

Ulmer Informatik Berichte | Universität Ulm | Fakultät für Ingenieurwissenschaften und Informatik

Boolean networks for modeling and analysis of
gene regulation

Dao Zhou, Christoph Müssel, Ludwig Lausser,
Martin Hopfensitz, Michael Kühl, Hans A. Kestler

Ulmer Informatik-Berichte
Nr. 2009-10

Oktober 2009

Boolean Networks for Modeling and

Analysis of Gene Regulation

Dao Zhou
1,2,†

, Christoph Müssel
1,†

, Ludwig Lausser
1,†

,

Martin Hopfensitz
3
, Michael Kühl

4
, Hans A. Kestler

1,3∗

1 Institute of Neural Information Processing, Research Group of Bioinformatics and Systems
Biology, University of Ulm, Germany
2 Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of
Science and Technology, Wuhan 430074, China
3 Internal Medicine I, University Hospital Ulm, Germany
4 Institute for Biochemistry and Molecular Biology, University of Ulm, Germany
† contributed equally

Gene-regulatory networks control the expression of genes and therefore the
phenotype of cells. Modeling and simulation of such networks can provide
deep insights into the functioning of cells. Boolean networks are a commonly
used technique to model gene-regulatory networks. We introduce methods to
construct Boolean networks from literature knowledge and to analyze their
dynamics. In particular, methods to identify and analyze attractors are
presented. In simulations on three biological networks, we analyze the ro-
bustness of attractors. These evaluations confirm the biological relevance of
previously identified attractors.

1 Background

1.1 Gene-regulatory networks

Anatomy and physiology of all living systems are mainly determined by their genes.
Strands of desoxyribonucleic acids (DNA) are stored in the nucleus of nearly all cells
and determine their characteristics through the process of gene expression. A DNA
chain is a sequence of four chemical bases, adenine (A), cytosine (C), guanine (G) and
thymine (T), a sugar molecule (desoxyribose), and phosphate bridges. The DNA can
be subdivided into genes, which code for hereditary traits. Genes generally consist of
coding regions that determine the proteins which make up the cell structure, and of
non-coding regions.
∗
hans.kestler@uni-ulm.de

1

Gene expression is the process of building proteins from the DNA. It comprises two
major steps: First, a copy of a piece of DNA is assembled as messenger RNA (mRNA),
which is similar to DNA besides the replacement of thymine by another base called uracil.
Furthermore, desoxyribose is replaced by ribose. This step is called transcription. In a
second step, the translation, proteins are synthesized from the mRNA.

Figure 1: Schematic depiction of gene expression in a cell. Transcription takes place in
the nucleus, translation is performed by other parts of the cell.

In each cell, only a small portion of the genes are expressed depending on the cell
type, the status, and external conditions. This is controlled by gene regulation: The
availability of a protein depends on its stability and the number of corresponding mRNA
templates. In turn, the amount of mRNA depends on the regulatory region dedicated
to the corresponding gene, and on the presence of transcription factors that activate
or suppress this gene. These transcription factors are proteins and thus gene products
themselves. Hence, gene expression is a regulatory process: Genes and their expression
products influence the expression of other genes and, as a whole, form complex regulatory

networks. In addition, gene expression in a cell can be influenced by external signals from
other cells. In this case, external signal molecules are received and translated to cellular
responses, which is known as signal transduction. Interactions between multiple cells
can make up complex signalling networks. More details on the biological background
can be found in [2].

Reconstructing such regulatory networks provides a deep insight into the processes
inside cells and enables the development of new treatments for diseases that are caused by
misregulated gene expression [10]. In addition, simulations with computational models
can replace costly biological experiments [12]. To represent the dynamics of such a
network, a set of measurements of the corresponding genes over time is required. To be
able to simulate as many different network configurations as possible, the measurements

2

should also contain as many activation states of each of the genes as possible. That means
that additional experiments with changed environmental conditions or over-expressed
and knocked-out genes have to be conducted for each of the time steps [11, 17].

The measurement of the genes poses some major problems: For some network con-
figurations that might occur in theory, it may not be possible to retrieve meaningful
biological results, as they never occur in a living cell in practice. In addition, it can be
hard to measure genes at sufficiently small time steps, and thus important changes in
activation levels may never be visible in the reconstructed networks.

After a set of interactions between gene products has been identified by experiments,
researchers can construct mathematical models of the network. Common types of models
are:

• Sets of ordinary differential equations (ODEs) are widely used to describe interac-
tions between gene products quantitatively [4]. ODEs provide a continuous repre-
sentation of the network. However, they require time-consuming calculations, as
it is usually not possible to solve them analytically. In addition, precise knowledge
of a large set of parameters is required [5].

• Boolean networks were first proposed for gene-regulatory networks by Kauffman in
1969 [13]. They only allow the states on and off for a gene. Each gene is represented
by a Boolean function over all other involved genes in the previous time step. This
is an abstract, but intuitive representation of interactions. In addition, Boolean
networks approximate the real nature of gene-regulatory networks well, while be-
ing of simple structure: It is assumed that concentration levels in gene-regulatory
networks behave like the Hill function [4]. Boolean functions approximate the sig-
moidal behaviour of this function by the dichotomous step function (see Fig. 2).
Boolean networks allow for the identification of steady states and cycles [5, 12]. An-
other major advantage of Boolean networks is the fact that natural-language state-
ments from literature can easily be transferred into this representation. For exam-
ple, the statement ”Gene 1 inhibits Gene 2“ can be interpreted as
Gene2(t + 1) = NOT Gene1(t).
In addition, the construction of Boolean networks is computationally less costly
than the calculations involved in the ODE models [3].

• Probabilistic Boolean networks constitute a generalization of Boolean networks to
overcome the deterministic rigidity of Boolean networks, and were proposed by
Shmulevich et al. [19, 20]. Due to biological uncertainty, experimental noise, or
incomplete understanding of a system, the need for uncertainty in the regulatory
logic is raised. Probabilistic Boolean networks address this issue by extending the
Boolean network model in a way that each target gene can have several candidate
functions. Each function is assigned a probability, based on its compatibility with
experimental data. The probability is determined by employing the Coefficient Of

Determination (COD) [6]. In practice, the COD must be estimated from training
data using approximations of the candidate functions. Thus, problems arise from
the required amount of training data and the complexity of the candidate functions.

3

x

y

0 0.2 0.4 Θ 0.6 0.8 1

0
0.
2

0.
4

0.
6

0.
8

1

Figure 2: The Hill function h(x,Θ, m) = xm

xm+Θm for m = {1, 2, 5, 10}. The red line re-
presents the step function, which is a binary discretization of the Hill function.

The dynamic behaviour of a probabilistic Boolean network can be analyzed using
Markov chains. For a detailed definition, please refer to [19, 20].

In this report, we deal with the assembly and analysis of regular Boolean networks.
The following section gives a brief introduction to the theory of Boolean networks.

1.2 Boolean networks

Modeling with Boolean logic is a widely-used method in systems biology [12]. Boolean
networks can model the dynamics and the influence of one variable on another over
time. This technique operates on discretized variables with two states (e.g. high/low,

yes/no, on/off, 0/1, . . .). In the following, we use the values {0, 1} =: B. A variable in
this Boolean space is called a Boolean variable. Let x = (x1,xn)T , xi ∈ B, denote
the vector of Boolean variables which are involved in a Boolean network. The changes
of these variables over time are modeled by a set of functions Θ = {f1(x), . . . , fn(x)}.

4

There are different ways to model time in this context. Here, synchronous time-discrete
Boolean networks are used, which means that all variables are updated synchronously
in the following way:

xi(t + 1) = fi(x(t)) for i ∈ 1, . . . , n. (1)
These updates are called transitions. Prior to a more formal definition of such (Boolean)
functions f , note that f : Bn → B. Both input and output space of f are finite, and all
possible input-output combinations can be summarized in a finite set

cf = {(x, f(x))|x ∈ Bn} (2)

The elements of cf can be ordered in a so-called truth table. An example of such a
table for a three-dimensional input space can be seen in Table 1. The first n columns
contain the assignments to the input variables. The last column contains the vector of
output values y. The table consists of 2n rows which correspond to the different input
combinations. We assume that the table is filled in some canonical order. In our case, a
Boolean table of n variables is sorted increasingly according to decn : Bn → {1, . . . , 2n}

decn(x) =
n�

i=1

2i−1xi + 1 (3)

applied to the input vectors. In this way, the input vector at position i can be seen as
the binary encoding of i− 1. The inverse function is

binn(i) = dec−1
n (i) (4)

Two Boolean functions fi, fj can be distinguished according to their y vectors, yi �= yj

for all i �= j. If no further restrictions exist, the set of all Boolean functions over n
variables consists of 22n elements.

x1 x2 x3 y
0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 1
0 0 1 0
1 0 1 0
0 1 1 1
1 1 1 1

Table 1: Truth table of a 3-dimensional function

Note that not all variables xi must have an influence on a given function f . A variable
that does not affect f is called fictitious [15].

