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Figure 1: A forest with 100 trees and geometry shaders including displacements for bark and leaves. Fully tessellated, it would consist
of over 108 · 109 triangles. Thanks to level of detail on-demand geometry creation and ray sorting, only around 170 million triangles
are actually created, without the use of caching. The geometry is created and fully path traced without instancing, evaluating global
illumination from the sun and sky, and motion blur at a resolution of 1920×768 with 32 samples per pixel in 5:04 minutes on a 2.83 GHz
quad core Q9550 (left image).

Abstract
We introduce a ray tracing architecture which is able to handle highly complex geometry modeled by the classic
production approach of surface patches tessellated to micro-polygons, where the number of micro-polygons can
exceed the available memory. Two novel techniques allow us to carry out global illumination computations in such
scenes and to trace the resulting incoherent sets of rays efficiently. For one, we introduce a technique for building
the BVH over tessellated patches in time linear in the number of micro-polygons. Second, we present a two-stage
ray tracing system which is highly parallel and minimizes the number of tessellation steps by reordering rays.
The technique can accelerate rendering scenes of billions of micro-polygons and objects with complex reflection
shaders using deferred shading.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and RealismRaytracing; Computer Graphics [I.3.3]: Picture/Image GenerationDisplay algorithms.

1. Introduction

In movie production, extreme geometric detail, complex re-
flection shaders and motion blur are needed to obtain vi-
sually convincing images. The Reyes architecture [CCC87]
successfully deals with these challenges using a rasteriza-
tion approach. The use of physically-based ray tracing is
getting more and more common in the production indus-
try, partly to be able to easily carry over artists’ experi-
ences from real-world lighting design, accepting long ren-
der times [Gri09]. To retain the strengths of the Reyes archi-
tecture in a general ray tracing setting, we propose a two-
level hierarchy approach, using reordering of computations
instead of caching. After traversing a top-level hierarchy,

rays are sorted to bundle those intersecting the same bound-
ing volume. Any necessary operation to be carried out in
this volume, e.g. tessellation or loading a complex shader
or BRDF, is thus performed a minimum number of times.
This results in significantly improved data locality which al-
lows us to fully ray trace computationally complex (procedu-
ral) displacements efficiently, i.e. corresponding to billions
of micro-polygons without instancing (see Figure 1). Exist-
ing production pipelines can easily be extended to use our
method, since the algorithm works on the same two-level
data, such as displaced subdivision surfaces and sub-pixel-
sized micro-polygons.

Rendering such scenes requires to tessellate the free form
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patches or procedural displacements which can be quite ex-
pensive with regard to computation and memory consump-
tion. We accelerate ray tracing and global illumination by
exploiting the two-level hierarchy of such scenes: The top-
level hierarchy (Section 3.1) organizes the list of surface
patches. After traversing the top-level, all rays are sorted
according to patches they possibly intersect, increasing lo-
cality and minimizing the number of tessellation steps. The
bottom-level consists of the micro-polygons which are tes-
sellated on-the-fly on demand. The micro-polygons of one
patch are diced into a micro-polygon buffer, and a high-
quality BVH is constructed in linear time in the number of
micro-polygons (Section 3.2), exploiting the regular topol-
ogy of a diced patch. Furthermore, the number of tessellation
steps during rendering is effectively reduced by adapting the
level of detail (Section 3.3).

Altogether, the architecture collapses the inherent recursive
nature of ray tracing to allow for better vectorization and
combines the strengths of tracing ray packets [WBWS01],
fast incoherent mono-ray traversal [DHK08], and rasteriza-
tion: Our technique inherently handles displacements and
procedural geometry, supports simple shader writing and
large depth complexity. It optimizes the utilization of mem-
ory bandwidth and coherence and furthermore is highly par-
allel.

2. Previous Work

A lot of work has been done to render complex geom-
etry [SBB∗06, LYM07, LYTM08] not specialized for the
Reyes architecture.

