.2 Termination

For terminating CHRs, we can test for confluence by checking all ”critical pairs”. In fact, if the
confluence check in Chameleon is invoked we assume that CHRs are terminating. However, we can
easily write a "non-terminating” Chameleon program.

instance Erk [a] => Erk a

The CHR implied by the above instance is non-terminating. By default Chameleon performs a
simple termination check. Note that CHRs are a Turing-complete language. Hence, any termina-
tion check must be necessarily incomplete. Via the "—no-term” option, the user can switch off the
termination check.

2.3 Range-Restriction

Consider

instance C (Int->Int->Int)
instance C (a->b->c) => D ([al->[b]) —- (D1)



Chameleon complains that the CHR resulting from (D1) is not ”range-restricted”. Note that if
we ground variables a and b we still find the non-ground term c in the instance context. Range-
restrictedness ensures that there are no unconstrained variables which potentially endangers com-
pleteness of type inference. In the upcoming Section 5.2 we consider an instance (Select) which
is non-rangestricted but safe! Via the ”—no-rr” option, the user may switch off the check for
range-restriction.

2.4 CHR Solver

A description of the internal details of the CHR solver are beyond the scope of this document.
Note that Chameleon comes with a fully-fledged CHR, solver (on the level of types). That is, we
also support multi-headed simplification rules.

Example 5 In the following Chameleon program we model stack operations (on the level of types)
such as push and pop. Their meaning is defined in terms of CHRs.

interface Prelude -- will be explained in detail later

—-- in essence, we teach Chameleon how to use the Haskell 98 Prelude

-- we model the stack as a singleton list
data Nil = Nil
data Cons x xs = Cons x xs

—-- some stack elements

data V1 = V1
data V2 = V2
data V3 = V3

overload push
overload pop
overload stack

-- two multi-headed simplification rules

rule Push (x), Stack (s) <==> Stack (Cons x s)
rule Pop (), Stack (Cons x s) <==> Stack (s)
rule Pop (), Stack (s) ==> s=Cons x s’

—-- we introduce a CHR to model initial constraint store
overload initStore
rule InitStore a <==> Stack (Nil), Push (V1), Push (V2)

run = initStore

Obviously, we cannot run (on the level of values) the above program. But we can execute the
CHR program by invoking Chameleon’s CHR-based type inference mechanism. For example, the
call chameleon --no-term -d stack.ch invokes Chameleon in pure type inference mode (-d)
where we have switched of our CHR termination check (-no-term). We reach a command-line
environment with similar functionality compared to HUGS [HUG] or GHCi (besides executing
program code) [GHC]. For example,

stack.ch> :t run
(Stack(Cons V2 (Cons V1 Nil))) => a



allows us to execute the above CHR program. The constraint component of the above type holds
the result of running the above CHR program on the given constraint store.

3 Type Inference

Type inference in Chameleon proceeds by generating the appropriate constraints out of the pro-
gram text and solving them w.r.t. the given set of CHRs. A program is type correct if there
are no inconsistent constraints and all user-provided type annotations are correct. Additionally,
we also check that expressions are unambiguous (though the user can switch off this check via
the --no-unambig option). In case of a type error, incorrect type annotation or ambiguous ex-
pression Chameleon will issue an error message. The user can then invoke the Chameleon Type
Debugger [SSW03b, SSW03a] to get some assistance in fixing such errors.

In contrast to other Haskell implementations such as Hugs and GHC we do not pretty-print
types. Consider

Example 6

interface Prelude

overload eqC
overload ordC

rule EqC a ==> a=t->t->Bool
rule 0rdC a ==> a=t->t->Bool
rule OrdC a ==> EqC a

f = ordC

If we invoke Chameleon’s type inference/debugging environment (via chameleon -d eq2C.ch) and
query the type of £ we find the following

eq2C.ch> :t f
(EqC(a -> a -> Bool),0rdC(a —-> a -> Bool)) => a -> a —-> Bool

The constraint EqC(a -> a -> Bool) might be considered redundant (but harmless). Indeed,
OrdC(a -> a -> Bool) => a -> a -> Bool is equivalent to the above type. We plan to incor-
porate pretty-printing of types in future versions of Chameleon.

In our current implementation type inference is more ”lazy” compared to the HUGS or GHC.

