On the complexity of intersecting multiple circles for graphical display

H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for
graphical display*

H.A. Kestler† J. Messner‡ A. Müller§ R. Schuler ¶

Abstract

Many experiments in the biomedical field generate vast amounts of data. This is especially true for microarray experiments which measure the expression levels of thousands of genes simultaneously. In this context the display of functional information attributed to the individual gene is important to obtain an overview of the major processes involved. This set data can be displayed as Euler/Venn diagrams in which the circle size corresponds to the cardinality of the set. Efficient algorithms for the calculation of intersections of circles and their resulting boundary have not been published so far. We present two algorithms (one optimal) for intersecting these different sized circles to display set relationships.

1 Introduction

Microarray technologies are increasingly being found in biological and medical sciences for high-throughput analysis of genetic information on the genome, transcriptome and proteome level. This type of analysis generates vast amounts of data, usually hundreds or thousands of genes, leaving the researcher with the task of identifying the functional relevance. Many functional attributes (terms) may have been assigned to e.g. each gene. Getting an overview over these sets of attributes is often a difficult task. Standard tree representations are in many cases an improper choice for this issue, especially in representing intersections. A Euler/Venn diagram representation of gene sets could reveal more valuable information to the researcher (see Figure 1). Full containment of one set into the other, partial intersection and disjunctness can be seen at a glance with Euler/Venn diagrams [7].

As the intersection area calculation together with its boundary is an important step in constructing an Euler/Venn diagram (if that is possible for a certain configuration in the plane), we present two algorithms (one optimal) for intersecting these different sized circles to display set relationships.

*All authors have contributed equally.
†Internal Medicine I and Institute of Neural Information Processing, hans.kestler@uni-ulm.de
‡Institute of Theoretical Computer Science, jochen.messner@uni-ulm.de, Ulm University, Germany
§Cosateq GmbH & Co.KG, Wangen, Germany, andre.mueller@Cosateq.com
¶Logicline GmbH, Stuttgart-Sindelfingen, Germany, rschuler@logicline.de
2 Methods

2.1 Intersecting multiple circles

Given a family of intersecting circles \( C_i = \{(x, y) \mid (x-a_i)^2 + (y-b_i)^2 = r_i^2\}, \ i = 1 \ldots n \) with center \((a_i, b_i)\) and radius \(r_i > 0\) find a description of the intersection set 
\( U = D_1 \cap D_2 \cap \ldots D_n \) of the corresponding disks 
\( D_i = \{(x, y) \mid (x-a_i)^2 + (x-b_i)^2 \leq r_i^2\} \) and compute the area 
\( A(U) = \int_U d(x, y) \).

The border \( \partial U \) should be described with a finite set 
\( R = \{\gamma_1, \ldots \gamma_K\} \) of non-overlapping x-monotone (i.e. each vertical line has at most one intersection point with the segment) circle segments \( \gamma \subset \mathbb{R}^2, k = 1 \ldots K \) defined with 6-tuples \((a_k, b_k, r_k, x_{k0}, x_{k1}, u_k)\) with center \((a_k, b_k)\), radius \(r_k > 0\), start and stop x-coordinate \(a_k - r_k \leq x_{k0} < x_{k1} \leq a_k + r_k\), and a flag \( u_k \in \{+1, -1\} \) determining if \( \gamma_k \) is an upper \((u_k = +1)\) or a lower segment \((u_k = -1)\).

A segment is then defined as:
\[
\gamma_k = \{(x, y) \in \mathbb{R}^2 \mid y = b_k + u_k \sqrt{r_k^2 - (a_k - x)^2}, \ x \in [x_{k0}, x_{k1}]\} . \quad (1)
\]

For a nonempty intersection \( U \) the circles necessarily intersect each other (or are fully contained in another circle - in this case the outer circle can be left away without changing the result), resulting in a maximum of \( n(n-1) \) intersection points.

Algorithm I: A straightforward algorithm for this problem is: Intersect each circle \( C_i, \ i = 1 \ldots n \) iteratively with all other circles \( C_j, \ j \neq i \) and join the resulting segments in the result set \( R \). Hereto each circle \( C_i = (a_i, b_i, r_i) \) is split into two x-monotone segments (half-circles) \( \gamma_{2i-1} : (a_i, b_i, a_i - r_i, a_i + r_i, +1) \) and \( \gamma_{2i} : (a_i, b_i, a_i - r_i, a_i + r_i, -1) \) (so \( C_i = \gamma_{2i-1} \cup \gamma_{2i} \)). These segments are restricted to all other disks to obtain the resulting (probably empty) segment set.

The complexity of the algorithm is \( O(n^2 K) \). Since the result set contains at most \( K = 2n \) segments - each additional circle adds at most two segments to the result - the algorithm runs in the worst case with \( \Theta(n^3) \) (although in practice for non-degenerate problems the number of steps will be much smaller).
The result set can be written as union of set differences

$$\partial U = \bigcup_{i=1}^{n} \left( \gamma_{2i-1} \cup \gamma_{2i} \right) - \bigcup_{j \neq i} D_j$$

where each difference term is the contribution of circle $C_i$ ($i = 1 \ldots n$) to the resulting set. The intersection points of the corresponding circle $\Gamma : (a, b, r)$ of a segment $\gamma$ with a circle $C : (\hat{a}, \hat{b}, \hat{r})$ can be computed by subtracting the two equalities

$$\begin{align*}
(x - a)^2 + (y - b)^2 &= r^2 \quad (2) \\
(x - \hat{a})^2 + (y - \hat{b})^2 &= \hat{r}^2 \quad (3)
\end{align*}$$

leading to the chordal line

$$H : \frac{2(\hat{a} - a)}{A} x + \frac{2(\hat{b} - b)}{B} y + \left( \frac{a^2 + b^2 - r^2}{A} \right) - \left( \frac{\hat{a}^2 + \hat{b}^2 - \hat{r}^2}{A} \right) = 0 \quad , \quad (4)$$

see figure 2.

