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Abstract

The complexity classes #P, #NP, min �P, max �P, opt�P and span�P
are well known in structural complexity. We de�ne analogous classes in
(structural) communication complexity and study some of their proper-
ties, e.g. establishing the inclusions #Pcc ⊆ span�Pcc ⊆ #NPcc and
max �Pcc ⊆ span�Pcc. Especially, in contrast to the current state of af-
fairs in time complexity, we are able to prove the following separations:

• #Pcc ( span�Pcc ( #NPcc

• max �Pcc 6⊆ #Pcc, max �Pcc ( span�Pcc

• min �Pcc 6= max �Pcc, min �Pcc 6⊆ span�Pcc

1 Introduction

In structural complexity theory various natural function classes have been de-
�ned by considering certain operators acting over the computation tree of a
nondeterministic polynomial time Turing machine (NPTM). Valiant's classes
#P and #NP [10] are de�ned as classes of functions that count the number
of accepting paths of the computation tree of an NPTM which in the latter
case has access to an NP-oracle. Krentel [7] studied optimization problems
and de�ned the class opt�P = min �P ∪max �P containing functions comput-
ing the minimum (min �P) or maximum (max �P), respectively, of the output
values occuring at the leaves of computation trees of NPTMs. Motivated by
the study of the graph nonisomorphism problem, Köbler, Schöning and Torán
[6] introduced the class span�P of span functions counting the number of dif-
ferent output values of an NPTM. Some of their �ndings were the inclusions
#P ⊆ span�P ⊆ #NP, max �P ⊆ span�P and several equivalences relating
language classes to function classes:

#P = span�P ⇔ NP = UP (1)

#P = max �P ⇔ NP = PP (2)

#NP = span�P ⇔ NP = coNP (3)

max �P = span�P ⇔ NP = coNP (4)
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By analogous proof methods we show the ⇒ implications for the corresponding
communication complexity classes. As the right hand sides do not hold in the
setting of communication complexity, this yields separations for the function
classes #Pcc, span�Pcc, #NPcc, opt�Pcc, min �Pcc and max �Pcc.

We consider the basic model of communication complexity, introduced by
Yao [11]. In this model, there are two players (parties) Alice and Bob, who want
to cooperatively compute a function f : X × Y → Z, where X , Y and Z are
�nite sets. Both have complete information about f and unlimited computa-
tional power but recieve only parts of the inputs. Alice is given x ∈ X , Bob
is given y, and they exchange messages in order to compute f(x, y). The com-
munication is carried out according to a �xed protocol Π (over domain X × Y
with range Z), which is a labeled binary tree. An inner node speci�es the player
who sends a bit of communication next. For a deterministic protocol, this bit
solely depends on the player's input and the bits communicated so far. For a
nondeterministic protocol, it can also depend on the player's guess string. Each
leaf l is labeled with an output value zl ∈ Z. On inputs x, y we denote the
transcript, i.e. the sequence of the bits communicated, by Π(x, y). The output
of the protocol is de�ned as the label associated with the leaf reached by the
execution of the protocol. The set Rv of inputs going through a node v (in-
cluding the case of leaves) of a protocol forms a (combinatorial) rectangle, i.e.
Rv = A×B, A ⊆ X , B ⊆ Y. A rectangle R is z-chromatic for f if f−1(R) = {z},
and monochromatic, if there exists a z-value such that R is z-chromatic for f .
The communication matrix Mf of f is the X × Y-matrix (f(x, y))x∈X ,y∈Y , i.e.
f written in matrix form. We denote with fΠ the function computed by Π. A
nondeterministic protocol computing a Boolean function f induces a cover of
f−1(1) with 1-chromatic rectangles. A deterministic protocol induces a disjoint
cover of Mf with monochromatic rectangles. The (non-)deterministic commu-
nication complexity of f is the minimum number of bits a (non-)deterministic
protocol needs to compute f . For a thorough introduction to communication
complexity we refer the reader to the book of Kushilevitz and Nisan [8].