Example 7 Consider

interface Prelude

f x = let h = (x::Int)

Chameleon reports that £ has type a->a whereas e.g. Hugs reports Int->Int. Note that h only
constraints the type of x without actually being used in f’s function body. Hence, Chameleon
neglects the constraints associated to h. Obviously, we could easily enforce ”strict” type inference
but we have not done so in our current implementation.

Note also that Chameleon does not enforce the Haskell monomorphism restriction. Further-
more, there is no defaulting in Chameleon. For example, the following program is accepted by
Chameleon, while Haskell would reject it.



P (Int, Float)
p=1letn-=1
in (n,n)

The monomorphism restriction and defaulting often eliminate bothersome sources of ambiguity
in Haskell programs. Consequently, there are ambiguous Chameleon programs whose Haskell
counterparts are unambiguous. Consider the following:

one = if 1 == 1 then 1
else undefined

Chameleon will report this as ambiguous, whereas Haskell will accept it.
It has been observed that all known Haskell implementations reject some seemingly well-typed
programs.

Example 8 Here is a recast of a Haskell program published on the Haskell-Cafe [JNOO] mailing
list in terms of Chameleon.

interface Prelude

—-- we model

-- class C t where op :: t->Bool
-- instance C [al

hconstraint C

extern op :: C t => t->Bool

rule C [a] <==> True

py = (let £ :: c->Bool
f x = op (y > return x)
in £, y ++ [1)
qy = (y ++ [,

let £ :: c->Bool
f x = op (y > return x)
in f)

The above program is type correct. Note that Hugs and GHC either reject p or q whereas
Chameleon accepts both functions!
In a recent paper [SSWO04] we elaborate on this topic in detail.

Example 9 Here is another interesting example from this paper
interface Prelude
-- class HasEmpty a where isEmpty :: a->Bool

hconstraint HasEmpty
extern isEmpty :: HasEmpty a => a->Bool

hconstraint Erk

{-
instance HasEmpty [al
instance HasEmpty (Maybe a)



instance Erk m => HasEmpty (m a)
instance Erk []
instance Erk Maybe

-}

rule HasEmpty [a] <==> True -- (H1)

rule HasEmpty (Maybe a) <==> True -- (H2)

rule HasEmpty (m a) <==> Erk m -- (E1)

rule Erk [] <==> True -- (E2)

rule Erk Maybe <==> True -- (E3)

test :: (Monad m, HasEmpty (m (m a))) => m a -> Bool

test y = let £ :: d->Bool
f x = isEmpty (y >> return x)
in fy

We can invoke Chameleon via chameleon --no-conf -d hasempty.ch to check that the above
program is type correct. We need to switch off the confluence check because the above instances
are overlapping. For details we refer to the above mentioned paper.

4 Translating Chameleon

To resolve overloading on the value level we apply the well-known ”evidence” translation scheme.
Chameleon is translated to ”plain” Haskell. However, there are some subtle differences among
Chameleon-style and Haskell-style overloading.

Example 10 Consider a variation of Example 4. Note that instance (O1) includes context 0rdC
(a->a->Bool). Hence, CHRs are confluent.

overload eqC
overload ordC

instance EqC (a->a->Bool) => EqC ([a]l->[a]->Bool) where
eqC [1 [1 = True

eqC (x:xs) (y:ys) = (eqC x y) && (eqC xs ys)

eqC = False

rule EqC a ==> a=t->t->Bool
instance 0rdC (a->a->Bool) => 0rdC ([a]l->[a]l->Bool) -- (D1)
rule 0rdC a ==> a=t->t->Bool

rule OrdC a ==> EqC a

f :: OrdC (a->a->Bool) => a->a->Bool -- incorrect type annotation!
f = eqC

The above looks like a perfectly reasonable program. Surprisingly, Chameleon rejects the above
program because f’s type annotation is incorrect. Note that in Haskell Ord a refers to a type
class which contains a method (<) of type a->a->Bool and (due to sub-classing) also refers to



an equality method (==) of type a->a->Bool. However, in Chameleon, each constraint Method
t refers exactly to an overloaded identifier method of type t. Hence, the statement rule 0rdC a
==> EqC a has only a meaning on the level of types, i.e. for each 0rdC t there must also be a EqC
t. In order to resolve overloading on the value level, we need to explicitly mention a constraint
Method t for each use of method at type t.