![Figure 2: A circle segment $\gamma$ is restricted with a circle $C$. The corresponding circle $\Gamma$ of $\gamma$ must intersect $C$ (or has to be fully contained in $C$). If the left and the right endpoints $A$ and $B$ are on different sides of the chordal line $H$ the segment contains one of the intersection points $(x_1, y_1)$ or $(x_2, y_2)$.

Inserting (2) into (4) leads to

$$\underbrace{[A^2 + B^2]}_{= A} x^2 + \underbrace{2[AC + ABb - B^2a]}_{= B} x + \underbrace{[C^2 + 2BCb + B^2(a^2 + b^2 - r^2)]}_{= C} = 0$$

with the solution

$$\begin{align*}
x_{1,2} &= -\frac{B}{2A} \pm \sqrt{\frac{(\frac{B}{2A})^2}{A} - \frac{C}{A}} \\
y_{1,2} &= -\frac{C + Ax_{1,2}}{B}
\end{align*}$$
For the case $B = 0, A \neq 0$ (vertical chordal line) the two solutions

\[
x_{1,2} = \frac{C}{A} \\
y_{1,2} = b \mp \sqrt{r^2 - (x_{1,2} - a)^2}
\]

exist.

**Case I:** ($|\gamma \cap C| = 0$) If there is no intersection of the circles $\Gamma$ and $C$ it can be decided by testing if one of the endpoints of $\gamma$ lies in $C$ (in this case the whole segment is contained in $C$) or not (in this case the empty set is returned).

**Case II:** ($|\gamma \cap C| = 1$) If the two endpoints $A$ and $B$ of the segment $\gamma$ lie on different sides of the chordal line $H$ (or alternatively one of the endpoints is inside $C$ and the other outside $C$) the segment has exactly one intersection with $C$ and it must be decided which of the two intersection points is contained in the segment. For an upper segment $\gamma$ choose the intersection point $(x_1, y_1)$ if the left endpoint $A$ is below the chordal line ($A < y_H$) and $(x_2, y_2)$ if $A$ is above $H$. The decision is similar for lower segments. The predicate $p < y_H$ can be evaluated using the parametrization (4) and is true iff $|B|y < -(Ax + C)\text{sign}(B)$ with $\text{sign}(v) = 1$ for $v \geq 0$ and $-1$ otherwise (so for vertical lines the predicate evaluates true if the point $p$ is on the left of $H$). This predicate has algebraic degree 3 (compare [5]).

**Case III:** If both endpoints of the segment $\gamma$ lie on the same side of the chordal line $[1]$ proposed predicates based on an orientation test for the decision if there are two intersection points $|\gamma \cap C| = 2$ or none (see figure 3).

**Algorithm II:** Split the $n$ circles into two sets of $x$-monotone segments (half-circles) $\Gamma^L$ (lower segments) and $\Gamma^U$ (upper segments). Each lower segment restricts the result set $U$ from the bottom and each upper segment from the top. The intersection area $U$ can therefore be found by intersecting the upper envelope of the lower segments with the lower envelope of the upper segments.

The intersection area $U$ is fully contained in the interval of interest $I = [x_0, x_1] = [\max_i a_i - r_i, \min_i a_i + r_i]$. If $x_0 > x_1$ no intersection is possible and $U = \emptyset$. In the following we assume $U \neq \emptyset$. The lower and upper segments are well defined continuous, univariate functions $f_1 \ldots f_n : I \mapsto \mathbb{R}$ and $g_1 \ldots g_n : I \mapsto \mathbb{R}$ with the property, that two functions $f_i$ and $f_j$ intersect at most $s = 2$ points for all $i \neq j$. The lower envelope of the upper segments $G = \{g_1 \ldots g_n\}$ is defined as

\[
E_G(x) = \min_{1 \leq i \leq n} g_i(x) \quad x \in I
\]

and the upper envelope of the lower segments $F = \{f_1 \ldots f_n\}$ as

\[
E_F^*(x) = \max_{1 \leq i \leq n} f_i(x) \quad x \in I.
\]

The complexity of the lower/upper envelope of a set of functions, which intersect in at most $s$ points, can be described with Davenport-Schinzel (DS) sequences. A $DS(n, s)$ sequence is defined as a sequence $< u_1 \ldots u_m >$ of integers with the following properties:
Figure 3: If C with center $(\hat{a}, \hat{b})$ and Γ build a non-empty intersection and the two endpoints of the segment $\gamma$ lie on one side of the chordal line $H$ the four cases must be distinguished: 

a) $|\gamma \cap D| = \emptyset$ if $(\hat{a}, \hat{b}) \not\in \omega(\gamma) \cup \overline{\omega}(\gamma)$ and $A, B \not\in D$, 

b) $\gamma \cap D = \gamma$ if $(\hat{a}, \hat{b}) \not\in \omega(\gamma) \cup \overline{\omega}(\gamma)$ and $A, B \in D$, 

c) $|\gamma \cap C| = 2$ and two segments result from $\gamma \cap D$ if $A, B \in D$ and $(\hat{a}, \hat{b}) \in \overline{\omega}(\gamma)$, 

d) $|\gamma \cap C| = 2$ and one segment results from $\gamma \cap D$ if $A, B \not\in D$ and $(\hat{a}, \hat{b}) \in \omega(\gamma)$. The two wedges $\omega(\gamma)$ and $\overline{\omega}(\gamma)$ divide the plane in four regions. The test $p \in \omega(\gamma)$ and $p \in \overline{\omega}(\gamma)$ can easily be solved with orientation tests.

