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Abstract

We establish a new connection between the theory of Berge graphs (per-
fect graphs) and communication complexity. We discover a new class of
square-free Berge graphs, the class of beautiful graphs, and make progress
towards their characterization: on the one hand, we give a complete list
of forbidden induced subgraphs of order ≤ 7, on the other hand, we show
that every square-free bipartite graph is beautiful, and, as the main result,
we characterize the beautiful line graphs of square-free bipartite graphs.

1 Introduction

1.1 Theory of perfect graphs

Shannon [11, 12] considered zero-error data transmission and reduced the prob-
lem of determining the zero-error channel capacity to a problem in graph theory,
namely calculating supn→∞

1
n log ω(Gn) (now called Shannon zero-error capac-

ity), where G is a graph associated with the given channel, Gn is its n-th graph
power, and ω(G) is the clique number of G. The n-th graph power Gn is the
strong graph product of n copies of g; given graphs G1 and G2 the strong graph
product is a graph with vertex set V (G1) × V (G2) and two distinct vertices
are connected i� they are adjacent or equal in each coordinate. Determining
the Shannon zero-error capacity is extremely hard in general, e.g. see [1, 8],
but easily solved for so called perfect graphs, introduced by Berge [2]. These
are graphs for which the chromatic and clique number have the same value for
each induced subgraph. Berge conjectured that a graph is perfect i� it does not
contain any odd holes or odd antiholes. An induced cycle of odd length at least
5 is called an odd hole, while an induced subgraph that is the complement of an
odd hole is called an odd antihole. Graphs without odd holes and odd antiholes
are called Berge graphs. The above conjecture was known as the Strong Perfect
Graph Conjecture, which, based on a series of works, especially [4], was �nally
answered in the a�rmative by Chudnovsky, Robertson, Seymour and Thomas
[3] in May, 2002.
In the sequel we will also need the following notions: A 4-cycle is called a square;
a square-free graph does not contain a square as an induced subgraph. The line
graph of the graph G is the graph L(G) whose nodes are the edges of G and
two nodes u, v of L(G) are adjacent in L(G) i� the edges u, v of G are incident
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to a common node of G. We write G =iso H i� G and H are isomorphic, and
G ≤iso H i� G is isomorphic to an induced subgraph of H. For introductions
to graph theory and the theory of perfect graphs, we refer the reader to [5, 10].

1.2 Basics from communication complexity

In 1979 Yao [13] introduced a two player communication model: Let X ,Y,Z
be �nite sets. Player Alice has input x ∈ X , player Bob has y ∈ Y. Both want
to compute f(x, y) for a function f : X × Y → Z, or they want to compute a
relation, i.e. a value z ∈ Z such that (x, y, z) ∈ R for a relation R ⊆ X ×Y ×Z.
The communication between the two players is speci�ed by protocols. We will
not delve into de�nitions of protocols and communication complexity. For an
excellent introduction to this subject we refer to [7]. Important for us is that a
(nondeterministic) protocol induces a cover of the communication matrix of the
function/relation via monochromatic combinatorial rectangles. These notions
are de�ned below.

A matrix M : X × Y → Z is called a function matrix over X ,Y,Z, and a
matrix M : X × Y → P(Z) is called a relation matrix over X ,Y,Z i� for all
rows x ∈ X and columns y ∈ Y we have Mx,y 6= ∅. A combinatorial rectangle in
M is a set R = A × B, A ⊆ X , B ⊆ Y. For R = C ×D we de�ne A(R) := C
and B(R) := D. Let z ∈ Z. If M is a function matrix, a combinatorial rectangle
R = A×B is called z-chromatic in M i� for all x ∈ A, y ∈ B we have Mx,y = z.
If M is a relation matrix, R is called z-chromatic in M i� for all x ∈ A, y ∈ B
we have z ∈ Mx,y. R is called monochromatic i� there exists z ∈ Z such that R
is z-chromatic.

De�nition 1.1. Let M be a function or relation matrix over X ,Y,Z.

• A combinatorial rectangle R is nonextendible i� R is monochromatic in M
and adding rows or columns to R results in a nonmonochromatic rectangle.