Research in the �eld of structural communication complexity started with
the article of Babai, Frankl and Simon [1], where some analogies between Turing
machine classes like P, NP, PP, PSPACE, the polynomial hierachy PH =⋃

k Σp
k, etc. and the corresponding communication complexity classesPcc, NPcc,

PPcc, PSPACEcc, PHcc =
⋃

k Σcc
k , etc. were shown. For more ground work, es-

pecially on closure properties, the boolean communication hierarchy, or counting
communication complexity classes like MODmPcc, see Halstenberg and Reis-
chuk [4] or Damm et al. [2]. To the best of the author's knowledge, except for
the class #Pcc, none of the communication complexity function classes under
consideration in this paper have been de�ned and studied before.

2 Notation and basic de�nitions

We only work with the binary alphabet B := {0, 1}. The length of a string x ∈ B∗

is denoted by |x|. A pre�x-free encoding of x is x := 0|x|1x. In order to encode
pairs of strings x, y ∈ B∗ we use the pairing function 〈x, y〉 := xy. bin(n) is the
binary representation of n, and (·)2 is its inverse. The set of pairs of strings
of equal length is denoted by B∗∗ := {(x, y) | x, y ∈ B∗, |x| = |y|}. A language
L is a subset of B∗∗, its characteristic function χL is de�ned as χL := (χL

n),

2



where χL
n : Bn × Bn → N, χL

n(x, y) := 1, if (x, y) ∈ L, and 0 otherwise. The
set of all languages is denoted by L. A (communication) complexity class is a
subset C ⊆ L. We de�ne poly := {f : R+ → R+ | ∃polynomial p : f ≤ p}, the
set of functions with polynomial growth. Let Fn := {f | f : Bn × Bn → N},
and let F := {f = (fn)n∈N | fn ∈ Fn}. We say that the function family
f := (fn)n∈N ∈ F is bounded, if there exists a bound b ∈ poly such that for
all natural numbers n we have fn(x, y) ≤ 2db(log2 n)e for all inputs x, y ∈ Bn. A
protocol over domain X×Y is an n-bit protocol, if X = Y = Bn. A deterministic,
randomized or nondeterministic protocol Π over X , Y is an oracle protocol with
oracle family O ∈ F , if Π contains oracle nodes in its protocol tree. Associated
with an oracle node v are two functions av : X → Bmv and bv : Y → Bmv . If Alice
and Bob reach an oracle node v during a computation on inputs x ∈ X, y ∈ Y,
they compute by themselves x′ := av(x) and y′ := bv(y), respectively, and call O
on (x′, y′). The oracle node v has exactly |range(O)| many successors. Alice and
Bob continue the computation on one of them according to the returned value
O(x′, y′). The communication costs for each oracle call are dlog2 |range(O)|e. If
a language L is used as an oracle family, we write L instead of χL.

3 Counting classes

Executing an NPTM on a speci�c input one can count the number of accepting
computations or the number of di�erent output values, etc. The same can be
done for communication protocols:

De�nition 3.1 (Transducer, Acceptor). A nondeterministic protocol Π (with
oracle family O) is a transducer, if its output nodes are marked with elements
(b, z), b ∈ B, z ∈ B∗. We say that Π (with oracle family O) accepts inputs (x, y),
x ∈ X , y ∈ Y with output z ∈ B∗, if there exists a guess (gA, gB) such that
Alice and Bob arrive at an output node labeled with (1, z) when executing Π(O)
on inputs x, y and guess strings gA, gB. Otherwise, we say that Π (with oracle
family O) rejects inputs (x, y). We de�ne its output set as

outO
Π(x, y) := {z ∈ B∗ | Π(O) accepts (x, y) with output z} (5)

In addition, we de�ne

spanO
Π(x, y) := |outO

Π(x, y)| (6)

(outO
Π)2(x, y) := {(z)2 | z ∈ outO

Π(x, y)} (7)

minO
Π(x, y) := min(outO

Π)2(x, y) (8)

maxO
Π(x, y) := max(outO

Π)2(x, y) (9)

