Covers have structure

Henning Wunderlich
Covers have structure

Henning Wunderlich *

July 8, 2008

Abstract

We establish a new connection between the theory of Berge graphs (perfect graphs) and communication complexity. We discover a new class of square-free Berge graphs, the class of beautiful graphs, and make progress towards their characterization: on the one hand, we give a complete list of forbidden induced subgraphs of order ≤ 7, on the other hand, we show that every square-free bipartite graph is beautiful, and, as the main result, we characterize the beautiful line graphs of square-free bipartite graphs.

1 Introduction

1.1 Theory of perfect graphs

Shannon [11, 12] considered zero-error data transmission and reduced the problem of determining the zero-error channel capacity to a problem in graph theory, namely calculating $\sup_{n \to \infty} \frac{1}{n} \log \omega(G^n)$ (now called Shannon zero-error capacity), where G is a graph associated with the given channel, G^n is its n-th graph power, and $\omega(G)$ is the clique number of G. The n-th graph power G^n is the strong graph product of n copies of G, given graphs G_1 and G_2 the strong graph product is a graph with vertex set $V(G_1) \times V(G_2)$ and two distinct vertices are connected if and only if they are adjacent or equal in each coordinate. Determining the Shannon zero-error capacity is extremely hard in general, e.g. see [1, 8], but easily solved for so called perfect graphs, introduced by Berge [2]. These are graphs for which the chromatic and clique number have the same value for each induced subgraph. Berge conjectured that a graph is perfect if it does not contain any odd holes or odd antiholes. An induced cycle of odd length at least 5 is called an odd hole, while an induced subgraph that is the complement of an odd hole is called an odd antihole. Graphs without odd holes and odd antiholes are called Berge graphs. The above conjecture was known as the Strong Perfect Graph Conjecture, which, based on a series of works, especially [4], was finally answered in the affirmative by Chudnovsky, Robertson, Seymour and Thomas [3] in May, 2002.

In the sequel we will also need the following notions: A 4-cycle is called a square; a square-free graph does not contain a square as an induced subgraph. The line graph of the graph G is the graph $L(G)$ whose nodes are the edges of G and two nodes u, v of $L(G)$ are adjacent in $L(G)$ iff the edges u, v of G are incident

*Universität Ulm, Fakultät für Ingenieurwissenschaften und Informatik, Institut für Theoretische Informatik, Oberer Eselsberg, D-89069 Ulm, e-mail: Henning.Wunderlich@uni-ulm.de
to a common node of \(G \). We write \(G =_{iso} H \) if \(G \) and \(H \) are isomorphic, and \(G \leq_{iso} H \) if \(G \) is isomorphic to an induced subgraph of \(H \). For introductions to graph theory and the theory of perfect graphs, we refer the reader to [5, 10].

1.2 Basics from communication complexity

In 1979 Yao [13] introduced a two player communication model: Let \(X, Y, Z \) be finite sets. Player Alice has input \(x \in X \), player Bob has \(y \in Y \). Both want to compute \(f(x, y) \) for a function \(f : X \times Y \rightarrow Z \), or they want to compute a relation, i.e. a value \(z \in Z \) such that \((x, y, z) \in R \) for a relation \(R \subseteq X \times Y \times Z \).

The communication between the two players is specified by protocols. We will not delve into definitions of protocols and communication complexity. For an excellent introduction to this subject we refer to [7]. Important for us is that a (nondeterministic) protocol induces a cover of the communication matrix of the function/relation via monochromatic combinatorial rectangles. These notions are defined below.

A matrix \(M : X \times Y \rightarrow Z \) is called a function matrix over \(X, Y, Z \), and a matrix \(M : X \times Y \rightarrow \mathcal{P}(Z) \) is called a relation matrix over \(X, Y, Z \) if for all rows \(x \in X \) and columns \(y \in Y \) we have \(M_{x,y} \neq \emptyset \). A combinatorial rectangle in \(M \) is a set \(R = A \times B \), \(A \subseteq X \), \(B \subseteq Y \). For \(R = C \times D \) we define \(A(R) := C \) and \(B(R) := D \). Let \(z \in Z \). If \(M \) is a function matrix, a combinatorial rectangle \(R = A \times B \) is called \(z \)-chromatic in \(M \) if for all \(x \in A \), \(y \in B \) we have \(M_{x,y} = z \). If \(M \) is a relation matrix, \(R \) is called \(z \)-chromatic in \(M \) iff for all \(x \in A \), \(y \in B \) we have \(z \in M_{x,y} \).

If \(R \) is \(z \)-chromatic in \(M \) we call \(R \) \(z \)-chromatic.

Definition 1.1. Let \(M \) be a function or relation matrix over \(X, Y, Z \).

- A combinatorial rectangle \(R \) is nonextendible iff \(R \) is monochromatic in \(M \) and adding rows or columns to \(R \) results in a nonmonochromatic rectangle.

- We associate with \(M \) its cover structure graph \(G(M) := (V(M), E(M)) \) (cs-graph for short),

\[
\begin{align*}
V(M) & := \{ R \mid R \text{ nonextendible rectangle in } M \} \\
E(M) & := \{ \{ R, R' \} \mid R, R' \in V(M), R \neq R', R \cap R' \neq \emptyset \}
\end{align*}
\]

- Let \(z \in Z \). We also associate with \(M \) its \(z \)-chromatic cover structure graph \(G^z(M) := (V^z(M), E^z(M)) \),

\[
\begin{align*}
V^z(M) & := \{ R \mid R \text{ nonextendible } z \text{-chromatic rectangle in } M \} \\
E^z(M) & := \{ \{ R, R' \} \mid R, R' \in V^z(M), R \neq R', R \cap R' \neq \emptyset \}
\end{align*}
\]

1.3 Communication complexity and Berge graphs

As we mentioned earlier, Berge graphs play an important role in noninteractive communication complexity, i.e. information theory, in the context of zero-error data transmission and the determination of channel capacities. But no connection was known before in the interactive case, i.e. communication complexity. We show, that for total functions \(f \) the covers of their communication matrices \(M_f \) have structure in the sense, that their cover structure graphs \(G(M_f) \) are not arbitrary. For an important subclass of the cover structure graphs, the
beautiful graphs, we prove that this class is strictly contained in the class of square-free Berge graphs, thus establishing a connection between Berge graphs and interactive communication.

