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Abstract. When engineering process-aware information systems (PAISs) one of
the fundamental challenges is to cope with the variability of business processes.
While some progress has been achieved regarding the configuration of process
variants, there exists only little work on how to accomplish this in a correct man-
ner. Configuring process variants constitutes a non-trivial challenge when con-
sidering the large number of process variants that exist in practice as well as the
many syntactical and semantical constraints a configured process variant has to
obey in a given context. In previous work we introduced the Provop approach
for configuring and managing process variants. This paper picks up the Provop
framework and shows how it ensures correctness of configurable process variants
by construction. We discuss advanced concepts for the context- and constraint-
based configuration of process variants, and show how they can be utilized to
ensure correctness of the configured process variants. In this paper we also con-
sider correctness issues in conjunction with dynamic variant re-configurations.
Enhancing PAISs with the capability to correctly configure process models fit-
ting to the given application context, and to correctly manage the resulting pro-
cess variants afterwards, will enable a new quality in PAIS engineering.

Key words: process-aware information system, process variant, process config-
uration, correctness by construction

1 Introduction

Process support is required in almost all business domains [1]. As examples consider
healthcare [2], automotive engineering [3, 4], and public administration [5]. Charac-
teristic process examples from the automotive industry, for instance, include product
change management [6] and release management [3]. When engineering process-aware
information systems (PAIS) one of the fundamental challenges is to cope with busi-
ness process variability and the large number of variants that may exist for a particular
process [4, 7–9]. Usually, each of these variants is valid in a particular context [10].

Regarding vehicle repair in a garage, for example, we have identified hundreds of
process variants which smoothly differ from each other depending on country-specific,
garage-specific, and vehicle-type-specific characteristics. Similar observations can be
made for release management processes, for which we identified more than 20 differ-
ent variants in an automotive company depending on the respective car series, involved
suppliers, and development phases [3]. Or when studying the product creation process



in the automotive domain, we can identify dozens of variants. Each of them is assigned
to a particular product type (e.g., car, truck, or bus) with different organizational re-
sponsibilities and strategic goals, or varying in some other aspects. Generally, the con-
figuration of a particular process variant depends on concrete requirements building the
process context [10].

While some progress has been achieved regarding the modeling and management of
process variants, there are only few approaches dealing with the fundamental question
how to configure variants out of a master process such that correct and consistent exe-
cution behavior can be guaranteed for them [7–9, 11]. Though there exists considerable
work on how to ensure structural and behavioral soundness of single process models, is-
sues related to the correct configuration of process variants have been neglected in most
cases so far. Here, the challenge is to guarantee soundness of a whole process family
(i.e., a collection of process models) taking into account syntactical as well as semanti-
cal constraints to be met by the configured variants. Thereby, our goal is not to develop
just another approach for checking soundness of single process models, but to provide
a framework for configuring semantically valid as well as sound process variants. In
particular, soundness checks should be limited to the process variants being relevant in
practice, instead of considering all configurable variants. This is particularly important
for scenarios in which a large number of variants exists.

In previous work we introduced the Provop (Process Variants by Options) approach
for configuring and managing process variants [10]. Provop considers the whole process
life cycle and supports variants in all phases following an operational approach [4].
More precisely, a concrete variant can be configured out of a master process model
(denoted as base process in Provop) by applying a set of high-level change operations to
it [12]. This paper extends the Provop framework and shows how variant configuration
can be accomplished such that we obtain sound variant models afterwards. Besides
correctness of variants configured at design time, we also consider correctness issues in
connection with dynamic reconfiguration of process variants due to context changes.

Section 2 gives background information on Provop. Section 3 extends the Provop
framework by enabling context- and constraint-based configuration of process variants.
Picking up this extension, Section 4 presents an algorithm that ensures correctness of
all configurable process variants by construction. We extend these considerations in
Section 5 by considering dynamic variant reconfigurations as well. Finally, Section 6
discusses related work and Section 7 concludes with a summary and outlook.

