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Abstract

The complexity classes #P, #NP, min-P, max—P, opt—P and span-P
are well known in structural complexity. We define analogous classes in
(structural) communication complexity and study some of their proper-
ties, e.g. establishing the inclusions #P C span-P“ C #NP“ and
max —P° C span—P. Especially, in contrast to the current state of af-
fairs in time complexity, we are able to prove the following separations:

o #P° C span-P C #NP*°

e max—P ¢ #P° max-P C span-P

e min—P“ # max—-P, min-P° ¢ span-P“¢

1 Introduction

In structural complexity theory various natural function classes have been de-
fined by considering certain operators acting over the computation tree of a
nondeterministic polynomial time Turing machine (NPTM). Valiant’s classes
#P and #NP [10] are defined as classes of functions that count the number
of accepting paths of the computation tree of an NPTM which in the latter
case has access to an NP-oracle. Krentel [7] studied optimization problems
and defined the class opt—P = min—P U max—P containing functions comput-
ing the minimum (min-P) or maximum (max-P), respectively, of the output
values occuring at the leaves of computation trees of NPTMs. Motivated by
the study of the graph nonisomorphism problem, Kébler, Schéning and Toran
[6] introduced the class span—P of span functions counting the number of dif-
ferent output values of an NPTM. Some of their findings were the inclusions
#P C span—P C #NP, max—P C span—P and several equivalences relating
language classes to function classes:

#P =span-P & NP =UP (1)
#P =max-P < NP =PP 2)
#NP =span-P < NP = coNP (3)
max-P =span-P < NP = coNP 4)
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By analogous proof methods we show the = implications for the corresponding
communication complexity classes. As the right hand sides do not hold in the
setting of communication complexity, this yields separations for the function
classes #P¢¢, span-P, #NP, opt-P°, min-P* and max-P°.

We consider the basic model of communication complexity, introduced by
Yao [11]. In this model, there are two players (parties) Alice and Bob, who want
to cooperatively compute a function f: X x Y — Z, where X, ) and Z are
finite sets. Both have complete information about f and unlimited computa-
tional power but recieve only parts of the inputs. Alice is given z € X, Bob
is given y, and they exchange messages in order to compute f(z,y). The com-
munication is carried out according to a fixed protocol II (over domain X x Y
with range Z), which is a labeled binary tree. An inner node specifies the player
who sends a bit of communication next. For a deterministic protocol, this bit
solely depends on the player’s input and the bits communicated so far. For a
nondeterministic protocol, it can also depend on the player’s guess string. Each
leaf [ is labeled with an output value z; € Z. On inputs x,y we denote the
transcript, i.e. the sequence of the bits communicated, by II(z,y). The output
of the protocol is defined as the label associated with the leaf reached by the
execution of the protocol. The set R, of inputs going through a node v (in-
cluding the case of leaves) of a protocol forms a (combinatorial) rectangle, i.e.
R, =AxB,AC X, B C). A rectangle Ris z-chromatic for fif f~1(R) = {2},
and monochromatic, if there exists a z-value such that R is z-chromatic for f.
The communication matriz M/ of f is the X x Y-matrix (f(z,y))zex yey, i-e.
f written in matrix form. We denote with fi the function computed by II. A
nondeterministic protocol computing a Boolean function f induces a cover of
f~1(1) with 1-chromatic rectangles. A deterministic protocol induces a disjoint
cover of Mf with monochromatic rectangles. The (non-)deterministic commu-
nication complexity of f is the minimum number of bits a (non-)deterministic
protocol needs to compute f. For a thorough introduction to communication
complexity we refer the reader to the book of Kushilevitz and Nisan [8].

Research in the field of structural communication complexity started with
the article of Babai, Frankl and Simon [1], where some analogies between Turing
machine classes like P, NP, PP, PSPACE, the polynomial hierachy PH =
U, X7, ete. and the corresponding communication complexity classes P, NP,
PP, PSPACE®, PH = | J, X{°, etc. were shown. For more ground work, es-
pecially on closure properties, the boolean communication hierarchy, or counting
communication complexity classes like MOD,,,P¢¢, see Halstenberg and Reis-
chuk [4] or Damm et al. [2]. To the best of the author’s knowledge, except for
the class #P°°, none of the communication complexity function classes under
consideration in this paper have been defined and studied before.