Definition A Boolean variable xj is called fictitious for a Boolean function f if

f
�
(x1, . . . , xj−1, 0, xj+1, . . . , xn)T

�
= f

�
(x1, . . . , xj−1, 1, xj+1, . . . , xn)T

�
(5)

Otherwise, it is called non-fictitious.

5

A truth table – which is an equivalent representation of a certain Boolean formula f
– merely has to contain non-fictitious variables. In the following, we assume Boolean
tables to be reduced in this respect. f can be reconstructed by knowing y and the
non-fictitious variables.

We now introduce a more structural definition of Boolean formulas.

Definition Let x = (x1,xn)T , xi ∈ B be a vector of Boolean variables. A Boolean
function is a function of the form f : Bn → B. A Boolean function is either atomic
f(x) = xi, i ∈ {1, . . . , n} or one of the three following compositions of Boolean formulas
g and h:

f(x) = g(x) ∧ h(x) conjunction (6)
f(x) = g(x) ∨ h(x) disjunction (7)
f(x) = ¬g(x) negation (8)

Here, ∧,∨,¬ are the basic Boolean functions AND, OR and NOT. Their truth tables
can be found in Table 2. Although there are other well-known Boolean functions, such
as XOR or implication, we focus on these three functions which suffice to construct any
Boolean formula [21].

∧
x1 x2 y
0 0 0
1 0 0
0 1 0
1 1 1

∨
x1 x2 y
0 0 0
1 0 1
0 1 1
1 1 1

¬
x1 y
0 1
1 0

Table 2: The Boolean functions AND, OR and NOT

Definition A Boolean network is an ordered pair N = (X,Θ), where X is a non-empty
finite set of Boolean variables {x1, . . . , xn}, and Θ is a set of functions {f1(x), . . . , fn(x)}
with x = (x1, . . . , xn)T .

An example Boolean network is shown in Fig. 3.
The functions in Θ describe how the values of the variables in X change over time. In

the following, we only consider synchronous time-discrete updates

xi(t + 1) = fi(x(t)) for i ∈ 1, . . . , n. (9)

These updates are called transitions. For better reading, let FΘ : Bn → Bn be the
function

FΘ(x) = (f1(x), . . . , fn(x))T (10)

for Θ = {f1(x), . . . , fn(x)}. In this way, transitions can be written as

x(t + 1) = FΘ(x) (11)

6

Figure 3: A Boolean network with 5 variables.

Definition A directed graph G is an ordered pair G = (V,E), where V is a non-empty
finite set of variables called nodes, and E is a set of ordered pairs of nodes (u, v), u, v ∈ V ,
written as u → v or v ← u. The elements of E are called directed edges.

Definition Let G = (V,E) be a directed graph. A path in G is a sequence of nodes
u1, . . . , um, m ≥ 1 such that (ui, ui+1) ∈ E for 1 ≤ i < m. The length of a path is the
number of nodes.
A path u1, . . . , um is simple if all nodes in the path are distinct.
A path u1, . . . , um, m ≥ 1, is a cycle or attractor if u1 = um.
A cycle of length one is also called steady-state or singleton attractor.

Definition Let G = (V,E) be a directed graph. Let u1, . . . , um = U ⊂ V , m ≥ 1,
denote an attractor in G. The basin of U is the set of all nodes v ∈ V for which a path
from v to a node u ∈ U exists.

Definition Let N = (X,Θ) be a Boolean network and n = |X| be the number of vari-
ables in N . A state graph of N is a directed graph G = (S, E) with nodes
S = {x1, . . . ,xk} and directed edges

E = {(xi,xj) | FΘ(xi) = xj , i, j ∈ {1, . . . , k}} , (12)

where xi ∈ Bn and k = 2n.

The state graph of the Boolean network in Fig. 3 is depicted in Fig. 4.

7

Figure 4: The state graph of the Boolean function in Fig. 3

The number of different states in a state graph corresponds to the number of different
values a Boolean vector x ∈ Bn can take. Note that FΘ(x) is a deterministic function.
As a consequence, each node has exactly one outgoing edge. As FΘ : Bn → Bn, the
output space consists of only 2n elements. Therefore, each sequence of state transitions
ends up in an attractor after at most 2n steps, and at least one attractor exists.

1.3 Learning from examples

In a setting where predefined rules (Boolean functions) exist, the Boolean network can
be constructed and analyzed by applying the theory above. If such a rule set is not
available, the rules have to be inferred from a set of measurements, a so-called dataset,
in a preprocessing step. The following is based on the theory of Lähdesmäki et al. [15].
A dataset D for a Boolean function f consists of a set of m triples

D = {(x1, l1, w1), . . . , (xm, lm, wm)} , (13)

where xi ∈ Bn is an example input, and li ∈ B is the corresponding output, a label
given to the example by an expert. The variables wi ∈ R are optional weights which
can be used to model the importance of a single example. If no information about the
importance is known, wi is set to 1 for all i ∈ {1, . . . ,m}.

Let us at first assume that the expert does not make any mistakes, all labels are correct,
and no ambiguous examples exist. The examples can then be used to reconstruct the
truth table, in particular y. Assume that y is initially filled with don’t care symbols, for
example yi = ∗ for all i. The reconstruction then looks as follows:

ydecn(x) = l ∀(x, l, w) ∈ D (14)

It can easily be seen that a dataset of 2n distinct examples is needed to reconstruct the
complete truth table. Common datasets contain m � 2n examples. A truth table that
comprises ∗ symbols does not correspond to a Boolean function. It represents a partially

defined Boolean function.

8

Definition A partially defined Boolean function is a function of the form pf : Bn →
{0, 1, ∗}.

Note that each Boolean function is a partially defined Boolean function. As long as
∗ symbols can be found in a truth table, it cannot be used to predict a Boolean value for
each input. In the next step, we therefore replace a partially defined Boolean function
by a Boolean function which at least predicts known values of the truth table correctly.
We first define the set of positive and negative examples of a function.

Definition Let pf denote a partially defined Boolean function. The set of known exam-

ples of pf is defined as

tra(pf) = {(x | x ∈ Bn, pf(x) �= ∗)} (15)

A Boolean function which fulfils the above condition is called a consistent extension .

Definition A consistent extension of a partially defined Boolean function pf is a Boolean
function f for which

f(x) = pf(x) ∀x ∈ tra(pf) (16)

A candidate for a consistent extension has to replace all ∗ symbols of pf by a value
of B. If pf contains q ∗ symbols, there are consequently 2q equally suited candidates in
this setting. In the worst case, all ∗ symbols are set to the wrong Boolean value, which
leads to q wrong entries in the truth table.

Usually, some prior knowledge or assumptions exist on how the final structure of the
Boolean function should look like. For example, the indegree of the function may not
exceed a certain value. The class of Boolean functions can be restricted to a smaller
concept class C according to such constraints. There is no guarantee that function f ∈ C
for such a restricted class exists that fulfils the criterion of a consistent extention. If no
such function exists, we have to switch to the best-fit extension criterion.

Definition Let pf be a partially defined Boolean function and C a concept class. Fur-
thermore, let D = {(x1, l1, w1), . . . , (xm, lm, wm)} be the dataset which was used to de-
termine pf . A best-fit extension of a partially defined Boolean function pf is a Boolean
function f ∈ C with

f = argminf

m�

i=1

wi|pf(xi)− f(xi)| (17)

Note that by this formulation, two identical examples in D can be assigned two different
weights.