Example 11 Consider the following variation of Example 10. In the function body of £ we find
now ordC instead of eqC.

interface Prelude -- will be explained in detail later
—-- in essence, we teach Chameleon how to use the Haskell 98 Prelude

overload eqC
overload ordC

instance EqC (a->a->Bool) => EqC ([a]l->[a]l->Bool) where
eqC [1 [1 = True

eqC (x:xs) (y:ys) = (eqC x y) && (eqC xs ys)

eqC _ _ = False

rule EqC a ==> a=t->t->Bool

instance 0rdC (a->a->Bool)=> 0rdC ([a]l->[a]l->Bool) where
ordC = undefined
-- if the instance body is left empty we assume the "undefined" instance body by default

rule 0rdC a ==> a=t->t->Bool
rule OrdC a ==> EqC a

f :: 0rdC (a—>a->Bool) => [a]l->[a]l->Bool
f = ordC

The translation yields the following result (call chameleon -o eqordC.hs eqordC.ch).

import Prelude

ec3 :: ((=>) (((->) (@) (((->) (a)) (Bool)))) (((->) ([(a)1])) (((->) ([(a)1)) (Bool)))

ec3 (pEqCITARR_v18026I_ITARR_v18026I_BoolII) ([1) ([1) = let {pEqCIIARR_a18373I_ITARR_al8373I_BoolIl

= pEqCIIARR_v18026I_IIARR_v18026I_BoolII} in (True)

ec3 (pEqCIIARR_v18026I_IIARR_v18026I_BoolII) ((:) (x) (xs)) ((:) (y) (ys)) = let {pEqCIIARR_a18373I_II
ARR_a18373I_BoolII = pEQCIIARR_v18026I_ITARR_v18026I_BoolII} in ((&&) (((pEqCIIARR_al8373I_IIARR_al8
373I_BoolII) (x)) (y)) ((((ec3) (pEQCIIARR_a18373I_IIARR_a18373I_BoolII)) (xs)) (ys)))

ec3 (pEqCIIARR_v18026I_IIARR_v18026I_BoolII) (_) (_) = let {pEQCIIARR_al18373I_IIARR_al18373I_BoolIl =
PEQCIIARR_v18026I_IIARR_v18026I_BoolII} in (False)

ec83 :: ((->) (((->) (a)) (((->) (a)) (Bool)))) (((->) ([(a)])) (((->) ([(a)1)) (Bool)))
ec83 (pUrdCIIARR_V18174I_IIARR_V18174I_B00111) = let {pOrdCIIARR_a18427I_IIARR_a18427I_B0011I = p0rdC
IIARR_v18174I_IIARR_v18174I_BoolII} in (undefined)

£ (=) (((=>) (@) (((->) (a)) (Bool)))) (((->) ([(a)1)) (((->) ([(2)]1)) (Bool)))
f (pOrdCIIARR_v18236I_IIARR_v18236I_BoolII) = let {pOrdCIIARR_al8542I_IIARR_al8542I_BoolII = pOrdCIIA
RR_v18236I_ITARR_v18236I_BoolII} in ((ec83) (pOrdCIIARR_a18542I_ITARR_al8542I_BoolII))



which can be executed by any Haskell compiler. Briefly, we turn instance declarations into func-
tion definitions. E.g. ec3 corresponds to instance EqC (a->a->Bool) => EqC ([a]l->[a]l->Bool).
Note the correspondence between ec3’s (pretty-printed) type annotation (a->a->Bool)->[a]->[a]->Bool
and the instance declaration.

Obviously, the Chameleon user does not need to understand the the details of the implemen-
tation scheme behind Chameleon. The curious reader is referred to [SW] for more details. Note in
our latest release we have incorporated the weak entailment check discussed on page 6 in [SW]. .

5 Examples

The real fun of programming in Chameleon starts when writing programs on the level of types.
We briefly illustrate Chameleon’s type level programming ability in connection with ”functional
dependencies”. Functional dependencies [Jon00] are a popular type class extension where the
programmer can take (to some extent) control over the type inference process. Consider the
following Haskell program.

class C a b | a->b where ¢ :: a->b
instance C Int Bool

The functional dependency | a->b states that in C a b the first component uniquely determines
the second component. For example, if type inference encounters C a b and C a c, types are
improved by adding the equality constraint b=c. In case of C Int b the functional dependency
in combination with above the instance implies that b=Bool. In Chameleon, we can make such
improvement rules explicit in terms of CHRs. Here is the Chameleon equivalent of the above
program.

overload c

rule C x ==> x=a—->b

—-— FD rule

rule C (a->b), C (a->c) ==> b=c
instance C (Int->Bool)

-- instance improvement rule
rule C (Int->b) ==> b=Bool

In fact, CHRs not only give us a sound foundation for functional dependencies, CHRs even allow
us to go beyond functional dependencies. The interested reader is referred to [GJDS04] for more
details. Here, we briefly present two examples making use of more powerful functional dependencies
expressible.