• We associate with M its cover structure graph G(M) := (V (M), E(M))
(cs-graph for short),

V (M) := {R | R nonextendible rectangle in M}
E(M) := {{R,R′} | R,R′ ∈ V (M), R 6= R′, R ∩R′ 6= ∅}

• Let z ∈ Z. We also associate with M its z-chromatic cover structure graph
Gz(M) := (V z(M), Ez(M)),

V z(M) := {R | R nonextendible z-chromatic rectangle in M}
Ez(M) := {{R,R′} | R,R′ ∈ V z(M), R 6= R′, R ∩R′ 6= ∅}

1.3 Communication complexity and Berge graphs

As we mentioned earlier, Berge graphs play an important role in noninteractive
communication complexity, i.e. information theory, in the context of zero-error
data transmission and the determination of channel capacities. But no connec-
tion was known before in the interactive case, i.e. communication complexity.
We show, that for total functions f the covers of their communication matri-
ces Mf have structure in the sense, that their cover structure graphs G(Mf )
are not arbitrary. For an important subclass of the cover structure graphs, the
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beautiful graphs, we prove that this class is strictly contained in the class of
square-free Berge graphs, thus establishing a connection between Berge graphs
and interactive communication.

The following result might lead to the conclusion, that cs-graphs are unin-
teresting. However, for function matrices the situation is completely di�erent,
as we will see in Theorem 2.3. We denote with [n] the set {1, . . . , n} of the �rst
n natural numbers.

Theorem 1.2. Let G be an arbitrary graph. Then there exists a relation matrix
M , such that G =iso G(M).

Proof. W.l.o.g. assume G = (V,E), V = [n]. We de�ne the 1× n2-block matrix
M with values in P([n]) by M := (B(1), . . . , B(n)), where each block B(i) is a

1× n-matrix de�ned by B
(i)
j := {i, j}, if {i, j} ∈ E, and B

(i)
j := {i} otherwise.

For each color i ∈ [n] there exists exactly one nonextendible rectangle Ri :=
{1} × {j | i ∈ M1,j}. Thus, V (M) = {Ri | i ∈ [n]}. If {i, j} ∈ E, then

Ri, Rj intersect in block position B
(i)
j (and B

(j)
i ) implying {Ri, Rj} ∈ E(M).

Conversely, if {Ri, Rj} ∈ E(M), then there exist k, l ∈ [n], such that Ri, Rj

intersect in B
(k)
l . The case k /∈ {i, j} cannot occur by construction (|B(i)

j | ≤ 2).

W.l.o.g. assume k = i. Necessarily, B
(i)
l = {i, j}. Thus, l = j and {i, j} ∈ E. We

conclude E(M) = {{Ri, Rj} | {i, j} ∈ E} proving G =iso G(M).

Given z ∈ Z and a function matrix M over X ,Y,Z, de�ne the corresponding
{0, 1}-valued matrix M (z) by M

(z)
x,y := 1, if Mx,y = z, and M

(z)
x,y := 0 otherwise.

As rectangles with di�erent colors do not intersect for function matrices, we get
G(M) =iso

⋃
z∈Z Gz(M (z)), where

⋃
denotes the disjoint union of graphs. Thus,

we only need to deal with cs-graphs of function matrices over �nite sets X ,Y
and Z = {0, 1}. From here on, when we talk about matrices, we mean function
matrices over �nite sets X ,Y and Z = {0, 1}. We also write G(M), when we
mean G1(M). We call matrices M with G = G(M) representations of G. We
denote the class of cover structure graphs (cs-graphs), i.e. the class of graphs
which can be represented by function matrices, with csg.

1.4 Easy observations concerning cs-graphs

In this subsection we prove several easy results about cs-graphs and state struc-
tural properties. The independent set Kn, the complete graph Kn and even
cycles C2n are cs-graphs, n ∈ N, as can be seen by looking at the identity
matrix En and the matrices over X = Y = [n] de�ned below: For m,n ∈ N,
m ≤ n, de�ne the following n× n-matrix by (repK(n)

m )i,j := 1, if i ≤ m + 1− j,

and (repK(n)
m )i,j := 0 otherwise. Then Km =iso G(repK(n)

m ), and Kn =iso G(En).
The matrix repK(n)

m as a representation for Km is de�ned more general than is
needed here, because we need it later in this form. A possible representation for
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the even cycle C2n is the following n× n-matrix:

repC2n :=



1 1 0 · · · · · · 0

0 1 1
...

... 1 1
...

...
. . . 0

0 1 1
1 0 · · · · · · 0 1


Clearly, we have C2n =iso G(repC2n).

In the sequel we only consider connected cs-graphs. On the one hand, if G
has connected components G1 and G2 represented by M1 and M2, respectively,
then the block diagonal matrix M := diag(M1,M2) is a representation of G. On
the other hand, one can show that if G is a cs-graph, then its components G1 and
G2 are also cs-graphs: If in a representation M of G a rectangle R1 representing
a node v1 ∈ G1 would share a row or column with a rectangle R2 representing
a node v2 ∈ G2, then there would exist a nonextendible rectangle J incident to
both G1 and G2. As M is a representation of G the rectangle J would represent a
node adjacent to both v1 and v2 in contradiction to the assumption that G1 and
G2 are di�erent connected components. If Ai, Bi denote the rows and columns
covered by rectangles representing nodes in Gi, then A1 ∩ A2, B1 ∩ B2 = ∅.
Thus, a permutation of the rows and columns of M yields a representation
diag(M1,M2) of G.