1. $1 \leq u_i \leq n$ for each $i$

2. $u_i \neq u_{i+1}$ for each $i < m$

3. There do not exist $s + 2$ indices $1 \leq i_1 < i_2 < \ldots < i_{s+2} \leq m$ such that $u_{i_1} = u_{i_4} = \ldots = a$ and $u_{i_2} = u_{i_4} = \ldots = b$ for $a \neq b$

The maximum length of a $DS(n, s)$ sequence is defined as $\lambda_s(n)$.

Following [10] (chapter 6.2) the two envelopes can be computed in $O(\gamma_s(n) \log n)$ steps via a divide-and-conquer algorithm where $\gamma_s(n)$ is the maximum length of a $DS(s, n)$ sequence. For this $F$ is partitioned into two sets $F_\infty, F_\epsilon$, each of at most size $[n/2]$. Upper envelopes $E^*_F$ and $E^*_F_\epsilon$ are constructed recursively. $E^*_F$ can be constructed from $E^*_F_\infty$ and $E^*_F_\epsilon$ in $O(\gamma_s(n))$ steps. The same holds for $G$. It is required that two functions can be intersected in $O(1)$ to achieve the given complexity. In the case of circles $s = 2$ and therefore $\gamma_s(n) = 2n - 1$. Merging the two envelopes $E^*_G$ and $E^*_F$ to get the intersection region

$$\Pi_{F,G} = \{(x, y) \mid E^*_F(x) \leq y \leq E^*_G(x), y \in I\}$$

requires further $O(\gamma_s(n)) = O(n)$ steps via an iterative search. The region $\Pi_{F,G}$ is identical to the intersection set $U$ of all $n$ circular disks. The total runtime of the algorithm is $O(n \log n)$ if the intersection of two functions can be computed in $O(1)$. 

5
2.2 Calculating the area

Let $U \subset \mathbb{R}^2$ be a connected set with the boundary $\partial U = \bigcup_{i=1}^{K} \gamma_i$ consisting of non-overlapping segments. Using the Gaussian integration theorem (see e.g. [6]) and integrating along the border $\partial U$ with the parametrization (1) the area $A(U) = \int_{\gamma_i} d(x,y)$ can be reformulated to

$$\frac{1}{2} \sum_{k=1}^{K} \left[ 2a_kb_kx + (x-a_k)^2 + r_k^2 \arcsin \left( \frac{x-a_k}{r_k} \right) \right]_{x=x_{k,0}}^{x=x_{k,1}}.$$  \hspace{1cm} (5)

3 Lower bounds

In this section we discuss the minimum number of operations needed to compute the boundary $\partial U$ of the intersection $D_1 \cap \cdots \cap D_n$ of $n$ disks $D_i$. Actually our lower bounds already apply to the special case where all disks have the same radius. We demonstrate a linear time reduction from sorting and provide an $\Omega(n \log n)$ lower bound in the algebraic computation tree model (which is introduced in Section 3.2).

Notice that Algorithm II above produces the segments in a certain order, such that consecutive segments on $\partial U$ are listed consecutively. This is however not necessary for the computation of the area with Formula (5). Algorithm I just guaranties the maximility of the segments. It is therefore sensible to consider two problems taking into account these differences.

1. Computing the boundary of the intersection of discs (BID): The input is a list of $n$ centers $(a_j, b_j) \in \mathbb{R}^2$, $1 \leq j \leq n$ and a radius $r > 0$, representing $n$ discs $D_1, \ldots, D_n$ of radius $r$. The output is a list $(\gamma_1, \ldots, \gamma_K)$ with $\gamma_i = (a_j, b_j, x_i, x_i', u_i)$, $1 \leq i \leq K$, representing $x$-monotone circle segments of the circles $\partial D_i$ that yield the boundary of $U = D_1 \cap \cdots \cap D_n$ without overlap.

   For convinience, we further assume that lower and upper segments are listed separately: for some $J$ with $1 \leq J < K$ we have $u_i = +1$ for $1 \leq i \leq J$ and $u_i = -1$ for $J + 1 \leq i \leq K$.

2. Computing the ordered boundary of the intersection of discs (OBID): Additionally to the specification of BID it holds here that consecutive segments are listed consecutively in the output, i.e. $x_i' = x_{i+1}'$ for $i \neq J$, $1 \leq i \leq K$.

Notice that we do not require here that the output segments are maximal (which is the case if $(a_j, b_j, u_{j_i}) = (a_{j_i}, b_{j_i}, u_l)$ implies $x_i' \neq x_i$ for $i, l \in \{1, \ldots, J\}$). In contrast, both algorithms above provide maximality since the endpoints of the circle segments are determined by an intersection with one of the other circles or as endpoint of the input half circles. In fact, for OBID we can obtain maximality easily in linear time by joining all non-maximal consecutive segments $(a_{j_i}, b_{j_i}, x_i, x_i', u_{j_i})$, $(a_{j_i+1}, b_{j_i+1}, x_{i+1}, x_{i+1}', u_{j_i+1})$ with $x_i' = x_{i+1}$ and $(a_{j_i}, b_{j_i}) = (a_{j_i+1}, b_{j_i+1})$ together to $(a_j, b_j, x_i, x_{i+1}, u_{j_i})$.

Clearly OBID, as a special case of BID, reduces to BID in linear time. For a reduction from BID to OBID notice that that any segment $\gamma = (a, b, x, x', u)$ in...
some sense links the segment before and after it. I.e., let \( \gamma' = (a', b', z, z', u') \) and \( u = u' \) then \( \gamma' \) is connected with \( \gamma \) iff \( x' = z \) or \( z' = x \). One can use this observation for ordering the segments bounding \( \partial U \) in linear time by storing segments at addresses determined by their endpoints. This is possible on computational models that allow indirect addressing with real numbers like some of the RAM-models in [3] or just by using hashing (with high probability). However since the known lower bounds for sorting do not allow the use of such techniques, and also the algebraic computation tree model does not allow to use computed values as addresses, we have to distinguish the two problems.

