

Ulmer Informatik Berichte | Universität Ulm | Fakultät für Ingenieurwissenschaften und Informatik

Correct Configuration of
Process Variants in Provop

Alena Hallerbach, Thomas Bauer, Manfred Reichert

Ulmer Informatik-Berichte
Nr. 2009-03

Februar 2009

Correct Configuration of Process Variants in Provop

Alena Hallerbach1, Thomas Bauer1, and Manfred Reichert2

1 Group Research and Advanced Engineering, Daimler AG, Ulm, Germany
{alena.hallerbach, thomas.tb.bauer}@daimler.com

2 Institute of Databases and Information Systems, Ulm University, Germany
manfred.reichert@uni-ulm.de

Abstract. When engineering process-aware information systems (PAISs) one of
the fundamental challenges is to cope with the variability of business processes.
While some progress has been achieved regarding the configuration of process
variants, there exists only little work on how to accomplish this in a correct man-
ner. Configuring process variants constitutes a non-trivial challenge when con-
sidering the large number of process variants that exist in practice as well as the
many syntactical and semantical constraints a configured process variant has to
obey in a given context. In previous work we introduced the Provop approach
for configuring and managing process variants. This paper picks up the Provop
framework and shows how it ensures correctness of configurable process variants
by construction. We discuss advanced concepts for the context- and constraint-
based configuration of process variants, and show how they can be utilized to
ensure correctness of the configured process variants. In this paper we also con-
sider correctness issues in conjunction with dynamic variant re-configurations.
Enhancing PAISs with the capability to correctly configure process models fit-
ting to the given application context, and to correctly manage the resulting pro-
cess variants afterwards, will enable a new quality in PAIS engineering.

Key words: process-aware information system, process variant, process config-
uration, correctness by construction

1 Introduction

Process support is required in almost all business domains [1]. As examples consider
healthcare [2], automotive engineering [3, 4], and public administration [5]. Charac-
teristic process examples from the automotive industry, for instance, include product
change management [6] and release management [3]. When engineering process-aware
information systems (PAIS) one of the fundamental challenges is to cope with busi-
ness process variability and the large number of variants that may exist for a particular
process [4, 7–9]. Usually, each of these variants is valid in a particular context [10].

Regarding vehicle repair in a garage, for example, we have identified hundreds of
process variants which smoothly differ from each other depending on country-specific,
garage-specific, and vehicle-type-specific characteristics. Similar observations can be
made for release management processes, for which we identified more than 20 differ-
ent variants in an automotive company depending on the respective car series, involved
suppliers, and development phases [3]. Or when studying the product creation process

in the automotive domain, we can identify dozens of variants. Each of them is assigned
to a particular product type (e.g., car, truck, or bus) with different organizational re-
sponsibilities and strategic goals, or varying in some other aspects. Generally, the con-
figuration of a particular process variant depends on concrete requirements building the
process context [10].

While some progress has been achieved regarding the modeling and management of
process variants, there are only few approaches dealing with the fundamental question
how to configure variants out of a master process such that correct and consistent exe-
cution behavior can be guaranteed for them [7–9, 11]. Though there exists considerable
work on how to ensure structural and behavioral soundness of single process models, is-
sues related to the correct configuration of process variants have been neglected in most
cases so far. Here, the challenge is to guarantee soundness of a whole process family
(i.e., a collection of process models) taking into account syntactical as well as semanti-
cal constraints to be met by the configured variants. Thereby, our goal is not to develop
just another approach for checking soundness of single process models, but to provide
a framework for configuring semantically valid as well as sound process variants. In
particular, soundness checks should be limited to the process variants being relevant in
practice, instead of considering all configurable variants. This is particularly important
for scenarios in which a large number of variants exists.

In previous work we introduced the Provop (Process Variants by Options) approach
for configuring and managing process variants [10]. Provop considers the whole process
life cycle and supports variants in all phases following an operational approach [4].
More precisely, a concrete variant can be configured out of a master process model
(denoted as base process in Provop) by applying a set of high-level change operations to
it [12]. This paper extends the Provop framework and shows how variant configuration
can be accomplished such that we obtain sound variant models afterwards. Besides
correctness of variants configured at design time, we also consider correctness issues in
connection with dynamic reconfiguration of process variants due to context changes.

Section 2 gives background information on Provop. Section 3 extends the Provop
framework by enabling context- and constraint-based configuration of process variants.
Picking up this extension, Section 4 presents an algorithm that ensures correctness of
all configurable process variants by construction. We extend these considerations in
Section 5 by considering dynamic variant reconfigurations as well. Finally, Section 6
discusses related work and Section 7 concludes with a summary and outlook.

2 Backgrounds - The Provop Approach

Generally, a process model variant (process variant for short) can be created by “cloning”
a given process model and adjusting it according to the specific requirements of its ap-
plication context [13]. Provop adopts this metaphor for variant creation.

Note that Provop has not been developed with a specific process formalism in mind,
but shall provide an overall conceptual framework for variant modeling and manage-
ment. We further assume that a process schema can be changed by applying a sequence
of (high-level) change operations (e.g., to insert, delete or move process fragments) to
it. We define process schema change and process variants as follows:

2

Definition 1 (Process Change and Process Variant)
Let P denote the set of possible process schemes and C the set of possible process
changes. Let S,S′ ∈ P be two process schemes, let ∆ ∈ C be a process change, and let
σ = 〈∆1,∆2 . . .∆n〉 ∈ C* be a sequence of process changes. Then:

– S[∆〉S′ iff ∆ is applicable to S and S′ is the process schema resulting from the appli-
cation of ∆ to S.

– S[σ〉S′ iff ∃ S1,S2, ...Sn+1 ∈ P with S = S1,S′ = Sn+1, and Si[∆i〉Si+1 for i∈ {1, ...n}.
We also denote S′ as variant of S.

For describing process changes, Provop supports well-defined change patterns [14,
19]: INSERT fragment, DELETE fragment, MOVE fragment, and MODIFY attribute. While
the first three patterns may be applied to a model fragment (i.e., a connected subgraph in
Provop), the latter pattern can be used to modify the value of a process element attribute.
(We provide a formal semantics of change patterns in [15]).

In Provop a process schema (denoted as base process is the following) can be as-
sociated with adjustment points that correspond to entries or exits of activities and
connector nodes respectively (cf. Fig. 1 and Definition 2). This, in turn, enables design-
ers of process-specific adaptations to refer to selected process fragments. By the use
of explicit adjustment points we can restrict the regions of the base process to which
adaptations (e.g., insertion or deletion of a fragment) may be applied when configuring
a variant. Finally, to enable more complex process adaptations as well as their reuse
in different context, Provop allows to group change operations into reusable operation
sets, which we denote as options (cf. Definition 2). In summary, a particular variant can
be configured by applying one or more options to the given base process.