2 Covers have structure

In this section we show that in contrast to the case of relation matrices not every
graph is a cs-graph of a function matrix. Thus, in contrast to relations for total
functions the corresponding cs-graphs are not arbitrary implying that (for total
functions) covers have structure. This might explain why there are phenomeno-
logical di�erences (see e.g. [7, Chap. 5]) in the communication complexity of
relations compared to the communication complexity of total functions.

An important observation is that nonextendible combinatorial rectangles
cannot intersect in an arbitrary fashion. Only two modes of intersection are
possible, namely cross and spade situations (see Figure 1).

De�nition 2.1. Let M be a matrix, and let Ri := Ai × Bi ∈ V (M), i ∈ [2],
{R1, R2} ∈ E(M).

• If A1 ( A2 and B2 ( B1, then we have a cross situation cross(R1, R2).

• If A1−A2, A2−A1, B1−B2, B2−B1 6= ∅, then we have a spade situation
spade{R1, R2}.

Note that while spade{R1, R2} implies spade{R2, R1} in case cross(R1, R2) the
situation cross(R2, R1) does not occur. In case we do not care which cross
situation holds, we let cross{R1, R2} := cross(R1, R2) ∨ cross(R2, R1) denote
the symmetrized version.

In the following lemma we list helpful observations we will extensively use
in the sequel.
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Figure 1: cross and spade situations

Lemma 2.2. Let M be a matrix, and let Ri := Ai ×Bi ∈ V (M), i ∈ [3].

1. If {R1, R2} ∈ E(M), then exactly one of the following situations occurs:

cross(R1, R2), cross(R2, R1), spade{R1, R2}.

2. If we have cross(R1, R2) and cross(R2, R3), then {R1, R3} ∈ E(M).

3. Let M be a matrix, and let Ri := Ai × Bi ∈ V (M), i ∈ [3]. If we have
spade{R1, R2}, then K4 ≤iso G(M).

4. We assume cross(R1, R2), cross(R3, R2) and {R1, R3} /∈ E(M). If B2 (
B1 ∩B3, then there exists R4 ∈ V (M), such that {Ri, R4} ∈ E(M) for all
i ∈ [3].

Proof. 1. By case distinction: Case A1 = A2. Here R1 = R2, or at least
one of R1, R2 is extendible, a contradiction. Case A1 ( A2. If B1 ( B2 or
B1 − B2, B2 − B1 6= ∅ then R1 is extendible, a contradiction. If B2 ( B1

then we have cross(R1, R2). Case A2 ( A1. Analogous to A1 ( A2. Case
A1 − A2, A2 − A1 6= ∅. All cases are analogous to the previous ones, except
B1 −B2, B2 −B1 6= ∅, where we have a spade situation spade{R1, R2}.

2. Both R1, R3 cover A1 ×B3 by nonextendibility, and thus intersect. From
cross(R1, R2) and cross(R2, R3) it also follows A1 ( A2 and A2 ( A3, respec-
tively. Thus, A1 ( A3, which implies R1 6= R3.

3. Let R3, R4 be arbitrary nonextendible combinatorial rectangles in M cov-
ering (A1 ∩ A2) × (B1 ∪ B2) and (A1 ∪ A2) × (B1 ∩ B2), respectively. Clearly,
R1, . . . , R4 are pairwise distinct. As all of them cover (A1∩A2)× (B1∩B2) they
pairwise intersect. Thus, G(M)({R1, . . . , R4}) =iso K4.

4. Let R4 ∈ V (M) be an arbitrary nonextendible combinatorial rectangle
covering (A1 ∪ A3) × (B1 ∩ B3). From cross(R1, R2) it follows A1 ( A2. As
B2 ( B1 ∩B3, we get R4 ∩R2 6= ∅ and R4 6= R2. By construction we also have
R4 ∩R1, R4 ∩R3 6= ∅. From {R1, R3} /∈ E(M) and ∅ 6= B2 ( B1 ∩B3 we derive
A1 ∩A3 = ∅. Thus, R4 6= R1 and R4 6= R3.

Now we can show that not all graphs are cs-graphs:
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Theorem 2.3. The square C4, odd holes C2n+1, n ≥ 2, and the graphs gem,
star1 and watch (see Figure 2) are not cs-graphs.