The fundamental assumptions and design principles of the
Reyes image rendering architecture have allowed to model
and render diverse and complex content, as postulated in the
original publication [CCC87]. The concepts were so funda-
mental, that the many extensions (e.g. [HL90, LV00]) seam-
lessly complemented the basic architecture. As one of the
design principles was to keep expensive ray tracing to a min-
imum, it is not surprising that the addition of minimal ray
tracing turned out to be restrictive. The most recent ray trac-
ing extension was profoundly described in [CFLB06]. With
our technique we demonstrate how a ray tracing system can
deal with the same complexity in geometry modeling and
shading while adding the benefit of simple Monte Carlo-
based global illumination computation using path tracing.

Key to our system is the reordering of rays to increase lo-
cality for ray tracing massive data which, in rather general
settings, has been investigated before [LMW90, PKGH97,
NFL07, BBS∗09]. Our approach, however, directly benefits
from the intrinsic data locality of the common two-level
modeling approach: large surface patches in the top-level,
and displacements or procedural details and complex shad-
ing at the bottom-level. This approach is particularly com-
mon in games, for example using parallax occlusion map-

ping [Tat05]. Ray tracing displaced primitives using tes-
sellations [SB87], caches [PH96] or direct grid-like traver-
sal [SSS00] has been investigated in depth, also on the GPU
for geometry images [CHCH06]. The GPU can also be used
to dice/tessellate Reyes patches [PO08]. Acceleration struc-
tures for ray tracing have been build in complexity below
O(N logN) before [HMF07]. In Section 3.2 we show that
our method is much simpler and matches current hardware
better than their method.

In our two-level approach rays are reordered, grouping ac-
tive rays which potentially intersect the same patch. Similar
to the approach taken in the Kilauea render system [KS02]
the resulting (ray, patch) lists can then be processed in par-
allel without additional caching strategies.

The Razor architecture [SMD∗06] was designed to alleviate
similar problems of ray tracing, to obtain better data access
and computation patters. It uses current results of that time
to accelerate ray tracing for the processors available by then.
Today, cache lines (and fetches) get larger and data paral-
lelism is getting wider, GPUs being the extreme example.
Thus, linear memory access has become more important,
and simple streaming of large blocks is often more efficient
than highly recursive tree traversals and lazy builds with a
lot of branches. The Razor system does not use displace-
ments or pluggable artist-driven geometry shaders, so it is
not optimized to avoid these computations, nor for the ex-
cessive level of detail needed for production. The hierarchies
used here are also significantly different and more compli-
cated than our algorithm. For their level of detail, they need
a set of pairs of kd-trees for every two adjacent levels of
detail, which are merged together in one acceleration struc-
ture. Additionally, at the lowest level, the vertices are stored
in a 5x5 grid, which is created on demand and traversed as
in [SSS00].

Our method on the other hand comes along with two levels
of hierarchy, has implicit levels of detail (in the upper levels
of the bottom-level QBVH), and can be diced, displaced and
built with optimal memory access and data parallelism.

There exists an impressive system [PH96, PKGH97], which
relies on a set of different caches for the rays, geometry and
textures. However, processor architectures have moved on
since then and, as we will show, caching does not work well
in our setting. Additionally, our system is much simpler and
transparently increases locality for rays, textures, BRDF data
and geometry.

Level of detail (LOD) has been added to both
Reyes [CHPR07] and ray tracing architectures, e.g.
using multi-resolution meshes [SMD∗06] or simplifi-
cation [YM06]. For ray tracing, the choice of LOD is
commonly based on ray differentials [Ige99]. We show that
in the case of our architecture, simpler mechanisms may be
used.
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Figure 2: The buffers used to sort the rays. Top: main buffer
holding the actual ray structs, containing information such
as hit distance, normal, ray origin, reciprocal direction. This
buffer is not sorted and can be used to derive pixel indices.
After one iteration of QBVH intersection, the second buffer
is filled in parallel with entry points and all inactive rays are
removed. Finally, all patches with a possible intersection on
the way are stored in the third buffer. In this example, if an-
other ray terminates, enough memory becomes available for
each of the three remaining rays to store one more intersec-
tion in order to tackle a larger depth complexity, four in this
case.