We will now first consider OBID and show that it is at least as hard as sorting. Moreover, OBID reduces to the convex hull problem in linear time. Then we consider BID and provide lower bounds in the algebraic computation tree model.

### 3.1 Computing the ordered list of boundary segments

We now provide a linear time reduction of the sorting problem to OBID.

**Theorem 1** The task to sort \( n \) distinct real numbers can be reduced in \( O(n) \) time to the task to compute the ordered boundary of the intersection of \( n \) disks.

**Proof.** The idea is to place the numbers which we want to sort on the upper half of a circle as centers of the disks. The ordered list of the lower segments bounding the intersection then gives the centers of the disks in counterclockwise order which represents the reversed sorting of the input. See Figure 4 for an illustration.

Formally the reduction is done as follows: Let \( z_1, \ldots, z_n \in \mathbb{R} \) the numbers to be sorted. First in \( O(n) \) steps determine \( c = \max_{1 \leq i \leq n} |z_i| \). For \( i = 1, \ldots, n \) let \( D_i \) be the disk with center \((z_i, b_i)\) on the upper halfcircle \( C \) with center 0 and radius \( c \), i.e. \( b_i := \sqrt{c^2 - z_i^2} \) and let \( r > c \) be arbitrary.

Let now \((\gamma'_1, \ldots, \gamma'_K)\) be an ordered list of segments bounding \( D_1 \cap \cdots \cap D_n \). First in \( O(K) \) steps join successive segments belonging to the same circle. We obtain an ordered list of maximal segments \((\gamma_1, \gamma_2, \gamma_3, \ldots, \gamma_{n+2})\) with \( \gamma_i = (a'_i, b'_i, x_i, x'_i, u_i) \) for \( 1 \leq i \leq n+2 \). Moreover \( \gamma_1, \gamma_2 \) are upper bounds (\( u_i = 1 \)) and \( \gamma_i \) for \( 2 \leq i \leq n + 2 \) is a lower bound (\( u_i = -1 \)). The sorted ordering of \( z_1, \ldots, z_n \) is now given by \( a'_{n+2}, \ldots, a'_3 \).

To see that the reduction is valid the essential observation is that here the clockwise ordering of the boundary of \( \partial U \) yields a clockwise ordering of the centers of the discs on \( C \). This follows from the results in Lemma 2 below. Notice that here all centers are vertices of the convex hull of the centers, and that all the input circles contribute to the boundary, i.e., using notation from Lemma 2 \( H_r \) consists of all centers.

Due to the \( \Omega(n \log n) \) lower bound for sorting, we obtain an \( \Omega(n \log n) \) lower bound for the problem to determine the ordered boundary of the intersection of \( n \) disks in the same computational models, when the operations used in the proof (jumps on comparisons, multiplication and square root) are possible in that model.
The reduction in the proof of the above theorem is quite similar to Shamos’ reduction from sorting to the ordered convex hull problem of a point set (cf. [9]). This is no surprise, since, as we will see in the following Lemma, the convex hull problem and the problem to determine the boundary of intersecting disks of equal radius are closely related. Let in the following $d(p_1, p_2)$ denote the Euclidian distance.

**Lemma 2** Let $S$ be a point set and let $H \subseteq S$ be the set of vertices of the convex hull of $S$. Let $r > 0$ be a radius, and let $D_p$ be the disk with radius $r$ and center $p$ with corresponding circle $\partial D_p$. Let $U = \bigcap_{p \in S} D_p$ with boundary $\partial U$.

Let $h^{+}_{pp'}$ for $p, p' \in S$, $p \neq p'$, be the halfspace of points $q \in \mathbb{R}^2$ with $d(p, q) \leq d(p', q)$, and let $h^{+}_{pp'} = \partial h^{+}_{pp'} = \{p \mid d(p, q) = d(p', q)\}$. Let $F_p = \bigcap_{p' \in S \setminus \{p\}} h^{+}_{pp'}$ be the set of points $q$ for which $p$ is a farthest point in $S$. Let $r_p = \min\{d(p, q) \mid q \in F_p\}$, and let $H_r = \{p \in H \mid r_p \leq r\}$.

Then the following holds:

1. $\partial D_p \cap \partial U = \partial U \cap F_p$ for $p \in S$.
2. $\partial U = \bigcup_{p \in S} F_p \cap \partial D_p = \bigcup_{p \in H} F_p \cap \partial D_p = \bigcup_{p \in H_r} F_p \cap \partial D_p$
3. $U = \bigcap_{p \in H} D_p = \bigcap_{p \in H_r} D_p$.
4. Let $p_0, \ldots, p_{K-1}$ be a clockwise ordering of $H_r$. Then $\partial D_{p_0} \cap F_{p_0}, \ldots, \partial D_{p_{K-1}} \cap F_{p_{K-1}}$ is $\partial U$ in clockwise ordering.

**Proof.**

1. Assume $q \in \partial D_p \cap \partial U$ then $d(q, p) = r$ and $d(q, p') \leq r$ for $p' \in S$, since otherwise $q \notin U$. Hence $q \in F_p$.

   Assume now $q \in \partial U \cap F_p$. By $q \in U \cap F_p$ we have $d(q, p') \leq d(q, p) \leq r$. Hence, since $q$ is on the boundary of $U$, $d(q, p) = r$ and $q \in \partial D_p$. 