Figure 2: Star, gem and watch

Proof. Due to the many case distinctions we recommend that the reader visual-
izes the proofs by drawing the cross situations under consideration (we cannot
do this here for space reasons).

1. We assume that C4 is a cs-graph. Then there exists a matrix M such that
C4 =iso G(M). We have V (M) = {R1, . . . , R4} and E(M) = {{R1, R2}, {R2,
R3}, {R3, R4}, {R4, R1}}. By Lemma 2.2 (1, 3) for Ri, Ri+1 and R4, R1 only
cross situations are possible, as K4 6≤iso C4. W.l.o.g. we assume cross(R1, R2).
Then by Lemma 2.2 (2) we must have cross(R3, R2), as C3 6≤iso C4. Applying
Lemma 2.2 (4) yields B1 ∩B3 = B2. An analogous argumentation (consider the
transpose of M) for R2, R3, R4 yields A2 ∩ A4 = A3. From R1 ∩ R3 = ∅ and
B1 ∩B3 = B2 6= ∅ it follows A1 ∩ A3 = ∅. Then we have A4 = A3 ∪ (A4 − A2),
and thus A4 ∩ A1 = (A3 ∩ A1) ∪ ((A4 − A2) ∩ A1) = ∅ ∪ ∅ = ∅ using A1 ⊆ A2.
But this implies R1∩R4 = ∅ contradicting {R1, R4} ∈ E(M). We conclude that
C4 cannot be a cs-graph.

2. We assume that C2n+1 is a cs-graph for n ≥ 2. Then there exists a
matrix M , such that C2n+1 =iso G(M). We have V (M) = {R1, . . . , R2n+1}
and E(M) = {{Ri, Ri+1} | i ∈ [2n]} ∪ {{R2n+1, R1}}. As K4 6≤iso C2n+1,
by Lemma 2.2 (1, 3) only cross situations are possible. W.l.o.g. we assume
cross(R1, R2). As C3 6≤iso C2n+1 iteratively applying Lemma 2.2 (2) yields
the sequence cross(R3, R2), cross(R3, R4), . . ., cross(R2n+1, R2n), and thus
cross(R2n+1, R1). But going backwards starting from cross(R1, R2) gives us
cross(R1, R2n+1). We get cross(R2n+1, R1) and cross(R1, R2n+1), a contradic-
tion. We conclude that C2n+1 cannot be a cs-graph.

3. We assume that gem is a cs-graph, i.e. gem =iso G(M) for a matrix M . We
have V (M) = {R1, . . . , R5} and E(M) = {{R1, R2}, {R1, R5}, {R2, R3}, {R2,
R4}, {R2, R5}, {R3, R4}, {R4, R5}}. As K4 6≤iso gem, only cross situations are
possible. W.l.o.g. we assume cross(R1, R2). {R1, R3}, {R1, R4} /∈ E(M) implies
cross(R3, R2) and cross(R4, R2), respectively. Case 1: Assume cross(R3, R4).
Case 1.1: Assume cross(R1, R5). cross(R2, R5) implies cross( R3, R5) con-
tradicting R3 ∩ R5 = ∅. Thus, assume cross(R5, R2). Case 1.1.1: Assume
cross(R4, R5). Then A(R3) ⊆ A(R4) ⊆ A(R5) and B(R5) ⊆ B(R4) ⊆ B(R3).

1The star graph is also called net in many publications.
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But R3∩R5 = (A(R3)∩A(R5))×(B(R3)∩B(R5)) ⊇ A(R3)×B(R5) 6= ∅, a con-
tradiction. Case 1.1.2: Assume cross(R5, R4). We must have A(R1)∩A(R4) = ∅,
as B(R1) ∩ B(R4) ⊇ B(R2) 6= ∅ and R1 ∩ R4 = ∅. But then A(R5) ⊆ A(R4)
implies A(R1) ∩ A(R5) = ∅ contradicting R1 ∩ R5 6= ∅. Case 1.2: Assume
cross(R5, R1). We still have A(R1) ∩ A(R4) = ∅. But A(R5) ⊆ A(R1) implies
A(R4) ∩ A(R5) = ∅ contradicting R4 ∩R5 6= ∅. Case 2: Assume cross(R4, R3).
cross(R5, R4) implies cross(R5, R3) contradicting R3 ∩ R5 = ∅. Thus, assume
cross(R4, R5). If cross(R2, R5) then cross(R3, R5) contradicting R3∩R5 = ∅. If
cross(R5, R2) then ∅ 6= B(R2) ⊆ B(R3)∩B(R5). As R3 ∩R5 = ∅, it must hold
A(R3) ∩ A(R5) = ∅. But A(R4) ⊆ A(R5). We �nally get A(R3) ∩ A(R4) = ∅
contradicting R3 ∩R4 6= ∅. We conclude that gem cannot be a cs-graph.