So far, only datasets which do not include contradictory labels for examples have been
considered. If there are contradictions, the corresponding vector y of a partially defined

9

Boolean function pf cannot be calculated as in Equation 14. For each yi, the plausibility
of a 0 value (c0

i
) or a 1 value (c1

i
) has to be determined:

c0
i =

�

(x,l,w)∈D

wI[deg(x)=i,l=0] (18)

c1
i =

�

(x,l,w)∈D

wI[deg(x)=i,l=1] (19)

The entries of y are then set to

yi =

0 if c0
i

> c1
i

1 if c0
i

< c1
i

∗ if c0
i

= c1
i

forall i ∈ {1, . . . , 2n} (20)

The final vector y again defines the partially defined Boolean function pf .
The training of a Boolean network can be seen as the training of all its functions.

Assume that we have a set of measurements {(x1(t),x1(t + 1)), . . . , (xm(t),xm(t + 1))}
with xm(t) = (xm1(t), . . . , xmn(t))T . An example dj of the training set Di of function fi

is then
dj =

�
(xj1(t), . . . , xjn(t))T , xj,i(t + 1), w

�
(21)

The above training procedure can now be applied to such examples.

1.4 Fields of interest

1.4.1 Integration of literature knowledge into Boolean networks

The assembly of Boolean gene-regulatory networks does not necessarily require direct
output from experiments. Rules can also be compiled from abstract conclusions of
previous research. A typical way of building or extending a Boolean network from
literature comprises the following steps:

1. At first, the particular subject of research must be identified. This includes deter-
mining the most important genes involved in the process as well as the expected
characteristics or phenotypes one wants to distinguish.

2. Expression patterns of the involved genes must be available to constitute the ex-
pected outcome of simulations.

3. Now, interaction patterns can be extracted from literature and transferred into
Boolean rules.

4. In a simulation step, the found rules are applied to binary input data, and the
results can be compared to the expected expression patterns. As an input, one
can either test all combinations of gene values (on or off for each gene), or a set of
predefined “meaningful” inputs can be tested.

10

5. In the process of biological model validation [10], the simulation results are com-
pared to the expected expression patterns. If the simulated results do not match
these expression patterns, conclusions can be drawn. This may result in the in-
sertion of new – previously unknown – rules inferred from the resulting patterns.
Then, further simulation steps follow to validate the new network.

Here, the Boolean rules are described in a fixed format according to the following
grammar (in EBNF):

Rule = GeneName ", " BooleanExpression;

BooleanExpression = GeneName

| "!" BooleanExpression

| "(" BooleanExpression ")"

| BooleanExpression " & " BooleanExpression

| BooleanExpression " | " BooleanExpression;

GeneName = ?A gene name from the list of involved genes?;

where ! stands for a negation, & denotes a conjunction of two Boolean expressions,
and | denotes a disjunction of two expressions.

1.5 Finding and analyzing attractors in Boolean networks

As we have already seen in Section 1.2, attractors form stable cycles of states in Boolean
networks. States that are not included in an attractor are only visited along paths to
an attractor. Thus, attractors comprise the states in which a gene-regulatory network
resides most of the time. This means that attractors carry strong biological implications,
and the identification of interesting attractors is of great interest to researchers [14].

A simple procedure to identify all possible attractors of a Boolean network N(X,Θ)
is the following:

• A set of possible input value combinations for the genes in X is defined. By default,
all possible 2n input value combinations for n genes are taken, but one can also
restrict the input values to those values that are biologically plausible.

• For each input value vector, set the current network state x(0) to the vector and
perform the following steps:

1. Set the iteration counter t = 0, and mark x(0) with iteration 0.

2. Apply FΘ to the current state x(t), resulting in a new state x(t + 1).

3. If the state x(t + 1) has not yet been visited, mark x(t + 1) with the current
iteration t, set t = t + 1, and go to step 2.

4. If the state x(t + 1) has already been visited and is marked with iteration k,
we have found an attractor of length t− k + 1.

11

This algorithm is exponential in the number of input genes. Although there exist more
sophisticated algorithms with improved complexity, these algorithms are still exponential
in the number of input genes. This is due to the fact that the problem of finding steady-
state attractors in Boolean networks has been shown to be NP-hard [23].

As mentioned previously, each Boolean network has at least one attractor. Most
networks, however, include a number of attractors, of which not all may be biologically
meaningful. It is thus important to define measures that help selecting those attractors
that are of interest from a biological point of view.

According to Kauffman [14], changes of attractors and their basins due to mutations
in the Boolean rules are of immediate interest in this respect. He proposes to investigate
the stability of attractors to such perturbations.

We present two ways of measuring the importance of an attractor. Both are based on
random structural perturbations of the networks. With this method, we compare the
original network to a set of K randomly tampered copies of the network. We employ
two methods of perturbing the original rule set:

• Random bitflips: From the truth table result column yi of a randomly chosen
gene i, a random number of bits is negated. This leads to a change of the function
FΘ in one component.

• Random shuffle: The truth table result column yi of a randomly chosen gene
i is permuted randomly. This again changes the function FΘ in one component.
We propose this method because it preserves the number of ones and zeros in the
truth table.

Random bitflips have been previously employed to perturb Boolean networks [9, 22].
The effects of random bitflips on the structure of Boolean networks have been inves-
tigated in these papers. It was shown in [9] that redundant nodes can increase the
robustness against such perturbations.

We create K copies for each of the tampering methods and then measure two factors
to assess the importance of an attractor:

Number of occurrences of the attractor in randomly changed networks: This im-
portance measure is based on the assumption that, when tampering a network randomly,
a biologically meaningful attractor should still be identified in the majority of changed
networks, as such an attractor should be robust against small mismeasurements. Coun-
ting the number of occurrences of the originally identified attractor in the K tampered
copies provides information on the robustness and stability of the attractor.

Comparison of sizes of the attractor basins: A biologically meaningful attractor is
likely to be reachable from a high percentage of the biologically plausible states. A good
measure is thus the number of biologically plausible states – i.e. the states that probably
occur in real gene-regulatory networks – in the basin of an attractor. Yet, it is usually
not known in detail which of the states are biologically plausible. To approximate this

12

measure, one can simply take the size of the complete attractor basin as a measure of
importance of the attractor.

If the original network comprises a true attractor, the basin size of this attractor
should be extreme in comparison to randomly changed networks. In our evaluations,
we count the number of tampered rule sets in which the basin size is smaller, greater or
equal to the original network for each of the attractors. To be biologically relevant, we
expect the basin size of a perturbed attractor to be smaller than or equal to the original
attractor.

Computer-intensive testing: Values returned by the above measures are not easy to
interpret, as they lack comparable values from “bad” attractors. This can be overcome
by computer-intensive tests: For each tested network, we create a set of R networks
with the same number of genes, but with the transition functions FΘ consisting of truth
tables that were drawn randomly. For all these networks including the original network,
K tampered copies are created, and the above importance measures are applied. If the
attractors of the original network are meaningful regarding these importance measures,
one would expect that their values for the importance measures are extreme compared
to the values of randomly created networks. For a significance test with level α (usually
α = 0.05), we call an importance measure value significant if it is greater or equal
than the 1 − α quantile of the distribution of the importance measure over all random
networks. For each of the tests, we calculate the following values from the sample of R
random networks:

Test statistic: An estimate of the probability that the importance measure (i.e. the
number of occurrences or the number of basins with a smaller or equal size within
the K perturbed copies) of an attractor in a randomly created network is greater
than the corresponding value of a certain attractor in a biological network.

95% confidence interval: The interval in which the true parameter for the above statis-
tic in the population of all random networks is located with a probability of 95%.

p-value: The percentage of attractors in random networks that achieve a higher impor-
tance measure value than the chosen attractor of the biological network.

Analysis of perturbation methods: One basic assumption of the above testing pro-
cedure is that the perturbation methods disrupt little of the structure of the original
network, such that a perturbed biological network is somehow still ”less random“ than
a network that was generated completely randomly. In order to analyze the effects of
the perturbation operators in detail, we perform additional experiments: Again, K ran-
domly changed copies of a biological network are created for each of the perturbation
methods. We now measure the normalized Hamming distances of the original network
and each of its perturbed copies as proposed in [9]:

dS =
1
|cf |

�

x∈cf

H(FO(x), FC(x)), (22)

13

where FO(x) is the transition function of the original network O for the initial state
x taken from the set of all states cf , FC(x) is the transition function of the perturbed
copy C for the initial state x, and H(x,y) is the Hamming distance of the vectors x and
y, i.e. the number of components in which the vectors differ.

We take the mean value of all K dS values to measure the average disruption of a
network by a perturbation method. Note that the worst-case value of dS – when the
two state spaces are not correlated – is 0.5; if the two networks do not differ, it is 0 (see
[9]).