5.1 A Generic Family of Zip Functions

We start off with an encoding in Haskell, point out some limitations of functional dependencies
and then present a solution in Chameleon.

-- Haskell encoding
zip2 :: [a]l->[b]->[(a,b)]
zip2 (a:as) (b:bs) = (a,b) : (zip2 as bs)
zip2 _ - = [

class Zipabc | ac->b, b c->a where
zip :: [a]l -> [b] -> ¢



instance Zip a b [(a,b)] where
zip = zip2

instance Zip (a,b) c e => Zip a b ([c]->e) where
zip as bs cs = zip (zip2 as bs) cs

e2 = head (zip [True,False] [’a’,’b’,’c’])
e3 = head (zip [True,False] [’a’,’b’,’c’] [1::Int,2])

Note that the inferred types of e2 and e3 are

e2 :: Zip Bool Char [a] => a
e3 :: Zip (Bool,Char) Int [a] => a

rather than

e2 :: (Bool,Char)
e3 :: ((Bool,Char),Int)

Indeed, the relevant improvement rule here stated in terms of a CHRs is as follows
rule Zip a d [(a,Db)] ==> d=b

To achieve the desired typing for e2 and e3 we would like to state a slightly stronger condition
such as

rule Zip a d [c] ==> c=(a,b), d=b
However, there is no mechanism in Haskell which allows us to do so.

—-— Chameleon encoding
-- we point out parts where Chameleon allows us to impose a stronger improvement rule
interface Prelude

overload zip

zip2 :: [al -> [b] -> [(a,b)]
zip2 (x:xs) (y:ys) = (x,y) : (zip2 xs ys)
zip2 _ _ =[]

-- enforce
-- class Zip ([al->[b]l->c) where zip :: [al->[b]l->c
rule Zip x ==> x=[a]->[b]->c

-- FD
rule Zip (a->b->c), Zip (a->d->c) ==> b=d
rule Zip (a->b->c), Zip (d->b->c) ==> a=d

—-- base case

instance Zip ([al->[b]l->[(a,b)]) where
zip= zip2
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-- instance-improvement

-- rule Zip ([al->c->[(a,b)]) ==> c=[b] -- as specified by FD

rule Zip ([a]l->d->[c]) ==> d=[b],c=(a,b) -- though we employ a slightly stronger rule
-- to achieve the desired typing

rule Zip (c->[bl->[(a,b)]) ==> c=[al

—-- general case
instance Zip ([(a,b)]->[cs]->r) => Zip ([al->[b]l->[cs]->r) where
zip as bs cs = zip (zip2 as bs) cs

-- instance improvements for this case are trivial

-- annoations are not necessary here

--el :: [(Bool,Char)]

el = head (zip [True,Falsel] [’a’,’b’,’c’])

--e2 :: [((Bool,Char),Int)]

e2 = head (zip [True,False] [’a’,’b’,’c’] [1::Int,2])

-- to run this program
-- you need to call "chameleon -o zip.hs zip.ch"
-- you can then run zip.hs

Obviously, we should not add arbitrary CHRs otherwise we might endanger soundness and decid-
ability of type inference.
5.2 Extensible Records

As another application we present an encoding of extensible records in Chameleon. The basic idea
is to encode field labels and records in terms of singleton types. Note that a similar encoding with
functional dependencies would be too ”weak”.

interface Prelude
-- we use singleton lists to model records

data Nil = Nil
data Cons x xs = Cons x xS

-- we use singleton numbers to model record labels

data Zero = Zero
data Succ n = Succ n

-- result of type level computations
data T =T
data F = F
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overload eqR
overload select
overload select’
overload remove
overload remove’
overload extend
overload check
overload unique
overload unique’