Definition 2 (Base Process, Options, and Process Family)
Let P be the set of process models and C the set of possible process changes. Let further
each process change ∆ ∈ C be represented as parameterized change operation. Then:

– A base process S = (N,E,AP, ...) ∈ P is a process model with node set N and
edge set E. Additionally, it is associated with a set of adjustment points AP ⊆
Identi f iers×N ×{pre, post}. Thereby, adjustment point ap = (id,n, pos) ∈ AP
either corresponds to the entry (pos = pre) or exit (pos = post) of node n ∈ N

– Let S = (N,E,AP, ...) ∈ P be a base process. An associated option o = (oid,σ)
then corresponds to a sequence of process changes (i.e., σ =< ∆1,∆2 . . .∆n >) that
may be applied to S (or a variant derived from it). Thereby, ∆k (k = 1 . . . n) refers to
corresponding adjustment points or process elements (i.e., nodes and edges).

– Let S = (N,E,AP, ...) ∈ P be a base process and let O be the set of all op-
tions defined for it. Let further Σ = < o1, . . . ,on > be a sequence of options with
{o1, . . . ,on} ⊆ O and S[Σ〉S′. Then we denote S′ as process variant configurable
out of S by applying option sequence Σ. Further, we denote the total set of pro-
cess variants that may be configured out of a given base process and an associated
options set as process family.

Fig. 1 presents basic Provop elements along a simple example. The depicted base
process represents a vehicle repair process. The process starts with the reception of a

3

vehicle in the garage. After a diagnosis is made, the vehicle is repaired (if necessary).
The process finishes when handing over the repaired and maintained vehicle back to the
customer. Depending on the process context, different variants are required. In our sim-
plified example, three predefined options exist, out of which a subset can be chosen to
configure a particular variant. Option 2, for example, suggests to insert activity Main-
tenance between adjustment points Start Treatments and Treatments finished. Option
3 itself comprises two operations which allow to insert activity Commissioning Sub-
contractor and to update attribute Role of activity Maintenance. Fig. 4 shows different
variants that can be configured out of the base process from Fig. 1 by applying a subset
of the defined options. Note that for more complex examples the number of variants be-
comes by far larger (e.g., dozens up to hundreds of variants for a vehicle repair process
in automotive companies), and thus more options have to be defined to cover all cases.

Fig. 1: Provop example with base process and options

3 Context- and Constraint-based Variant Configuration

Provop targets at correctness by construction; i.e., we want to ensure structural and
behavioral soundness of all configurable process variants already at design time. As
aforementioned, the focus of this paper is less on checking soundness of single process
models, but more on how to reduce the number of process variant models for which
soundness checks has to be checked. In addition, configuration should be accomplished
automatically making use of the process context and considering semantic constraints
regarding possible adaptations of the given base process.

One possible, but naive approach for guaranteeing correctness of configurable vari-
ants would be to apply all possible combinations of options to the base process and
to check soundness for each of the resulting process models. However, this approach
would be very expensive. As example consider the simple scenario from Fig. 1 for
which three options exist. Assuming that options are not commutative in general we
would have to check for 16 different option combinations whether or not their applica-
tion to the base process would result in a sound process variant. Obviously, for more
complex scenarios with dozens of options this is not a feasible approach.

To better understand those factors which are relevant for configuring process vari-
ants, we conducted several case studies in the automotive and the healthcare domain.

4

From this case study research we have learned that there is a strong linkage between the
adaptations becoming necessary to configure a specific variant and the current process
context; i.e., the concrete adaptations of the given base process depend on the process
and application context respectively. Furthermore, we have learned that there exist dif-
ferent kinds of relations between the potential adaptations of a base process. While
certain adaptations are mutually exclusive, others are always applied conjointly. If we
explicitly express such (option) constraints we will be able to reduce the number of pos-
sible permutations and thus decrease efforts for guaranteeing soundness of configurable
variants. This section summarizes how Provop enables context- and constraint-based
variant configuration. We will pick up these concepts in Section 4 when presenting the
Provop approach for guaranteeing soundness of configurable process variants.

3.1 Context-aware Selection of Options

As particular process variants are often required in a specific context, Provop allows for
the context-based configuration of business process variants. For this purpose, a context
model capturing the process context has to be provided. Such context model comprises
a set of context variables as depicted in Fig. 2a. Thereby, each context variable spec-
ifies one particular dimension of the process context.1 Regarding our vehicle repair
process, for example, this can be visualized by a context cube as depicted in Fig. 2c.
Each sub-cube then represents one possible combination of values assigned to the dif-
ferent context variables. We denote respective value assignments as context descriptions
in the following. As not all possible context descriptions are semantically meaningful,
Provop allows to restrict them by context constraints (cf. Fig. 2b). Regarding the given
example, for instance, activity Maintenance will have to be performed anyway if the
required security level is high. Consequently, the corresponding context constraint (cf.
Fig. 2b) invalidates sub-cubes 16, 17, and 18 in Fig. 2c.

Fig. 2: Context model with corresponding table (a), constraints (b) and context cube (c)

For each process family we can define such a context model. Based on it context rules
can be created and assigned to one or more options. This, in turn, enables context-
aware option selection; i.e., if the context rule of a particular option evaluates to true
in a given context description this option will be (automatically) applied to the base pro-
cess when configuring a variant in the given context. Generally, for a particular context
description, the context rules of multiple options may evaluate to true. In such case all

1 In this paper we assume that context variables have a discrete and finite value range.

5

these options shall be considered when configuring the process variant out of the base
process. (We will discuss later in which order the options shall be applied.)

Fig. 3 visualizes the previously introduced options together with their associated
context rules and constraints (see below). From the context rule of Option 2, for exam-
ple, we can conclude that Option 2 will be applied to the base process if context variable
Maintenance has value “Yes” for a given context description.

Fig. 3: Option constraints

3.2 Constraint-based Use of Options

The adjustments which become necessary to configure a particular process variant are
often structurally or semantically correlated. Regarding our example from Fig. 1, for
instance, the application of Option 3 to the depicted base process requires the prior
introduction of Option 2 (since Operation 2 of Option 3 refers to the activity inserted
by Option 2). Besides such structural dependencies semantical constraints have to be
considered as well. For instance, Option 3 semantically implies Option 1 since activ-
ity Maintenance will always require subsequent execution of activity Final Check, if
maintenance is not done by the garage itself, but quality of service has to be ensured.
(Option 3 updates the role attribute of activity Maintenance to Subcontractor.).
Provop supports three different types of option relations in order to express constraints
for the use of options (see Fig. 3 for an example).

– Implication: If two options shall be always applied together to the base process
(e.g. due to semantical dependencies) the option designer may define a directed
implication relation between them. Generally, from relation “Option 1 implies Op-
tion 2” we must not conclude the reverse relation (i.e., Option 2 implies Option 1).

– Mutual exclusion: This constraint is useful to specify that two options must never
be applied together when configuring a specific process variant.