The following result might lead to the conclusion, that cs-graphs are uninteresting. However, for function matrices the situation is completely different, as we will see in Theorem 2.3. We denote with $[n]$ the set $\{1, \ldots, n\}$ of the first n natural numbers.

Theorem 1.2. Let G be an arbitrary graph. Then there exists a relation matrix M, such that $G =_{\text{iso}} G(M)$.

Proof. W.l.o.g. assume $G = (V, E), V = [n]$. We define the $1 \times n^2$-block matrix M with values in $P([n])$ by $M := (B^{(1)}, \ldots, B^{(n)})$, where each block $B^{(i)}$ is a $1 \times n$-matrix defined by $B^{(i)}_{i} := \{i, j\}$, if $\{i, j\} \in E$, and $B^{(i)}_{i} := \{i\}$ otherwise. For each color $i \in [n]$ there exists exactly one nonextendible rectangle $R_i := \{1\} \times \{j \mid i \in M_{i, j}\}$. Thus, $V(M) = \{R_i \mid i \in [n]\}$. If $\{i, j\} \in E$, then R_i, R_j intersect in block position $B^{(i)}_j$ (and $B^{(j)}_i$) implying $\{R_i, R_j\} \in E(M)$. Conversely, if $\{R_i, R_j\} \in E(M)$, then there exist $k, l \in [n]$, such that R_i, R_j intersect in $B^{(k)}_l$. The case $k \notin \{i, j\}$ cannot occur by construction ($|B^{(i)}_j| \leq 2$).

W.l.o.g. assume $k = i$. Necessarily, $B^{(i)}_j = \{i, j\}$. Thus, $l = j$ and $\{i, j\} \in E$. We conclude $E(M) = \{\{R_i, R_j\} \mid \{i, j\} \in E\}$ proving $G =_{\text{iso}} G(M)$.

Given $z \in \mathbb{Z}$ and a function matrix M over $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$, define the corresponding $\{0, 1\}$-valued matrix $M^{(z)}$ by $M^{(z)}_{x, y} := 1$, if $M_{x, y} = z$, and $M^{(z)}_{x, y} := 0$ otherwise. As rectangles with different colors do not intersect for function matrices, we get $G(M) =_{\text{iso}} \bigcup_{z \in \mathbb{Z}} G^{z}(M^{(z)})$, where \bigcup denotes the disjoint union of graphs. Thus, we only need to deal with cs-graphs of function matrices over finite sets \mathcal{X}, \mathcal{Y} and $\mathbb{Z} = \{0, 1\}$. From here on, when we talk about matrices, we mean function matrices over finite sets \mathcal{X}, \mathcal{Y} and $\mathbb{Z} = \{0, 1\}$. We also write $G(M)$, when we mean $G^{0}(M)$. We call matrices M with $G = G(M)$ representations of G. We denote the class of cover structure graphs (cs-graphs), i.e. the class of graphs which can be represented by function matrices, with csg.

1.4 Easy observations concerning cs-graphs

In this subsection we prove several easy results about cs-graphs and state structural properties. The independent set \overline{K}_n, the complete graph K_n, and even cycles C_{2n} are cs-graphs, $n \in \mathbb{N}$, as can be seen by looking at the identity matrix E_n, and the matrices over $\mathcal{X} = \mathcal{Y} = [n]$ defined below: For $m, n \in \mathbb{N}, m \leq n$, define the following $n \times n$-matrix by $(\text{rep} K^{(m)}_{n})_{i,j} := 1$, if $i \leq m + 1 - j$, and $(\text{rep} K^{(m)}_{n})_{i,j} := 0$ otherwise. Then $K_{m} = G(\text{rep} K^{(m)}_{n})$, and $\overline{K}_n = G(E_n)$.

The matrix $\text{rep} K^{(m)}_{n}$ as a representation for K_m is defined more general than is needed here, because we need it later in this form. A possible representation for
the even cycle C_{2n} is the following $n \times n$-matrix:

$$
\text{rep}_{C_{2n}} := \\
\begin{pmatrix}
1 & 1 & 0 & \cdots & \cdots & 0 \\
0 & 1 & 1 & \vdots & \vdots & \vdots \\
\vdots & 1 & 1 & \vdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & 0 & \vdots & \vdots \\
0 & 1 & 1 & \ddots & \ddots & \vdots \\
1 & 0 & \cdots & 0 & \cdots & 0 \\
\end{pmatrix}
$$

Clearly, we have $C_{2n} = \text{iso}_G(\text{rep}_{C_{2n}})$.

In the sequel we only consider connected cs-graphs. On the one hand, if G has connected components G_1 and G_2 represented by M_1 and M_2, respectively, then the block diagonal matrix $M := \text{diag}(M_1, M_2)$ is a representation of G. On the other hand, one can show that if G is a cs-graph, then its components G_1 and G_2 are also cs-graphs: If in a representation M of G a rectangle R_1 representing a node $v_1 \in G_1$ would share a row or column with a rectangle R_2 representing a node $v_2 \in G_2$, then there would exist a nonextendible rectangle J incident to both G_1 and G_2. As M is a representation of G the rectangle J would represent a node adjacent to both v_1 and v_2 in contradiction to the assumption that G_1 and G_2 are different connected components. If A_i, B_i denote the rows and columns covered by rectangles representing nodes in G_i, then $A_1 \cap A_2, B_1 \cap B_2 = \emptyset$. Thus, a permutation of the rows and columns of M yields a representation $\text{diag}(M_1, M_2)$ of G.

2 Covers have structure

In this section we show that in contrast to the case of relation matrices not every graph is a cs-graph of a function matrix. Thus, in contrast to relations for total functions the corresponding cs-graphs are not arbitrary implying that (for total functions) covers have structure. This might explain why there are phenomenological differences (see e.g. [7, Chap. 5]) in the communication complexity of relations compared to the communication complexity of total functions.