4. We assume that star is a cs-graph, i.e. star =iso G(M) for a matrix
M . We have V (M) = {Ri,A, Ri,B | i ∈ [3]} and E(M) = {{Ri,A, Ri,B} |
i ∈ [3]} ∪ {{R1,A, R2,A}, {R2,A, R3,A}, {R1,A, R3,A}}. As K4 6≤iso star, only
cross situations are possible. W.l.o.g. we assume cross(R1,A, R2,A). Case 1:
Assume cross(R2,A, R3,A). cross(R2,A, R2,B) implies cross(R1,A, R2,B) which
contradicts R1,A ∩ R2,B = ∅. cross(R2,B , R2,A) implies cross(R2,B , R3,A) con-
tradicting R2,B ∩ R3,A = ∅. Case 2: Assume cross(R3,A, R2,A). Case 2.1: As-
sume cross(R1,A, R3,A). cross(R3,A, R3,B) implies cross(R1,A, R3,B) contradict-
ing R1,A ∩R3,B = ∅. cross(R3,B , R3,A) implies cross(R3,B , R2,A) contradicting
R2,A ∩ R3,B = ∅. Case 2.2: Assume cross(R3,A, R1,A). cross(R1,A, R1,B) im-
plies cross(R3,A, R1,B) contradicting R3,A∩R1,B = ∅. cross(R1,B , R1,A) implies
cross(R1,B , R2,A) contradicting R2,A ∩R1,B = ∅. We conclude that star cannot
be a cs-graph.

5. We assume that watch is a cs-graph, i.e. watch =iso G(M) for a ma-
trix M . We have V (M) = {R1, . . . , R6} and E(M) = {{R5, R2}, {R2, R1}, {R2,
R3}, {R2, R4}, {R1, R3}, {R4, R3}, {R3, R6}}. As K4 6≤iso watch, only cross situ-
ations are possible. W.l.o.g. we assume cross(R1, R2). Case 1: Assume cross(R2,
R3). cross(R2, R5) implies cross(R1, R5) contradicting R1 ∩R5 = ∅. cross(R5,
R2) implies cross(R5, R3) contradicting R3∩R5 = ∅. Case 2: Assume cross(R3,
R2). Case 2.1: Assume cross(R1, R3). cross(R3, R6) implies cross(R1, R6) con-
tradicting R1 ∩R6 = ∅. cross(R6, R3) implies cross(R6, R2) contradicting R2 ∩
R6 = ∅. Case 2.2: Assume cross(R3, R1). cross(R2, R4) implies cross(R1, R4)
contradicting R1 ∩ R4 = ∅. Thus, assume cross(R4, R2). If cross(R3, R4) then
R2 ∩ R3 ⊆ R4 implying R1 ∩ R4 6= ∅, a contradiction. cross(R4, R3) implies
cross(R4, R1), but again, then we have R1 ∩ R4 6= ∅, a contradiction. We con-
clude that watch cannot be a cs-graph.

3 Beautiful graphs

We have seen in the last section, that csg does not contain all graphs, i.e. covers
have structure. As squares and odd holes are �forbidden�, the previous results
motivate the following de�nition:

De�nition 3.1. A graph is beautiful i� every induced subgraph is a cs-graph.

Clearly, from Theorem 2.3 we obtain:

Theorem 3.2. Every beautiful graph is a square-free Berge graph.
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The opposite is not true, as e.g. star is square-free and Berge, but not beauti-
ful. A comparison with known classes of perfect graphs (see e.g. [6, 9] and Figure
3 below comparing the cs-graphs, K4-free cs-graphs and the class beautiful of
beautiful graphs with well-known classes of square-free perfect graphs, namely
interval, split, threshold, triangulated and trivially perfect graphs) yields, that
the class of beautiful graphs beautiful is a new class of perfect graphs. In Figure
3 we list the interesting class of K4-free cs-graphs, because such graphs cannot
be represented by matrices containing spade situations. We conjecture that they
coincide with the class of K4-free beautiful graphs. We state without proof (for
space reasons), that the list of forbidden induced subgraphs of beautiful graphs
in Theorem 2.3 is complete up to connected graphs of order n ≤ 7.

interval split threshold triangulated triv.perfect
beautiful +, gem +, star +, gem +, gem +, star

*, C6 *, C4 *, C4 *, C6 *, P4

K4−free +, gem +, star +, gem +, gem +, star
csg *, C6 *, C4 *, C4 *, C6 *, P4

csg +, gem +, star +, gem +, gem +, star
*, C6 *, C4 *, C4 *, C6 *, P4

Figure 3: Comparisons of graph classes

We explore the structure of beautiful graphs and make progress towards a
characterization in the spirit of Conforti, Cornuéjols and Vu²kovi¢ [4]. Recall
their characterization/decomposition theorem of square-free perfect graphs:

Fact 3.3. A square-free perfect graph is bipartite or the line graph of a bipartite
graph or has a star cutset or a 2-join.