– Option hierarchy: The explicit definition of an option hierarchy enables inheri-
tance of change operations. If an option with ancestors is selected to configure a
particular process variant, its ancestor options will be applied as well. This struc-
tures the total set of options, and also reduces the average number of change oper-
ations needed to define a particular option.

Generally, options and their change operations respectively are not commutative. Con-
sequently, for both options and operations we need to define the order in which they
shall be applied at configuration time. Based on this information, Provop allows to con-
figure process variants through the sequential application of a set of options (and their
change operations) to the given base process. In particular, the chosen option set has
to match the current process context and to comply with the defined option constraints.
How the latter two issues are achieved and how Provop guarantees soundness of the
configurable variants is shown in the next sections. For example, Fig. 4 shows all pro-
cess variants that may be derived from the base process and the options shown in Fig. 1.

6

Note that only those option sets are considered that match to the given context and are
compliant with the defined option constraints (cf. Fig. 3).

Fig. 4: Resulting process family

4 How to Guarantee Soundness of Configurable Variants

This section deals with the fundamental question how Provop ensures correct configu-
ration of process variants without need for intense user interactions.

4.1 Basic Issues and Motivation

One possibility to ensure correctness of configured process variants is to start the con-
figuration procedure with a sound model of the base process and to enforce soundness
after each applied change operation. Consequently, the application of a set of operations
and finally a set of options would result in a sound process model again. This rather
rigid approach necessitates precise pre- and postconditions for the different change op-
erations and requires sophisticated mechanisms to satisfy the pre- and post-conditions.
Another possibility is to first apply the desired options to the base process and then to
check soundness of the resulting process model afterwards. Provop follows the second
approach since it provides more flexibility to the process designer. As pointed out in the
previous section the challenge then is to reduce the number of configurable models to
be checked by only considering those candidates for which the applied options satisfy
the corresponding context rules and meet the defined constraints.

Provop provides high flexibility to users and supports different policies regarding
the definition of the base process for a process family. For example, a base process may
be designed such that it covers all configurable variants or only constitutes a minimal
process model (i.e., an intersection of its variant models) [4]. Unlike existing config-
uration techniques (e.g., [7]), therefore, Provop does not necessarily require a correct
process model as starting point for variant configuration. As example consider Fig. 5a
where Variant 1 describes a car-specific and Variant 2 a bus-specific process variant. If

7

we define the base process as "intersection" of these two variant models, we obtain the
process model depicted at the bottom of Fig. 5a. This base process comprises activities
CA1, CA2, and CA3, but does not contain the car- or bus-specific activity. Interestingly,
the shown model is not correct since the data element read by activity CA3 is neither
written by CA1 nor by CA2. However, this will be not a problem if we can ensure that
the variant model resulting after configuration is correct (see below).

Enforcing a correct base process is not appropriate in the given scenario. When
choosing the model of Variant 1 as base process (cf. Fig. 5b), for example, visibility
constraints may become violated. (Note that Variant 1 would then be visible to the
process owner of Variant 2, who additionally must be able to track the adjustments of
Variant 1 in order to correctly evolve Variant 2 over time). Another inadequate approach
would be to restore correctness of the base process model by adding an abstract activity
to the base process, which writes the data element. However, this might increase mod-
eling efforts unnecessarily when configuring the concrete variants depicted in Fig. 5a.

Fig. 5: Inconsistent base process (a) with an exemplary correctness scenario (b)

4.2 Overview of the Provop Correctness Checking Framework

Guaranteeing soundness of configurable process variants is accomplished in several
steps (cf. Fig. 6). In Steps 1 and 2 valid context descriptions are identified, and for
each of them the corresponding option set (i.e., adjustments of the base process) is
determined. Step 3 then checks whether or not the calculated option sets comply with
the defined option constraints (cf. Section 3). If an option set is not valid an error will
be reported to the designer. Otherwise, Steps 4 and 5 apply each potential option set to
the base process and check whether or not the resulting process variant model is sound.
Results of Steps 4 and 5 are logged in a report (i.e., ResultList). In the following we
describe these five steps in more detail.

Fig. 6: Overview of the Provop procedure for guaranteeing soundness

8

4.3 Basic Steps of the Provop Correctness Checking Framework

We now describe the sketched procedure for checking soundness of a process fam-
ily (i.e., a collection of process variants) in detail. It starts with identifying all valid
context descriptions, for which process variants have to be configured. Consequently,
for corresponding cases we need to guarantee correctness of the configurable vari-
ants. As invalid context descriptions are implicitly specified by the given set of context
constraints, Provop first evaluates all possible allocations of values for context vari-
ables. In order to check whether or not a given context description is valid, function
contextDescriptionValid (cf. Appendix A.5) is provided. For a given context de-
scription this function will return true if there is no context constraint in the given
context model that invalidates this context description. As result of Step 1 we obtain the
set of all valid context descriptions (stored in the variable CDvalid).

// Step 1: Identify valid context descriptions
CDvalid = /0 // Initializing the set of valid context descriptions
// create context descriptions by simulating all possible values in the value range of each
context variable CtxtVari, i=1,..,n defined in the context model. We assume that corre-
sponding value ranges ValueRange(CtxtVari) are discrete and finite.
for all CtxtDescription ∈ (ValueRange(CtxtVar1) × ... × ValueRange(CtxtVarn)) do

// check whether or not the current context description is valid
if contextDescriptionValid(CtxtDescription) = true then

CDvalid := CDvalid ∪ {CtxtDescription}

Example 1: In our example from Fig. 2 context cubes 16, 17, and 18 become invalid due to the
context constraint “IF Security-level = high THEN Maintenance = yes”. All other con-
text descriptions are valid. Therefore, we add them to set CDvalid of valid context descriptions;
i.e., CDvalid = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}.

For each valid context description Step 2 calculates the option set to be applied when
configuring the corresponding variant. (An option set can be empty as the base process
itself can be a variant.) For this purpose, Step 2 utilizes function contextRuleValid
(cf. Appendix A.6), which can be used to check whether or not a single option shall be
applied in the given context. This function will return true if the context rule of an op-
tion (cf. Sect. 3) is valid regarding currently chosen values of the context variables (i.e.,
regarding the given context description). Thus contextRuleValid is applied to each
option. If it returns true for a selected option, this option will be added to the option
set of the currently considered context description. Otherwise it will be not considered
in the given context.

As depicted in Fig. 7 different context descriptions may have same option set. To
check only once whether or not a particular option set is applicable to the base pro-
cess, context descriptions with same option set are grouped into context blocks. This
is accomplished by function extendCtxtBlock. As result of Step 2 we obtain a set of
<ctxtblock,option set> pairs; i.e., for each context block (i.e., set of context descrip-

9

tions) we obtain the option set to be applied for variant configuration when correspond-
ing context becomes valid – we denote this object as process variant candidates.