2 Notation and basic definitions

We only work with the binary alphabet B := {0, 1}. The length of a string = € B*
is denoted by |z|. A prefix-free encoding of z is T := 0/*1x. In order to encode
pairs of strings z,y € B* we use the pairing function {x,y) := Ty. bin(n) is the
binary representation of n, and (-)y is its inverse. The set of pairs of strings
of equal length is denoted by B** := {(z,y) | =,y € B*,|z| = |y|}. A language
L is a subset of B**, its characteristic function x* is defined as x* = (x%),



where xL: B" x B® — N, xL(z,y) := 1, if (x,y) € L, and 0 otherwise. The
set of all languages is denoted by L. A (communication) complexity class is a
subset C C L. We define poly := {f: Rt — RT | Ipolynomial p: f < p}, the
set of functions with polynomial growth. Let F,, == {f | f: B” x B® — N},
and let F := {f = (fu)nen | fn € Fn}t. We say that the function family
f = (fu)nen € F is bounded, if there exists a bound b € poly such that for
all natural numbers n we have f,(z,y) < 2/°0°g2™)1 for all inputs 2,y € B". A
protocol over domain X’ x ) is an n-bit protocol, if ¥ = ) = B". A deterministic,
randomized or nondeterministic protocol II over X', ) is an oracle protocol with
oracle family O € F, if II contains oracle nodes in its protocol tree. Associated
with an oracle node v are two functions a,: X — B™v and b,,: Y — B™v. If Alice
and Bob reach an oracle node v during a computation on inputs x € X, y € ),
they compute by themselves 2’ := a, (x) and y' := b, (y), respectively, and call O
on (2’,y"). The oracle node v has exactly |[range(O)| many successors. Alice and
Bob continue the computation on one of them according to the returned value
O(2’,y’). The communication costs for each oracle call are [log, [range(O)][]. If
a language L is used as an oracle family, we write L instead of y*.

3 Counting classes

Executing an NPTM on a specific input one can count the number of accepting
computations or the number of different output values, etc. The same can be
done for communication protocols:

Definition 3.1 (Transducer, Acceptor). A nondeterministic protocol 11 (with
oracle family O) is a transducer, if its output nodes are marked with elements
(b,2), b e B, z € B*. We say that IT (with oracle family O) accepts inputs (z,y),
x € X,y €Y with output z € B*, if there exists a guess (ga,gp) such that
Alice and Bob arrive at an output node labeled with (1, z) when executing I1(O)
on inpuls x,y and guess strings ga,gp. Otherwise, we say that II (with oracle
family O) rejects inputs (x,y). We define its output set as

out§ (z,y) := {z € B* | TI(O) accepts (z,y) with output z} (5)

In addition, we define

spanfi (z,y) = |outf(z,y)| (6)
(outfy)a(z,y) = {(2)2] 2 € outfy(z,y)} (7)
ming (z,y) = min(out)s(z,y) (8)
max$(z,y) = max(outd)s(z,y) (9)

A transducer I is an acceptor, if II outputs its transcript in the event of accep-
tance. For an acceptor 11, we define the number of accepting transcripts as

accy := spand. (10)

Considering a single protocol does not make sense in structural communication
complexity, because we are interested in the asymptotic behaviour as input size
increases. Accordingly, we have to define special classes of protocol familes with
contraints on the resources used.