3. A Two-Level Ray Tracing Hierarchy

Our rendering system follows the two-level modeling ap-
proach commonly applied by artists who often create coarse
geometry from free form surfaces and refine it by adding ge-
ometry shaders and complex reflection shaders to them.

In order to minimize the number of dicing operations we in-
troduce an active ray buffer. Directly after traversing the top-
level hierarchy, all potential intersections are sorted by patch
id. Then each patches reflection and geometry shader is pre-
pared only once for this iteration. Lastly, all rays associated
with the patch are now processed in one block of computa-
tion. As new rays might be generated due to recursive ray
tracing the loop of top-level traversal, sorting, tessellation
and bottom-level processing is iterated as needed. Finally,
the result of the first hit point is added to the accumulation
buffer.

Partitioning the computation this way greatly facilitates par-
allelization in each of the four processing steps. Even for
global illumination computations where rays are typically
incoherent after the first bounce, the explicit sorting step
maximizes coherence for further processing.

3.1. Top-Level Hierarchy

Our approach is based on a QBVH [DHK08], whose leaves
are the conservative bounding boxes of single patches. Then
the ray buffer is filled with all available rays and each ray tra-
verses this top-level hierarchy in turn, which can be executed
in parallel by partitioning the ray buffer.

Instead of directly intersecting a ray with patches, a max-
imum of N first intersections of a ray with leaf bounding
boxes are recorded in an array that keeps tuples of the form
(rayid, leafid). In an optimal case all possible intersec-
tions would fit into this buffer. Given a number R of rays
and a memory size M, N is proportional to M/R. This ar-
ray is then sorted by leafid in order to reduce mulitple
accesses to the same leaf node. This approach may resem-
ble [NFL07], however, specific details are not disclosed in
their work and only simulated memory traffic statistics are
provided.

In another buffer, the last leafid is stored as an entry point
for all active rays, so the actual ray buffer remains in orig-
inal order which can be used to implicitly associate pixel
positions and rays (see Figure 2).

For each leafid in the array, the leaf object is tessel-
lated and the rays corresponding to the leafid are traced
through the leaf object (see Section 3.2). In a parallel im-
plementation each thread picks the next leafid as a task.
Writing back intersection results to rays is either serialized
by implementing a few locks for larger blocks of rays or,
more efficiently, by writing the ray intersections to small
buffers for each thread, which are synchronized at the end.

Once all rays are intersected, the top-level traversal is contin-
ued using the last leafid as an entry point. Since traversal
is ordered by ray direction, it is always clear which children
have already been processed when stepping up in the hierar-
chy.

Early termination is realized by intersecting the ray and a
leaf bounding box prior to tessellation. The resulting number
R′ of remaining rays is then used to determine a larger N′ ∼
M/R′ similar to above. This way, the process does not have
to be repeated often, as the depth complexity of most scenes
(the forest scene in Figure 1 has an overdraw of about 200)
is reached quickly.

This scheme enables two more optimizations. First, in the
presence of shaders, which require to access large memory
blocks (such as measured BRDF data), many rays intersect-
ing the respective surface will have an early out event at the
same time and thus the memory does not have to be accessed
several times. Second, to further reduce the need for repeated
dicing over generations of rays, the early termination event
can be used to shade a terminated block of rays, and spawn
new ray directions, which can directly be intersected with
the already diced originating patch and then be re-injected
into the top-level traversal.

3.2. Bottom-Level hierarchy

After the patches which might intersect a set of rays have
been found by the top-level hierarchy, they have to be
diced and displaced, evaluating geometry shaders. The re-
sulting micro-polygons are stored in the micro-polygon
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Figure 3: The top row shows a surface patch and the teapot
without (left) and with displacement mapping (right). In the
bottom row the bounding volume hierarchies implied by the
micro-polygon array topology are visualized by rendering
them transparently and darkening their contours. Differ-
ences between the hierarchies are difficult to spot, which in-
dicates that reasonable displacement does not much affect
the efficiency of the implied acceleration data structure.

buffer, which represents 2m× 2m micro-polygons as a two-
dimensional array of (2m + 1)× (2m + 1) vertices, where
each four adjacent vertices define one micro-polygon.