We are able to give characterizations of the beautiful square-free bipartite graphs
(3.1) and the beautiful line graphs of square-free bipartite graphs (3.2).

3.1 Characterization of beautiful sqr.-free bipartite graphs

Proposition 3.4. Every square-free bipartite graph is a cs-graph.

Proof. Let G := (U∪V,E) be square-free and bipartite. W.l.o.g. assume U = [m]
and V = [n]. De�ne the m×n-matrix I by Iu,v := 1, if {u, v} ∈ E, and Iu,v := 0
otherwise, u ∈ U , v ∈ V . Let

M :=
(

0 En

Em I

)
Consider any R = A×B ∈ V (M). If R covers elements in Em, then necessarily
|A| = 1. There exists u ∈ [m], and B = {m+v | v ∈ [n], {u, v} ∈ E}. If R covers
elements in En, then necessarily |B| = 1. There exists v ∈ [n], and A = {n + u |
u ∈ [m], {u, v} ∈ E}. Suppose, R covers only elements in I. Then necessarily,
|A|, |B| ≥ 2. Then there exist distinct u1, u2 ∈ A, and distinct v1, v2 ∈ B such
that Iui,vj = 1, i ∈ [2], j ∈ [2]. This means {u1, v1}, {v1, u2}, {u2, v2}, {v2, u1} ∈
E. As G is bipartite, we have {u1, u2}, {v1, v2} /∈ E. Thus, C4 ≤iso G, a contra-
diction. We conclude G =iso G(M).
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As every induced subgraph of a square-free bipartite graph is square-free bipar-
tite, from Proposition 3.4 we immediately obtain:

Theorem 3.5. Every square-free bipartite graph is beautiful.

3.2 Characterization of beautiful line graphs of square-

free bipartite graphs

Now we completely describe square-free line graphs of bipartite graphs, i.e. we
consider line graphs of square-free bipartite graphs. Here, the situation is more
complicated.
We begin by �xing some notation. In this section, we let G̃ := (Ul ∪ Ur, Ẽ) be
a square-free bipartite graph, and we let G := L(G̃) = (V,E), V := Ẽ, be its
line graph. For u ∈ Ul de�ne Kl

u := {e ∈ V | u ∈ e}. Kr
u is de�ned analogously

for u ∈ Ur. Each Kl
u is a clique in G and {Kl

u | u ∈ Ul} is a partition of V , the
left clique partition of G. The right clique partition is de�ned analogously. We
prove all results for the left side only, but of course, they also hold for the right
side. We need the following claim:

Claim 3.6. Let u, u′ ∈ Ul, u 6= u′, be arbitrary. Then between Kl
u and Kl

u′

there is at most one edge.

Proof. We assume the opposite. Let e1, e2 ∈ Kl
u, e1 6= e2, and let d ∈ Kl

u′ ,
such that {e1, d}, {e2, d} ∈ E. Then there exist distinct v1, v2 ∈ Ur such that
ei = {u, vi}, i ∈ [2]. As {e1, d} ∈ E, we obtain d = {u, v1}, and also d = {u, v2}
by {e2, d} ∈ E, a contradiction.
Now we assume e1, e2 ∈ Kl

u, e1 6= e2, and d1, d2 ∈ Kl
u′ , d1 6= d2, such that

{e1, d1}, {e2, d2} ∈ E. By the argument above, we have {e1, d2}, {e2, d1} /∈ E.
As {e1, e2}, {d1, d2} ∈ E we get C4 ≤iso G, again a contradiction. We conclude
that there is at most one edge between Kl

u and Kl
u′ .

De�nition 3.7. For u ∈ Ul de�ne the set of connection nodes as

Bl
u := {e ∈ Kl

u | ∃u′ ∈ Ul : u 6= u′, e adjacent to Kl
u′}

Lemma 3.8. Assume that G is beautiful. Then the following statements hold:

1. Assume there exist distinct u, u′ ∈ Ul, distinct e1, e2 ∈ Kl
u, and d ∈ Kl

u′

such that {d, e1} ∈ E. Let G =iso G(M) for a matrix M . If R(v) denotes
the corresponding nonextendible combinatorial rectangle of v ∈ V in M ,
then we must have cross{R(e1), R(e2)} and cross{R(e1), R(d)}.