Definition 3.2 (NP“-transducer, NP“-acceptor). Let O = (Op)men € F
be an oracle family. An NP-transducer (with oracle family O) is a family
IT = (I1,)nen of n-bit transducers together with transcript, guess, query and
output bounds t, g, q, 0 € poly such that when executing I1,, Alice and Bob com-
municate [t(logy n)| many bits, they use guess strings of length [g(logy n)], they
are allowed to use the oracles O1, ..., Ogrpaosy 1, and their output has length at
most [o(logan)]. I is a P~transducer, if each I1,, is a deterministic protocol,

and an NP“-acceptor, if each II,, is an acceptor.
We also define

out] = (out )nen (11)
spnd = (spand Juer (12)
(outff)2 = ((outf, )2)nen (13)
minf = (min{ )nen (14)
mach'I) = (maxgn)neN (15)
and in case of an NP““-acceptor

acc§ = span§. (16)

Definition 3.3. For a complezity class C define
FC = {fucoo) |1l is a P“-transducer with oracle family O € C} ~ (17)
#P = {accr | is an NP““-acceptor} (18)
#C = {acc | II is an NP“-acceptor with oracle family O € C}  (19)
min-C := {mind | II is an NP“-transducer with oracle family O € C}(20)
max—C := {max{ |IIis an NP“-transducer with oracle family O € C}(21)
span-C := {span{ | II is an NP“-transducer with oracle family O € C}22)

For the time complexity class NP one can give a characterization via witnesses
and polynomial time predicates for its languages. An analogous statement also
holds for NP“.

Fact 3.4. The following statements hold:
1. A language L is in P iff there exists a P°-acceptor for L.
2. A language L is in NP iff there exists an NP“-acceptor for L.

3. A language L is in NP iff there exists a language L' in P and a
p € poly such that for all (x,y) € B**, n:= |z| = |y|,

(z,y) € L < F(wa,wp): [wal,|wp| = [p(logyn)],
({z,wa), (y,wn)) € L. (23)

Lemma 3.5. Let f = acc® for an NP“-acceptor 11 = (I,,)nen and an oracle
O in NP, then f = accgf for an oracle O’ in NP and an NP“-acceptor I’
that for every input and every possible transcript asks at most one question to
the oracle.



Proof. Let f = acc§ with O in NP, There is a language @ in P° and a
bound po € poly such that for all (z,y) € B**, (z,y) € O iff I(wa,wp),
jwal, [ws] = [po(logy |2])] and ({2, wa), (3, ws)) € Q. Let g,t,q € poly be the
guess, transcript and query bounds of II. Consider the following NP““-acceptor
II' = (IT),)nen, where each protocol on n-bit inputs (z,y) does the following:
Alice and Bob privately guess [g(logyn)| bits ga and gp, respectively, and
simulate II,, on ({x, ga), (¥, g5)). Each time they reach an oracle node v;, i € [m],
m < [t(logyn)], instead of calling an oracle, Alice guesses the answer z; € B
and sends it to Bob. If II,, rejects, they reject. If II,, accepts, for each i with
z; = 1 Alice and Bob privately guess w’;, w of length [po(logyn)] and check
((z,w'), (y,wy)) € Q. If one of the checks fails, they reject. Otherwise, they
call oracle O’ on input (({a,,(z),wy | zi = 1), {ay, (z) | 2z = 0)), ({by, (y), w |
zi = 1), (by, (y) | z; = 0))). Alice and Bob accept ift O’ rejects.

The NP“*language O’ contains all pairs (((p’y, w’y | i € [m1]),{qY | i € [ma])),
(P, wly | i € [ma]),(dy | i € [ma2]))) such that there exists an n with mq +
ma < [t(logy n)], [Pl pigl, 1dhal, las| < 20900821, |ph| = [pigl, lqa] = i),
[wial, [wi| = [po(logy [P4l)], and ((Fi € [ma]: (¢4, qj3) € O) or (Fi € [ma]: Fra,
rp:|ral = |rp| = [whl, (rarp)s < (wywp)z and ((py,74), (Pp,r8)) € Q). O

Definition 3.6. Let f € F,, be a function. We define the <- and >-graph of f
as

Grapho (f) = {((z,bin(2)), (y,bin(z2))) | z,y € B",z < f(z,y)} (24)
Graph (f) = {((z,bin(2)), (y,bin(2))) | z,y € B",z > f(z,y)} (25)

Let f = (fn)nen € F be a function family.
Graph (f) := (Graph(fn))nen (26)
Graph (f) := (Graphs (fn))nen (27)

Corollary 3.7. Let f € F be bounded. Then f € FP(Graph(f)).