2. \( \partial U \subseteq \bigcup_{p \in S} F_p \cap \partial D_p \) since every \( q \in \partial U \) must be on \( \partial D_p \) for some \( p \in S \). Hence \( d(p, q) = r \) and \( d(p', q) \leq r \) for \( p' \in S \), which shows \( q \in F_p \).

On the other hand, \( F_p \cap \partial D_p \subseteq \partial U \) for \( p \in S \) since \( q \in F_p \cap \partial D_p \) implies \( d(q, p) = r \) and \( d(q, p') \leq r \) for \( p' \in S \). Hence \( q \in \partial U \).

\( \bigcup_{p \in S} F_p \cap \partial D_p = \bigcup_{p \in H} F_p \cap \partial D_p \) since \( F_p = \emptyset \) for \( p \in S \setminus H \).

3. Clearly, \( U \subseteq \bigcap_{p \in H} D_p \subseteq \bigcap_{p \in H_r} D_p \).

\( \bigcap_{p \in H_r} D_p \subseteq U \): Observe that the boundary of \( \bigcap_{p \in H_r} D_p \) is obviously equal to \( \bigcup_{p \in H_r} F_p \cap \partial D_p \). By 2, we have that the boundary of \( \bigcap_{p \in H_r} D_p \) is equal to \( \partial U \). This implies also that \( \bigcap_{p \in H_r} D_p = U \).

4. Consider three consecutive segments \( \gamma_a, \gamma_b, \gamma_c \) which are in clockwise order on \( \partial U \), and let \( P_a, P_b, P_c \) denote the centers of the according circles \( D_a, D_b, D_c \) with radius \( r \). We will show that \( 0 \leq \angle P_c P_b P_a \leq \pi \), so that there is right turn when one passes in straight lines from \( P_a \) to \( P_b \) to \( P_c \).

The statement then follows by induction. See Figure 5 for an illustration of the notions used in the proof.

Let \( I_{ab} (I_{bc}) \) be the common point of \( \gamma_a \) with \( \gamma_b \) (resp. \( \gamma_c \)), respectively, and let \( D_{ab} (D_{bc}) \) be a circle of radius \( r \) with center \( I_{ab} \) (resp. \( I_{bc} \)). Since \( I_{ab} \) is in distance \( r \) of both points \( P_a \) and \( P_b \), \( P_a \) and \( P_b \) are on \( \partial D_{ab} \). Further we know that \( P_a \) is in \( D_{bc} \), since \( I_{bc} \) is in \( U \subseteq D_a \), and we know that \( P_b \) is an intersection point of \( \partial D_{ab} \) with \( \partial D_{bc} \). Let \( \gamma_{ab} \) denote the segment of \( \partial D_{ab} \) that passes from \( P_a \) to \( P_b \) in clockwise direction. We now show that \( \gamma_{ab} \) is in \( D_{bc} \), i.e. \( \gamma_{ab} \subseteq \partial D_{ab} \cap D_{bc} \).

First observe that the angle \( \angle P_b I_{ab} P_a \) is less than \( \pi \) since \( U \) is convex. Further it is clear that the segment \( \partial D_{ab} \setminus D_{bc} \) stretches more than a halfcircle. Since \( P_b, P_a \in D_{bc} \) it follows \( \gamma_{ab} \subseteq D_{bc} \).

Similarly, let \( \gamma_{bc} \) denote the segment of \( \partial D_{bc} \) that passes from \( P_b \) to \( P_c \) in clockwise direction. Here we obtain similarly \( \gamma_{bc} \subseteq D_{ab} \). So if one traverses \( \partial (D_{ab} \cap D_{bc}) \) from \( P_c \) to \( P_a \) counterclockwise, one encounters \( P_b \) along the way, which shows that \( 0 \leq \angle P_c P_b P_a \leq \pi \) since \( D_{ab} \cap D_{bc} \) is convex.

Figure 5: Illustration for the proof of Lemma 2 Item 4.
In the reduction in the proof of Theorem 1 we used the observation due to Lemma 2 that in case all points in $S$ are on a circle of radius $c$ then $r_p = c$ for any $p \in S$. Then choosing $r > c$ implies $H_r = S$ and that a sorted description of $\partial U$ gives a clockwise ordering of $S$.

Since every segment of $\partial U$ belongs to a circle whose center is a vertex of the boundary of the convex hull of $S$ (Lemma 2.3) one can use the output sensitive algorithm from [8] for the convex hull problem to obtain an algorithm for the computation of $\partial U$ that is faster in case the convex hull is small. Using the algorithm of [8] that produces the convex hull of a set of $n$ points in time $O(n \log K')$ where $K'$ is the complexity of the convex hull one obtains an algorithm for the intersection of equal sized disks with time bound $O(n \log K') + O(K' \log K') = O(n \log K')$.

In fact, from Lemma 2 Item 4 one can derive a linear time reduction that from the vertices of the convex hull (i.e. the set $H$) when given in clockwise order computes the ordered boundary of $U$. To see this, assume first that we already know $H_r = \{q_0, \ldots, q_{k-1}\}$ listed in clockwise order. Lemma 2.4 then implies that $\partial D_{q_0} \cap \partial U = \partial D_{q_k} \cap h_{q_{k-1}q_k} \cap h_{q_{k+1}q_k}$ with $i \in \mathbb{Z}_k$ (i.e. the operations are modulo $k$). So if we know $H_r$ the ordered boundary of $U$ can be computed in linear time.