An important observation is that nonextendible combinatorial rectangles cannot intersect in an arbitrary fashion. Only two modes of intersection are possible, namely cross and spade situations (see Figure 1).

Definition 2.1. Let M be a matrix, and let $R_i := A_i \times B_i \in V(M), i \in [2], \{R_1, R_2\} \in E(M)$.

- If $A_1 \subseteq A_2$ and $B_2 \subseteq B_1$, then we have a cross situation $\text{cross}(R_1, R_2)$.
- If $A_1 - A_2, A_2 - A_1, B_1 - B_2, B_2 - B_1 \neq \emptyset$, then we have a spade situation $\text{spade}\{R_1, R_2\}$.

Note that while $\text{spade}\{R_1, R_2\}$ implies $\text{spade}\{R_2, R_1\}$ in case $\text{cross}(R_1, R_2)$ the situation $\text{cross}(R_2, R_1)$ does not occur. In case we do not care which cross situation holds, we let $\text{cross}(R_1, R_2) := \text{cross}(R_1, R_2) \lor \text{cross}(R_2, R_1)$ denote the symmetrized version.

In the following lemma we list helpful observations we will extensively use in the sequel.
Lemma 2.2. Let now we can show that not all graphs are cs-graphs:

1. If \(\{R_1, R_2\} \in E(M) \), then exactly one of the following situations occurs:

 \[
 \text{cross}(R_1, R_2), \quad \text{cross}(R_2, R_1), \quad \text{spade}(R_1, R_2).
 \]

2. If we have \(\text{cross}(R_1, R_2) \) and \(\text{cross}(R_2, R_3) \), then \(\{R_1, R_3\} \in E(M) \).

3. Let \(M \) be a matrix, and let \(R_i := A_i \times B_i \in V(M), i \in [3] \).

4. We assume \(\text{cross}(R_1, R_2), \text{cross}(R_3, R_2) \) and \(\{R_1, R_3\} \notin E(M) \). If \(B_2 \subseteq B_1 \cap B_3 \), then there exists \(R_4 \in V(M) \), such that \(\{R_i, R_4\} \in E(M) \) for all \(i \in [3] \).

Proof. By case distinction: Case \(A_1 = A_2 \). Here \(R_1 = R_2 \), or at least one of \(R_1, R_2 \) is extendible, a contradiction. Case \(A_1 \subseteq A_2 \). If \(B_1 \subseteq B_2 \) or \(B_1 - B_2, B_2 - B_1 \neq \emptyset \), then \(R_1 \) is extendible, a contradiction. If \(B_2 \subseteq B_1 \) then we have \(\text{cross}(R_1, R_2) \). Case \(A_2 \subseteq A_1 \). Analogous to \(A_1 \subseteq A_2 \). Case \(A_1 - A_2, A_2 - A_1 \neq \emptyset \). All cases are analogous to the previous ones, except \(B_1 - B_2, B_2 - B_1 \neq \emptyset \), where we have a spade situation \(\text{spade}(R_1, R_2) \).

2. Both \(R_1, R_3 \) cover \(A_1 \times B_3 \) by nonextendibility, and thus intersect. From \(\text{cross}(R_1, R_2) \) and \(\text{cross}(R_2, R_3) \) it follows \(A_1 \subseteq A_2 \) and \(A_2 \subseteq A_3 \), respectively. Thus, \(A_1 \subseteq A_3 \), which implies \(R_1 \neq R_3 \).

3. Let \(R_3, R_4 \) be arbitrary nonextendible combinatorial rectangles in \(M \) covering \((A_1 \cap A_2) \times (B_1 \cup B_2) \) and \((A_1 \cup A_2) \times (B_1 \cap B_2) \), respectively. Clearly, \(R_1, \ldots, R_4 \) are pairwise distinct. As all of them cover \((A_1 \cap A_2) \times (B_1 \cap B_2) \) they pairwise intersect. Thus, \(G(M)(\{R_1, \ldots, R_4\}) =_{iso} K_4 \).

4. Let \(R_4 \in V(M) \) be an arbitrary nonextendible combinatorial rectangle covering \((A_1 \cup A_3) \times (B_1 \cap B_3) \). From \(\text{cross}(R_1, R_3) \) it follows \(A_1 \subseteq A_2 \). As \(B_2 \subseteq B_1 \cap B_3 \), we get \(R_4 \cap R_2 \neq \emptyset \) and \(R_4 \neq R_2 \). By construction we also have \(R_4 \cap R_1, R_4 \cap R_3 \neq \emptyset \). From \(\{R_1, R_3\} \notin E(M) \) and \(\emptyset \neq B_2 \subseteq B_1 \cap B_3 \) we derive \(A_1 \cap A_3 = \emptyset \). Thus, \(R_4 \neq R_1 \) and \(R_4 \neq R_3 \).

Now we can show that not all graphs are cs-graphs:
Theorem 2.3. The square C_4, odd holes C_{2n+1}, $n \geq 2$, and the graphs gem, star\(^1\) and watch (see Figure 2) are not cs-graphs.

![Figure 2: Star, gem and watch](image)

Proof. Due to the many case distinctions we recommend that the reader visualizes the proofs by drawing the cross situations under consideration (we cannot do this here for space reasons).

1. We assume that C_4 is a cs-graph. Then there exists a matrix M such that $C_4 = \text{iso } G(M)$. We have $V(M) = \{R_1, \ldots, R_4\}$ and $E(M) = \{(R_1, R_2), (R_2, R_3), (R_3, R_4), (R_4, R_1)\}$. By Lemma 2.2 (1, 3) only cross situations are possible. W.l.o.g. we assume $\text{cross}(R_1, R_2)$. Then by Lemma 2.2 (2) we must have $\text{cross}(R_3, R_4)$, as $K_4 \not\subseteq \text{iso } C_4$. Applying Lemma 2.2 (4) yields $B_3 \cap B_4 = B_2$. An analogous argumentation (consider the transpose of M) for R_2, R_3, R_4 yields $A_2 \cap A_4 = A_3$. From $R_1 \cap R_3 = \emptyset$ and $B_1 \cap B_3 = B_2 \neq \emptyset$ it follows $A_1 \cap A_3 = \emptyset$. Then we have $A_4 = A_3 \cup (A_4 \cap A_2)$, and thus $A_4 \cap A_1 = (A_3 \cap A_1) \cup ((A_4 \cap A_2) \cap A_1) = \emptyset \cup \emptyset = \emptyset$ using $A_1 \subseteq A_2$. But this implies $R_1 \cap R_4 = \emptyset$ contradicting $\{R_1, R_4\} \in E(M)$. We conclude that C_4 cannot be a cs-graph.