2. In each clique Kl
u there exist at most two nodes adjacent to other cliques

Kl
· . Especially, we must have |Bl

u| ≤ 2 for each u ∈ Ul.

3. Let ui ∈ Ul be pairwise distinct, and let ei ∈ Kl
ui
, i ∈ [3]. Then the set of

nodes {ei | i ∈ [3]} cannot form a triangle in G.

4. G(
⋃

u∈Ul
Bl

u) is bipartite.

Proof. 1. We assume spade{R(e1), R(e2)}. By Lemma 2.2 (3) there exist dis-
tinct g1, g2 ∈ V such that {e1, e2, g1, g2} is a K4 in G. By Claim 3.6 we get
g1, g2 ∈ Kl

u. In case cross{R(e1), R(d)} we must have {d, e1}, {d, g1} ∈ E or
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{d, e1}, {d, g2} ∈ E, which is impossible by Claim 3.6. In case spade{R(e1),
R(d)} by Lemma 2.2 (3) there exist distinct h1, h2 ∈ V such that {e1, d, h1, h2}
is a K4 in G. In addition, the nodes g1, g2, h1, h2 are pairwise distinct. W.l.o.g.
{h1, e1}, {h1, g1} ∈ E. The case {h1, e1}, {h1, g2} ∈ E is analogous. If h1 ∈ Kl

u,
then {d, e1}, {d, h1} ∈ E contradicting Claim 3.6. If h1 /∈ Kl

u, then there exists
u′′ ∈ Ul, u 6= u′′, such that h1 ∈ Kl

u′′ . But then {h1, e1}, {h1, g1} ∈ E again
contradicts Claim 3.6. We conclude that the situation spade{R(e1), R(e2)} can-
not occur. By Lemma 2.2 (1) we obtain cross{R(e1), R(e2)} proving the �rst
statement.
Now, we assume spade{R(e1), R(d)}. By Lemma 2.2 (3) there exist distinct
g1, g2 ∈ V such that {e1, d, g1, g2} is a K4 in G. By Claim 3.6 there must exist
u1, u2 ∈ Ul, u, u′, u1, u2 pairwise distinct, such that g1 ∈ Kl

u1
and g2 ∈ Kl

u2
.

We saw in the �rst part of this proof, that we must have a cross{R(e1), R(e2)}
situation between e1 and e2. This implies the situation cross{R(e2), R(g1)}
or cross{R(e2), R(g2)}. But both {e2, g1} ∈ E or {e2, g2} ∈ E together with
{e1, g1}, {e1, g2} ∈ E contradict Claim 3.6. We conclude cross{R(e1), R(d)}.

2. We assume the opposite. Let u, u1, u2, u3 ∈ Ul be pairwise distinct, and
let e1, e2, e3 ∈ Kl

u be pairwise distinct. Let gi ∈ Kl
ui
, such that {gi, ei} ∈ E,

i ∈ [3]. By (1) we only have cross situations cross{R(gi), R(ei)}, i ∈ [3],
cross{R(e1), R(e2)}, cross{R(e1), R(e3)} and also cross{R(e2), R(e3)}. W.l.o.g.
we can assume cross(R(g1), R(e1)). Then cross(R(e2), R(e1)) as otherwise the
case R(g1) ∩ R(e2) 6= ∅ would imply {g1, e2} ∈ E contradicting Claim 3.6.
By an analogous argument we get cross(R(e2), R(g2)) and cross(R(e2), R(e3)).
B(R(e1)) ∩B( R(e3)) = ∅ cannot be the case, as {e1, e3} ∈ E (Kl

u is a clique).
But B(R(e1))∩B(R(e3)) 6= ∅ implies R(e3)∩R(g1) 6= ∅ and thus, {e3, g1} ∈ E,
again contradicting Claim 3.6. We conclude that in each clique Kl

u there are at
most two nodes adjacent to other cliques Kl

· .

3. We assume the opposite. Then there exist v, v1, v2, v3 ∈ Ur pairwise dis-
tinct, such that {ui, vi}, {ui, v} ∈ Ẽ, i ∈ [3]. Thus, in Kr

v there exist more than
two nodes adjacent to other cliques in contradiction to (2), which also holds for
the right clique partition.

4. We assume, that the induced subgraph D := G(
⋃

u∈Ul
Bl

u) is not bipartite.
Then D contains an odd cycle. As G is beautiful, also D is beautiful. One
can show by induction on the cycle length, that a Berge graph containing an
odd cycle as a subgraph (not necessarily induced) contains a triangle. Thus, D
contains a triangle {e1, e2, e3}. Each node ei must lie in a separate clique by
Claim 3.6. But this contradicts (3). We conclude that D must be bipartite.