Fig. 7: Blocks of valid context descriptions and respective sets of options

// Step 2: Calculate corresponding sets of options
// consider set of valid context descriptions CDvalid as determined in Step 1
for each CtxtDescription ∈ CDvalid do

CalculatedOptions := /0

// check validity of context rules for all defined options
for each Option ∈ allDefinedOptions do

if contextRuleValid(Option,CtxtDescription) = true then
CalculatedOptions := CalculatedOptions ∪ {Option}

// check if set of options has already been created
if hasOptionSet(CalculatedOptions,ProcessVariantCandidates) = false then

// insert new block of context descriptions with one common option set
insertCtxtBlock(ProcessVariantCandidates,CtxtDescription,CalculatedOptions)

else // extend existing block with current context description
extendCtxtBlock(ProcessVariantCandidates,CtxtDescription,CalculatedOptions)

Example 2: For the context model from Fig. 2 we obtain the following process variant can-
didates (i.e., <CtxtBlock,OptionSet>): <{12, 15}, {Option 1, Option 3}>, <{7, 8},{Option 1,
Option 2}>, <{1, 2, 4, 5},{Option 2}>, <{3, 6, 9},{Option 1, Option 2, Option 3}>, <{10, 11, 13,
14},{}>. The option set of the latter candidate is empty; i.e., its model corresponds to the base
process.

Step 3 checks for each process variant candidate the semantic compatibility of its
option set with the defined constraints. This could be based, for example, on LTL or
some other model checking technique. Here, we simply assume that there is a func-
tion checkOptionConstraints, which will return true if the corresponding option
set complies with all explicitly defined option constraints (cf. Section 2). Otherwise,
the respective <CtxtBlock,OptionSet> pair is deleted from the set of process variant
candidates and corresponding information is added to an error report (i.e., ErrorList).

10

// Step 3: Check whether options comply with constraints
for each <CtxtBlock,OptionSet> ∈ ProcessVariantCandidates do

if checkOptionConstraints(OptionSet) = false then
// remove candidates that are not complaint with option constraints
removeCandidate(ProcessVariantCandidates,<CtxtBlock,OptionsSet>)
insertInErrorList(..) // write entry to an error report, including incompliant OptionSet

Example 3: The hierarchy constraint described in Section 3 requires that all ancestors of an
option are also applied to the base process. As example consider the constraints defined for the
options from Fig. 3. OptionSet 4, which contains Options 1 and 3 (cf. Fig. 7), does not comply
with the hierarchy constraint. Reason is that ancestor of Option 3 (i.e., Option 2) is not contained
in the option set. Consequently, the context block associated with OptionSet 4 is removed from
the list of variant candidates. Generally, in addition to context-dependencies, option constraints
ensure semantical correctness of option sets and further reduce efforts for checking correctness.

After completing Step 3 we have identified relevant process variant candidates. For
each candidate the elements from its option set have to be ordered, i.e. the sequence in
which the options shall be applied has to be fixed. Provop provides different concepts
for ordering options (e.g., based on time stamps or user defined order). Due to lack of
space we omit details here, but assume that there is a function sortedOptionSet (cf.
Appendix A.10) that defines a partial order for options. If an error occurs, e.g. due to
cyclic ordering constraints explicitly defined by the user, the procedure will stop and
add an entry to the report list, which specifies that the current process variant candidate
has turned out to be inconsistent.

// Steps 4+5: Apply option set to base process and check soundness of variant models
for each <CtxtBlock,OptionSet> ∈ ProcessVariantCandidates do

// create partial order of OptionSet in sortedOptionList
if sortOptionSet(OptionSet,sortedOptionList) = true then

// calculate variant model by applying an option set to the base process
if calculateVariant(BaseProcess,sortedOptionList,VariantModel) = true then

if checkSoundness(VariantModel) = true then // variant model is sound
storeResult(OptionSet, "‘sound"’,..)

else // variant model is not sound
storeResult(OptionSet, "‘not sound"’,..)

After successfully executing Step 4, for each process variant candidate we have ob-
tained its option set and the order in which the options shall be applied to the base
process when configuring the corresponding variant. Step 5 then calculates the candi-
date models, if possible, by using function calculateVariant (cf. Appendix A.2). If
an option and its associated change operations are not applicable (e.g., due to missing
object references) Provop will not calculate a candidate model for the corresponding
option set, but will add an entry to an error report. Otherwise, structural and behavioral

11

soundness of the resulting variant model are checked, considering the specifics of the
underlying meta-model (function checkSoundness in Appendix A.4). Finally, the pro-
cess variant candidate, together with the respective consistency check result (i.e., either
“consistent” or “inconsistent”) are stored in the report list.

5 Dynamic Reconfiguration of Process Variants

In a dynamic environment it often becomes necessary to adjust running processes [13].
Provop captures this by enabling reactions on context changes and by dynamically re-
configuring variants; i.e., to switch from one variant model to another during runtime.

5.1 Motivation and Basic Issues

Basically, we distinguish between static and dynamic context variables. A static context
variable is set once at configuration time and is not supposed to change during variant
execution. Opposed to this, a dynamic context variable may be updated during runtime.
For example, the context model of a vehicle repair process contains context variable
Security-level, which is defined as static as no value updates occur during variant
execution (cf. Fig. 2). Context variable Workload, in turn, is updated from time to time
according to the current workload level of a specific garage. Consequently, this context
variable is defined as dynamic. The challenge now is to cope with such dynamic (i.e.,
changing) process context and to be able to switch to another process variant on-the-fly.

If the context rule of an option refers to a dynamic context variable the decision
whether or not to apply the corresponding change operations has to be deferred to
runtime. Consequently, the referred variant model has to be dynamically reconfigured.
Provop supports controlled use of such dynamic options through variant branches that
encapsulate single change operations of a (dynamic) option. Their split condition cor-
responds to the context rule of the option. When a variant branch is reached at runtime,
Provop evaluates the process context. If the split condition evaluates to true the variant
branch is executed, i.e., its change operation is applied to the base process. Otherwise,
the variant branch is skipped and all adjustments defined by the option are ignored.

Provop is able to cope with options comprising multiple change operations. It treats
the operations of an option atomically, as this corresponds to the intention of the option
designer. For instance, in our example from Fig. 1, Option 3 comprises two operations
that must not be treated in isolated fashion. Assume that Operation 1 is applied due to
“high” Workload and Operation 2 is omitted because the current context changes in the
meanwhile (e.g., value of context variable Workload changes from high to low). Then
a subcontractor is commissioned, but work still has to be done by the garage itself as
the attribute role of activity Maintenance is not modified due to omitting Operation 2
of Option 3. Obviously, this is no appropriate execution behaviour. Consequently, if the
first variant branch of a dynamic option is applied to the base process, all other variant
branches corresponding to the same option (i.e., change operations associated with this
option) will have to be applied as well.