Surface patches must implement a tessellation method, that
computes the micro-polygon vertices by either sampling or
subdividing a surface patch, applies trimming and displace-
ment, and stores interpolated (s, t) texture coordinates. Ver-
tices are displaced along interpolated per-vertex displace-
ment normals. Afterwards a loop over all micro-polygons
evaluates whether or not the micro-polygon is clipped or
trimmed. Unless the micro-polygon is discarded, its bound-
ing box, color from texture, and normal by vertex differences
are computed and stored.

Such a tessellation method must be aware of the resolution
of the micro-polygon buffer. In case of insufficient resolu-
tion, surface patches must be split and the parts processed
separately.

3.2.1. Construction in Linear Time

The number of 4m = 2m × 2m micro-polygons and their
topology suggest using a complete quad-tree of axis-aligned
bounding boxes as acceleration hierarchy for ray tracing.

Although in general, complete trees for ray tracing cannot
be recommended [Wäc08, Sec. 2.4.1], this concept is very
appropriate for tessellated surface patches: Unless the patch
is overly curved or extremely displaced, the array topology
very well represents spatial proximity as illustrated in Fig-
ure 3 and results in fast ray tracing (see Figure 4).

While typically the construction time for a spatial ac-
celeration structure is O(n logn) in the number of trian-
gles [WH06,Wal07], our bottom-up construction of the com-
plete quad-tree is linear in the number of nodes ∑

m
i=0 4i ∈

O(4m) and thus linear in the number of micro-polygons of
one surface patch. In contrast to [HMF07], this can be done
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Figure 4: Timings comparing bottom-level construction
strategies. On the left, a full SAH build of the micropolygon
BVH is done, in the middle, a spatial median was used as
split plane candidate, on the right is implicit construction.
The one-patch scene and the teapot is as is Figure 3 (dis-
placed version). These timings have been taken for primary
rays only.

without explicit input hierarchy and in a non-recursive man-
ner, thus featuring a better memory access pattern.

Ray tracing the micro-polygon buffer starts by marking all
axis-aligned bounding boxes of the hierarchy as empty be-
fore calling the tessellation method. After the bounding
boxes of the micro-polygons have been determined, the
bounding volumes of the inner nodes of the hierarchy are up-
dated in a bottom-up manner, similar to MIP maps. This is in
fact similar to the min max MIP map utilized in [CHCH06].
Note that bounding boxes marked as empty do not need to
update their parent boxes and also can be handled transpar-
ently during ray traversal. Since the memory for the micro-
polygon buffer data structure is allocated once for the whole
rendering process, it does not make sense to optimize for
memory of the empty bounding boxes or omitted micro-
polygons. Rays are then intersected with the acceleration
structure using single ray traversal. Improved memory ac-
cess by tracing ray packets did not pay off at this stage, as
even these pre-sorted rays for one patch are very incoher-
ent with regard to traversing the bottom-level hierarchy in
the case of path tracing. We tessellate down to sub-pixel size
and use the boxes of the leaf nodes directly as geometry, as
this accuracy is sufficient [DK06].

To assess the quality of the implicit BVH construction for
patches, we tested two very simple scenes, to avoid the ef-
fect of a complicated top-level hierarchy in the figures. In
Figure 4, timings are plotted for a scene containing only one
patch, and the displaced teapot scene (see Figure 3). The
bottom-level ray tracing time can be slightly improved when
using a general SAH build for the teapot (0.119 seconds
SAH vs. 0.121 seconds implicit), for the simple one-patch
scene, the implicit tree can even be ray traced faster (0.041
seconds SAH vs. 0.028 seconds implicit). This might be also
due to the fact that our bottom-level QBVH traversal imple-
mentation exploits the special memory layout of the implicit
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BVH, using skip lists. It also explains the difference to the
ray tracing time of the midsplit tree (0.048 seconds), which
results in quite similar topology.

3.3. Level of Detail

A common and very useful technique to increase efficiency
when rendering complex models is level of detail (LOD), i.e.
the use of simplified geometry in appropriate cases, for ex-
ample for a tree which is far away and can hardly be seen. We
facilitate this by choosing the parameter m from Section 3.2
accordingly.