Let now $H = \{p_1, \ldots, p_n\}$ listed in clockwise order. For $i = 1$ to $n$ we build a doubly linked list $H_r^{(i)}$ by considering only the intersection of the disks for $p_1, \ldots, p_i$, such that $H_r^{(i)} = H_r^{(n)}$. Initially, $H_r^{(0)} = \emptyset$. For the $i$th step let $H_r^{(i-1)} = \{q_1, \ldots, q_l\} \subseteq \{p_1, \ldots, p_{i-1}\}$ be already computed, and listed in clockwise order. Now $p_i$ is eventually added in between $q_1$ and $q_l$. If $\partial D_{q_k} \cap h_{q_kp_i} \cap h_{q_{k-1}p_i} = \emptyset$ then $H_r^{(i)} := H_r^{(i-1)}$ and $p_i$ is not added. Otherwise $p_i$ will be added but some neighbouring points may be removed from $H_r^{(i-1)}$: let $j = 1, 2, 3 \ldots$ until $\partial D_{q_l} \cap h_{q_{l+1}q_l} \cap h_{q_{l+1}q_j} \neq \emptyset$, which means that the circles around $q_1, \ldots, q_{j-1}$ do not contribute to $\partial U$. Similarly let $k = l, l-1, l-2, \ldots$ until $\partial D_{q_k} \cap h_{q_{k+1}q_k} \cap h_{q_{k+1}q_{k-1}} = \emptyset$.

Now set $H_r^{(i)} := \{q_j, \ldots, q_k, p_i\}$.

Clearly the update in the $i$th step needs linear time in the number of removed or added elements when $H_r^{(i)}$ is organized as a doubly linked list. Since every point of $H$ is added and removed at most once this give overall linear time complexity.

**Theorem 3** OBID reduces in linear time to the ordered convex hull problem.

It is not clear whether a similar efficient reduction in the reverse direction is possible. Though if the radius $r$ is big enough then $H_r = H$ and therefore the centers of the circles involved in the boundary of $U$ are exactly the vertices of the convex hull of $S$, however the exact value when $r$ is “big enough” will depend on the input values.

### 3.2 Computing the set of boundary segments

We now prove a lower bound for BID in the algebraic computation tree model using the approach of [4]. Let us briefly introduce the model. An algebraic computation tree is a tree consisting of branching nodes, computation nodes and
Each computation node \( v \) has only one child and is associated to a variable \( f_v \) and an operation

\[
f_v := y \circ z \text{ or } f_v := c \text{ or } f_v := \sqrt{y}
\]

where \( y, z \) are either input variables from \( \{x_1, \ldots, x_n\} \) or variables associated to ancestors of \( v \) in the tree, the operation \( \circ \in \{+, -, \times, /\} \), and \( c \in \mathbb{R} \) is a constant.

A branching node \( v \) is associated to a test

\[
y > 0 \text{ or } y \geq 0 \text{ or } y = 0
\]

where \( y \) is a variable associated to an ancestor of \( v \). A leaf node specifies a list of output variables \( \{y_1, \ldots, y_l\} \) which are all associated to some ancestor node. In case the computation tree is used for some decision problem it suffices to label the leaves with yes or no.

A computation proceeds along a path in the tree. So the worst case time complexity of an algorithm specified by a computation tree \( T \) is given by the height \( h(T) \) of the tree. Observe that one can unroll Algorithm II to obtain an algebraic computation tree \( T_n \) of height \( h(T_n) = O(n \log n) \) that on input of \( (a_1, b_1, r_1, \ldots, a_n, b_n, r_n) \) computes the boundary of the intersection of the associated disks.

The results in [4] apply to decision problems so it is necessary to define an appropriate decision problem that easily reduces to the functional problem. Let us consider the following problem.

**regular-\( n \)-gon** = \( \{(s, a_1, b_1, \ldots, a_n, b_n) \mid (a_i, b_i) \text{ are the vertices of a regular } n \text{-gon}

\& a_i^2 + b_i^2 = s^2 \text{ for } 1 \leq i \leq n \} \)

So \( (a_1, b_1, \ldots, a_n, b_n) \in \text{regular-}\( n \)-gon iff every } p_i := (a_i, b_i) \text{ lies on the circle centered at the origin with radius } s \text{ and for some permutation } \sigma \text{ } d(p_{\sigma(i)}, p_{\sigma(i+1)}) = 2 \sin \frac{\pi}{\sigma} \text{ for } 1 \leq i < n \text{ (} \sigma \text{ puts the points in a clockwise or a counter-clockwise ordering).}

For some \( w = (r, a_1, b_1, \ldots, a_n, b_n) \in \mathbb{R}^{2n+1}, n \geq 2 \text{ with } r > s > 0 \text{ let } D_i \text{ be the disk of radius } r \text{ with center } (a_i, b_i) \text{ and let } U_w = D_1 \cap \ldots \cap D_n. \text{ Observe that } (s, a_1, b_1, \ldots, a_n, b_n) \in \text{regular-}\( n \)-gon iff } a_i^2 + b_i^2 = s^2 \text{ for } 1 \leq i \leq n \text{ and } U_w \text{ is contained in a disk } D \text{ centered at the origin } (0,0) \text{ with radius}

\[
r' = s \sqrt{c^2 + \frac{r^2}{s^2}} - 1 - c \text{ where } c = \cos \frac{\pi}{n}.
\]

In fact, as basic geometric considerations show, \( (s, p_1, \ldots, p_n) \) forms a regular \( n \)-gon iff all the vertices \( q \) of \( \partial U_w \) are at distance \( r' \) from the origin.