A transducer Π is an acceptor, if Π outputs its transcript in the event of accep-
tance. For an acceptor Π, we de�ne the number of accepting transcripts as

accO
Π := spanO

Π . (10)

Considering a single protocol does not make sense in structural communication
complexity, because we are interested in the asymptotic behaviour as input size
increases. Accordingly, we have to de�ne special classes of protocol familes with
contraints on the resources used.
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De�nition 3.2 (NPcc-transducer, NPcc-acceptor). Let O = (Om)m∈N ∈ F
be an oracle family. An NPcc-transducer (with oracle family O) is a family
Π = (Πn)n∈N of n-bit transducers together with transcript, guess, query and
output bounds t, g, q, o ∈ poly such that when executing Πn Alice and Bob com-
municate dt(log2 n)e many bits, they use guess strings of length dg(log2 n)e, they
are allowed to use the oracles O1, . . . , O2dp(log2 n)e , and their output has length at
most do(log2 n)e. Π is a Pcc-transducer, if each Πn is a deterministic protocol,
and an NPcc-acceptor, if each Πn is an acceptor.
We also de�ne

outO
Π := (outO

Πn
)n∈N (11)

spanO
Π := (spanO

Πn
)n∈N (12)

(outO
Π)2 := ((outO

Πn
)2)n∈N (13)

minO
Π := (minO

Πn
)n∈N (14)

maxO
Π := (maxO

Πn
)n∈N (15)

and in case of an NPcc-acceptor

accO
Π := spanO

Π . (16)

De�nition 3.3. For a complexity class C de�ne

FC := {fΠ(O) | Π is a Pcc-transducer with oracle family O ∈ C} (17)

#Pcc := {accΠ | Π is an NPcc-acceptor} (18)

#C := {accO
Π | Π is an NPcc-acceptor with oracle family O ∈ C} (19)

min �C := {minO
Π | Π is an NPcc-transducer with oracle family O ∈ C}(20)

max �C := {maxO
Π | Π is an NPcc-transducer with oracle family O ∈ C}(21)

span�C := {spanO
Π | Π is an NPcc-transducer with oracle family O ∈ C}(22)

For the time complexity class NP one can give a characterization via witnesses
and polynomial time predicates for its languages. An analogous statement also
holds for NPcc.

Fact 3.4. The following statements hold:

1. A language L is in Pcc i� there exists a Pcc-acceptor for L.

2. A language L is in NPcc i� there exists an NPcc-acceptor for L.

3. A language L is in NPcc i� there exists a language L′ in Pcc and a
p ∈ poly such that for all (x, y) ∈ B∗∗, n := |x| = |y|,

(x, y) ∈ L ⇔ ∃(wA, wB) : |wA|, |wB | = dp(log2 n)e,
(〈x,wA〉, 〈y, wB〉) ∈ L′. (23)

Lemma 3.5. Let f = accO
Π for an NPcc-acceptor Π = (Πn)n∈N and an oracle

O in NPcc, then f = accO′

Π′ for an oracle O′ in NPcc and an NPcc-acceptor Π′

that for every input and every possible transcript asks at most one question to
the oracle.
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Proof. Let f = accO
Π with O in NPcc. There is a language Q in Pcc and a

bound pO ∈ poly such that for all (x, y) ∈ B∗∗, (x, y) ∈ O i� ∃(wA, wB),
|wA|, |wB | = dpO(log2 |x|)e and (〈x,wA〉, 〈y, wB〉) ∈ Q. Let g, t, q ∈ poly be the
guess, transcript and query bounds of Π. Consider the following NPcc-acceptor
Π′ = (Π′

n)n∈N, where each protocol on n-bit inputs (x, y) does the following:
Alice and Bob privately guess dg(log2 n)e bits gA and gB , respectively, and
simulate Πn on (〈x, gA〉, 〈y, gB〉). Each time they reach an oracle node vi, i ∈ [m],
m ≤ dt(log2 n)e, instead of calling an oracle, Alice guesses the answer zi ∈ B
and sends it to Bob. If Πn rejects, they reject. If Πn accepts, for each i with
zi = 1 Alice and Bob privately guess wi