12

For variant branches and the dynamic application of options we also have to en-
sure compliance with the defined option constraints.2 Therefore, Provop makes the use
of dynamic options dependent on these constraints and not only on the context rules
assigned. Furthermore, option constraints are treated with higher priority than context
rules. For the three options introduced in Fig. 1, Fig. 8 gives an example of a dynamic
reconfiguration. Based on the initial context description “Workload = medium AND
Security-Level = low AND Maintenance = Yes” Option 2 is applied to the base
process (cf. Fig. 8a). Assume that during execution of the configured variant, dynamic
context variable Workload is updated from medium to high. Thus, context rules of both
Option 3 and Option 1 (cf. Fig. 3) become valid and are added to the option set (cf.
Fig. 8b). Assume further that later on another context change occurs after Option 3
has become effective (i.e., the corresponding variant branch was executed), but before
the variant branch of Option 1 is reached (e.g. updating the dynamic context variable
Workload from high to medium). Consequently, context rules of Options 3 and 1 be-
come invalid. One possibility is to not apply Option 1 though Option 3 (i.e., its variant
branch) has already been executed (cf. Fig. 8b). As the final check is still required for
the given scenario the effects of Option 1 will not be omitted anymore. Here the im-
plication constraint defined between Options 3 and 1 ensures that Option 1 cannot be
omitted; i.e., the option set shown in Fig. 8c is not allowed at runtime.

Fig. 8: Dynamic context change at runtime

Another challenge is to still ensure correct execution behavior of the variant model
even if its context and thus the set of applied dynamic options varies during runtime.
One rigid policy would be to ignore dynamic context changes. Obviously, this disal-
lows reactions on context changes and dynamic variant reconfigurations (by applying
or omitting options). However, dynamic checks during runtime do not always consti-
tute a realistic solution, particularly if complex reconfigurations become necessary and
end users shall be not involved. Provop ensures soundness of process variant models
by checking soundness of all producible process models already at buildtime including
dynamic reconfigurations; i.e., Provop checks soundness of all possible variant models
that can result from dynamic reconfigurations due to context changes (cf. Fig. 8). Again
the applied options must comply with the defined constraints. By preventively checking
soundness for dynamically (re-)configurable variants we guarantee that runtime context
changes and variant reconfigurations lead again to a sound variant model.

2 In Provop a distinction is made for each option constraint whether it is only relevant in static
context or will be considered at runtime as well.

13

5.2 Checking Soundness of Configurable Variant Models A-priori

The procedure introduced in Sect. 4 has not considered dynamic variant reconfiguration
so far; i.e., dynamic context changes and changing option sets have been factored out.
We now extend our method with Step 6 which also checks soundness for all process
variants that may be dynamically (re-)configured. Basic to Step 6 is the idea to test for
each valid context description whether or not we need a preventive soundness check
that considers potential dynamic changes of context variables. This will be the case
if dynamic options are added or removed from a given option set (due to its context
rule becoming valid or invalid when context changes). First, we identify both static op-
tions (i.e., options not affected by context changes) and dynamic ones using function
calculateDynamicOptions (cf. Appendix A.1). Basically, for a considered context
description, this function fixes the values of static context variables, whereas it tests
all possible value allocations for dynamic context variables; i.e., runtime change of dy-
namic variables is simulated leading to additional context descriptions. Out of this we
obtain the dynamic options (dynamicOptions) and the static ones (staticOptions)
by checking whether the context rule of an option is valid in all created context descrip-
tions (i.e., the option is static), is not valid in any created context description (i.e., is not
relevant for this context description at all and we can ignore it), or is valid in at least
one but not all context descriptions (i.e., the option is dynamic).

// Step 6: Simulate dynamic context change
// use CDvalid created in Step 1 (cf. Section 4.3)
for each CtxtDescription ∈ CDvalid do

// identify static and dynamic options
calculateDynamicOptions(CtxtDescription, dynamicOptions, staticOptions)
if dynamicOptions 6= /0 then

// create power set of all defined options
for each dynOptionSet ∈ getPowerSet(dynamicOptions) do

// join subset of dynamic options with static options
simOptionSet := dynOptionSet ∪ staticOptions
// check if option set is compliant with defined option constraints
if checkOptionConstraints(simOptionSet) = true then // cf. Appendix A.3

// check entries of result list if option set has already been checked
if simOptionSet ∈ ResultList then

if (getResult(ResultList,simOptionSet) = "‘not sound"’) then
insertInErrorList(...) // option set is inconsistent

else // option set is compliant with constraints but has not been checked yet
repeat Step 4 and 5 of the main algorithm (cf. Section 4.3)

else insertInErrorList(..) // cf. Step 3

Example 4: Assume that we invoke function calculateDynamicOptions with context de-
scription “Workload = high, Security-level = medium, Maintenance = yes”. Then, ev-
ery possible value of dynamic context variable Workload is simulated resulting in two additional

14

context descriptions to be checked; i.e. for Workload = low and Workload = medium with val-
ues of static context variables Security-level and Maintenance being fixed. Following this,
validity of context rules assigned to the options within these three context descriptions is checked.
We obtain: staticOptions = {Option 2}, dynamicOptions = {Option 1, Option 3}.

If set dynamicOption created by calculateDynamicOptions is not empty, a dy-
namic reconfiguration might become necessary. Thus, we need to calculate new option
sets for the context descriptions which result when considering any possible context
change at any point in time during execution. First of all, static options are fixed; i.e.,
they are considered to be always part of each newly created option set. To simulate
reconfiguration, the static options are combined with every possible subset of dynamic
options; i.e., each element of the power set of dynamicOptions is joined with fixed set
staticOptions resulting in a temporary option set simOptionSet.

Example 5: For our example the power set of dynamicOptions is /0, {Option 1}, {Option 3},
and {Option 1, Option 3}. Each of these subsets is joined with staticOptions leading to 4
option sets: {Option 2}, {Option 1, Option 2}, {Option 3, Option 2}, and {Option 1, Option 3,
Option 2}. Each of these option sets is then checked whether or not it is compliant with defined
option constraints. In our example the simulated set {Option 3, Option 2} is not compliant. Thus,
an entry to the error list is written.

After creating such temporary option set simOptionSet its compliance with the
option constraints is checked using function checkOptionConstraints. We then val-
idate whether consistency of simOptionSet has already been checked; i.e., applicabil-
ity of options is guaranteed and the resulting variant model is sound. If we have not
yet checked the option set, Steps 4 and 5 of our procedure are re-applied. Altogether,
Provop enables correctness by construction for variants based on static as well as dy-
namic options.

6 Related Work

Though the adequate support of process variants is highly relevant for practice, only
few approaches for variant management exist.