The derivations above (Lemma 3.8) motivate the following de�nition:

De�nition 3.9. G has the property B if

• |Bl
u| ≤ 2 for each u ∈ Ul, and

• G(
⋃

u∈Ul
Bl

u) is bipartite.

Lemma 3.10. If G has property B, then G is a cs-graph.
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Proof. Let G = L(G̃) be the line graph of a square-free bipartite graph G̃ = (Ul∪
Ur, Ẽ), where G has property B. W.l.o.g. assume Ul = [m]. Let {Kl

u | u ∈ Ul}
be the left clique partition of G. De�ne su := |Kl

u| and s := max{su | u ∈ Ul}.
We have to de�ne a matrix M such that G =iso G(M). De�ne the block matrix
M := (Mi,j)i,j∈[m], where each block Mi,j is an s × s-matrix over {0, 1}. In
the diagonal, the left cliques are represented, i.e. Mi,i := repK(s)

si
, i ∈ [m]. See

Subsection 1.4 for the de�nition of repK(s)
si
. By Lemma 3.8 (4) we know that

G(
⋃

u∈Ul
Bl

u) is bipartite. Thus, there exists a 2-coloring c :
⋃

u∈Ul
Bl

u → [2].
For each Bl

u 6= ∅, we can now de�ne its elements. If e ∈ Bl
u and c(e) = b, de�ne

eb
u := e, b ∈ [2]. Trivially, c(eb

u) = b. Now we can de�ne the nondiagonal blocks
in M : For distinct i, j ∈ [m], if e1

i is adjacent to e2
j , then de�ne

Mi,j := E1,1 :=
(

1 0
0 0

)
Otherwise, let Mi,j := (0). Note, that there does not exist any nonextendible
rectangle R in M , such that R covers elements in blocks Mi,j ,Mr,s with i 6= r,
j 6= s. Assume the contrary. We distinguish three cases: In case i = j and r = s
the left cliques Kl

i and Kl
r would be connected by two edges {e1

i , e
2
r}, {e2

i , e
1
r} ∈

E, which is impossible. In case i = j and r 6= s by construction of M , there
would exist edges {e1

i , e
2
r}, {e1

s, e
2
r}, {e1

s, e
2
i } ∈ E implying C4 ≤iso G, because

{e1
i , e

2
i } ∈ E and {e1

i , e
1
s}, {e2

i , e
2
r} /∈ E, as c is a 2-coloring. But this is impossible,

as G is square-free. Similarly, in case i 6= j and r 6= s, there would exist edges
{e1

i , e
2
j}, {e2

j , e
1
r}, {e1

r, e
2
s}, {e2

s, e
1
i } ∈ E, again forming an induced C4 in G. Thus,

such a rectangle R cannot exist, and we conclude G =iso G(M).

Every induced subgraph of the line graph of a square-free bipartite graph, which
has property B, is also the line graph of a square-free bipartite graph, which has
property B. Thus, by Lemma 3.10 we have:

Theorem 3.11. If G has property B, then G is beautiful.

As a technical intermediate characterization by Lemma 3.8 (2) and (4), and
Theorem 3.11 we get:

Theorem 3.12. G is beautiful i� G has property B.

But what do these graphs look like? In Ur we can safely ignore isolated
nodes. We delete nodes of degree one obtaining U ′

r. We also delete nodes in Ul

which have become isolated. Call the new set U ′
l . The property of G(

⋃
u∈Ul

Bl
u)

being bipartite implies that in U ′
r nodes of degree ≥ 3 do not exist (otherwise,

one would have a triangle). If we restrict G̃ on U ′
l and U ′

r, all nodes on the right
side have degree two while all nodes on the left have degree one. This graph
consists of disjoint cycles of even length ≥ 6 and paths of even length ≥ 2.
Thus, the corresponding line graph consists of cycles of even length and paths
of odd length. We color the edges of G red and green such that end edges are
colored green. The leaves in G̃ induce additional cliques in the line graph. These
are cliques of arbitrary size which are attached to the start or end nodes of a
path or contain a single red edge of a path or a cycle and only additional nodes
and edges. We call such graphs Odd Paths and Even Cycles of Cliques graph,
see e.g. Figure 4.
Thus, our main theorem reads as follows:
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Figure 4: Odd Paths and Even Cycles of Cliques

Theorem 3.13. A line graph of a square-free bipartite graph is beautiful i� it
is an Odd Paths and Even Cycles of Cliques graph.
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