A, wi
B of length dpO(log2 n)e and check

(〈x,wi
A〉, 〈y, wi

B〉) ∈ Q. If one of the checks fails, they reject. Otherwise, they
call oracle O′ on input (〈〈avi

(x), wi
A | zi = 1〉, 〈avi

(x) | zi = 0〉〉, 〈〈bvi
(y), wi

B |
zi = 1〉, 〈bvi(y) | zi = 0〉〉). Alice and Bob accept i� O′ rejects.
The NPcc-language O′ contains all pairs (〈〈pi

A, wi
A | i ∈ [m1]〉, 〈qi

A | i ∈ [m2]〉〉,
〈〈pi

A, wi
A | i ∈ [m1]〉, 〈qi

A | i ∈ [m2]〉〉) such that there exists an n with m1 +
m2 ≤ dt(log2 n)e, |pi

A|, |pi
B |, |qi

A|, |qi
B | ≤ 2dq(log2 n)e, |pi

A| = |pi
B |, |qi

A| = |qi
B |,

|wi
A|, |wi

B | = dpO(log2 |pi
A|)e, and ((∃i ∈ [m2] : (qi

A, qi
B) ∈ O) or (∃i ∈ [m1] : ∃rA,

rB : |rA| = |rB | = |wi
A|, (rArB)2 < (wi

Awi
B)2 and (〈pi

A, rA〉, 〈pi
B , rB〉) ∈ Q)).

De�nition 3.6. Let f ∈ Fn be a function. We de�ne the ≤- and ≥-graph of f
as

Graph≤(f) := {(〈x,bin(z)〉, 〈y, bin(z)〉) | x, y ∈ Bn, z ≤ f(x, y)} (24)

Graph≥(f) := {(〈x,bin(z)〉, 〈y, bin(z)〉) | x, y ∈ Bn, z ≥ f(x, y)} (25)

Let f = (fn)n∈N ∈ F be a function family.

Graph≤(f) := (Graph≤(fn))n∈N (26)

Graph≥(f) := (Graph≥(fn))n∈N (27)

Corollary 3.7. Let f ∈ F be bounded. Then f ∈ FPcc(Graph≤(f)).

Proof. As there exists a bound b ∈ poly with f(x, y) ≤ 2db(log2 n)e for every
x, y ∈ Bn, Alice and Bob can determine the value f(x, y) simply by binary
search using db(log2 n)e many oracle calls.

Lemma 3.8. For bounded f ∈ F it holds

1. Graph≤(f) ∈ NPcc ⇐⇒ Graph≥(f) ∈ co−NPcc,

2. f ∈ max �Pcc ⇐⇒ Graph≤(f) ∈ NPcc,

3. f ∈ min �Pcc ⇐⇒ Graph≥(f) ∈ NPcc.

Proof. 1. Clearly, z ≤ f(x, y) ⇐⇒ ¬(z − 1 ≥ f(x, y)).

2. (⇒) Let f := maxΠ for an NPcc-transducer Π = (Πn)n∈N. Then for each n
we have Graph≤(fn) = {(〈x,bin(z)〉, 〈y, bin(z)〉) | x, y ∈ Bn, there exists
an accepting transcript Πn(x, y) with output u ≥ z}.
This implies Graph≤(f) ∈ NPcc.
(⇐) Let b ∈ poly be a bound for f . We construct an NPcc-transducer
Π = (Πn)n∈N such that f = maxΠ: In Πn on inputs x, y ∈ Bn Alice
guesses a number z ≤ 2db(log2 n)e and sends it to Bob. They output z, if
the veri�cation of (〈x,bin(z)〉, 〈y, bin(z)〉) ∈ Graph≤(fn) succeeds.
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3. Immediate consequence of (i) and (ii).

Now, we have the tools at hand to show an analog of a theorem of Krentel proved
in [7]. The classes ∆cc

k := Pcc(Σcc
k ) are related to the polynomial hierarchy.