There exists adaptive process management technology that enables dynamic pro-
cess changes during runtime; i.e., authorized users may dynamically adapt the structure
(i.e., the schema) of running process instances (e.g., by adding, deleting or moving ac-
tivities) [16, 17, 13, 18, 19]. Obviously, this runtime flexibility results in a multitude of
process variants, of which each represents one particular case (i.e., process instance).
The approach described in [17] additionally provides support for the management and
retrieval of the resulting process instance variants. In particular, it becomes possible to
store, manage, and query large collections of process variants within a process reposi-
tory. Graph-based search techniques are used in order to retrieve process variants that
are similar to a user-defined process fragment (i.e., the query is represented as graph).
Obviously, this approach requires profound knowledge about the structure of stored
process instances, an assumption which does not always hold in practice. Variant search
based on process meta data (e.g., the process context) is not considered.

15

An important area related to variant management is reference process modeling. A
reference process has recommending character, covers a family of process models, and
can be customized to meet specific needs. Configurable event process chains (C-EPCs),
for example, provide support for both the specification and customization of reference
process models [8, 9]. When modeling a reference process, EPC functions (and decision
nodes) can be annotated to indicate whether or not they are mandatory or optional. This
information is considered when configuring C-EPCs. A similar approach is presented in
[11]. Here the concepts for configuring a reference process model (i.e., to enable, hide
or block a configurable process element) are transferred to workflow models. Similar
to Provop constraints regarding the application of different adjustments of the reference
process can be defined (e.g., two activities either may have to be deleted together or
none of them). As opposed to Provop, it neither is allowed to move or add model el-
ements nor to adapt element attributes when configuring a variant. Finally, [7] shows
how to configure reference process models incrementally and in a way that ensures the
correctness of the process variants, both with respect to syntax and behavioral seman-
tics. As opposed to Provop, this approach assumes that the reference process model is
sound.
Different work exits on how specialization can be applied to deal with process model
variability taking advantage of the generative nature of a specialization hierarchy [20,
21]. [20] has shown how specialization can be realized for state and dataflow diagrams
respectively. For both diagram types a set of transformation rules is provided result-
ing in process specializations when applying them to a particular model. Similarly,
[21] discusses transformation rules to define specialization for models based on Petri
Nets. Basically, specialization allows to capture process variants. As opposed to these
approaches, Provop follows an operational approach, which is independent of the un-
derlying process meta model. In addition, we provide comprehensive support for the
context- and constraint-based configuration of process variants.
Fundamental characteristics of software variability in software engineering are described
in [22]. In particular, software variants exist in software architectures and software prod-
uct lines [23, 24]. Often feature diagrams are used for modeling software systems with
varying features; correctness issues are not considered. Another contribution stems from
PESOA [25] which provides basic concepts for variant modeling based on UML. Dif-
ferent variability techniques like inheritance, parameterization, and extension points are
provided. As opposed to PESOA, Provop provides a more powerful instrument for de-
scribing variance in a uniform and easy manner. Finally, [26] goes beyond control flow
and extends business process configuration to roles and objects.

7 Summary and Outlook

We have described the Provop approach for configuring and managing process vari-
ants. In this paper, we put emphasis on how to ensure correctness of configured pro-
cess variants by construction, taking into account semantical as well as structural con-
straints. Furthermore, we considered issues related to the dynamic re-configuration of
process variants due to changing process context. We have prototypically implemented

16

the Provop approach on top of the ARIS tool utilizing the programming interface pro-
vided by it [27]. In future research we will apply Provop in industrial context.

References

1. Mutschler, B., Reichert, M., Bumiller, J.: Unleashing the effectiveness of process-oriented in-
formation systems: Problem analysis, critical success factors and implications. IEEE Trans-
actions on Systems, Man, and Cybernetics (Part C) 38 (2008) 280–291

2. Lenz, R., Reichert, M.: IT Support for Healthcare Processes - Premises, Challenges, Per-
spectives. Data and Knowledge Engineering 61 (2007) 39–58

3. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT Support for Release Management Pro-
cesses in the Automotive Industry. In: Proc. 4th Int. Conf. on Business Process Management.
(2006) 368–377

4. Hallerbach, A., Bauer, T., Reichert, M.: Managing Process Variants in the Process Life
Cycle. In: Proc. 10th Int. Conf. on Enterprise Information Systems. (2008)

5. Becker, J., Lis, L., Pfeiffer, D., Räckers, M.: A process modeling language for the public
sector - the picture approach. Wybrane Problemy Elektronicznej Gospodarki (2007) 271–
281

6. VDA Recommendation 4965 T1: Engineering Change Management (ECM) - Part 1: Engi-
neering Change Request (ECR) Version 1.1 (2005)

7. van der Aalst, W.M.P., Dumas, M., Gottschalk, F., ter Hofstede, A.H.M., la Rosa, M.,
Mendling, J.: Correctness-preserving configuration of business process models. Funda-
mental Approaches to Software Engineering (2008) 46–61

8. Rosemann, M., van der Aalst, W.: A Configurable Reference Modeling Language. Informa-
tion Systems 32 (2007) 1–23

9. Rosa, M.L., Lux, J., Seidel, S., Dumas, M., ter Hofstede, A.H.M.: Questionnaire-driven
Configuration of Reference Process Models. In: Proc. CAiSE’07. (2007)

10. Hallerbach, A., Bauer, T., Reichert, M.: Context-based configuration of process variants. In:
Proc. TCoB 2008 Workshop. (2008)

11. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., la Rosa, M.: Configurable Work-
flow Models. In: Int. Journal of Cooperative Information Systems. (2007)

12. Hallerbach, A., Bauer, T., Reichert, M.: Issues in modeling process variants with provop.
(In: Proc. BPM’08 Workshops)

13. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in workflow
systems – a survey. Data and Knowledge Engineering 50 (2004) 9–34

14. Weber, B., Rinderle, S.B., Reichert, M.: Change patterns and change support features in
process-aware information systems. In: Proc. CAiSE’07, Trondheim, Norway. Volume 4495
of Lecture Notes in Computer Science (LNCS)., London, Springer Verlag (2007) 574–588

15. Rinderle-Ma, S., Reichert, M., Weber, B.: On the formal semantics of change patterns in
process-aware information systems. In: Proc. ER’08. LNCS 5231 (2008) 279–293

16. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management with
adept2. In: Proc. ICDE’05. (2005) 1113–1114

17. Lu, R., Sadiq, S.: On Managing Process Variants as an Information Resource. Technical
Report No. 464, School of Information Technology & Electrical Engineering and University
of Queensland, Brisbane (2006)

18. Rinderle, S., Reichert, M., Dadam, P.: Disjoint and overlapping process changes: Challenges,
solutions, applications. In: CoopIS’04. LNCS 3290 (2004) 101–120

19. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features - en-
hancing flexibility in process-aware information systems. Data and Knowledge Engineering
66 (2008) 438–466

17

20. Malone, T., Crowston, K., Herman, G.: Organizing Business Knowledge - The MIT Process
Handbook. MIT Press (2007)

21. van der Aalst, W.M.P., Basten, T.: Inheritance of Workflows: An Approach to Tackling
Problems Related to Change. Technical report, TU Eindhoven (2002)