2. We assume that C_{2n+1} is a cs-graph for $n \geq 2$. Then there exists a matrix M, such that $C_{2n+1} = \text{iso } G(M)$. We have $V(M) = \{R_1, \ldots, R_{2n+1}\}$ and $E(M) = \{(R_i, R_{i+1}) \mid i \in [2n]\} \cup \{(R_{2n+1}, R_1)\}$. As $K_4 \not\subseteq \text{iso } C_{2n+1}$, by Lemma 2.2 (1, 3) only cross situations are possible. W.l.o.g. we assume $\text{cross}(R_1, R_2)$. As $C_3 \not\subseteq \text{iso } C_{2n+1}$ iteratively applying Lemma 2.2 (2) yields the sequence $\text{cross}(R_3, R_2), \text{cross}(R_3, R_4), \ldots, \text{cross}(R_{2n+1}, R_2)$, and thus $\text{cross}(R_{2n+1}, R_1)$. But going backwards starting from $\text{cross}(R_1, R_2)$ gives us $\text{cross}(R_1, R_{2n+1})$. We get $\text{cross}(R_{2n+1}, R_1)$ and $\text{cross}(R_1, R_{2n+1})$, a contradiction. We conclude that C_{2n+1} cannot be a cs-graph.

3. We assume that gem is a cs-graph, i.e. gem $= \text{iso } G(M)$ for a matrix M. We have $V(M) = \{R_1, \ldots, R_5\}$ and $E(M) = \{(R_1, R_2), (R_1, R_5), (R_2, R_3), (R_2, R_4), (R_3, R_4), (R_4, R_5)\}$. As $K_4 \not\subseteq \text{iso}$ gem, only cross situations are possible. W.l.o.g. we assume $\text{cross}(R_1, R_2)$. $\{R_1, R_3\} \cup \{R_1, R_4\} \notin E(M)$ implies $\text{cross}(R_3, R_2)$ and $\text{cross}(R_4, R_2)$, respectively. Case I: Assume $\text{cross}(R_3, R_4)$.

Case I.1: Assume $\text{cross}(R_1, R_5)$. $\text{cross}(R_2, R_3)$ implies $\text{cross}(R_3, R_5)$ contradicting $R_3 \cap R_5 = \emptyset$. Thus, assume $\text{cross}(R_5, R_4)$. Case I.1.1: Assume $\text{cross}(R_4, R_5)$. Then $A(R_3) \subseteq A(R_4) \subseteq A(R_5)$ and $B(R_5) \subseteq B(R_4) \subseteq B(R_3)$.

\(^1\)The star graph is also called net in many publications.
But $R_3 \cap R_5 = (A(R_3) \cap A(R_5)) \times (B(R_3) \cap B(R_5)) \supseteq A(R_3) \times B(R_5) \neq \emptyset$, a contradiction. Case 1.1.2: Assume cross(R_5, R_4). We must have $A(R_1) \cap A(R_4) = \emptyset$, as $B(R_1) \cap B(R_4) \supseteq B(R_2) \neq \emptyset$ and $R_1 \cap R_4 = \emptyset$. But then $A(R_5) \subseteq A(R_1)$ implies $A(R_1) \cap A(R_5) = \emptyset$ contradicting $R_1 \cap R_5 \neq \emptyset$. Case 1.2: Assume cross(R_5, R_1). We still have $A(R_1) \cap A(R_4) = \emptyset$. But $A(R_5) \subseteq A(R_1)$ implies $A(R_4) \cap A(R_5) = \emptyset$ contradicting $R_4 \cap R_5 \neq \emptyset$. Case 2: Assume cross($R_4, R_3$). cross($R_5, R_4$) implies cross($R_5, R_3$) contradicting $R_5 \cap R_3 = \emptyset$. Thus, assume cross(R_4, R_3). If cross(R_2, R_5) then cross(R_5, R_2) contradicting $R_5 \cap R_2 = \emptyset$. If cross(R_5, R_2) then $\emptyset \neq B(R_2) \subseteq B(R_5) \cap B(R_5)$. As $R_3 \cap R_5 = \emptyset$, it must hold $A(R_3) \cap A(R_5) = \emptyset$. But $A(R_3) \subseteq A(R_5)$. We finally get $A(R_3) \cap A(R_4) = \emptyset$ contradicting $R_3 \cap R_4 \neq \emptyset$. We conclude that gem cannot be a cs-graph.

5. We assume that watch is a cs-graph, i.e. watch =iso $G(M)$ for a matrix M. We have $V(M) = \{R_1, \ldots , R_6\}$ and $E(M) = \{\{R_5, R_2\}, \{R_2, R_1\}, \{R_2, R_3\}, \{R_2, R_1\}, \{R_1, R_3\}, \{R_4, R_5\}, \{R_3, R_0\}\}$. As $K_4 \not\subseteq$ iso watch, only cross situations are possible. W.l.o.g. we assume cross(R_1, R_2). Case 1: Assume cross(R_2, R_3). cross(R_2, R_5) implies cross(R_1, R_5) contradicting $R_1 \cap R_5 = \emptyset$. cross(R_5, R_2) implies cross(R_5, R_3) contradicting $R_5 \cap R_3 = \emptyset$. Case 2: Assume cross(R_3, R_5). Case 2.1: Assume cross(R_1, R_3). cross(R_3, R_6) implies cross(R_1, R_6) contradicting $R_1 \cap R_6 = \emptyset$. cross(R_6, R_3) implies cross(R_6, R_2) contradicting $R_2 \cap R_6 = \emptyset$. Case 2.2: Assume cross(R_3, R_1). cross(R_2, R_4) implies cross(R_1, R_4) contradicting $R_1 \cap R_4 = \emptyset$. Thus, assume cross(R_4, R_2). If cross(R_3, R_4) then $R_2 \cap R_3 \subseteq R_4$ implying $R_1 \cap R_4 \neq \emptyset$, a contradiction. cross(R_3, R_4) implies cross(R_4, R_1), but again, then we have $R_1 \cap R_4 \neq \emptyset$, a contradiction. We conclude that watch cannot be a cs-graph.

\[\square \]

3 Beautiful graphs

We have seen in the last section, that csg does not contain all graphs, i.e. coers have structure. As squares and odd holes are “forbidden”, the previous results motivate the following definition:

Definition 3.1. A graph is beautiful iff every induced subgraph is a cs-graph.