2 Simulations

We assess the robustness of attractors in three example networks from literature using
the methods described in the previous section: We first apply random perturbations to
the networks to determine the stability of the attractors. We then compare the resulting
robustness measures to the corresponding measures on a set of randomly generated
networks in computer-intensive tests. For each of the networks, we also analyze the
effects of the perturbation methods on the network structure.

2.1 Networks

2.1.1 The mammalian cell cycle

The mammalian cell cycle consists of four phases. We employ a simplified Boolean
network model for the cell cycle with 10 genes developed by Fauré et al. [7]. The
network has one attractor of length 1 and one attractor of length 7. It is depicted in
Fig. 5.

2.1.2 Segment network of Drosophila melanogaster

This network describes expression patterns of the segment polarity genes of the fruit fly
Drosophila melanogaster. The genes are expressed in stages of embryonical development
to construct the segments of the fruit fly. The Boolean network originally consists of 15
genes and was proposed by Albert et al. in 2003 [1]. It has 10 steady-state attractors.
We employ a version of the network in which several variables have been eliminated,
resulting in a network with 8 genes, of which 4 are set to a fixed value (see Fig. 6, [22],
and Eq. 4 of [1]).

2.1.3 The yeast cell cycle

The cell cycle of budding yeast consists of four phases, in which a total of around 800
genes are involved. Li et al. [16] present a reduced network with 11 genes. In total, there
are 7 attractors of length 1 (steady-state attractors), but with extremely different sizes
of the basins. The attractor with the largest basin (1764 states) was described by the
authors as being relevant for the first phase of the cell cycle, the G1 state. The network
was originally designed as a logical network, in which a state can be dependent on more

14

Figure 5: The mammalian cell cycle network (Fauré et al., 2006)

than one previous time step. This property was used by the authors to describe a self-
regulation step after td time steps. We set this constant to 1 to convert the network to
a Boolean net. The network is shown in Fig. 7.

2.2 Results

2.2.1 Random perturbations of biological networks

For each of the described networks, 1000 randomly changed copies were created using
random bitflips, and 1000 copies were created using random shuffle. The attractors from
the original network were searched in the copies, and the occurrences were counted.
If the attractor existed in a copy, the size of the attractor basin was determined and
compared to the size of the basin in the original network. The results were divided
into the categories smaller basin than the original basin, equally-sized basin and larger

basin. Results are depicted in Table 3. A robust attractor should not be extinguished
by small random changes of the network; hence, the fifth column of the table, which
counts the number of occurrences of the original attractor in the randomly perturbed
networks, is the primary indicator of robustness of an attractor. In addition, we expect
a good attractor to have a larger basin than a randomly changed copy of this attractor
on average, thus such an attractor should maximize the sum of the second and the third
column of the table (basin size is less or equal in randomly changed networks).

15

Figure 6: The simplified Drosophila melanogaster segment network (Albert et al., 2003)

Figure 7: The yeast cell cycle network (Li et al., 2004)

In the Mammalian cell cycle network, we see that the large attractor with 7 genes
(attractor 2) is much more susceptible to small changes in the network than the smaller
attractor (attractor 1): In the randomly perturbed networks, attractor 2 occurs only
half as often as attractor 1. In these occurrences, the number of enlarged basins is
much higher than the number of decreased basin sizes for the large attractor, whereas

16

the number of smaller basin sizes in the small steady-state attractor is 4 times as high
as the number of larger basins for the random bitflip tests. Randomly shuffled copies
generally lead to lower number of occurrences than random bitflips. Surprisingly, there
is no occurrence with a larger basin in any randomly shuffled copy for both attractors.

The number of occurrences of all 10 steady-state attractors in random copies of
Drosophila melanogaster network is similar, both for random bitflips and random shuf-
fles. An exception is attractor 4, which has a significantly higher number of occurrences
than the other attractors in the random shuffling experiments. Again, the number of
occurrences for random shuffling is much lower than the number of occurrences for ran-
dom bitflips. The distributions of the basin sizes differ among the attractors: While
randomly tampered copies of the networks mostly expose smaller or equally-sized basins
for attractors 2, 3, 4, 7 and 9, the basins grow on average for attractors 5, 6, 8 and 10.
This behaviour is consistent for both perturbation methods. Attractor 1 does not show
a consistent behaviour. All attractors have a comparatively high number of occurrences
in which the basin size stays the same between the original network and the randomly
changed networks.

The attractors of the yeast cell cycle network have very high numbers of occurrences
in the perturbed networks. Attractor 2 is the attractor which was identified as being
biologically relevant by the authors of the network. This attractor occurs in 952 of the
randomly changed networks. Its relevance is also supported by the very high number of
randomly changed networks in which the basin size is lower than in the original networks.
Attractor 1 is even found in all 1000 random copies of both perturbation methods. The
basin size grows smaller in the randomly changed networks on average, but the number
of changed networks with a smaller basin size is much lower than that of attractor 2.
Attractors 1 and 2 appear to be the most robust attractors in this network. Other
attractors that show smaller basin sizes on average in the randomly perturbed networks
are attractors 3, 4 and 7. The size of the basin does not seem to change much for
attractor 6, and the behaviour is slightly different for the two perturbation methods.
Attractor 5 has a greater or equal basin size in all random copies of both methods,
indicating a low robustness and thus possibly a reduced biological importance of the
attractor.

2.2.2 Computer-intensive tests

To assess the relevance of the attractors of the three biological networks in comparison
to randomly generated networks, we perform computer-intensive tests as described in
Section 1.5. For each test, R = 1000 randomly generated networks with the same size
as the corresponding original networks are modified randomly K = 1000 times, the rele-
vance measure is calculated for each of the 1000 networks, and the resulting distribution
is compared to the relevance measure of the real biological network. As relevance mea-
sures, both the number of occurrences of the original attractor in the modified copies
and the number of times the basin of the modified attractor is smaller than or equal to

17

Random bitflips Random shuffle
Attr.
no.

Attractor
length

Basin
bio-
net
larger

Basins
equal

Basin
bio-
net
less

found
in
copies

Attractor
length

Basin
bio-
net
larger

Basins
equal

Basin
bio-
net
less

found
in
copies

Mammalian cell cycle Mammalian cell cycle
1 1 222 455 50 727 1 228 327 0 555
2 7 5 284 47 336 7 5 259 0 264

Drosophila melanogaster Drosophila melanogaster
1 1 53 606 98 757 1 85 435 0 520
2 1 148 528 73 749 1 108 328 88 524
3 1 112 556 63 731 1 103 318 90 511
4 1 213 370 163 746 1 130 400 237 767
5 1 18 578 165 761 1 33 411 192 636
6 1 19 572 148 739 1 39 386 218 643
7 1 120 556 63 739 1 118 318 23 459
8 1 19 624 99 742 1 39 323 214 576
9 1 141 528 69 738 1 115 328 21 464
10 1 18 638 95 751 1 33 331 230 594

Yeast cell cycle Yeast cell cycle
1 1 240 656 104 1000 1 265 642 93 1000
2 (*) 1 822 101 29 952 1 588 317 47 952
3 1 260 516 153 929 1 270 473 177 920
4 1 527 170 263 960 1 477 317 199 993
5 1 0 877 98 975 1 0 824 133 957
6 1 232 495 210 937 1 246 454 261 961
7 1 412 270 202 884 1 426 351 156 933

Table 3: Number of occurrences and changes of sizes of the attractor basins for different networks in

comparison to 1000 randomly perturbed copies of the networks. The first column is a running

number to identify the attractors of each dataset. In the two following 5-column blocks, the

first column lists the number of genes in the attractor, the second column contains the number

of copies with a smaller basin for this attractor, the third column contains the number of copies

with an equally-sized basin, the fourth column lists the number of copies with a larger basin,

and the fifth column contains the overall number of copies in which the attractor existed.

Each row describes a single attractor of the corresponding network.

the basin of the original attractor are taken. Each of the tests is conducted with random
bitflips and with random shuffling. Thus, for each datasets, there exist 2 tests based on
the number of occurrences and 2 tests based on the basin size with different perturbation
methods.
To get a better understanding of the behaviour of the tests for different perturbation
methods, we also analyze the effects of these methods on the underlying biological net-
works as described in Sec. 1.5.