22. Bachmann, F., Bass, L.: Managing Variability in Software Architectures. In: Proc. of 2001
Symp. on Software Reusability, New York, ACM Press (2001) 126–132

23. Becker, M., Geyer, L., Gilbert, A., Becker, K.: Comprehensive Variability Modeling to Fa-
cilitate Efficient Variability Treatment. In: 4th Workshop on Product Family Eng. (2001)

24. Halmans, G., Pohl, K.: Communicating the Variability of a Software-Product Family to
Customers. Software and System Modeling 2 (2003) 15–36

25. Puhlmann, F., Schnieders, A., Weiland, J., Weske, M.: PESOA - Variability Mechanisms for
Process Models. Technical Report 17/2005, Hasso-Plattner-Institut, Potsdam (2005)

26. La Rosa, M., Dumas, M., ter Hofstede, A., Mendling, J., Gottschalk, F.: Beyond control-
flow: Extending business process configuration to roles and objects. In: Proc. ER’08. (2008)

27. IDS Scheer AG: ARIS Platform Method 7.1. (2008) www.ids-scheer.com.

18

A Appendix

In the following we describe the main functions used by our consistency checking pro-
cedure as introduced in Sections 4.3 and 5. Each function is defined by a name, input
and output parameters, and results. Furthermore, we provide a short description and
pseudocode. The functions are listed in alphabetical ordering.
Global variables of the functions are the context model (i.e., CtxtModel) and the de-
fined options (i.e., allDefinedOptions).

A.1 calculateDynamicOptions

calculateDynamicOptions
Input:

CtxtDescription: allocation of current values to context variables
Output:

dynamicOptions: option set
staticOptions: option set

This function identifies all static as well as dynamic options for a considered con-
text description by fixing values of static context variables and by permuting all
possible value allocations for dynamic context variables. It further checks whether
or not the context rule of an option is valid for all created context descriptions (i.e.,
the option is static), is not valid in any created context description (i.e., the option
is not relevant in this context description at all), or is valid in at least one but not
all context descriptions (i.e., the option is dynamic).

// get all context variables defined as static in the corresponding context model
Vstat = {StatV1, .. , StatVn} ∈ CtxtModel

with StatVi.mode = static for i = 1..n
// get all context variables defined as dynamic in the corresponding context model
Vdyn = {DynV1, .. , DynVm} ∈ CtxtModel

with DynV j.mode = dynamic for j = 1..m

// initialization
staticOptions = /0

dynamicOptions = /0

// init for each option the attributes alwaysUsed and neverUsed
for each option ∈ allDefinedOptions do

alwaysUsed(option) = true
neverUsed(option) = true

19

// for each static context variable create a tupel with name and current value
(given by current context description)
for each i = 1..n do

StatSimVari := <StatVi.name, getValue(StatVi.name,CtxtDescription)>

// for each dynamic context variable create a set of tupels with each tupel
compraising the name and one possible value out of the value range of a context
variable
for each j = 1..m do

DynSimVar j := {<DynV j.name, value1>, . . . , <DynV j.name, valuek>}
with value1 . . . valuek ∈ ValueRange(DynV j)

// simulate dynamic change of context by creating a set of context descriptions out
of the cross product of the above created tupels (i.e., <CtxtVariable.name,value>)
for each CtxtDescr
∈ {StatSimVar1} ×. . . × {StatSimVark} × {DynSimVar1} ×. . . × {DynSimVarm}

for each Option ∈ allDefinedOptions do
if contextRuleValid(Option,CtxtDescr) then

neverUsed(Option) = false
else alwaysUsed(Option) = false

// static options are always applied, whereas dynamic ones are applied in at least
one but not all context descriptions
for each Option ∈ allDefinedOptions do

if alwaysUsed(Option) then staticOptions := staticOptions ∪ {Option}
else if alwaysUsed(Option)= false AND neverUsed(Option) = false then

dynamicOptions := dynamicOptions ∪ {Option}

A.2 calculateVariant

calculateVariant
Input:

BaseProcess: base process to be transformed
sortedOptionList: sorted list of options

Output:
VariantModel: model of a specific process variant

Result:
Boolean

The result of this function will be true, if no eccor occurs, otherwise it will be
false.

20

For each option from sortedOptionList all assigned operations are applied to
the base process. Thereby, the different operation types are considered and corre-
sponding functions are applied. The specific algorithms of our change operations
are out of scope of this paper and are omitted here.

A.3 checkOptionConstraints

checkOptionConstraints
Input:

OptionSet: set of options
Result

Boolean

The result of this function will be true if all defined option constraints are met by
the option set OptionSet.

A.4 checkSoundness

checkSoundness
Input:

VariantModel: model of a specific process variant
Result

Boolean

The result of this function will be true if the VariantModel is sound consid-
ering the specific soundness criteria of the underlying process meta model. Other-
wise, the result will be false (i.e. at least one criterion is violated).

A.5 contextDescriptionValid

contextDescriptionValid
Input:

CtxtDescription: allocation of current values to context variables
Result

Boolean

21

The result of this function will be true if the context description is valid regarding
all given context constraints of the underlying context model CtxtModel. Other-
wise the result will be false. The trivial algorithm behind this function is omitted
here.

A.6 contextRuleValid

contextRuleValid
Input:

Option: option defined for the current base process
CtxtDescription : allocation of current values to context variables

Result
Boolean

The result of this function will be true if the associated context rule to an op-
tion is valid. Otherwise the result is false. The apparently trivial algorithm of the
function is omitted here.

A.7 extendCtxtBlock

extendCtxtBlock
Input:

CtxtDescription: allocation of current values to context variables
ProcessVariantCandidates: set of <CtxtBlock,OptionSet> pairs
CalculatedOptions: set of options

This function identifies a <CtxtBlock,OptionSet> pair within the
ProcessVariantCandidates whose OptionSet is equal to option set
CalculatedOptions. The set of context descriptions (i.e. CtxtBlock), of
the identified pair is then extended by context description CtxtDescription.

22

A.8 hasOptionSet

hasOptionSet
Input:

CalculatedOptions: set of options
ProcessVariantCandidates: set of <CtxtBlock,OptionSet> pairs

Result
Boolean

The result of this function will be true if the option set CalculatedOptions is
covered by a <CtxtBlock,OptionSet> pair from ProcessVariantCandidates.
Otherwise the result will be false.

A.9 insertCtxtBlock

insertCtxtBlock
Input:

ProcessVariantCandidates: set of <CtxtBlock,OptionSet> pairs
CtxtDescription: allocation of current values to context variables
CalculatedOptions: set of options

The function creates a new context block CtxtBlock that comprises the context
description CtxtDescription. Furthermore, the CtxtBlock and the option set
CalculatedOptions are added to object ProcessVariantCandidates; i.e., pair
<CtxtBlock,CalculatedOptions> is inserted.