Proof. As there exists a bound b € poly with f(z,y) < 2[tUeg:™)1 for every
z,y € B™, Alice and Bob can determine the value f(z,y) simply by binary
search using [b(log, n)] many oracle calls. O

Lemma 3.8. For bounded f € F it holds
1. Graph(f) € NP“ <= Graph.(f) € co—NP“,
2. f € max-P® <= Graph_(f) € NP*,
8. f € min-P* <= Graph,(f) € NP,
Proof. 1. Clearly, z < f(z,y) <= —(2 — 12> f(x,9))-
2. (=) Let f := maxy for an NP“-transducer IT = (II,,),en. Then for each n
we have Graph. (f,) = {({z,bin(2)), (y,bin(2))) | z,y € B", there exists
an accepting transcript IT, (x,y) with output u > z}.
This implies Graph (f) € NP
(<) Let b € poly be a bound for f. We construct an NP“-transducer
IT = (II,)nen such that f = maxy: In I, on inputs z,y € B"™ Alice

guesses a number z < 2[0°22")1 and sends it to Bob. They output z, if
the verification of ({x,bin(z)), (y, bin(z))) € Graph(f,) succeeds.



3. Immediate consequence of (i) and (ii).
O

Now, we have the tools at hand to show an analog of a theorem of Krentel proved
in [7]. The classes Af° := P°(X{°) are related to the polynomial hierarchy.

Theorem 3.9. min-P max-P C FAS.
Proof. Follows from Lemma 3.8 and Corollary 3.7. O

Definition 3.10. For a pair of n-bit transducers II, II' define the function
span_p such that spany_yp (z,y) is the number of different outputs that I1 on
inputs (x,y) can produce that cannot be produced by IT'.

For a pair of NP““~transducers Il = (I, ) nen, II' = (I, )nen define

SpanH_H/ = (Spannn_H%)neN. (28)

Proposition 3.11 (#NP“-characterization). #NP“ = {f | f = spang_q
for some pair of NP““~transducers I, IT' }.

Proof. For the forward inclusion let f € #NP. By Lemma 3.5 there is an
NP“-transducer I = (II,,),en and an oracle O in NP such that f = acc{,
and for every n and every transcript the transducer IT,, asks at most one question
to the oracle. Let @ be alanguage in P¢¢ and let ¢ € poly such that for all (z,y),
|z| = |y| = n it holds: (z,y) € O iff Iwa,wp): |lwal, |lwp| = [¢(logyn)] and
({x,wa), (y,wp)) € Q. Consider the following NP“-transducers II' = (II), ) hen
and I1"” = (I1)),,¢cn, respectively:

IT/,: On n bit inputs (x,y) Alice and Bob simulate IL,. If II,, asks the ques-
tion (qa,qs) € B** to the oracle, then Alice and Bob guess (wa,wp),
lwal, lwp| = [q(logy |qal)]. T ((ga,wa),(gp,wp)) € Q, they continue
with answer 1, else with answer 0. If II,, accepts (x,y) with transcript
t, Alice and Bob accept with output ¢ and reject, otherwise.

Hl/ -

. The protocol begins exactly as II/, until Alice and Bob get the oracle
answer. If ((ga,wa), (¢B,wp)) € Q, they continue with answer 1, else
they reject. If II,, rejects (z,y) with transcript ¢, Alice and Bob accept

with output ¢ and reject, otherwise.

It follows that for all (z,y), |x| = |y| = n, f(x,y) = spany, . (x,y), since
I/, on inputs (z,y) will output a different value for every accgptirqg transcript
of II,,, and every output value in II/, corresponding to a simulation of II,, in
which the oracle question was wrongly guessed, will also be in the span of 1/
and therefore, it will not be counted.