2 Backgrounds - The Provop Approach

Generally, a process model variant (process variant for short) can be created by “cloning”
a given process model and adjusting it according to the specific requirements of its ap-
plication context [13]. Provop adopts this metaphor for variant creation.

Note that Provop has not been developed with a specific process formalism in mind,
but shall provide an overall conceptual framework for variant modeling and manage-
ment. We further assume that a process schema can be changed by applying a sequence
of (high-level) change operations (e.g., to insert, delete or move process fragments) to
it. We define process schema change and process variants as follows:
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Definition 1 (Process Change and Process Variant)
Let P denote the set of possible process schemes and C the set of possible process
changes. Let S,S′ ∈ P be two process schemes, let ∆ ∈ C be a process change, and let
σ = 〈∆1,∆2 . . .∆n〉 ∈ C* be a sequence of process changes. Then:

– S[∆〉S′ iff ∆ is applicable to S and S′ is the process schema resulting from the appli-
cation of ∆ to S.

– S[σ〉S′ iff ∃ S1,S2, ...Sn+1 ∈ P with S = S1,S′ = Sn+1, and Si[∆i〉Si+1 for i∈ {1, ...n}.
We also denote S′ as variant of S.

For describing process changes, Provop supports well-defined change patterns [14,
19]: INSERT fragment, DELETE fragment, MOVE fragment, and MODIFY attribute. While
the first three patterns may be applied to a model fragment (i.e., a connected subgraph in
Provop), the latter pattern can be used to modify the value of a process element attribute.
(We provide a formal semantics of change patterns in [15]).

In Provop a process schema (denoted as base process is the following) can be as-
sociated with adjustment points that correspond to entries or exits of activities and
connector nodes respectively (cf. Fig. 1 and Definition 2). This, in turn, enables design-
ers of process-specific adaptations to refer to selected process fragments. By the use
of explicit adjustment points we can restrict the regions of the base process to which
adaptations (e.g., insertion or deletion of a fragment) may be applied when configuring
a variant. Finally, to enable more complex process adaptations as well as their reuse
in different context, Provop allows to group change operations into reusable operation
sets, which we denote as options (cf. Definition 2). In summary, a particular variant can
be configured by applying one or more options to the given base process.

Definition 2 (Base Process, Options, and Process Family)
Let P be the set of process models and C the set of possible process changes. Let further
each process change ∆ ∈ C be represented as parameterized change operation. Then:

– A base process S = (N,E,AP, ...) ∈ P is a process model with node set N and
edge set E. Additionally, it is associated with a set of adjustment points AP ⊆
Identi f iers×N ×{pre, post}. Thereby, adjustment point ap = (id,n, pos) ∈ AP
either corresponds to the entry (pos = pre) or exit (pos = post) of node n ∈ N

– Let S = (N,E,AP, ...) ∈ P be a base process. An associated option o = (oid,σ)
then corresponds to a sequence of process changes (i.e., σ =< ∆1,∆2 . . .∆n >) that
may be applied to S (or a variant derived from it). Thereby, ∆k (k = 1 . . . n) refers to
corresponding adjustment points or process elements (i.e., nodes and edges).

– Let S = (N,E,AP, ...) ∈ P be a base process and let O be the set of all op-
tions defined for it. Let further Σ = < o1, . . . ,on > be a sequence of options with
{o1, . . . ,on} ⊆ O and S[Σ〉S′. Then we denote S′ as process variant configurable
out of S by applying option sequence Σ. Further, we denote the total set of pro-
cess variants that may be configured out of a given base process and an associated
options set as process family.