Theorem 3.9. min �Pcc,max �Pcc ⊆ F∆cc
2 .

Proof. Follows from Lemma 3.8 and Corollary 3.7.

De�nition 3.10. For a pair of n-bit transducers Π, Π′ de�ne the function
spanΠ−Π′ such that spanΠ−Π′(x, y) is the number of di�erent outputs that Π on
inputs (x, y) can produce that cannot be produced by Π′.
For a pair of NPcc-transducers Π = (Πn)n∈N, Π′ = (Π′

n)n∈N de�ne

spanΠ−Π′ := (spanΠn−Π′
n
)n∈N. (28)

Proposition 3.11 (#NPcc-characterization). #NPcc = {f | f = spanΠ−Π′

for some pair of NPcc-transducers Π, Π′}.

Proof. For the forward inclusion let f ∈ #NPcc. By Lemma 3.5 there is an
NPcc-transducer Π = (Πn)n∈N and an oracle O in NPcc such that f = accO

Π ,
and for every n and every transcript the transducer Πn asks at most one question
to the oracle. Let Q be a language in Pcc and let q ∈ poly such that for all (x, y),
|x| = |y| = n it holds: (x, y) ∈ O i� ∃(wA, wB) : |wA|, |wB | = dq(log2 n)e and
(〈x,wA〉, 〈y, wB〉) ∈ Q. Consider the following NPcc-transducers Π′ = (Π′

n)n∈N
and Π′′ = (Π′′

n)n∈N, respectively:

Π′
n: On n bit inputs (x, y) Alice and Bob simulate Πn. If Πn asks the ques-

tion (qA, qB) ∈ B∗∗ to the oracle, then Alice and Bob guess (wA, wB),
|wA|, |wB | = dq(log2 |qA|)e. If (〈qA, wA〉, 〈qB , wB〉) ∈ Q, they continue
with answer 1, else with answer 0. If Πn accepts (x, y) with transcript
t, Alice and Bob accept with output t and reject, otherwise.

Π′′
n: The protocol begins exactly as Π′

n until Alice and Bob get the oracle
answer. If (〈qA, wA〉, 〈qB , wB〉) ∈ Q, they continue with answer 1, else
they reject. If Πn rejects (x, y) with transcript t, Alice and Bob accept
with output t and reject, otherwise.

It follows that for all (x, y), |x| = |y| = n, f(x, y) = spanΠ′
n−Π′′

n
(x, y), since

Π′
n on inputs (x, y) will output a di�erent value for every accepting transcript

of Πn, and every output value in Π′
n corresponding to a simulation of Πn in

which the oracle question was wrongly guessed, will also be in the span of Π′′
n

and therefore, it will not be counted.
For the backward inclusion, let f = spanΠ1−Π0 with NPcc-transducers Π0 =
(Π0

n)n∈N, Π1 = (Π1
n)n∈N. The language O contains all pairs (〈x, b, z〉, 〈y, b, 0|z|)

such that |x| = |y| = n and z is an output value of Πb
n. Clearly, O ∈ NPcc. Let

rb ∈ poly be the output bound of Πb, b ∈ {0, 1}. Consider the following NPcc-
acceptor Π = (Πn)n∈N: When executing Πn on n bit inputs (x, y), Alice guesses
a string z of length ≤ dmax{r0(log2 n), r1(log2 n)}e and sends |z| to Bob. They
accept i� (〈x, 1, z〉, 〈x, 1, 0|z|〉) ∈ O and (〈x, 0, z〉, 〈x, 0, 0|z|〉) 6∈ O.

Corollary 3.12. If f ∈ #NPcc, then there exist two functions g1, g2 ∈ span�Pcc

such that for every (x, y) ∈ B∗∗, f(x, y) = g1(x, y)− g2(x, y).
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Proof. Let f ∈ #NPcc. By Proposition 3.11, there is a pair of NPcc-transdu-
cers Π = (Πn)n∈N, Π′ = (Π′

n)n∈N such that f = spanΠ−Π′ . De�ne the NPcc-
transducer Π′′ = (Π′′

n)n∈N as follows: When executing Π′′
n on inputs (x, y), Alice

and Bob simulate Πn and Π′
n on (x, y). They accept with output z i� both Πn

and Π′
n accept with output z. De�ne g1 := spanΠ and g2 := spanΠ′ . It follows

that f = g1 − g2.