—- class declaration
rule EqR x ==> x=a->b->c

-- FD
rule EqR (a->b->c), EqR (a->b->d) ==> c=d

-- instances
instance EqR (Zero -> Zero -> T) where
eqR Zero Zero =T
instance EqR (a->b->c) => EqR (Succ a -> Succ b -> c¢) where -- (E2)
eqR (Succ a) (Succ b) = eqR a b
instance EqR (Zero -> Succ a -> F) where
eqR Zero (Succ a) = F
instance EqR (Succ a -> Zero -> F) where
eqR (Succ a) Zero = F

-- instance improvement, note that for (E2) instance improvement is trivial

rule EqR (Zero->Zero->a) ==> a=T
rule EqR (Succ a->Zero->b) ==> b=F
rule EqR (Zero->Succ a->b) ==> b=F

—-- usage: select Record Label --> FieldEntry

—- class declaration
rule Select x ==> x=r->1->a

-- FD
rule Select (r->1->a), Select (r->1->b) ==>a=b
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-- instance
instance (Select’ (Cons (x1,v) e -> x2 -> b -> v’), EqR (x1->x2->b))
=> Select (Cons (x1,v) e -> x2 -> v’) where
select (Cons (x1,v) e) x2 = select’ (Cons (x1,v) e) x2 (eqR x1 x2)
—-— Chameleon complains that this instance is not range-restricted
-- However, we can argue that variable b (which is the trouble-maker) is
-- functionally defined by variables in the instance head

-- instance improvement is trivial here

—- class declaration
rule Select’ x ==> x=e->c->a->b

-- FD
rule Select’ (e->c—>a->b),Select’ (e->c->a->d) ==> b=d

instance Select’ (Cons (x,v) e -> x -> T -> v) where
select’ (Cons (_,v) e) _ T =v

instance Select (e->x2->v’) => Select’ (Cons (x1,v) e -> x2 -> F -> v’) where -- (5’3)
select’ (Cons (x1,v) e) x2 F = select e x2

rule Select’ (Cons (a, b) e > ¢ -> T -> d) ==> b=d

-- things we couldn’t do with FDs
-- stronger improvement rules

rule Select (Nil->1->a) ==> False

rule Select’ (Nil->1->t->a) ==> False
rule Select’ ((Coms (x1,vl) e)->x2->T->v2) ==> x1=x2, vl=v2

-- we don’t check whether a field already exists
-- usage: extend (Label,Entry) Record --> Record
-- class declaration

rule Extend a ==> a=(1,x)->r->r’

-- FD
rule Extend (a->b->r), Extend(a->b->r’) ==> r=r’

-— instances
instance Extend ((1,x)->xs->Cons (1,x) xs) where

extend (1,x) xs = Cons (1,x) xs

-- instance improvement
rule Extend ((1,x)->xs->ys) ==> ys=Cons (1,x) xs
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-- usage: check Record --> Record
-- the identify operation if record is unique, otherwise type error

instance (Unique x) => Check (x->x) where
check x = x

rule Check a ==> a=t->t

instance Unique Nil where
unique = undefined

instance (Unique ys, Unique’ (1,ys)) => Unique (Cons (1,x) ys) where
unique = undefined

instance Unique’ (1,Nil) where
unique’ = undefined

instance (EqR (1->1’->a), Fail a, Unique’ (1’,ys)) => Unique’ (1’, Coms (1,x) ys) where
unique’ = undefined

instance Fail F where
fail = undefined

rule Fail T ==> False

-- we don’t check whether a field doesn’t exist
-- usage: remove Label Record --> Record

—- class declaration
rule Remove a ==> a=1->r->r’

-- FD
rule Remove (1->r->r’), Remove (1->r->r’’) ==> r’=r’’

—-- instances
instance Remove (1 -> Nil -> Nil) where
remove 1 Nil = Nil
instance (EqR (1->1’->a), Remove’ (a->1->(Comns (1’,v) r)->r’))
=> Remove (1 -> (Cons (1’,v) r) -> r’) where

remove 1 (Cons (1’,v) r) = remove’ (eqRk 1 1’) 1 (Cons (1’,v) r)

-- instance improvements
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rule Remove (1->Nil->r’) ==> r’=Nil

—- class declaration
rule Remove’ x ==> x=t->1->r->r’

-- FD
rule Remove’ (t->1->r->r1), Remove’ (t->1->r->r2) ==> ril=r2

—-— instances
instance Remove’ (T -> 1 -> (Cons (1’,v) r) -> r) where
remove’ T 1 (Cons (1’,v) r) =r

instance Remove (1->r->r’) => Remove’ (F -> 1 -> (Cons (1’,v) r) -> (Cons (1’,v) r’)) where
remove’ F 1 (Cons (1’,v) r) = Cons (1’,v) (remove 1 r)