There are three major problems when LOD is used: First,
if two adjacent patches are tessellated in a different LOD,
there can be cracks along the boundary of the patches. Sec-
ond, a mechanism to identify the required LOD is needed.
This is mostly done using ray differentials [Ige99], as a lo-
cal approximation of the distance to the neighboring ray cast
from the pixel raster. A third common problem is popping,
i.e. objects suddenly appearing in more detail, which results
in distracting, quick changes in animations. A fourth prob-
lem related to ray tracing is self-intersection, which is the
problem that new rays emerged from a surface erroneously
report an intersection with exactly this surface.

The problem of cracks can be avoided by stitching the ad-
jacent geometry together [CFLB06, Sec. 6.6], but in our
setting, this is not necessary. As tessellation is sufficiently
fine such that the smallest boxes of the BVH can directly
be used as primitives, cracks never appear: if the adjacent
box is larger, it will span at least the area of the two smaller
ones. Of course this requires coarse boxes to use conser-
vative bounds during sampling of the patch. This can be
achieved by min-max MIP-maps when using textures. In our
case, we use interval arithmetic on the noise function.

Ray differentials are an approximation of the distance to
neighboring rays hitting the same surface. In our system, we
trace all rays at once. Thus, at first sight, there is no need for
such an approximation, since the information about the other
rays is at hand. In practice, it is a bit harder since we want to
choose the LOD before tessellating a patch. That is, we need
to decide for a LOD based on the patch bounding box and
a group of rays intersecting this patch. Currently, we solve
this by assuming uniform distribution of the ray directions
and origins. Consequently, tessellation is done such that the
number of resulting voxels is at least equal to the number
of rays R intersecting this patch: m := min{k|4k ≥ R}. This
is evaluated very fast and has the advantage that in regions
of path space with blurry contributions (e.g. after a diffuse
bounce), which will have a low ray density, coarse geome-
try (i.e. low LOD) will be used. On the other hand, specular
reflections will keep rays close together, resulting in precise
geometry.

This simple and fast non-recursive heuristic proved good
enough for our purpose, but can fail if the assumption of

uniform ray distribution is violated. Most notably, this is the
case if a patch only partly overlaps the viewport. Then the
visible part of the patch will have a much higher ray density
as our heuristic assumes. This problem could be addressed
by a small statistic to estimate the minimum distance of the
rays.

If available in the rendering system, individual ray differen-
tials can always be used per ray. Because the bottom-level
acceleration structure is a complete quad-tree and the hit
points are calculated as the intersection with a bounding box,
the upper levels always represent the coarser levels of de-
tail. The rest of the shading information (color from texture,
uvs, normals from vertex differences) can then be filtered
as needed and rays can be terminated at individual levels of
detail. Note however that this will result in a slightly more
complicated memory access pattern.

Of course LOD is an approximation that implies a compro-
mise with quality, but the speedup is significant. For some
extremely massive scenes it is the use of LOD which makes
the difference whether a scene can be rendered or not. The
forest in Figure 1 experienced a 50× speedup when using
LOD compared to rendering it with a medium detailed, fixed
LOD for all patches.

The popping problem is ameliorated by the fact that LOD
is chosen to be sub-pixel accurate for lens connection rays.
This way, no popping of directly visible geometry can
take place. Unfortunately, for secondary effects as self-
shadowing of a patch, popping can still become visible in
form of a noticeable difference in shading. This can be alle-
viated by adding a-priori knowledge of rays to be spawned
at the surface to the LOD decision. Other ways to create
soft shadows are to complement the coarse levels with direc-
tional opacity information as in [LBBS08] or use frequency
domain filtering [HSRG07].

To avoid self-intersection, the origin of the new ray has to
be pushed outside the hit point voxel. This is done by an
offset in normal direction of ε = W/2m and W the largest
box width of the bounding box of the patch during bottom-
level traversal. This LOD-dependent offset is applied during
traversal, to ensure different LOD between the waves of rays
are considered correctly.