A circle segment \( \gamma_k = (a'_k, b'_k, x_{k0}, x_{k1}, u_k) \) has the endpoints \( q_{k0} = (x_{k0}, y_{k0}) \) and \( q_{k1} = (x'_{k1}, y'_{k1}) \) with \( y_{ki} = b'_k + u_k \sqrt{r^2 - (a'_k - x_{ki})^2} \) for \( i = 0, 1 \). Hence, if \( (\gamma_1, \ldots, \gamma_K) \) is a description of the boundary of \( U_w \) where \( \gamma_k = (a'_k, b'_k, x_{k0}, x'_{k1}, u_k) \) for \( 1 \leq k \leq K \) then \( (s, a_1, b_1, \ldots, a_n, b_n) \in \text{regular-}\( n \)-gon iff } a_i^2 + b_i^2 = s^2 \text{ for } 1 \leq i \leq n \text{, and the endpoints } q_{k0}, q_{k1} \text{ are at most at distance } r' \text{ from the origin for } 1 \leq k \leq K. \text{ This consideration shows that an algebraic computation tree for}
the problem to determine the boundary of $U_w$ can be transformed to an algebraic computation tree for regular-$n$-gon such that the depth is increased by $O(n)$.

Now we use the main result from [4] to prove a lower bound for regular-$n$-gon. Let us first introduce the following notation. For some set $W \in \mathbb{R}^n$ let $\# W$ denote the number of connected components $W$ consists of.

**Lemma 4 ([4])** Let $W \in \mathbb{R}^n$ and let $T$ be an algebraic computation tree deciding $W$ with height $h(T)$. Then

$$h(T) \geq \log_6 \# W - n \log_6 3$$

Observe that regular-$n$-gon consists of $n!$ connected components: In fact, for any permutation $\sigma : \{1, \ldots, n\} \to \{1, \ldots, n\}$ there is a different connected component $V_{\sigma}$ given by all the rotations of the $\sigma$-permuted $n$-gons. I.e.

$$V_{\sigma} = \left\{ (s, a_1, b_1, \ldots, a_n, b_n) \left| \begin{array}{c} (a_i) \\
(b_i) \end{array} = \begin{pmatrix} s \cos\left(\frac{\pi}{n}\sigma(i) + \beta\right) \\
\sin\left(\frac{\pi}{n}\sigma(i) + \beta\right) \end{pmatrix} \right. \right\} \quad \text{for} \quad 1 \leq i \leq n, \quad 0 \leq \beta < \frac{2\pi}{n}, \quad s > 0.$$

This proves the lower bound.

**Theorem 5** Let $T$ be an algebraic computation tree of height $h(T)$ deciding regular-$n$-gon. Then $h(T) \in \Omega(n \log n)$.

And due to the above reduction:

**Theorem 6** Let $T$ be an algebraic computation tree of height $h(T)$ that on input $w = (r, a_1, b_1, \ldots, a_n, b_n)$ computes the boundary of $U_w$. Then $h(T) \in \Omega(n \log n)$.

This allows us to state the optimality of Algorithm II.

## 4 Summary and Discussion

To visualize functional categories of interesting genes GoMiner [11] can be used to annotate genes with functional terms. Due to the fact that one gene may belong to multiple functional categories, this analysis usually reveals a complex pattern of terms. To identify the major functional categories differentiating cell types, Euler/Venn diagramms approximated by polygons proved to be useful [7].

Here, the Euler/Venn diagram application served as a motivation for investigating the complexity of finding the intersection of multiple circles. We have described two algorithms (one trivial and one optimal) for this task. To find the intersection of $n$ circles a running time of $O(n \log n)$ is needed. If on the other hand all combinations of circles are intersected the overall running time of computing all areas would lead to $\sum_{i=1}^{n} \binom{n}{k} O(k \log k)$ by directly applying our optimal algorithm to every circle combination. This can further be reduced to $\sum_{i=1}^{n} \binom{n}{k} O(k)$ by reusing already intersected circle segments.
References


Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich
Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de
Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe
Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Köbler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schöning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Köbler, J. Toran
The Power of Middle Bit

91-08* V. Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara, U. Schöning, R. Silvestri, T. Thierauf
Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simultaneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Köbler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kühnemann, Heiko Vogler
Synthesized and inherited functions - a new computational model for syntax-directed semantics

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost Narrowing
92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal Communications Manager

The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree Transducers
94-05  V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06  Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07  Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08  Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

Construction and Deduction Methods for the Formal Development of Software

94-10  Axel Dold
Formalisierung schematischer Algorithmen

94-11  Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12  Rainer Schuler
On Average Polynomial Time

94-13  Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14  Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15  Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16  Robert Regn
Verteilte Unix-Betriebssysteme

94-17  Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars: Two Exercises in Transformational Programming

94-18  Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01  Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02  Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03  Harry Buhrman, Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04  Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05  Klaus Achatz, Wolfram Schulte
Architecture Independent Massive Parallelization of Divide-And-Conquer Algorithms
95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schultess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen Netzen am Beispiel Truck Backer-Upper