Fig. 1 presents basic Provop elements along a simple example. The depicted base
process represents a vehicle repair process. The process starts with the reception of a
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vehicle in the garage. After a diagnosis is made, the vehicle is repaired (if necessary).
The process finishes when handing over the repaired and maintained vehicle back to the
customer. Depending on the process context, different variants are required. In our sim-
plified example, three predefined options exist, out of which a subset can be chosen to
configure a particular variant. Option 2, for example, suggests to insert activity Main-
tenance between adjustment points Start Treatments and Treatments finished. Option
3 itself comprises two operations which allow to insert activity Commissioning Sub-
contractor and to update attribute Role of activity Maintenance. Fig. 4 shows different
variants that can be configured out of the base process from Fig. 1 by applying a subset
of the defined options. Note that for more complex examples the number of variants be-
comes by far larger (e.g., dozens up to hundreds of variants for a vehicle repair process
in automotive companies), and thus more options have to be defined to cover all cases.

Fig. 1: Provop example with base process and options

3 Context- and Constraint-based Variant Configuration

Provop targets at correctness by construction; i.e., we want to ensure structural and
behavioral soundness of all configurable process variants already at design time. As
aforementioned, the focus of this paper is less on checking soundness of single process
models, but more on how to reduce the number of process variant models for which
soundness checks has to be checked. In addition, configuration should be accomplished
automatically making use of the process context and considering semantic constraints
regarding possible adaptations of the given base process.

One possible, but naive approach for guaranteeing correctness of configurable vari-
ants would be to apply all possible combinations of options to the base process and
to check soundness for each of the resulting process models. However, this approach
would be very expensive. As example consider the simple scenario from Fig. 1 for
which three options exist. Assuming that options are not commutative in general we
would have to check for 16 different option combinations whether or not their applica-
tion to the base process would result in a sound process variant. Obviously, for more
complex scenarios with dozens of options this is not a feasible approach.

To better understand those factors which are relevant for configuring process vari-
ants, we conducted several case studies in the automotive and the healthcare domain.
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From this case study research we have learned that there is a strong linkage between the
adaptations becoming necessary to configure a specific variant and the current process
context; i.e., the concrete adaptations of the given base process depend on the process
and application context respectively. Furthermore, we have learned that there exist dif-
ferent kinds of relations between the potential adaptations of a base process. While
certain adaptations are mutually exclusive, others are always applied conjointly. If we
explicitly express such (option) constraints we will be able to reduce the number of pos-
sible permutations and thus decrease efforts for guaranteeing soundness of configurable
variants. This section summarizes how Provop enables context- and constraint-based
variant configuration. We will pick up these concepts in Section 4 when presenting the
Provop approach for guaranteeing soundness of configurable process variants.

3.1 Context-aware Selection of Options

As particular process variants are often required in a specific context, Provop allows for
the context-based configuration of business process variants. For this purpose, a context
model capturing the process context has to be provided. Such context model comprises
a set of context variables as depicted in Fig. 2a. Thereby, each context variable spec-
ifies one particular dimension of the process context.1 Regarding our vehicle repair
process, for example, this can be visualized by a context cube as depicted in Fig. 2c.
Each sub-cube then represents one possible combination of values assigned to the dif-
ferent context variables. We denote respective value assignments as context descriptions
in the following. As not all possible context descriptions are semantically meaningful,
Provop allows to restrict them by context constraints (cf. Fig. 2b). Regarding the given
example, for instance, activity Maintenance will have to be performed anyway if the
required security level is high. Consequently, the corresponding context constraint (cf.
Fig. 2b) invalidates sub-cubes 16, 17, and 18 in Fig. 2c.

Fig. 2: Context model with corresponding table (a), constraints (b) and context cube (c)

For each process family we can define such a context model. Based on it context rules
can be created and assigned to one or more options. This, in turn, enables context-
aware option selection; i.e., if the context rule of a particular option evaluates to true
in a given context description this option will be (automatically) applied to the base pro-
cess when configuring a variant in the given context. Generally, for a particular context
description, the context rules of multiple options may evaluate to true. In such case all

1 In this paper we assume that context variables have a discrete and finite value range.
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these options shall be considered when configuring the process variant out of the base
process. (We will discuss later in which order the options shall be applied.)