Clearly, from Theorem 2.3 we obtain:

Theorem 3.2. Every beautiful graph is a square-free Berge graph. \[\square \]
The opposite is not true, as e.g. star is square-free and Berge, but not beautiful. A comparison with known classes of perfect graphs (see e.g. [6, 9] and Figure 3 below comparing the cs-graphs, K_4-free cs-graphs and the class beautiful of perfect graphs with well-known classes of square-free perfect graphs, namely interval, split, threshold, triangulated and trivially perfect graphs) yields, that the class of beautiful graphs beautiful is a new class of perfect graphs. In Figure 3 we list the interesting class of K_4-free cs-graphs, because such graphs cannot be represented by matrices containing spade situations. We conjecture that they coincide with the class of K_4-free beautiful graphs. We state without proof (for space reasons), that the list of forbidden induced subgraphs of beautiful graphs in Theorem 2.3 is complete up to connected graphs of order $n \leq 7$.

<table>
<thead>
<tr>
<th>interval</th>
<th>split</th>
<th>threshold</th>
<th>triangulated</th>
<th>triv. perfect</th>
</tr>
</thead>
<tbody>
<tr>
<td>beautiful</td>
<td>\mathbb{Z}, gem</td>
<td>\mathbb{Z}, star</td>
<td>\mathbb{Z}, gem</td>
<td>\mathbb{Z}, gem</td>
</tr>
<tr>
<td>K_4-free cs</td>
<td>\mathbb{Z}, C_6</td>
<td>\mathbb{Z}, C_4</td>
<td>\mathbb{Z}, C_4</td>
<td>\mathbb{Z}, C_6</td>
</tr>
<tr>
<td>cs</td>
<td>\mathbb{Z}, C_6</td>
<td>\mathbb{Z}, C_4</td>
<td>\mathbb{Z}, C_4</td>
<td>\mathbb{Z}, C_6</td>
</tr>
</tbody>
</table>

Figure 3: Comparisons of graph classes

We explore the structure of beautiful graphs and make progress towards a characterization in the spirit of Conforti, Cornuèjols and Vušković [4]. Recall their characterization/decomposition theorem of square-free perfect graphs:

Fact 3.3. A square-free perfect graph is bipartite or the line graph of a bipartite graph or has a star cutset or a 2-join.

We are able to give characterizations of the beautiful square-free bipartite graphs (3.1) and the beautiful line graphs of square-free bipartite graphs (3.2).

3.1 Characterization of beautiful sqr.-free bipartite graphs

Proposition 3.4. Every square-free bipartite graph is a cs-graph.

Proof. Let $G := (U \cup V, E)$ be square-free and bipartite. W.l.o.g. assume $U = [m]$ and $V = [n]$. Define the $m \times n$-matrix I by $I_{u,v} := 1$, if $\{u, v\} \in E$, and $I_{u,v} := 0$ otherwise, $u \in U$, $v \in V$. Let

$$M := \begin{pmatrix} 0 & E_m \\ E_m & I \end{pmatrix}$$

Consider any $R = A \times B \in V(M)$. If R covers elements in E_m, then necessarily $|A| = 1$. There exists $u \in [m]$, and $B = \{m+v \mid v \in [n], \{u, v\} \in E\}$. If R covers elements in E_n, then necessarily $|B| = 1$. There exists $v \in [n]$, and $A = \{n+u \mid u \in [m], \{u, v\} \in E\}$. Suppose, R covers only elements in I. Then necessarily, $|A|, |B| \geq 2$. Then there exist distinct $u_1, u_2 \in A$, and distinct $v_1, v_2 \in B$ such that $I_{u_i, v_j} = 1$, $i \in [2], j \in [2]$. This means $\{u_1, v_1\}, \{v_1, u_2\}, \{u_2, v_2\}, \{v_2, u_1\} \in E$. As G is bipartite, we have $\{u_1, u_2\}, \{v_1, v_2\} \notin E$. Thus, $C_4 \leq_{\text{iso}} G$, a contradiction. We conclude $G =_{\text{iso}} G(M)$.

8
As every induced subgraph of a square-free bipartite graph is square-free bipartite, from Proposition 3.4 we immediately obtain:

Theorem 3.5. Every square-free bipartite graph is beautiful. \(\square\)

3.2 Characterization of beautiful line graphs of square-free bipartite graphs

Now we completely describe square-free line graphs of bipartite graphs, i.e. we consider line graphs of square-free bipartite graphs. Here, the situation is more complicated.

We begin by fixing some notation. In this section, we let \(\tilde{G} := (U_r \cup U_l, \tilde{E})\) be a square-free bipartite graph, and we let \(G := L(\tilde{G}) = (V, E)\), \(V := \tilde{E}\), be its line graph. For \(u \in U_l\) define \(K^l_u := \{ e \in V \mid u \in e \}\). \(K^l_u\) is defined analogously for \(u \in U_r\). Each \(K^l_u\) is a clique in \(G\) and \(\{ K^l_u \mid u \in U_l\}\) is a partition of \(V\), the left clique partition of \(G\). The right clique partition is defined analogously. We prove all results for the left side only, but of course, they also hold for the right side. We need the following claim:

Claim 3.6. Let \(u, u' \in U_l\), \(u \neq u'\), be arbitrary. Then between \(K^l_u\) and \(K^l_{u'}\) there is at most one edge.