On the mammalian cell cycle network, the tests with the numbers of occurrences –
the simpler measure – are all far from being significant (see Fig. 8). The numbers of
occurrences in copies of the biological network are sometimes even less than the mean
value of the corresponding distributions of occurrences randomly generated networks
with 10 genes, especially when applying random bitflips. However, in the basin size test,
which employs the more complex measure, the steady-state attractor is significant with
a p-value of 0.036, and the attractor of length 7 is close to significance with a p-value of

18

0 200 400 600 800 1000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Occurence test with bitflip − mammalian − attractor length 1

number of occurrences

de
ns

ity
 o

ve
r 1

00
0

ex
pe

rim
en

ts

0 200 400 600 800 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

Occurence test with bitflip − mammalian − attractor length 7

number of occurrences

de
ns

ity
 o

ve
r 1

00
0

ex
pe

rim
en

ts

0 200 400 600 800 1000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Occurence test with shuffle − mammalian − attractor length 1

number of occurrences

de
ns

ity
 o

ve
r 1

00
0

ex
pe

rim
en

ts

0 200 400 600 800 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Occurence test with shuffle − mammalian − attractor length 7

number of occurrences

de
ns

ity
 o

ve
r 1

00
0

ex
pe

rim
en

ts

Figure 8: Distributions of the number of occurrences of attractors with 1 gene and with 7 genes in

1000 randomly perturbed copies of 1000 random networks with 10 genes. On the left side,

the copies were tampered using random bitflips, and on the right side, random shuffling

was employed. The red lines correspond to the numbers of occurences of attractors in 1000

randomly perturbed copies of the mammalian cell cycle network, which has the same number

of genes. The green dashed line is the 95% quantile of the distribution.

The following table lists the test statistics with their corresponding confidence intervals and

p-values for each attractor.

Random bitflip

Attractor statistic conf. int. p-value

1 0.937 0.921–0.952 0.94

2 0.925 0.871–0.978 0.925

Random shuffle

Attractor statistic conf. int. p-value

1 0.479 0.448–0.51 0.481

2 0.097 0.037–0.157 0.097

0.065 when applying random shuffling (see Fig. 9) . Again, p-values for random bitflips
are much greater.

The higher significance of the random shuffling tests compared to random bitflips can
be explained by the analysis of the perturbation methods: On the mammalian cell cycle
network, random bitflips seem to completely destroy the network structure, leading to
an average Hamming distance to the original network of 0.496 (close to the worst-case

19

0 200 400 600 800 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Basin size test with bitflip − mammalian − attractor length 1

number of basins with smaller or equal size

de
ns

ity
 o

ve
r 1

00
0

ex
pe

rim
en

ts

0 200 400 600 800 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Basin size test with bitflip − mammalian − attractor length 7

number of basins with smaller or equal size

de
ns

ity
 o

ve
r 1

00
0

ex
pe

rim
en

ts

0 200 400 600 800 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Basin size test with shuffle − mammalian − attractor length 1

number of basins with smaller or equal size

de
ns

ity
 o

ve
r 1

00
0

ex
pe

rim
en

ts

0 200 400 600 800 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Basin size test with shuffle − mammalian − attractor length 7

number of basins with smaller or equal size

de
ns

ity
 o

ve
r 1

00
0

ex
pe

rim
en

ts

Figure 9: Distributions of the number of attractor basins that were smaller than or equal to the basins

of the corresponding original attractors with 1 gene and with 7 genes in 1000 randomly

perturbed copies of 1000 random networks with 10 genes. On the left side, the copies were

tampered using random bitflips, and on the right side, random shuffling was employed. The

red lines correspond to the numbers of occurences of attractors in 1000 randomly perturbed

copies of the mammalian cell cycle network, which has the same number of genes. The green

dashed line is the 95% quantile of the distribution.

The following table lists the test statistics with their corresponding confidence intervals and

p-values for each attractor.

Random bitflip

Attractor statistic conf. int. p-value

1 0.2 0.175–0.225 0.202

2 0.43 0.329–0.531 0.43

Random shuffle

Attractor statistic conf. int. p-value

1 0.036 0.024–0.047 0.037*

2 0.065 0.015–0.114 0.065

value of 0.5). Random shuffling, however, leads to a much smaller average distance of
0.356.

On the Drosophila melanogaster network, one of the 10 steady-state attractors – at-
tractor 4 – is highly significant in the occurrence test with random shuffling. This
corresponds to the results in Table 3, where this attractor occurs far more often in
randomly shuffled networks than all other attractors. In the random bitflip test, the

20

0 200 400 600 800 1000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Occurence test with bitflip − drosophila − attractor length 1

number of occurrences

de
ns

ity
 o

ve
r 1

00
0

ex
pe

rim
en

ts

0 200 400 600 800 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

Occurence test with shuffle − drosophila − attractor length 1

number of occurrences

de
ns

ity
 o

ve
r 1

00
0

ex
pe

rim
en

ts

Figure 10: Distributions of the number of occurrences of attractors with 1 gene in 1000 randomly

perturbed copies of 1000 random networks with 15 genes. On the left side, the copies were

tampered using random bitflips, and on the right side, random shuffling was employed. The

red lines correspond to the numbers of occurences of attractors in 1000 randomly perturbed

copies of the Drosophila melanogaster network, which has the same number of genes. The

green dashed line is the 95% quantile of the distribution.

The following table lists the test statistics with their corresponding confidence intervals and

p-values for each attractor.

Random bitflip

Attractor statistic conf. int. p-value

1 0.463 0.433–0.494 0.468

2 0.524 0.493–0.555 0.538

3 0.663 0.634–0.693 0.67

4 0.553 0.523–0.584 0.555

5 0.43 0.399–0.46 0.441

6 0.594 0.564–0.624 0.604

7 0.594 0.564–0.624 0.604

8 0.57 0.54–0.601 0.577

9 0.604 0.574–0.634 0.615

10 0.514 0.483–0.545 0.519

Random shuffle

Attractor statistic conf. int. p-value

1 0.777 0.752–0.803 0.783

2 0.764 0.738–0.791 0.769

3 0.822 0.798–0.845 0.827

4 0.005 0.001–0.009 0.005*

5 0.163 0.141–0.186 0.165

6 0.147 0.125–0.168 0.148

7 0.979 0.97–0.988 0.979

8 0.458 0.428–0.489 0.462

9 0.975 0.966–0.985 0.976

10 0.357 0.328–0.387 0.361

occurrence values of the 10 attractors are close to the mean value of the randomly gen-
erated networks with 15 genes (see Fig. 10). As on the mammalian cell cycle network,
it seems that for the Drosophila network, random bitflips destroy the structure of the
network, making it similar to a randomly generated network. This is again confirmed

21

0 200 400 600 800 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Basin size test with bitflip − drosophila − attractor length 1

number of basins with smaller or equal size

de
ns

ity
 o

ve
r 1

00
0

ex
pe

rim
en

ts

0 200 400 600 800 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Basin size test with shuffle − drosophila − attractor length 1

number of basins with smaller or equal size

de
ns

ity
 o

ve
r 1

00
0

ex
pe

rim
en

ts

Figure 11: Distributions of the number of attractor basins that were smaller than or equal to the

basins of the corresponding original attractors with 1 gene in 1000 randomly perturbed

copies of 1000 random networks with 15 genes. On the left side, the copies were tampered

using random bitflips, and on the right side, random shuffling was employed. The red lines

correspond to the numbers of occurences of attractors in 1000 randomly perturbed copies

of the Drosophila melanogaster network, which has the same number of genes. The green

dashed line is the 95% quantile of the distribution.

The following table lists the test statistics with their corresponding confidence intervals and

p-values for each attractor.