Fig. 3 visualizes the previously introduced options together with their associated
context rules and constraints (see below). From the context rule of Option 2, for exam-
ple, we can conclude that Option 2 will be applied to the base process if context variable
Maintenance has value “Yes” for a given context description.

Fig. 3: Option constraints

3.2 Constraint-based Use of Options

The adjustments which become necessary to configure a particular process variant are
often structurally or semantically correlated. Regarding our example from Fig. 1, for
instance, the application of Option 3 to the depicted base process requires the prior
introduction of Option 2 (since Operation 2 of Option 3 refers to the activity inserted
by Option 2). Besides such structural dependencies semantical constraints have to be
considered as well. For instance, Option 3 semantically implies Option 1 since activ-
ity Maintenance will always require subsequent execution of activity Final Check, if
maintenance is not done by the garage itself, but quality of service has to be ensured.
(Option 3 updates the role attribute of activity Maintenance to Subcontractor.).
Provop supports three different types of option relations in order to express constraints
for the use of options (see Fig. 3 for an example).

– Implication: If two options shall be always applied together to the base process
(e.g. due to semantical dependencies) the option designer may define a directed
implication relation between them. Generally, from relation “Option 1 implies Op-
tion 2” we must not conclude the reverse relation (i.e., Option 2 implies Option 1 ).

– Mutual exclusion: This constraint is useful to specify that two options must never
be applied together when configuring a specific process variant.

– Option hierarchy: The explicit definition of an option hierarchy enables inheri-
tance of change operations. If an option with ancestors is selected to configure a
particular process variant, its ancestor options will be applied as well. This struc-
tures the total set of options, and also reduces the average number of change oper-
ations needed to define a particular option.

Generally, options and their change operations respectively are not commutative. Con-
sequently, for both options and operations we need to define the order in which they
shall be applied at configuration time. Based on this information, Provop allows to con-
figure process variants through the sequential application of a set of options (and their
change operations) to the given base process. In particular, the chosen option set has
to match the current process context and to comply with the defined option constraints.
How the latter two issues are achieved and how Provop guarantees soundness of the
configurable variants is shown in the next sections. For example, Fig. 4 shows all pro-
cess variants that may be derived from the base process and the options shown in Fig. 1.
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Note that only those option sets are considered that match to the given context and are
compliant with the defined option constraints (cf. Fig. 3).

Fig. 4: Resulting process family

4 How to Guarantee Soundness of Configurable Variants

This section deals with the fundamental question how Provop ensures correct configu-
ration of process variants without need for intense user interactions.

4.1 Basic Issues and Motivation

One possibility to ensure correctness of configured process variants is to start the con-
figuration procedure with a sound model of the base process and to enforce soundness
after each applied change operation. Consequently, the application of a set of operations
and finally a set of options would result in a sound process model again. This rather
rigid approach necessitates precise pre- and postconditions for the different change op-
erations and requires sophisticated mechanisms to satisfy the pre- and post-conditions.
Another possibility is to first apply the desired options to the base process and then to
check soundness of the resulting process model afterwards. Provop follows the second
approach since it provides more flexibility to the process designer. As pointed out in the
previous section the challenge then is to reduce the number of configurable models to
be checked by only considering those candidates for which the applied options satisfy
the corresponding context rules and meet the defined constraints.

Provop provides high flexibility to users and supports different policies regarding
the definition of the base process for a process family. For example, a base process may
be designed such that it covers all configurable variants or only constitutes a minimal
process model (i.e., an intersection of its variant models) [4]. Unlike existing config-
uration techniques (e.g., [7]), therefore, Provop does not necessarily require a correct
process model as starting point for variant configuration. As example consider Fig. 5a
where Variant 1 describes a car-specific and Variant 2 a bus-specific process variant. If
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we define the base process as "intersection" of these two variant models, we obtain the
process model depicted at the bottom of Fig. 5a. This base process comprises activities
CA1, CA2, and CA3, but does not contain the car- or bus-specific activity. Interestingly,
the shown model is not correct since the data element read by activity CA3 is neither
written by CA1 nor by CA2. However, this will be not a problem if we can ensure that
the variant model resulting after configuration is correct (see below).