Proof. We assume the opposite. Let \(e_1, e_2 \in K^l_u\), \(e_1 \neq e_2\), and let \(d \in K^l_{u'}\), such that \(\{ e_1, d \}, \{ e_2, d \} \in E\). Then there exist distinct \(v_1, v_2 \in U_r\) such that \(e_1 = \{ u, v_1 \}\), \(i \in [2]\). As \(\{ e_1, d \} \in E\), we obtain \(d = \{ u, v_1\}\), and also \(d = \{ u, v_2\}\) by \(\{ e_2, d \} \in E\), a contradiction.

Now we assume \(e_1, e_2 \in K^l_u\), \(e_1 \neq e_2\), and \(d_1, d_2 \in K^l_u\), \(d_1 \neq d_2\), such that \(\{ e_1, d_1 \}, \{ e_2, d_2 \} \in E\). By the argument above, we have \(\{ e_1, d_2 \}, \{ e_2, d_1 \} \notin E\). As \(\{ e_1, e_2 \}, \{ d_1, d_2 \} \in E\) we get \(C_4 \leq_{iso} G\), again a contradiction. We conclude that there is at most one edge between \(K^l_u\) and \(K^l_{u'}\). \(\square\)

Definition 3.7. For \(u \in U_l\) define the set of connection nodes as

\[
B^l_u := \{ e \in K^l_u \mid 3u' \in U_l: u \neq u', e \text{ adjacent to } K^l_{u'} \}
\]

Lemma 3.8. Assume that \(G\) is beautiful. Then the following statements hold:

1. Assume there exist distinct \(u, u' \in U_l\), distinct \(e_1, e_2 \in K^l_u\), and \(d \in K^l_{u'}\), such that \(\{ d, e_1 \} \in E\). Let \(G =_{iso} G(M)\) for a matrix \(M\). If \(R(v)\) denotes the corresponding nonextendible combinatorial rectangle of \(v \in V\) in \(M\), then we must have \(\text{cross}\{R(e_1), R(e_2)\}\) and \(\text{cross}\{R(e_1), R(d)\}\).

2. In each clique \(K^l_u\) there exist at most two nodes adjacent to other cliques \(K'\). Especially, we must have \(|B^l_u| \leq 2\) for each \(u \in U_l\).

3. Let \(u_i \in U_l\) be pairwise distinct, and let \(e_i \in K^l_{u_i}\), \(i \in [3]\). Then the set of nodes \(\{ e_i \mid i \in [3]\}\) cannot form a triangle in \(G\).

4. \(G(\bigcup_{u \in U_l} B^l_u)\) is bipartite.

Proof. 1. We assume \(\text{spade}\{R(e_1), R(e_2)\}\). By Lemma 2.2 (3) there exist distinct \(g_1, g_2 \in V\) such that \(\{ e_1, e_2, g_1, g_2 \}\) is a \(K_4\) in \(G\). By Claim 3.6 we get \(g_1, g_2 \in K^l_u\). In case \(\text{cross}\{R(e_1), R(g)\}\) we must have \(\{ d, e_1 \}, \{ d, g_1 \} \in E\) or
\begin{enumerate}

\item \{d, e_1\}, \{d, e_2\} \in E, which is impossible by Claim 3.6. In case \textit{spade}\{R(e_1), R(d)\} by Lemma 2.2 (3) there exist distinct \(h_1, h_2 \in V\) such that \(\{e_1, d, h_1, h_2\}\) is a \(K_4\) in \(G\). In addition, the nodes \(g_1, g_2, h_1, h_2\) are pairwise distinct. W.I.O., \(\{h_1, e_1\}, \{h_1, g_1\} \in E\). The case \(\{h_1, e_1\}, \{h_1, g_2\} \in E\) is analogous. If \(h_1 \in K_{u'}^1\) then \(\{d, e_1\}, \{d, h_1\} \in E\) contradicting Claim 3.6. If \(h_1 \notin K_{u'}^1\), then there exists \(u'' \in U_1, u \neq u''\), such that \(h_1 \in K_{u''}^1\). But then \(\{h_1, e_1\}, \{h_1, g_1\} \in E\) again contradicts Claim 3.6. We conclude that the situation \textit{spade}\{R(e_1), R(e_2)\} cannot occur. By Lemma 2.2 (1) we obtain \textit{cross}\{R(e_1), R(e_2)\} proving the first statement.

Now, we assume \textit{spade}\{R(e_1), R(d)\}. By Lemma 2.2 (3) there exist distinct \(g_1, g_2 \in V\) such that \(\{e_1, d, g_1, g_2\}\) is a \(K_4\) in \(G\). By Claim 3.6 there must exist \(u_1, u_2 \in U_1, u, u', u_1, u_2\) pairwise distinct, such that \(g_1 \in K_{u_1}^1\) and \(g_2 \in K_{u_2}^1\). We saw in the first part of this proof, that we must have a \textit{cross}\{R(e_1), R(e_2)\} situation between \(e_1\) and \(e_2\). This implies the situation \textit{cross}\{R(e_2), R(g_1)\} or \textit{cross}\{R(e_2), R(g_2)\}. But both \(\{e_2, g_1\}, \{e_2, g_2\} \in E\) together with \(\{e_1, g_1\}, \{e_1, g_2\} \in E\) contradict Claim 3.6. We conclude \textit{cross}\{R(e_1), R(d)\}.

\item We assume the opposite. Let \(u, u_1, u_2, u_3 \in U_1\) be pairwise distinct, and let \(e_1, e_2, e_3 \in K_{u_i}^1\) be pairwise distinct. Let \(g_i \in K_{u_i}^1\), such that \(\{g_i, e_i\} \in E\), \(i \in [3]\). By (1) we only have \textit{cross} situations \textit{cross}\{R(g_i), R(e_i)\}, \(i \in [3]\), \textit{cross}\{R(e_1), R(e_2)\}, \textit{cross}\{R(e_1), R(e_3)\} and also \textit{cross}\{R(e_2), R(e_3)\}. W.I.O., we can assume \textit{cross}\{R(g_1), R(e_1)\}. Then \textit{cross}\{R(e_2), R(e_1)\} as otherwise the case \(R(g_1) \cap R(e_2) \neq \emptyset\) would imply \(\{g_1, e_2\} \in E\) contradicting Claim 3.6. By an analogous argument we get \textit{cross}\{R(e_2), R(g_2)\} and \textit{cross}\{R(e_2), R(e_3)\}. But \(B(R(e_1)) \cap B(R(e_3)) = \emptyset\) cannot be the case, as \(\{e_1, e_3\} \in E\) \((K_{u_i}^1\) is a clique). But \(B(R(e_1)) \cap B(R(e_3)) = \emptyset\) implies \(R(e_3) \cap R(g_1) \neq \emptyset\) and thus, \(\{e_3, g_1\} \in E\), again contradicting Claim 3.6. We conclude that in each clique \(K_{u_i}^1\) there are at most two nodes adjacent to other cliques \(K_{u_j}^1\).