A.10 sortOptionSet

sortOptionSet
Input:

OptionSet: set of options
Output:

sortedOptionList: sorted list of options
Result:

Boolean

Let getTimeStamp(Option) be the function that returns the creation time of
an option and let SeqConstraint(Optioni,Option j) be defined as sequencing con-
straint between options Optioni and Option j (i.e. Optioni shall be applied to the
base process before Option j). Let further SeqConstraint∗(Optioni,Option j) be the
transitive closure of SeqConstraint(Optioni,Option j).

23

if ∃ SeqConstraint∗(Optioni,Option j)
AND ∃ SeqConstraint∗(Option j,Optioni) = true then // i.e. cyclic constraints

// write an entry to the error log, including the error causing options
(i.e., the options that are part of the cyclic sequencing constraints)
insertInErrorList(...)
return false

else
for each i < j ∈ (1, . . .n) do

if ∃ SeqConstraint∗(Optioni,Option j)
OR

(
@ SeqConstraint∗(Optioni,Option j)

AND @ SeqConstraint∗(Option j,Optioni)
)

AND
(
getTimeStamp(Optioni) < getTimeStamp(Option j)

)
= true then

// sort options by any sorting algorithm
sortedOptionList = (Option1, . . . ,Optionn) with Optioni < Option j

return true

24

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich

Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de

Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe

Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Köbler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schöning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Köbler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara,
U. Schöning, R. Silvestri, T. Thierauf
Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Köbler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kühnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntax-directed
semantics

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost
Narrowing

92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any
Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal
Communications Manager

93-02 M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch
The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree
Transducers

94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

94-09 F.W. von Henke, A. Dold, H. Rueß, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars:
Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman,Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algorithms

95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger
kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schulthess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen
Netzen am Beispiel Truck Backer-Upper

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche
mit VSE

96-02 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of
Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am
Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with
Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT–
Ansätzen

96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmuth Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation
Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids

97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow
Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure

97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den
digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
ADEPTflex - Supporting Dynamic Changes of Workflows Without Loosing Control

97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development
environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken

97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem
Provers

97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für
eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information
Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

97-18 Johannes Köbler,Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity
Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde
Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und
Analyse

98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment

98-12 Gerhard Schellhorn

Proving Properties of Directed Graphs: A Problem Set for Automated Theorem
Provers

98-13 Gerhard Schellhorn, Wolfgang Reif
Theorems from Compiler Verification: A Problem Set for Automated Theorem
Provers

98-14 Mohammad Ali Livani
SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN

98-15 Mohammad Ali Livani, Jörg Kaiser
Predictable Atomic Multicast in the Controller Area Network (CAN)

99-01 Susanne Boll, Wolfgang Klas, Utz Westermann
A Comparison of Multimedia Document Models Concerning Advanced Requirements

99-02 Thomas Bauer, Peter Dadam
Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und
Simulation

99-03 Uwe Schöning
On the Complexity of Constraint Satisfaction

99-04 Ercument Canver
Model-Checking zur Analyse von Message Sequence Charts über Statecharts

99-05 Johannes Köbler, Wolfgang Lindner, Rainer Schuler
Derandomizing RP if Boolean Circuits are not Learnable

99-06 Utz Westermann, Wolfgang Klas
Architecture of a DataBlade Module for the Integrated Management of Multimedia
Assets

99-07 Peter Dadam, Manfred Reichert
Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems,
Applications. Paderborn, Germany, October 6, 1999, GI–Workshop Proceedings,
Informatik ’99

99-08 Vikraman Arvind, Johannes Köbler
Graph Isomorphism is Low for ZPPNP and other Lowness results

99-09 Thomas Bauer, Peter Dadam
Efficient Distributed Workflow Management Based on Variable Server Assignments

2000-02 Thomas Bauer, Peter Dadam
Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-
Management-System ADEPT

2000-03 Gregory Baratoff, Christian Toepfer, Heiko Neumann
Combined space-variant maps for optical flow based navigation

2000-04 Wolfgang Gehring
Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)
FM-Tools 2000: The 4th Workshop on Tools for System Design and Verification

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-
Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in
ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and
Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-
Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness
Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein

Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
(Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols)

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules

2004-02 Christian Heinlein
Concept and Implementation of C+++, an Extension of C++ to Support User-Defined
Operator Symbols and Control Structures

2004-03 Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01 Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
19th Workshop on (Constraint) Logic Programming

2005-02 Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03 Walter Guttmann, Markus Maucher
Constrained Ordering

2006-01 Stefan Sarstedt
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02 Alexander Raschke, Ramin Tavakoli Kolagari
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
Systemen

2006-03 Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
Eine qualitative Untersuchung zur Produktlinien-Integration über
Organisationsgrenzen hinweg

2006-04 Thorsten Liebig
Reasoning with OWL - System Support and Insights –

2008-01 H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for graphical display

2008-02 Manfred Reichert, Peter Dadam, Martin Jurisch,l Ulrich Kreher, Kevin Göser,
 Markus Lauer

 Architectural Design of Flexible Process Management Technology

2008-03 Frank Raiser
 Semi-Automatic Generation of CHR Solvers from Global Constraint Automata

2008-04 Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander
Entscheidungsdokumentation bei der Entwicklung innovativer Systeme für
produktlinien-basierte Entwicklungsprozesse

2008-05 Markus Kalb, Claudia Dittrich, Peter Dadam

 Support of Relationships Among Moving Objects on Networks

2008-06 Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)
 WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke

2008-07 M. Maucher, U. Schöning, H.A. Kestler
An empirical assessment of local and population based search methods with different
degrees of pseudorandomness

2008-08 Henning Wunderlich
Covers have structure

2008-09 Karl-Heinz Niggl, Henning Wunderlich
Implicit characterization of FPTIME and NC revisited

2008-10 Henning Wunderlich
On span-Pсс and related classes in structural communication complexity

2008-11 M. Maucher, U. Schöning, H.A. Kestler
On the different notions of pseudorandomness

2008-12 Henning Wunderlich
On Toda’s Theorem in structural communication complexity

2008-13 Manfred Reichert, Peter Dadam
Realizing Adaptive Process-aware Information Systems with ADEPT2

2009-01 Peter Dadam, Manfred Reichert
The ADEPT Project: A Decade of Research and Development for Robust and Fexible
Process Support
Challenges and Achievements

2009-02 Peter Dadam, Manfred Reichert, Stefanie Rinderle-Ma, Kevin Göser, Ulrich Kreher,
Martin Jurisch
Von ADEPT zur AristaFlow® BPM Suite – Eine Vision wird Realität “Correctness by
Construction” und flexible, robuste Ausführung von Unternehmensprozessen

2009-03 Alena Hallerbach, Thomas Bauer, Manfred Reichert
Correct Configuration of Process Variants in Provop

Ulmer Informatik-Berichte
ISSN 0939-5091

Herausgeber:
Universität Ulm
Fakultät für Ingenieurwissenschaften und Informatik
89069 Ulm