For the backward inclusion, let f = span_po with NP“-transducers I1° =
(T1%)en, TI' = (1) ,en. The language O contains all pairs ((z,b, 2), (y, b, 0/*!)
such that |z| = |y| = n and z is an output value of I1%. Clearly, O € NP°. Let
7, € poly be the output bound of 1%, b € {0, 1}. Consider the following NP“-
acceptor IT = (I1,,) nen: When executing IT,, on n bit inputs (x,y), Alice guesses
a string z of length < [max{ry(logyn),r1(logyn)}] and sends |z| to Bob. They
accept iff ((x,1,2), (z,1,01#)) € O and ((x,0, 2), (z,0,0*)) & O. O

Corollary 3.12. If f € #NP°, then there exist two functions g1, go € span—P*
such that for every (x,y) € B**, f(z,y) = g1(x,y) — g2(=,y).



Proof. Let f € #NP. By Proposition 3.11, there is a pair of NP““-transdu-
cers I = (I, )pen, I = (I}, )nen such that f = spanp_p,. Define the NP“-
transducer IT" = (II7) ,en as follows: When executing II on inputs (x,y), Alice
and Bob simulate II,, and II, on (z,y). They accept with output z iff both II,,
and IT/, accept with output z. Define g1 := spanp; and g := spany,. It follows
that f = g1 — ¢o. O

Theorem 3.13 (Inclusions). It holds:
1. FP° C min-P%, max-P, opt—-P, #P° C #NP“°
2. #Pc C span—P¢ C #NP*°
3. max-P° C span-P“°

Proof. 1. The inclusion FP C min—P°, max—-P°°, opt—P¢, #P°° is an im-
mediate consequence of the definitions in Def. 3.3. As FP<¢ C #P° rela-
tivizes, FAS® C #NP° follows. The inclusion min —-P¢¢, max—P C FA§®
was shown in Theorem 3.9.

2. Again, the first inequality follows directly from the definitions, as every
NP“-acceptor is an NP“-transducer. For the second inequality, let f =
spany for some NP“-transducer II. Obviously, f = spanp_p,, where IT'
is an NP“-transducer rejecting every input.

3. Let f = maxy for some NP~transducer II = (II,,),en. Let o € poly be
the output bound of II. We can construct a new transducer I’ = (I, ) ,en
such that for I/, Alice and Bob on inputs (x, y) simulate II,, and for every
output z Alice guesses a positive integer 2z’ < z, sends it to Bob using
[o(n)] many bits, and both accept with output z’. II/, will have as many
different output values as the maximum of the output values of II,,. This
proves f = spanp.

O

We need to define the analog of the unambigous nondeterministic polynomial
time class UP defined by Valiant [9].

Definition 3.14. A UP“-acceptor is an NP““-acceptor II with accmp < 1.
UP is the class of all languages recognized by UP-acceptors.

While the separation of the time class P and UP is equivalent to the existence of
certain kinds of one-way functions [3, 5], separating the communication classes
Pe¢ from UP“ would disprove the famous log rank conjecture (see [8, Open
Problem 2.20, p.26]). Thus, separating P from UP“ seems to be hard. In
contrast, separating UP® from NP is easy. Luckily, only the latter is needed
in the sequel.

For a function f: B" x B® — B the measure C”-!(f) denotes the number of
1-chromatic rectangles needed to partition f~1(1) (the protocol partition num-
ber for the ones in the communication matrix M7). With D(f) we denote the
deterministic communication complexity of f.

Proposition 3.15. It holds:

1. UP* ={L € L] 3p € poly: log, CP'(x}) < [p(log, 1)1}



2.
3.

UPCC g NPCC

The log rank conjecture implies P°¢ = UP,

Proof. 1. Let IT be a nondeterministic protocol for a function f such that

accy < 1. Then the protocol induced cover of f~!(1) with 1-chromatic
rectangles is actually a disjoint cover, i.e. a partition of f~!(1). Thus,
the UP““~-complexity of a function f is just log, CP1(f).