\item We assume the opposite. Then there exist \(v, v_1, v_2, v_3 \in U_r\) pairwise distinct, such that \(\{v, e_i\}, \{v, e_i\} \in E\), \(i \in [3]\). Thus, in \(K_{v_i}^1\) there exist more than two nodes adjacent to other cliques in contradiction to (2), which also holds for the right clique partition.

\item We assume, that the induced subgraph \(D := G(\bigcup_{u \in U_1} B_u^1)\) is not bipartite. Then \(D\) contains an odd cycle. As \(G\) is beautiful, also \(D\) is beautiful. One can show by induction on the cycle length, that a Berge graph containing an odd cycle as a subgraph (not necessarily induced) contains a triangle. Thus, \(D\) contains a triangle \(\{e_1, e_2, e_3\}\). Each node \(e_i\) must lie in a separate clique by Claim 3.6. But this contradicts (3). We conclude that \(D\) must be bipartite.

\end{enumerate}

The derivations above (Lemma 3.8) motivate the following definition:

\begin{definition}
\textbf{Definition 3.9.} \(G\) has the property \(B\) if
\begin{itemize}
\item \(|B_u^1| \leq 2\) for each \(u \in U_1\), and
\item \(G(\bigcup_{u \in U_1} B_u^1)\) is bipartite.
\end{itemize}
\end{definition}

\begin{lemma}
\textbf{Lemma 3.10.} If \(G\) has property \(B\), then \(G\) is a cs-graph.
\end{lemma}
Theorem 3.11. If G has property \mathcal{B}, then G is beautiful. \hfill \Box

As a technical intermediate characterization by Lemma 3.8 (2) and (4), and Theorem 3.11 we get:

Theorem 3.12. G is beautiful iff G has property \mathcal{B}. \hfill \Box

But what do these graphs look like? In U_r, we can safely ignore isolated nodes. We delete nodes of degree one obtaining U'_r. We also delete nodes in U_l which have become isolated. Call the new set U'_l. The property of $G(\bigcup_{u \in U'_l} B'_u)$ being bipartite implies that in U'_r nodes of degree ≥ 3 do not exist (otherwise, one would have a triangle). If we restrict \tilde{G} on U'_r and U'_l, all nodes on the right side have degree two while all nodes on the left have degree one. This graph consists of disjoint cycles of even length ≥ 6 and paths of even length ≥ 2. Thus, the corresponding line graph consists of cycles of even length and paths of odd length. We color the edges of \tilde{G} red and green such that end edges are colored green. The leaves in \tilde{G} induce additional cliques in the line graph. These are cliques of arbitrary size which are attached to the start or end nodes of a path or contain a single red edge of a path or a cycle and only additional nodes and edges. We call such graphs *Odd Paths and Even Cycles of Cliques* graph, see e.g. Figure 4.

Thus, our main theorem reads as follows:
Theorem 3.13. A line graph of a square-free bipartite graph is beautiful iff it is an Odd Paths and Even Cycles of Cliques graph.

Acknowledgements I would like to thank Martin Dietzfelbinger for many fruitful discussions and for his contribution to Theorem 3.13. I would also like to thank Andreas Brandstädt and Michael Stiebitz for their suggestions concerning the presentation of this paper, Jacobo Torán for interesting discussions, and Thanh Minh Hoang and Fabian Wagner for careful proofreading.

References

[9] T. A. McKee, F. R. McMorris, Topics in Intersection Graph Theory, SIAM

[13] A. C.-C. Yao, Some complexity questions related to distributiv e comput-
ing (preliminary report), in: Conference Record of the Eleventh Annual
ACM Symposium on Theory of Computing, 30 April-2 May, 1979, Atlanta,
Georgia, USA, 1979.
Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich
Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de
Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe
 Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
 Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
 Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
 Graph Isomorphism is low for PP

91-05 Johannes Köbler, Thomas Thierauf
 Complexity Restricted Advice Functions

91-06* Uwe Schöning
 Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Köbler, J. Toran
 The Power of Middle Bit

91-08* V. Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara,
 U. Schöning, R. Silvestri, T. Thierauf
 Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
 On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
 Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
 17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
 Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Köbler
 Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kühnemann, Heiko Vogler
 Synthesized and inherited functions -a new computational model for syntax-directed semantics

92-07* Heinz Fassbender, Heiko Vogler
 A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost Narrowing
92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any Linerably Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal Communications Manager

The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühlmann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree Transducers
94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars:
Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman, Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algorithms
95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schulthess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen Netzen am Beispiel Truck Backer-Upper

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

95-14 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche mit VSE

96-01 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT-Ansätzen
96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmut Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation
Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids

97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow
Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure

97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den
digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
ADEPT flex - Supporting Dynamic Changes of Workflows Without Loosing Control

97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development
environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken

97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem
Provers
<table>
<thead>
<tr>
<th>97-13</th>
<th>Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimenteller Vergleich statischer und dynamischer Softwareprüfung für eingebettete Systeme</td>
</tr>
<tr>
<td>97-14</td>
<td>Wolfgang Reif, Gerhard Schellhorn</td>
</tr>
<tr>
<td></td>
<td>Theorem Proving in Large Theories</td>
</tr>
<tr>
<td>97-15</td>
<td>Thomas Wennekers</td>
</tr>
<tr>
<td></td>
<td>Asymptotik rekurrenenter neuronaler Netze mit zufälligen Kopplungen</td>
</tr>
<tr>
<td>97-16</td>
<td>Peter Dadam, Klaus Kuhn, Manfred Reichert</td>
</tr>
<tr>
<td></td>
<td>Clinical Workflows - The Killer Application for Process-oriented Information Systems?</td>
</tr>
<tr>
<td>97-17</td>
<td>Mohammad Ali Livani, Jörg Kaiser</td>
</tr>
<tr>
<td></td>
<td>EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications</td>
</tr>
<tr>
<td>97-18</td>
<td>Johannes Köbler, Rainer Schuler</td>
</tr>
<tr>
<td></td>
<td>Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity Classes</td>
</tr>
<tr>
<td>98-01</td>
<td>Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde Uhrmacher, Steffen Wolf</td>
</tr>
<tr>
<td></td>
<td>Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung</td>
</tr>
<tr>
<td>98-02</td>
<td>Thomas Bauer, Peter Dadam</td>
</tr>
<tr>
<td></td>
<td>Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und Analyse</td>
</tr>
<tr>
<td>98-03</td>
<td>Marko Luther, Martin Strecker</td>
</tr>
<tr>
<td></td>
<td>A guided tour through Typelab</td>
</tr>
<tr>
<td>98-04</td>
<td>Heiko Neumann, Luiz Pessoa</td>
</tr>
<tr>
<td></td>
<td>Visual Filling-in and Surface Property Reconstruction</td>
</tr>
<tr>
<td>98-05</td>
<td>Ercüment Canver</td>
</tr>
<tr>
<td></td>
<td>Formal Verification of a Coordinated Atomic Action Based Design</td>
</tr>
<tr>
<td>98-06</td>
<td>Andreas Küchler</td>
</tr>
<tr>
<td></td>
<td>On the Correspondence between Neural Folding Architectures and Tree Automata</td>
</tr>
<tr>
<td>98-07</td>
<td>Heiko Neumann, Thorsten Hansen, Luiz Pessoa</td>
</tr>
<tr>
<td></td>
<td>Interaction of ON and OFF Pathways for Visual Contrast Measurement</td>
</tr>
<tr>
<td>98-08</td>
<td>Thomas Wennekers</td>
</tr>
<tr>
<td></td>
<td>Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons</td>
</tr>
<tr>
<td>98-09</td>
<td>Thomas Bauer, Peter Dadam</td>
</tr>
<tr>
<td></td>
<td>Variable Migration von Workflows in ADEPT</td>
</tr>
<tr>
<td>98-10</td>
<td>Heiko Neumann, Wolfgang Sepp</td>
</tr>
<tr>
<td></td>
<td>Recurrent V1 – V2 Interaction in Early Visual Boundary Processing</td>
</tr>
<tr>
<td>98-11</td>
<td>Frank Houdek, Dietmar Ernst, Thilo Schwinn</td>
</tr>
<tr>
<td></td>
<td>Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment</td>
</tr>
</tbody>
</table>
1998

Gerhard Schellhorn
Proving Properties of Directed Graphs: A Problem Set for Automated Theorem Provers

Gerhard Schellhorn, Wolfgang Reif
Theorems from Compiler Verification: A Problem Set for Automated Theorem Provers

Mohammad Ali Livani
SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN

Mohammad Ali Livani, Jörg Kaiser
Predictable Atomic Multicast in the Controller Area Network (CAN)

Susanne Boll, Wolfgang Klas, Utz Westermann
A Comparison of Multimedia Document Models Concerning Advanced Requirements

Thomas Bauer, Peter Dadam
Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und Simulation

Uwe Schöning
On the Complexity of Constraint Satisfaction

Ercument Canver
Model-Checking zur Analyse von Message Sequence Charts über Statecharts

Johannes Köbler, Wolfgang Lindner, Rainer Schuler
Derandomizing RP if Boolean Circuits are not Learnable

Utz Westermann, Wolfgang Klas
Architecture of a DataBlade Module for the Integrated Management of Multimedia Assets

Peter Dadam, Manfred Reichert

Vikraman Arvind, Johannes Köbler
Graph Isomorphism is Low for ZPP_{NP} and other Lowness results

Thomas Bauer, Peter Dadam
Efficient Distributed Workflow Management Based on Variable Server Assignments

2000

Thomas Bauer, Peter Dadam
Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-Management-System ADEPT

Gregory Baratoff, Christian Toepfer, Heiko Neumann
Combined space-variant maps for optical flow based navigation

Wolfgang Gehring
Ein Rahmenwerk zur Einführung von Leistungspunktsystemen
2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-
Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in
ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and
Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-
Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness
Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein
Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
(Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules

2004-02 Christian Heinlein
Concept and Implementation of C+++, an Extension of C++ to Support User-Defined
Operator Symbols and Control Structures

2004-03 Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01 Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
19th Workshop on (Constraint) Logic Programming

2005-02 Wolfgang Lindner (Hg.), Universität Ulm, Christopher Wolf (Hg.) KU Leuven
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03 Walter Guttmann, Markus Maucher
Constrained Ordering

2006-01 Stefan Sarstedt
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02 Alexander Raschke, Ramin Tavakoli Kolagari
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
Systemen

2006-03 Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
Eine qualitative Untersuchung zur Produktlinien-Integration über
Organisationsgrenzen hinweg

2006-04 Thorsten Liebig
Reasoning with OWL - System Support and Insights –

2008-01 H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for graphical display
2008-02 Manfred Reichert, Peter Dadam, Martin Jurisch, Ulrich Kreher, Kevin Göser, Markus Lauer
Architectural Design of Flexible Process Management Technology

2008-03 Frank Raiser
Semi-Automatic Generation of CHR Solvers from Global Constraint Automata

2008-04 Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander
Entscheidungsdokumentation bei der Entwicklung innovativer Systeme für produktlinien-basierte Entwicklungsprozesse

2008-05 Markus Kalb, Claudia Dittrich, Peter Dadam
Support of Relationships Among Moving Objects on Networks

2008-06 Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)
WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke

2008-07 M. Maucher, U. Schöning, H.A. Kestler
An empirical assessment of local and population based search methods with different degrees of pseudorandomness

2008-08 Henning Wunderlich
Covers have structure