3.4. Motion Blur

Motion approximated by linear splines is standard in pro-
duction (see e.g. [CFLB06, Sec.6.3]). Given the instants
t0 < t1 < · · ·< tn defining the time intervals [ti, ti+1), tracing
a ray at time t ∈ [ti, ti+1) is accomplished by instancing two
micro-polygon buffers, one at time ti and one at time ti+1.
The actual bounding boxes and micro-polygons used during
ray traversal then are determined by linear interpolation. We
use this method for the bottom-level hierarchy.

Concerning the top-level hierarchy, the same principles can
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motion blur no motion blur
dice [s] 211.06 104.10
bottom-level [s] 86.90 56.50
top-level [s] 27.70 24.76
shade [s] 25.20 25.36
sort [s] 34.84 28.82
#diced patches 1497633 1313136
total time [s] 179.0 133.0

Table 1: Timings for the forest scene with exaggerated mo-
tion blur on a core2 quad. Motion blur results in a slowdown
of a factor of two for the dicing stage, and micro-polygon
intersection is slightly slower. As more patches have to be
diced in the presence of motion blur, also the sorting time is
increased. All times are total times, except dice and bottom-
level times, which are accumulated over all four cores.

be applied. However, due to the cost to construct the hier-
archy, we chose to use only one hierarchy based on bound-
ing boxes conservatively covering the whole time interval
[t0, tn).

See Table 1 for a comparison of render times with and with-
out motion blur.

3.5. Tracing Rays in Groups and by Generation

Physically-based rendering requires a lot of rays to be traced.
This number is typically too large to fit the required ray
buffer into main memory. Also, at the beginning, not all rays
are known. Some effects (such as soft shadows, ambient oc-
clusion, reflections and so on) require several passes to be
rendered, i.e. another generation, or wave, of rays to be shot.

There are several choices, which balance depth complexity,
re-dicing, and memory requirements:

• Re-inject rays as needed after an early termination event.
This is done by replacing the terminated ray by a newly
spawned one, instead of removing it from the buffer. This
will always utilize the ray buffer well and use the (rayid,
leafid) buffer for new rays rather than to tackle depth
complexity (see Section 3.1)

• Group rays by generation. This fixes the memory require-
ments for this wave of rays, but suffers from re-dicing for
each pass.

• Tile the screen. This can exploit some locality for first
generation lens connection rays, but as rays quickly be-

Figure 5: A tree rendered using our architecture. If it was
dumped to a triangle mesh, it would consist of around 8.4
billion triangles (micro-polygons from 12k displaced Bézier
patches). Due to the lazy procedural geometry generation
and the level of detail system, our system does not even cre-
ate all these, and is able to render this scene with global
illumination in a few minutes.

come divergent, re-dicing is as bad as in the previous vari-
ant.

Our current implementation uses the second approach. In
general it is most efficient to trace as many rays as possible
(i.e. fit into main memory) at a time.

For a simple path tracer, it is sufficient to update a single
(spectral or RGB) path contribution value in the ray at each
bounce. In the presence of complex reflection shaders with
splitting into S sub-paths, each new ray needs to be assigned
the correct weight 1/S, but great care has to be taken not to
exceed the buffer limits. A similar approach would be taken
to implement ambient occlusion.

Bi-directional path tracing can be done by first tracing a
wave of S paths from the sensor and T paths from the lights
at the same time (resulting in S + T rays at a time). After
that, S · T connection rays have to be spawned with the re-
spective weights, for example calculated using multiple im-
portance sampling [VG95]. To bring the number of connec-
tion rays down to S + T as well, Russian roulette based on
these weights can be used.



J. Hanika & H. P. A. Lensch & A. Keller / Two-Level Ray Tracing with Reorderingfor Highly Complex Scenes 7

Figure 7: A dinosaur (taken out of the natural history museum from the lighting challenge site and converted to Bézier patches
using vertex normals), with 56k patches. On the left, around 11 million micro-polygons out of 59 billion possible have been
created and rendered using path tracing in 18 seconds on a core2 quad. On the right, a noisy displacement has been applied,
resulting in about 34 million created micro-polygons and an increased render time of 37 seconds. Both images are rendered at
960×640×16 samples. Some of the time is spent in the (intentionally) expensive procedural displacement texture.