. The inclusion is trivial; the separation is witnessed by the nonequality

function NE = (NE,, )nen (see [8, Example 2.17, p.24]). On the one hand,
the nondeterministic communication complexity of NE is logarithmic [8,
Example 2.5, p. 19]. On the other hand, the rank lower bound (rank M7 <
CP1(f), [8, Lemma 1.28, p.13; Example 1.29, p.14]) yields a linear lower
bound for log, CP-1(NE,,).

. If the log rank conjecture holds, then for every function family f = (f,,)nen

of Boolean functions f,: B" x B” — B there exists a bound ¢ € poly
such that D(f,,) < [q(log, rank M7=)]. In addition, rank M= < CP-1(f,).

Thus, if log, CP+1(f,,) is polynomially bounded, then D(f,) is, too.
O

Theorem 3.16 (Separations). It holds:

1.

#P¢ C span—P°¢
span—P C #NP°
min—P¢ # max -P<¢
min—-P¢ ¢ span—-P¢¢

min—P¢, max-P ¢ #P¢

Proof. 1. We show that #P = span—P“¢ implies UP“ = NP in contra-

diction to Proposition 3.15: Suppose #P = span—P<, and let L be a
language in NP““. Let II = (I1,,),en be an NP“-acceptor for L. Define an
NP“-transducer II' = (II), ),,en such that I, outputs 1 if IT,, accepts, and
nothing otherwise. Then spanpy, is the characteristic function of L, which
is in #P¢¢ by the assumption. That is, there exists an NP“-acceptor IT”
with accryr = spany, < 1. Thus, L € UP““.

. We show that span—-P = #NP“ implies NP“ = co—NP*““, a contra-

diction: Let L be a language in NP and IT = (I1,, ) ,en an NP““-acceptor
for L. Let II' = (II}),en be an NP“-transducer such that II. outputs
1 on every input, and I1? = (I12),,ey an NP“-transducer such that 112
simulates II,, and outputs 1 in every accepting transcript of II,,. Define
the function f := (fn)nen := spanm_p2. It follows that f,(z,y) > 0
iff (z,y) ¢ L. By Proposition 3.11 we have f € #NP“. By the hy-
pothesis, f is the span function of some NP“-transducer 113 = (I3 ) ,en.
Consider the NP“-acceptor II* = (II%),,en such that II} accepts iff I3
accepts (with some output). IT* witnesses that L € NP, and it follows
NP = co—NP“.



3. Assume min—P¢ = max—P. For every language L in co— NP we have
x" € min-P° as Graph(x*) is in co—NP. But x” € max-P implies
L € NP, a contradiction.

4. Assume min-P¢¢ C span-P¢. For every language L in co— NP we have
XY € min—P¢. But x* € span-P implies L € NP““, a contradiction.

5. This follows from L € UP® & L € #Pec.
O

We close this section with some examples of natural function classes contained
in #P and span—P°°.

Example 3.17. Consider the following families of functions.
1. f:=(fn)nen € F, where f,, is defined as
fn(A, B) := |Aop B (29)
for subsets A, B C [n] and a set operation like op € {U,N,—}. It is easy
to see that f is in #P°.
2. g:= (gn)nen € F, where gy, is defined as
gn(A, B) := [Aop B (30)

for subsets A, B C Z,, and an arithmetic operation op € {+,*, —}, where
Aop B :={aopb|a€ Abe B}. Clearly, [ is in span—Pcc.

4 Conclusion and open problems

We defined various function classes in communication complexity motivated by
existing well known classes in structural complexity theory and established sev-
eral separation results. In structural complexity theory also higher level versions
of #P, span—P, #NP via the levels X7, II} of the polynomial hierarchy are con-
sidered, i.e. #X%, span-X¥, #II7. The corresponding function communication
classes are #X¢°, span-%¢°, #117°. It would be interesting to prove separations
for these classes, if possible, and to present natural function families demon-
strating their computational strength.
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