-- instance improvement
rule Remove’ (T->a->(Cons (b,c) d)->e) ==> e=d
rule Remove’ (F->a->(Cons (b,c) d)->e) ==> e=Cons (b,c) e’

—————— examples -----—-
10 = Zero

11 = Succ 10

12 = Succ 11

data MyString = A | B | C
data Phone = P1 | P2

rl = Nil

--r2 :: Cons (Zero,MyString) Nil
r2 = extend (10,A) ri1

r2’ = check r2

r3 = extend (11,P1) r2

r3’ = check r3

-- r3 = extend (10,P1) r2 yields type error,

-- check r3 verifies that all labels are unique!

X :: MyString
select r2 10

s
1]

y = remove 10 r3

z = extend (11, P2) r3
-- note that (check z) yields an error

-- to run this program
—- call "chameleon —--no-term -—-no-rr -o record.hs record.ch"
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-— -—-no-term switches off the termination checker
-- -—-no-rr allows for non-range-restricted CHRs

6 Using Haskell from Chameleon

Programs written in Chameleon may make use of Haskell libraries directly, provided that an
appropriate Chameleon interface file exists for each library. Library interfaces must be imported
into a Chameleon program before the corresponding Haskell library can be used.

The keyword interface Module, allows you to access all of the functions and constructors de-
fined in the Haskell module with the same name, provided that a corresponding interface file exists
in the current directory. The interface file for Haskell module Module must be called Module. ch,
and must be present in the current directory.

The following Chameleon program makes use of functions provided by the Haskell 98 Prelude.

interface Prelude
myReverse = foldl (flip (:)) [] <br>
palin xs = myReverse xs == xs <br>

In our translation of Chameleon programs, we simply replace interface by import statements.
The Haskell 98 Standard Prelude interface file

http://www.comp.nus.edu.sg/ " sulzmann/chameleon/interface/Prelude.ch

is distributed along with the Chameleon source code. Interfaces for other libraries remain to be
created.

6.1 Interface Files

Interface files are nothing more than Chameleon source files. From the point-of-view of the com-
piler, an interface declaration causes the contents of the interface file to be treated as though
they were part of the one program. Consequently, interface files should declare only the types of
functions or constructors they provide, since their implementation is already part of an existing
Haskell library. Note that we assume that inferface files must be in the same directory as the
Chameleon program.

The extern keyword can be used to declare the types of both functions and data constructors
without providing a definition. It may also be used to declare type constructors.

Its two forms are:

e extern sig: Declares a function/constructor, with the given type, e.g. extern fst ::
(a,b) -> a, declares a function fst with the usual type; extern Just :: a -> Maybe
a , declares the Just constructor of the standard Haskell Maybe type.

e extern id: Declares a new type constructor, id, e.g. extern Maybe declares the Maybe type
constructor which could then be used to declare the type of Just as above.

Note that the Chameleon system currently does not perform any kind checking.
Consider the following Haskell library code (taken from the Haskell 98 Prelude Documentation):

data Maybe a = Nothing | Just a

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n f Nothing = n

maybe n f (Just x) = f x
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To make use of this, Chameleon requires an interface file containing the following:

extern Maybe

extern Nothing :: Maybe a

extern Just :: a -> Maybe a

extern maybe :: b -> (a -> b) -> Maybe a -> b

Note that the correctness of the interface with respect to the original Haskell code must be ensured
by the user.

Haskell class and instance declarations must be manually translated to CHRs. For details we
refer to [SS02]. We plan to incorporate an automatic translation in the near future. All Haskell
constraints (type class constraints) must also be declared using hconstraint TC declarations.
E.g. the interface to a library declaring a type class Eq, must contain the declaration: hconstraint
Eq. Note that the user must guarantee that the number of parameters for each type class are
consistent throughout the program.

6.2 Basic Types and Literals in Chameleon
Chameleon has built-in support for:

e Character literals of form: ’ char’

e String literals, like "A string."

e Numeric literals, both integer and floating point.

e Boolean values, True and False

Any of these may appear as terms or as patterns.