Figure 6: Stress test: this forest consists of two million
patches, which would need a triangle mesh equivalent of
more than 1050 billion triangles fully tessellated. Fully path
traced with motion blur at 1920×768×16 samples in 2:24
minutes on a four core machine.

dicing 1000 trees 100 trees memory needed
cache 10 1897385 1161468 4374 MB
cache 100 943669 772491 43732 MB
cache 1000 825808 606371 437320 MB
reordering 482405 354534 6600 MB

Table 2: This table shows how often patches have to be
diced using a cache with 10, 100 and 1000 patches and our
reordering method. Numbers are acquired for the two for-
est scenes with motion blur at 1920× 768× 64 rays, LOD
m = 9. The caching method requires an exorbitant amount
of memory and still does not reach our numbers by far.

4. Results

We implemented a Monte Carlo global illumination renderer
on top of our ray tracing architecture. We chose a simple path
tracer with next event estimation, i.e. paths are traced from
the eye and are taken through a maximum of three bounces,
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additionally sampling the direct light contribution at each in-
teraction point. At each point, Russian roulette is used to de-
cide whether to sample the hemisphere or the light sources.
This way, a maximum number of width × height × samples
per pixel × 4 rays is traced per frame. While uncommon in
movie production, this is a good demonstration of the gener-
ality of our method.

To achieve equivalent detail in a regular mesh-based ren-
derer, the micro-polygons would have to be dumped to a
triangle soup which would exceed the capacities of these
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Figure 9: Rendering time is determined by the pro-
grammable parts of the system, i.e. shading and surface
patch tessellation (tessellation time is linear and takes over
100 seconds for 4 ·106 micro-polygons and is therefore omit-
ted in the plot). Timings are obtained for the displaced teapot
example (Figure 3).

eye bounce 1 bounce 2 bounce 3
R N R N R N R N

23592960 8 21589447 8 15585868 12 10052438 18
19009592 9 16419230 11 10886646 17 6707465 28

5840016 32 4549352 41 1529033 100 298166 100
1115814 100 406945 100 14093 100 82 100

1062 100 17 100 - - - -

23592960 8 20674988 9 11985885 15 7311443 25
11479199 16 11145131 16 4617303 40 1775062 100
2110951 89 1241408 100 59364 100 204 100

7509 100 333 100 - - - -

Table 3: Tackling depth complexity: when rays are termi-
nated early due to sorted BVH traversal, the memory can be
used to store more patch intersections N for the remaining
rays R. This is an example for the forest in Figure 6 (top ta-
ble) and Figure 1 (bottom table), for the four waves of path
tracing with next event estimation. N is capped at 100 to
avoid excessive fragmentation of memory for simple cases.

renderering systems. We therefore do not show comparisons
with these. We tested the system on a variety of scenes rang-
ing from trivial (Figure 3 left, equivalent to 260k triangles)
over simple (Figure 3 right, equivalent to 16 million trian-
gles), moderately complex (Figures 1,5 and 7) to massive
scenes with detail equivalent to a mesh with over 1050 bil-
lion triangles (Figure 6), and scenes using reflection shaders
accessing very large measured BRDF data sets (Figure 10).
The trees are procedurally generated using L-systems with
procedural displacement textures for the patches. The rest of
the scenes is modeled in Bézier patches.

As all available rays are intersected with the scene at once
before shading is started, complex reflection shaders benefit
from this deferred shading architecture. If a second sorting
step is inserted after all ray intersections have been found,
even one single data load operation per bounce can be guar-
anteed. This is necessary, if not all used BRDF data sets fit

scene maximum accessed
100 trees (Figure 1) 108 ·109 170 ·106

1000 trees (Figure 6) 1,058 ·109 317 ·106

dinosaur (Figure 7, left) 59 ·109 11 ·106

displaced dinosaur (Figure 7, right) 59 ·109 34 ·106

Table 4: Impact of LOD and early ray termination due to
occlusion: ratio of micro-polygons actually created to a con-
stant LOD of m = 9.