Theorem 3.13 (Inclusions). It holds:

1. FPcc ⊆ min �Pcc,max �Pcc, opt�Pcc,#Pcc ⊆ #NPcc

2. #Pcc ⊆ span�Pcc ⊆ #NPcc

3. max �Pcc ⊆ span�Pcc

Proof. 1. The inclusion FPcc ⊆ min �Pcc,max �Pcc, opt�Pcc,#Pcc is an im-
mediate consequence of the de�nitions in Def. 3.3. As FPcc ⊆ #Pcc rela-
tivizes, F∆cc

2 ⊆ #NPcc follows. The inclusion min �Pcc,max �Pcc ⊆ F∆cc
2

was shown in Theorem 3.9.

2. Again, the �rst inequality follows directly from the de�nitions, as every
NPcc-acceptor is an NPcc-transducer. For the second inequality, let f =
spanΠ for some NPcc-transducer Π. Obviously, f = spanΠ−Π′ , where Π′

is an NPcc-transducer rejecting every input.

3. Let f = maxΠ for some NPcc-transducer Π = (Πn)n∈N. Let o ∈ poly be
the output bound of Π. We can construct a new transducer Π′ = (Π′

n)n∈N
such that for Π′

n Alice and Bob on inputs (x, y) simulate Πn and for every
output z Alice guesses a positive integer z′ ≤ z, sends it to Bob using
do(n)e many bits, and both accept with output z′. Π′

n will have as many
di�erent output values as the maximum of the output values of Πn. This
proves f = spanΠ′ .

We need to de�ne the analog of the unambigous nondeterministic polynomial
time class UP de�ned by Valiant [9].

De�nition 3.14. A UPcc-acceptor is an NPcc-acceptor Π with accΠ ≤ 1.
UPcc is the class of all languages recognized by UPcc-acceptors.

While the separation of the time class P and UP is equivalent to the existence of
certain kinds of one-way functions [3, 5], separating the communication classes
Pcc from UPcc would disprove the famous log rank conjecture (see [8, Open
Problem 2.20, p.26]). Thus, separating Pcc from UPcc seems to be hard. In
contrast, separating UPcc from NPcc is easy. Luckily, only the latter is needed
in the sequel.

For a function f : Bn ×Bn → B the measure CD,1(f) denotes the number of
1-chromatic rectangles needed to partition f−1(1) (the protocol partition num-
ber for the ones in the communication matrix Mf ). With D(f) we denote the
deterministic communication complexity of f .

Proposition 3.15. It holds:

1. UPcc = {L ∈ L | ∃p ∈ poly : log2 CD,1(χL
n) ≤ dp(log2 n)e}

7



2. UPcc ( NPcc

3. The log rank conjecture implies Pcc = UPcc.

Proof. 1. Let Π be a nondeterministic protocol for a function f such that
accΠ ≤ 1. Then the protocol induced cover of f−1(1) with 1-chromatic
rectangles is actually a disjoint cover, i.e. a partition of f−1(1). Thus,
the UPcc-complexity of a function f is just log2 CD,1(f).

2. The inclusion is trivial; the separation is witnessed by the nonequality
function NE = (NEn)n∈N (see [8, Example 2.17, p.24]). On the one hand,
the nondeterministic communication complexity of NE is logarithmic [8,
Example 2.5, p. 19]. On the other hand, the rank lower bound (rank Mf ≤
CD,1(f), [8, Lemma 1.28, p.13; Example 1.29, p.14]) yields a linear lower
bound for log2 CD,1(NEn).