The following types are also available by default: function (infix) t1->t2, list [t], and tuples
up to 7 arguments ; and basic types Bool, Int, Char. Note that the Prelude interface provides
access to all of the standard Haskell types - although their corresponding values might not be easily
expressed in Chameleon for now (e.g. Rationals.)

The following Haskell type class constraints are also known to Chameleon: Num, Fractional,
Enum and Monad. No instances are declared by default - the standard Prelude interface provides
all the type class instances you’d expect in Haskell 98.

6.3 Missing Haskell Features

Although Chameleon is closely related to Haskell, not all Haskell language features are supported
in Chameleon. Notable omissions from Chameleon include:

e class and instance declarations

e the module system (Chameleon has only the simple notion of ”interfaces” as mentioned
above)

e record syntax for data types

Please note also the differences between Haskell and Chameleon type inference as outlined
earlier.
Support for these (and other features) may be added in future.
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6.4 Mixing Haskell and Chameleon Overloading

Though, we cannot define full Haskell classes and instances we can make use of Chameleon’s over-
loading mechanism. Indeed, as long as all Haskell constraints are declared as such hconstraint,
we can freely mix the two forms of overloading.

Consider the following Chameleon program.

interface Prelude
overload insert
rule Insert x ==> x=e->ce—->ce
instance 0Ord a => Insert (a->[a]->[a]) where
insert x [] = [x]
insert x (y:ys) = if x < y then x:y:ys else y:(insert x ys)

Note that 0rd is a Haskell type class whereas Insert refers to a overloaded Chameleon identifier.
When translating such mixed code, we perform evidence translation of overloaded Chameleon
identifiers. However, Haskell type classes are left untouched and will be dealt with when running
the translated Chameleon program through a Haskell compiler.

In fact, by mixing Haskell and Chameleon overloading via interfaces allows us to directly express
the zip and record Example in terms of a user-definable Haskell extension! Assume in MZip.hs we
find the following Haskell code.

module MZip where
mzip2 :: [a]l->[b]->[(a,b)]
mzip2 (a:as) (b:bs) = (a,b) : (mzip2 as bs)
mzip2 _ _ =[]

class MZipabc | ac -> b, b ¢c -> a where
mzip :: [a] -> [b] -> ¢

instance MZip a b [(a,b)] where
mzip = mzip2

instance MZip (a,b) c e => MZip a b ([c]->e) where
mzip as bs cs = mzip (mzip2 as bs) cs

Assume in MZip.ch we find the following interface specification which correctly describes the class
and instance relations from above.

hconstraint MZip

extern mzip :: MZip a b ¢ => [a] -> [b] -> ¢

rule MZip a b ¢, MZip a d ¢ ==> b=d -- (FD1)
rule MZip a b ¢, MZip d b ¢ ==> a=d -- (FD2)
rule MZip a b [(a,b)] <==> True -- (Instl)
rule MZip a b ([c]->e) <==> MZip (a,b) c e -- (Inst2)

-- instance improvement linked to (Instl)
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rule MZip a d [(a,Db)] ==> d=b —-— (Imprila)
rule MZip d b [(a,Db)] ==> d=a -= (Imprib)

-- note that instance improvement for (Inst2) is trivial

Then, we can define our own Haskell extension as follows.

interface Prelude
interface MZip

-- we’re strengthening rules (Impria) and (Imprilb)
rule MZip a d [c] ==> c=(a,b), d=b
rule MZip d b [c] ==> c=(a,b), d=a

e2 = head (mzip [True,False] [’a’,’b’,’c’])
e3 = head (mzip [True,False] [’a’,’b’,’c’] [1::Int,2])

Chameleon translates the above program as follows (via chameleon -o MZip-strong.hs MZip-strong.ch).

import Prelude
import MZip

e2 :: (Bool,Char)

e2 = head (mzip [True,False] [’a’,’b’,’c’])

e3 :: ((Bool,Char),Int)

e3 = head (mzip [True,False] [’a’,’b’,’c’] [1::Int,2])

That is, in our own Haskell extension we could sufficiently improve types such that a Haskell
compiler can finally run the above program.
7 Running Chameleon Programs

Chameleon programs are translated into Haskell 98, which must be further compiled, before they
can be run. The process is as follows.

e Run chameleon InputFile.ch -o OutputFile.hs

e Run your favorite Haskell 98 interpreter/compiler on the resulting output file.
e.g. hugs Outfile.hs

For a brief description of available command line options, run chameleon --help.
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