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche mit VSE

96-02 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT-Ansätzen
<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-10</td>
<td>Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß</td>
<td>Formalizing Fixed-Point Theory in PVS</td>
</tr>
<tr>
<td>96-11</td>
<td>Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß</td>
<td>Mechanized Semantics of Simple Imperative Programming Constructs</td>
</tr>
<tr>
<td>96-12</td>
<td>Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß</td>
<td>Generic Compilation Schemes for Simple Programming Constructs</td>
</tr>
<tr>
<td>96-13</td>
<td>Klaus Achatz, Helmut Partsch</td>
<td>From Descriptive Specifications to Operational ones: A Powerful Transformation Rule, its Applications and Variants</td>
</tr>
<tr>
<td>97-01</td>
<td>Jochen Messner</td>
<td>Pattern Matching in Trace Monoids</td>
</tr>
<tr>
<td>97-02</td>
<td>Wolfgang Lindner, Rainer Schuler</td>
<td>A Small Span Theorem within P</td>
</tr>
<tr>
<td>97-03</td>
<td>Thomas Bauer, Peter Dadam</td>
<td>A Distributed Execution Environment for Large-Scale Workflow Management Systems with Subnets and Server Migration</td>
</tr>
<tr>
<td>97-04</td>
<td>Christian Heinlein, Peter Dadam</td>
<td>Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow Dependencies</td>
</tr>
<tr>
<td>97-05</td>
<td>Vikraman Arvind, Johannes Köbler</td>
<td>On Pseudorandomness and Resource-Bounded Measure</td>
</tr>
<tr>
<td>97-06</td>
<td>Gerhard Partsch</td>
<td>Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den digitalen Mobilfunkstandard DECT</td>
</tr>
<tr>
<td>97-07</td>
<td>Manfred Reichert, Peter Dadam</td>
<td>ADEPT$^{flex}$ - Supporting Dynamic Changes of Workflows Without Loosing Control</td>
</tr>
<tr>
<td>97-08</td>
<td>Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler</td>
<td>The Project NoName - A functional programming language with its development environment</td>
</tr>
<tr>
<td>97-09</td>
<td>Christian Heinlein</td>
<td>Grundlagen von Interaktionsausdrücken</td>
</tr>
<tr>
<td>97-10</td>
<td>Christian Heinlein</td>
<td>Graphische Repräsentation von Interaktionsausdrücken</td>
</tr>
<tr>
<td>97-11</td>
<td>Christian Heinlein</td>
<td>Sprachtheoretische Semantik von Interaktionsausdrücken</td>
</tr>
<tr>
<td>97-12</td>
<td>Gerhard Schellhorn, Wolfgang Reif</td>
<td>Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem Provers</td>
</tr>
</tbody>
</table>
97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

97-18 Johannes Köbler, Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und Analyse

98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>98-12</td>
<td>Proving Properties of Directed Graphs: A Problem Set for Automated Theorem Provers</td>
<td>Gerhard Schellhorn</td>
</tr>
<tr>
<td>98-13</td>
<td>Theorems from Compiler Verification: A Problem Set for Automated Theorem Provers</td>
<td>Gerhard Schellhorn, Wolfgang Reif</td>
</tr>
<tr>
<td>98-14</td>
<td>SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN</td>
<td>Mohammad Ali Livani</td>
</tr>
<tr>
<td>98-15</td>
<td>Predictable Atomic Multicast in the Controller Area Network (CAN)</td>
<td>Mohammad Ali Livani, Jörg Kaiser</td>
</tr>
<tr>
<td>99-01</td>
<td>A Comparison of Multimedia Document Models Concerning Advanced Requirements</td>
<td>Susanne Boll, Wolfgang Klas, Utz Westermann</td>
</tr>
<tr>
<td>99-02</td>
<td>Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und Simulation</td>
<td>Thomas Bauer, Peter Dadam</td>
</tr>
<tr>
<td>99-03</td>
<td>On the Complexity of Constraint Satisfaction</td>
<td>Uwe Schöning</td>
</tr>
<tr>
<td>99-04</td>
<td>Model-Checking zur Analyse von Message Sequence Charts über Statecharts</td>
<td>Ercument Canver</td>
</tr>
<tr>
<td>99-05</td>
<td>Derandomizing RP if Boolean Circuits are not Learnable</td>
<td>Johannes Köbler, Wolfgang Lindner, Rainer Schuler</td>
</tr>
<tr>
<td>99-06</td>
<td>Architecture of a DataBlade Module for the Integrated Management of Multimedia Assets</td>
<td>Utz Westermann, Wolfgang Klas</td>
</tr>
<tr>
<td>99-08</td>
<td>Graph Isomorphism is Low for ZPPNP and other Lowness results</td>
<td>Vikraman Arvind, Johannes Köbler</td>
</tr>
<tr>
<td>99-09</td>
<td>Efficient Distributed Workflow Management Based on Variable Server Assignments</td>
<td>Thomas Bauer, Peter Dadam</td>
</tr>
<tr>
<td>2000-02</td>
<td>Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-Management-System ADEPT</td>
<td>Thomas Bauer, Peter Dadam</td>
</tr>
<tr>
<td>2000-03</td>
<td>Combined space-variant maps for optical flow based navigation</td>
<td>Gregory Baratoff, Christian Toepfer, Heiko Neumann</td>
</tr>
<tr>
<td>2000-04</td>
<td>Ein Rahmenwerk zur Einführung von Leistungspunktsystemen</td>
<td>Wolfgang Gehring</td>
</tr>
</tbody>
</table>
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.
2003-05  Christian Heinlein  
Dynamic Class Methods in Java

2003-06  Christian Heinlein  
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07  Christian Heinlein  
Safely Extending Procedure Types to Allow Nested Procedures as Values  
(Corrected Version)

2003-08  Changling Liu, Jörg Kaiser  
Survey of Mobile Ad Hoc Network Routing Protocols

2004-01  Thom Frühwirth, Marc Meister (eds.)  
First Workshop on Constraint Handling Rules

2004-02  Christian Heinlein  
Concept and Implementation of C++, an Extension of C++ to Support User-Defined  
Operator Symbols and Control Structures

2004-03  Susanne Biundo, Thom Frühwirth, Günther Palm (eds.)  
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01  Armin Wolf, Thom Frühwirth, Marc Meister (eds.)  
19th Workshop on (Constraint) Logic Programming

2005-02  Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven  
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03  Walter Guttmann, Markus Maucher  
Constrained Ordering

2006-01  Stefan Sarstedt  
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02  Alexander Raschke, Ramin Tavakoli Kolagari  
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer  
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten  
Systemen

2006-03  Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari  
Eine qualitative Untersuchung zur Produktlinien-Integration über  
Organisationsgrenzen hinweg

2006-04  Thorsten Liebig  
Reasoning with OWL - System Support and Insights –

2008-01  H.A. Kestler, J. Messner, A. Müller, R. Schuler  
On the complexity of intersecting multiple circles for graphical display