Random bitflip

Attractor statistic conf. int. p-value

1 0.191 0.167–0.215 0.192

2 0.143 0.121–0.164 0.144

3 0.171 0.148–0.195 0.175

4 0.431 0.4–0.461 0.439

5 0.383 0.353–0.413 0.389

6 0.403 0.373–0.433 0.409

7 0.143 0.121–0.164 0.144

8 0.227 0.201–0.253 0.23

9 0.166 0.143–0.189 0.171

10 0.197 0.172–0.222 0.2

Random shuffle

Attractor statistic conf. int. p-value

1 0.196 0.172–0.221 0.199

2 0.492 0.461–0.523 0.499

3 0.562 0.532–0.593 0.565

4 0.174 0.151–0.198 0.177

5 0.461 0.431–0.492 0.465

6 0.546 0.515–0.576 0.55

7 0.492 0.461–0.523 0.499

8 0.789 0.764–0.814 0.795

9 0.465 0.435–0.496 0.469

10 0.777 0.752–0.803 0.783

by the Hamming distance measurements: For random bitflips, the average Hamming
distance between the Drosophila network and the perturbed copies is 0.447, while the
corresponding value for random shuffling is 0.298. The basin size tests resulted in no

22

0 200 400 600 800 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

Occurence test with bitflip − yeast − attractor length 1

number of occurrences

de
ns

ity
 o

ve
r 1

00
0

ex
pe

rim
en

ts

0 200 400 600 800 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Occurence test with shuffle − yeast − attractor length 1

number of occurrences

de
ns

ity
 o

ve
r 1

00
0

ex
pe

rim
en

ts

Figure 12: Distributions of the number of occurrences of attractors with 1 gene in 1000 randomly

perturbed copies of 1000 random networks with 11 genes. On the left side, the copies were

tampered using random bitflips, and on the right side, random shuffling was employed. The

red lines correspond to the numbers of occurences of attractors in 1000 randomly perturbed

copies of the yeast cell cycle network, which has the same number of genes. The green

dashed line is the 95% quantile of the distribution.

The following table lists the test statistics with their corresponding confidence intervals and

p-values for each attractor.

Random bitflip

Attractor statistic conf. int. p-value

1 0 0–0 0.075

2 0.106 0.101–0.11 0.107

3 0.138 0.133–0.143 0.139

4 0.091 0.087–0.095 0.093

5 0.077 0.073–0.081 0.077

6 0.128 0.123–0.132 0.129

7 0.223 0.218–0.229 0.226

Random shuffle

Attractor statistic conf. int. p-value

1 0 0–0 0.103

2 0.194 0.188–0.199 0.196

3 0.321 0.315–0.328 0.325

4 0.104 0.1–0.108 0.104

5 0.175 0.169–0.18 0.179

6 0.162 0.157–0.167 0.164

7 0.265 0.259–0.271 0.268

significant attractors on this dataset (see Fig. 11). This may be explained by the fact
that all attractors have a relatively high number of occurrences in which the basin size
is equal to the randomly perturbed networks, which was discussed in Sec. 2.2.1.

In the tests with 11 genes corresponding to the yeast cell cycle network, several attrac-
tors have a p-value below 0.1 in the random bitflip experiments, both in the occurrence
tests and in the basin size tests (see Figures 12 and 13). In particular, attractor 1, which
we previously identified as one of the robust attractor, has p-values close to significance.
Yet, the only significant result is the basin size test for the second robust attractor we

23

0 200 400 600 800 1000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

Basin size test with bitflip − yeast − attractor length 1

number of basins with smaller or equal size

de
ns

ity
 o

ve
r 1

00
0

ex
pe

rim
en

ts

0 200 400 600 800 1000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0.
00

30

Basin size test with shuffle − yeast − attractor length 1

number of basins with smaller or equal size

de
ns

ity
 o

ve
r 1

00
0

ex
pe

rim
en

ts

Figure 13: Distributions of the number of attractor basins that were smaller than or equal to the

basins of the corresponding original attractors with 1 gene in 1000 randomly perturbed

copies of 1000 random networks with 11 genes. On the left side, the copies were tampered

using random bitflips, and on the right side, random shuffling was employed. The red lines

correspond to the numbers of occurences of attractors in 1000 randomly perturbed copies

of the yeast cell cycle network, which has the same number of genes. The green dashed line

is the 95% quantile of the distribution.

The following table lists the test statistics with their corresponding confidence intervals and

p-values for each attractor.

Random bitflip

Attractor statistic conf. int. p-value

1 0.056 0.052–0.059 0.057

2 0.038 0.035–0.041 0.039*

3 0.182 0.177–0.188 0.184

4 0.324 0.317–0.33 0.326

5 0.071 0.068–0.075 0.072

6 0.264 0.258–0.271 0.267

7 0.357 0.351–0.364 0.359

Random shuffle

Attractor statistic conf. int. p-value

1 0.111 0.107–0.115 0.112

2 0.113 0.109–0.118 0.115

3 0.552 0.545–0.559 0.555

4 0.386 0.379–0.392 0.389

5 0.297 0.29–0.303 0.299

6 0.681 0.674–0.687 0.684

7 0.44 0.433–0.447 0.444

identified, attractor 2. This is the attractor that was identified by Li et al. [16] as being
relevant for the G1 state. The occurrence tests all fail, which is mainly due to the fact
that the number of occurrences of attractors in the random networks is mostly quite
close to the optimum (1000).

The results of the analysis of the perturbation methods is not as clear as for the other
networks. Still, random shuffling achieves a slightly lower average Hamming distance of
0.390 compared to a value of 0.463 for random bitflips. Both method seem to affect the
network structure significantly on this network.

24

3 Discussion

This report introduces the workflow of modeling gene-regulatory networks as Boolean
networks with literature knowledge and analyzing their structure. In particular, we
present methods to identify attractors and analyze their robustness and possible biolo-
gical importance.

Extracting rule sets from literature constitutes an alternative to conducting costly
experiments. Boolean networks are particularly suited for these design problems, as they
do not require any quantitative information. It suffices to obtain qualitative statements
about genes influencing each other.

In the process of designing a Boolean network from literature, determining attractors
in a Boolean network can help to validate the network: The attractors should match
known expression patterns of the biological network, as they constitute the states in
which the network resides most of the time. If the attractors of the designed network do
not match the expectations, it is even possible to infer previously unknown interactions
by drawing conclusions from these results. In the appendix, we present an R package that
finds and visualizes attractors in Boolean networks and is well suited for this validation
and inference process.

We outlined that comparing the attractors in the original biological networks and a
set of randomly modified networks can help to assess their relevance. In order to get reli-
able test results, a perturbation method must not change the structure of a network too
drastically. Otherwise, all resulting networks are more or less random, which means that
a test cannot distinguish between “real” random networks and networks derived from
meaningful biological networks. Especially the random bitflip tests on the Drosophila
network and the Mammalian cell cycle network seem to suffer from this problem. This
is also confirmed by our analysis of the perturbation methods which measures the Ham-
ming distance between the states of the original network and the randomly perturbed
networks. This analysis suggests that random bitflips mostly disrupt the structure of a
network stronger than the shuffling method we proposed. Yet, this may not be a gene-
ral statement, as the random bitflip tests on the yeast cell cycle network are the only
experiments with significant p-values on this network.

We employed two relevance measures for the attractors: The number of occurrences
of an attractor in perturbed copies of the network, and the number of occurrences with
a basin of smaller or equal size. The former simply checks whether the attractor itself is
robust against small changes of the network, while the latter is more strict: In addition
to existence of the attractor in the tampered networks, it assesses the size of its basin.
The assumption is that the basin in the real biological network should mostly be larger
than in a randomly modified copy. The results of our tests show that sometimes the
occurrence measure is not sufficient to distinguish between random and non-random
networks, and thus the basin size measure is the better choice for the tests. On the
Drosophila network, however, results were clearer when applying the occurrence measure.
A possible explanation for this is the fact that the basin sizes in this network often do
not change when perturbing the network.

25

In all networks, tests were able to identify significant attractors. In the yeast cell cycle
networks, an attractor that has previously been identified as being of biological relevance
was significant in a test. However, our results also indicate that it is hard to define a single
method that is able to reliably determine relevant attractors in networks of different
structure and size: The significant results were produced by different configurations of
perturbation methods and test statistics.

Acknowledgements: This work is supported by the German Science Foundation (SFB
518, Project C5), the Stifterverband für die Deutsche Wissenschaft (HAK), the Graduate
School of Molecular Medicine at Ulm University funded by the Excellence Initiative of
the German government (GSC270) and the Graduate School of Mathematical Analysis
of Evolution, Information and Complexity at the University of Ulm (CM, HAK).

26

Appendix

The booleanAttractor package

booleanAttractor (available upon request) is an R package [18] designed to identify at-
tractors in Boolean networks and to provide a visualization for them. It can read in
networks in the format described in Section 1.4.1 and find attractors by trying all 2n

possible combinations of n variables. It is also possible to restrict the tried values to
biologically plausible ones. The package runs on many platforms, in particular on Win-
dows, Linux, and Macintosh. Due to the integration of the algorithms into the statistical
platform R, it is easy to perform further tests and calculations on the resulting data and
to combine the package with a broad variety of other biostatistical packages, for example
from the Bioconductor project [8].