3. If the log rank conjecture holds, then for every function family f = (fn)n∈N
of Boolean functions fn : Bn × Bn → B there exists a bound q ∈ poly
such that D(fn) ≤ dq(log2 rank Mfn)e. In addition, rank Mfn ≤ CD,1(fn).
Thus, if log2 CD,1(fn) is polynomially bounded, then D(fn) is, too.

Theorem 3.16 (Separations). It holds:

1. #Pcc ( span�Pcc

2. span�Pcc ( #NPcc

3. min �Pcc 6= max �Pcc

4. min �Pcc 6⊆ span�Pcc

5. min �Pcc,max �Pcc 6⊆ #Pcc

Proof. 1. We show that #Pcc = span�Pcc implies UPcc = NPcc in contra-
diction to Proposition 3.15: Suppose #Pcc = span�Pcc, and let L be a
language in NPcc. Let Π = (Πn)n∈N be an NPcc-acceptor for L. De�ne an
NPcc-transducer Π′ = (Π′

n)n∈N such that Π′
n outputs 1 if Πn accepts, and

nothing otherwise. Then spanΠ′ is the characteristic function of L, which
is in #Pcc by the assumption. That is, there exists an NPcc-acceptor Π′′

with accΠ′′ = spanΠ′ ≤ 1. Thus, L ∈ UPcc.

2. We show that span�Pcc = #NPcc implies NPcc = co−NPcc, a contra-
diction: Let L be a language in NPcc and Π = (Πn)n∈N an NPcc-acceptor
for L. Let Π1 = (Π1

n)n∈N be an NPcc-transducer such that Π1
n outputs

1 on every input, and Π2 = (Π2
n)n∈N an NPcc-transducer such that Π2

n

simulates Πn and outputs 1 in every accepting transcript of Πn. De�ne
the function f := (fn)n∈N := spanΠ1−Π2 . It follows that fn(x, y) > 0
i� (x, y) /∈ L. By Proposition 3.11 we have f ∈ #NPcc. By the hy-
pothesis, f is the span function of some NPcc-transducer Π3 = (Π3

n)n∈N.
Consider the NPcc-acceptor Π4 = (Π4

n)n∈N such that Π4
n accepts i� Π3

n

accepts (with some output). Π4 witnesses that L ∈ NP, and it follows
NPcc = co−NPcc.
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3. Assume min �Pcc = max �P. For every language L in co−NPcc we have
χL ∈ min �Pcc as Graph≤(χL) is in co−NPcc. But χL ∈ max �P implies
L ∈ NPcc, a contradiction.

4. Assume min �Pcc ⊆ span�Pcc. For every language L in co−NPcc we have
χL ∈ min �Pcc. But χL ∈ span�P implies L ∈ NPcc, a contradiction.

5. This follows from L ∈ UPcc ⇔ χL ∈ #Pcc.

We close this section with some examples of natural function classes contained
in #Pcc and span�Pcc.

Example 3.17. Consider the following families of functions.

1. f := (fn)n∈N ∈ F , where fn is de�ned as

fn(A,B) := |A opB| (29)

for subsets A,B ⊆ [n] and a set operation like op ∈ {∪,∩,−}. It is easy
to see that f is in #Pcc.

2. g := (gn)n∈N ∈ F , where gn is de�ned as

gn(A,B) := |A opB| (30)

for subsets A,B ⊆ Zn and an arithmetic operation op ∈ {+, ∗,−}, where
A opB := {a op b | a ∈ A, b ∈ B}. Clearly, f is in span�Pcc.

4 Conclusion and open problems

We de�ned various function classes in communication complexity motivated by
existing well known classes in structural complexity theory and established sev-
eral separation results. In structural complexity theory also higher level versions
of #P, span�P, #NP via the levels Σp

k, Π
p
k of the polynomial hierarchy are con-

sidered, i.e. #Σp
k, span�Σp

k, #Πp
k. The corresponding function communication

classes are #Σcc
k , span�Σcc

k , #Πcc
k . It would be interesting to prove separations

for these classes, if possible, and to present natural function families demon-
strating their computational strength.
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