Figure 10: Four teapots rendered with measured BRDF
data. One BRDF data set alone is over 300 MB large, and
each teapot consists of over 16 million triangles. Thanks to
reordering of shading computations, it can be guaranteed
that each BRDF data set is loaded only once per bounce.

into main memory at the time. In the case of our test scene
(Figure 10), this was not necessary, but the time spent to sort
the ray buffer can almost be neglected compared to the time
spent in shading (less than 10 seconds compared to 263 sec-
onds for shading 960×640×64 rays).

We implemented a caching based system as a comparison,
similar to [PH96]. Our results in Table 2 indicate that for
highly complex scenes caches need to be very large. With
our reordering method, they are not even necessary, and the
implementation becomes thus a lot simpler than [PKGH97].

For a single pass path tracing at 1920x768x64 rays, our
method needs 6120+480 MB, (68 bytes per ray plus one
diced patch, note that this includes acceleration structure,
textures and normals) as compared to 43732 MB needed for
a geometry cache with only 100 cachelines for LOD m = 9
(i.e. 512× 512 micro-quads with uvs and normals at two
time instances) preferably for each thread. This cache would
not even with 1000 lines match our dicing numbers, which
dominate render time.

For an example how depth complexity is handled by the lim-
ited (rayid, leafid) buffer (see Section 3.1), see Ta-
ble 3. It can be seen that even for scenes with very large
overdraw, only few iterations are required. As some rays ter-
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minate, the buffer is quickly available for the remaining rays
to store many more intersection candidates in the next itera-
tion.

To get an impression of the impact of LOD, see Figure 9. The
rendering times are dominated by dicing, so the graph shows
only timings for top- and bottom-level traversal and shad-
ing. As expected, dicing and bottom-level tree construction
seems to be linear, and tracing bottom-level rays about loga-
rithmic. Top-level traversal does not change in this chart, as
the top-level hierarchy is not affected by the LOD changes.
Obviously a lot of time can be saved by reducing the number
of micro-polygons per patch.

Our system does this very effectively by avoiding dicing for
occluded patches altogether on the one hand, and choos-
ing LOD on the other. Table 4 illustrates this. The compar-
ison here is done between actually created micro-polygons
and the number of polygons in a triangle mesh with equiv-
alent detail the maximum LOD m = 9. Note that this num-
ber is not overly large, this LOD is also chosen for some
patches by the algorithm and becomes especially necessary
for heavily displaced patches. The figures show that our sys-
tem can robustly handle a vast amount of geometry, which
surpasses the complexity demonstated by the Razor sys-
tem [SMD∗06]. Also, we do not need to keep any diced
micro-polygons which avoids the problem of flushing on
demand geometry. In contrast, the Razor system explicitly
stores all data, and only discards everything when a memory
overflow trigger is hit.

5. Conclusion

We presented a ray tracing method which is able to effi-
ciently handle large amounts of data resulting from free form
surface patches, details added by micro-polygon tessellation
and data intensive reflection shaders. Expensive (in terms
of computation or memory access) geometry and reflection
shaders are handled well, due to reordering of computations
which results in great data locality. Parallelization is simple
as all rays traverse one phase before the next one is started.
We introduced only one additional sorting step on the ray
buffer, which has negligible impact on rendering time.

There are no restrictions imposed on ray tracing. However,
there are some limitations when using the method in a ren-
dering system. First, the shading language needs a mecha-
nism to dispatch a ray and correctly account for its contribu-
tion by the time it finishes (see Section 3.5). For physically-
based rendering, this is not a problem, since a BRDF can be
handled transparently.

Second, the presented LOD assumes good importance sam-
pling. That is, it assumes that if rays are diverging, the con-
tributing radiance is low frequency. It will thus result in
blocky shadows if sampling a small direct light source over
the hemisphere instead of the geometry. If this is recognized

by the rendering algorithm, it can be used as a feature to
speed up low-frequency indirect illumination.

In future work, the method can be complemented by special-
ized rendering algorithms which better exploit its strengths
by reflecting the two-level nature, such as local high-
frequency ambient occlusion inside a diced patch together
with a far-field approximation for global illumination, simi-
lar to [KK04, AFO05].
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