The following provides a short documentation of the functions in the package.

getattractor function

Retrieves attractors in the supplied network.

Usage:

getattractor(netinfo, filename, genesON = c(), genesOFF = c())

Arguments:

netinfo A net information structure returned by readin.boolean()

filename The name of a temporary file to store the identified attractors

genesON A vector of names of genes whose initial state is fixed to 1/ON to simplify
the truth table

genesOFF A vector of names of genes whose initial state is fixed to 0/OFF to simplify
the truth table

Details:

This function identifies attractors in a Boolean network according to the algorithm in
Section 1.5. A network with n variables consists of truth tables of size 2n, hence the
complexity of the calculation is exponential in the input size. External C code is called
to speed up calculations.

27

Value:

A list with components

attractor A list describing all found attractors. It is made up by the following sub-
components:

aidx The ranges of the vector attractor that belong to a specific attractor: The ith
attractor is made up by the elements attractor[(aidx[i] + 1):(aidx[i +

1])]

attractor An array of indices of truth table entries belonging to attractors. Must
be split up according to aidx.

freq The sizes of the attractor basins

numattractor The total number of attractors found in the network

table A matrix with 3 columns that describes the attractor basins. The first column
lists the indices of the states/rows in the truth table. The second column contains
the number of transitions between the state and the corresponding attractor, and
the third column is the index of this attractor in the attractor component.

Example

data(examplenet)

attractor = getattractor(net,"./attractor")

plotattractor2fig(attractor$attractor,net)

readin.boolean function

Reads in a Boolean network in the format specified in Section 1.4.1.

Usage:

readin.boolean(funcfile, seperate = ",")

Arguments:

funcfile The name of the file to be read

seperate The character used to separate the target variable from the formula. Defaults
to ”,”.

28

Details:

Refer to the EBNF grammar in Section 1.4.1 for details on the file format. The rules
are read in and converted to a truth table representation.

Value:

An internal network representation with the following structure:

interactions A list with n elements (for n genes), each describing the transition function
for one gene. Each element is a list with two sub-elements:

input A vector of k indices specifying the input genes for the function

func The result column of the truth table for the k input genes with 2k entries

genes A vector of n gene names

input, inputIndex, func, funcIndex Encoded vectors containing the same information
as interactions that are used for easier information exchange with the C code.

fixed A vector that allows for fixing genes to biologically meaningful values. It contains
an element for each of the n genes. 0 means the corresponding gene is fixed to
0/OFF, 1 means the corresponding gene is fixed to 1/ON, and −1 means the gene
value is not fixed.

plotattractor2fig function

Plots a state table of one or several attractors.

Usage:

plotattractor2fig(attractorinfo, netinfo, sepinfo = list(), title = "",

plotfix = T)

Arguments:

attractorinfo The $attractor component of a return value of getattractor(), i.e. the
attractor(s) to be plotted

netinfo A net information structure, usually the result of a call to readin.boolean()

sepinfo An optional structure to form groups of genes in the plot. This is a list with
the following elements:

class A vector of names for the groups. These names will be printed in the region
belonging to the group in the plot.

29

index A list with the same length as class. Each element is a vector of gene indices
belonging to the group.

title A string printed as the title of the plot

plotfix A logical value that determines whether genes with fixed values are included in
the plot

Details:

For each attractor in attractorinfo, a figure is plotted to the currently selected device.
This figure is a table with the genes in the rows and the states of the attractor in the
columns. Cells of the table are red for 0/OFF values and green for 1/ON values. If
sepinfo is set, the genes are rearranged according to the indices in the group, horizontal
separation lines are plotted between the groups, and the group names are printed.

Value:

This function has no return value.

Example:

data(examplenet)

attractor = getattractor(net,"./attractor")

plotattractor2fig(attractor$attractor,net)

plotattractor2tex function

Creates a LATEX document with a state table of one or several attractors.

Usage:

plotattractor2tex(attractorinfo, netinfo, col = c(), sepinfo = list(), outfile

= "tex", title = "")

Arguments:

attractorinfo The $attractor component of a return value of getattractor(), i.e. the
attractor(s) to be plotted

netinfo A net information structure, usually the result of a call to readin.boolean()

30

col An optional vector of two color name strings representing the 1/ON and 0/OFF
states (in this order). Default colors are dark grey and light grey.

sepinfo An optional structure to form groups of genes in the plot. This is a list with
the following element

class A vector of names for the groups. These names will be printed in the region
belonging to the group in the plot.

index A list with the same length as class. Each element is a vector of gene indices
belonging to the group.

outfile The name of the output .tex file

title A string printed as the title of the plot

Details:

For each attractor in attractorinfo, a LATEX table environment is created. The output file
does not contain a document header and requires the inclusion of the packages tabularx

and colortbl. The tables have the genes in the rows and the states of the attractor in the
columns. If not specified otherwise, cells of the table are light grey for 0/OFF values
and dark grey for 1/ON values. If sepinfo is set, the genes are rearranged according to
the indices in the group, horizontal separation lines are plotted between the groups, and
the group names are printed.

Value:

This function has no return value.

Example:

data(examplenet)

attractor = getattractor(net,"./attractor")

plotattractor2tex(attractor$attractor,net,outfile="attractors.tex")

31

topajek function

Exports a network to the Pajek file format to visualize transition trajectories. For more
information, see http://pajek.imfm.si.

Usage:

topajek(tt, storefile)

Arguments:

tt A transition table to visualize. This is usually the $table component of the return
value of a call to getattractor().

storefile The name of the output file for Pajek.

Example:

data(examplenet)

attractor = getattractor(net,"./attractor")

topajek(attractor$table,"topajek")

32

References

[1] R. Albert and H. G. Othmer. The topology of the regulatory interactions predicts
the expression pattern of the segment polarity genes in Drosophila melanogaster.
Journal of Theoretical Biology, 223(1):1–18, 2003.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular

Biology of the Cell. Garland, Oxford, 4th edition, 2002.

[3] M. Davidich and S. Bornholdt. The transition from differential equations to Boolean
networks: a case study in simplifying a regulatory network model. Journal of

Theoretical Biology, 255(3):269–277, 2008.

[4] H. de Jong. Modeling and Simulation of Genetic Regulatory Systems: A Literature
Review. Journal of Computational Biology, 9(1):67–103, 2002.

[5] V. Devloo, P. Hansen, and M. Labbé. Identification of All Steady States in Large
Networks by Logical Analysis. Bulletin of Mathematical Biology, 65:1025–1051,
2003.

[6] E. R. Dougherty, S. Kim, and Y. Chen. Coefficient of determination in nonlinear
signal processing. Signal Processing, 80(10):2219–2235, 2000.

[7] A. Fauré, A. Naldi, C. Chaouiya, and D. Thieffry. Dynamical analysis of a
generic Boolean model for the control of the mammalian cell cycle. Bioinformatics,
22(14):e124–e131, 2006.

[8] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit,
B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus,
R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith,
G. Smyth, L. Tierney, J. Y. H. Yang, and J. Zhang. Bioconductor: Open software
development for computational biology and bioinformatics. Genome Biology, 5:R80,
2004.

[9] C. Gershenson, S. A. Kauffman, and I. Shmulevich. The Role of Redundancy in the
Robustness of Random Boolean Networks. In Artificial Life X, Proceedings of the

Tenth International Conference on the Simulation and Synthesis of Living Systems.
MIT Press, 2006.

[10] D. Gilbert, H. Fu, X. Gu, R. Orton, S. Robinson, V. Vyshemirsky, M. J. Kurth, C. S.
Downes, and W. Dubitzky. Computational methodologies for modelling, analysis
and simulation of signalling networks. Briefings in Bioinformatics, 7(4):339–353,
2006.

[11] T. E. Ideker, V. Thorsson, and R. M. Karp. Discovery of regulatory interactions
through perturbation: inference and experimental design. In Proceedings of the

Pacific Symposium on Biocomputing 5, pages 302–313, 2000.

33

[12] G. Karlebach and R. Shamir. Modelling and analysis of gene regulatory networks.
Nature Reviews Molecular Cell Biology, 9:770–780, 2008.

[13] S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of Theoretical Biology, 22(3):437–467, 1969.

[14] S. A. Kauffman. The Origins of Order – Self-organization and Selection in Evolu-

tion. Oxford University Press, New York, 1993.

[15] H. Lähdesmäki, I. Shmulevich, and O. Yli-Harja. On learning gene regulatory
networks under the boolean network model. Machine Learning, 52(1-2):147–167,
2003.

[16] F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang. The yeast cell-cycle network is
robustly designed. PNAS, 101(14):4781–4786, 2004.

[17] T. MacCarthy, A. Pomiankowski, and R. Seymour. Using large-scale perturbations
in gene network reconstruction. BMC Bioinformatics, 5(11), 2005.

[18] R Development Core Team. R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008.
http://www.R-project.org.

[19] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang. Probabilistic Boolean
networks: a rule-based uncertainty model for gene regulatory networks. Bioinfor-

matics, 18(2):261–274, 2002.

[20] I. Shmulevich, I. Gluhovsky, R. F. Hashimoto, E. R. Dougherty, and W. Zhan.
Steady-state analysis of genetic regulatory networks modelled by probabilistic
Boolean networks. Comparative and Functional Genomics, 4(6):601–608, 2003.

[21] I. Wegener. The Complexity of Boolean Functions. B. G. Teubner, and John Wi-
ley & Sons, 1987.

[22] Y. Xiao and E. R. Dougherty. The impact of function perturbations in Boolean
networks. Bioinformatics, 23(10):1265–1273, 2007.

[23] S.-Q. Zhang, M. Hayashida, T. Akutsu, W.-K. Ching, and M. K. Ng. Algorithms
for Finding Small Attractors in Boolean Networks. EURASIP Journal on Bioin-

formatics and Systems Biology, 2007.

34

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich

Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de

Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe

Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Köbler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schöning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Köbler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara,
U. Schöning, R. Silvestri, T. Thierauf
Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Köbler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kühnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntax-directed
semantics

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost
Narrowing

92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any
Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal
Communications Manager

93-02 M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch
The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree
Transducers

94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

94-09 F.W. von Henke, A. Dold, H. Rueß, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars:
Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman,Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algorithms

95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger
kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schulthess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen
Netzen am Beispiel Truck Backer-Upper

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche
mit VSE

96-02 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of
Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am
Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with
Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte

Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT–
Ansätzen

96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmuth Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation
Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids

97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow
Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure

97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den
digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
ADEPTflex - Supporting Dynamic Changes of Workflows Without Loosing Control

97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development
environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken

97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem
Provers

97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für
eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information
Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

97-18 Johannes Köbler,Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity
Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde
Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und
Analyse

98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment

98-12 Gerhard Schellhorn

Proving Properties of Directed Graphs: A Problem Set for Automated Theorem
Provers

98-13 Gerhard Schellhorn, Wolfgang Reif
Theorems from Compiler Verification: A Problem Set for Automated Theorem
Provers

98-14 Mohammad Ali Livani
SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN

98-15 Mohammad Ali Livani, Jörg Kaiser
Predictable Atomic Multicast in the Controller Area Network (CAN)

99-01 Susanne Boll, Wolfgang Klas, Utz Westermann
A Comparison of Multimedia Document Models Concerning Advanced Requirements

99-02 Thomas Bauer, Peter Dadam
Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und
Simulation

99-03 Uwe Schöning
On the Complexity of Constraint Satisfaction

99-04 Ercument Canver
Model-Checking zur Analyse von Message Sequence Charts über Statecharts

99-05 Johannes Köbler, Wolfgang Lindner, Rainer Schuler
Derandomizing RP if Boolean Circuits are not Learnable

99-06 Utz Westermann, Wolfgang Klas
Architecture of a DataBlade Module for the Integrated Management of Multimedia
Assets

99-07 Peter Dadam, Manfred Reichert
Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems,
Applications. Paderborn, Germany, October 6, 1999, GI–Workshop Proceedings,
Informatik ’99

99-08 Vikraman Arvind, Johannes Köbler
Graph Isomorphism is Low for ZPPNP and other Lowness results

99-09 Thomas Bauer, Peter Dadam
Efficient Distributed Workflow Management Based on Variable Server Assignments

2000-02 Thomas Bauer, Peter Dadam
Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-
Management-System ADEPT

2000-03 Gregory Baratoff, Christian Toepfer, Heiko Neumann
Combined space-variant maps for optical flow based navigation

2000-04 Wolfgang Gehring
Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)
FM-Tools 2000: The 4th Workshop on Tools for System Design and Verification

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-
Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in
ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and
Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-
Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness
Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein

Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
(Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols)

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules

2004-02 Christian Heinlein
Concept and Implementation of C+++, an Extension of C++ to Support User-Defined
Operator Symbols and Control Structures

2004-03 Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01 Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
19th Workshop on (Constraint) Logic Programming

2005-02 Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03 Walter Guttmann, Markus Maucher
Constrained Ordering

2006-01 Stefan Sarstedt
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02 Alexander Raschke, Ramin Tavakoli Kolagari
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
Systemen

2006-03 Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
Eine qualitative Untersuchung zur Produktlinien-Integration über
Organisationsgrenzen hinweg

2006-04 Thorsten Liebig
Reasoning with OWL - System Support and Insights –

2008-01 H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for graphical display

2008-02 Manfred Reichert, Peter Dadam, Martin Jurisch,l Ulrich Kreher, Kevin Göser,

 Markus Lauer
 Architectural Design of Flexible Process Management Technology

2008-03 Frank Raiser
 Semi-Automatic Generation of CHR Solvers from Global Constraint Automata

2008-04 Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander
Entscheidungsdokumentation bei der Entwicklung innovativer Systeme für
produktlinien-basierte Entwicklungsprozesse

2008-05 Markus Kalb, Claudia Dittrich, Peter Dadam

 Support of Relationships Among Moving Objects on Networks

2008-06 Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)
 WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke

2008-07 M. Maucher, U. Schöning, H.A. Kestler
An empirical assessment of local and population based search methods with different
degrees of pseudorandomness

2008-08 Henning Wunderlich
Covers have structure

2008-09 Karl-Heinz Niggl, Henning Wunderlich
Implicit characterization of FPTIME and NC revisited

2008-10 Henning Wunderlich
On span-P!! and related classes in structural communication complexity

2008-11 M. Maucher, U. Schöning, H.A. Kestler
On the different notions of pseudorandomness

2008-12 Henning Wunderlich
On Toda’s Theorem in structural communication complexity

2008-13 Manfred Reichert, Peter Dadam
Realizing Adaptive Process-aware Information Systems with ADEPT2

2009-01 Peter Dadam, Manfred Reichert
The ADEPT Project: A Decade of Research and Development for Robust and Fexible
Process Support
Challenges and Achievements

2009-02 Peter Dadam, Manfred Reichert, Stefanie Rinderle-Ma, Kevin Göser, Ulrich Kreher,
Martin Jurisch
Von ADEPT zur AristaFlow® BPM Suite – Eine Vision wird Realität “Correctness by
Construction” und flexible, robuste Ausführung von Unternehmensprozessen

2009-03 Alena Hallerbach, Thomas Bauer, Manfred Reichert

Correct Configuration of Process Variants in Provop

2009-04 Martin Bader

On Reversal and Transposition Medians

2009-05 Barbara Weber, Andreas Lanz, Manfred Reichert
Time Patterns for Process-aware Information Systems: A Pattern-based Analysis

2009-06 Stefanie Rinderle-Ma, Manfred Reichert
Adjustment Strategies for Non-Compliant Process Instances

2009-07 H.A. Kestler, B. Lausen, H. Binder H.-P. Klenk. F. Leisch, M. Schmid

Statistical Computing 2009 – Abstracts der 41. Arbeitstagung

2009-08 Ulrich Kreher, Manfred Reichert, Stefanie Rinderle-Ma, Peter Dadam
Effiziente Repräsentation von Vorlagen- und Instanzdaten in Prozess-Management-
Systemen

2009-09 Dammertz, Holger, Alexander Keller, Hendrik P.A. Lensch
Progressive Point-Light-Based Global Illumination

2009-10 Dao Zhou, Christoph Müssel, Ludwig Lausser, Martin Hopfensitz, Michael Kühl,
Hans A. Kestler
Boolean networks for modeling and analysis of gene regulation

Ulmer Informatik-Berichte
ISSN 0939-5091

Herausgeber:
Universität Ulm
Fakultät für Ingenieurwissenschaften und Informatik
89069 Ulm

	Titelblatt_Kestler_10_09
	booleannetworks
	Kestler_Anhang_10_09
	Titelblatt_Kestler_10_09