Enforcing a correct base process is not appropriate in the given scenario. When
choosing the model of Variant 1 as base process (cf. Fig. 5b), for example, visibility
constraints may become violated. (Note that Variant 1 would then be visible to the
process owner of Variant 2, who additionally must be able to track the adjustments of
Variant 1 in order to correctly evolve Variant 2 over time). Another inadequate approach
would be to restore correctness of the base process model by adding an abstract activity
to the base process, which writes the data element. However, this might increase mod-
eling efforts unnecessarily when configuring the concrete variants depicted in Fig. 5a.

Fig. 5: Inconsistent base process (a) with an exemplary correctness scenario (b)

4.2 Overview of the Provop Correctness Checking Framework

Guaranteeing soundness of configurable process variants is accomplished in several
steps (cf. Fig. 6). In Steps 1 and 2 valid context descriptions are identified, and for
each of them the corresponding option set (i.e., adjustments of the base process) is
determined. Step 3 then checks whether or not the calculated option sets comply with
the defined option constraints (cf. Section 3). If an option set is not valid an error will
be reported to the designer. Otherwise, Steps 4 and 5 apply each potential option set to
the base process and check whether or not the resulting process variant model is sound.
Results of Steps 4 and 5 are logged in a report (i.e., ResultList). In the following we
describe these five steps in more detail.

Fig. 6: Overview of the Provop procedure for guaranteeing soundness
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4.3 Basic Steps of the Provop Correctness Checking Framework

We now describe the sketched procedure for checking soundness of a process fam-
ily (i.e., a collection of process variants) in detail. It starts with identifying all valid
context descriptions, for which process variants have to be configured. Consequently,
for corresponding cases we need to guarantee correctness of the configurable vari-
ants. As invalid context descriptions are implicitly specified by the given set of context
constraints, Provop first evaluates all possible allocations of values for context vari-
ables. In order to check whether or not a given context description is valid, function
contextDescriptionValid (cf. Appendix A.5) is provided. For a given context de-
scription this function will return true if there is no context constraint in the given
context model that invalidates this context description. As result of Step 1 we obtain the
set of all valid context descriptions (stored in the variable CDvalid).

// Step 1: Identify valid context descriptions
CDvalid = /0 // Initializing the set of valid context descriptions
// create context descriptions by simulating all possible values in the value range of each
context variable CtxtVari, i=1,..,n defined in the context model. We assume that corre-
sponding value ranges ValueRange(CtxtVari) are discrete and finite.
for all CtxtDescription ∈ (ValueRange(CtxtVar1) × ... × ValueRange(CtxtVarn)) do

// check whether or not the current context description is valid
if contextDescriptionValid(CtxtDescription) = true then

CDvalid := CDvalid ∪ {CtxtDescription}

Example 1: In our example from Fig. 2 context cubes 16, 17, and 18 become invalid due to the
context constraint “IF Security-level = high THEN Maintenance = yes”. All other con-
text descriptions are valid. Therefore, we add them to set CDvalid of valid context descriptions;
i.e., CDvalid = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}.

For each valid context description Step 2 calculates the option set to be applied when
configuring the corresponding variant. (An option set can be empty as the base process
itself can be a variant.) For this purpose, Step 2 utilizes function contextRuleValid
(cf. Appendix A.6), which can be used to check whether or not a single option shall be
applied in the given context. This function will return true if the context rule of an op-
tion (cf. Sect. 3) is valid regarding currently chosen values of the context variables (i.e.,
regarding the given context description). Thus contextRuleValid is applied to each
option. If it returns true for a selected option, this option will be added to the option
set of the currently considered context description. Otherwise it will be not considered
in the given context.

As depicted in Fig. 7 different context descriptions may have same option set. To
check only once whether or not a particular option set is applicable to the base pro-
cess, context descriptions with same option set are grouped into context blocks. This
is accomplished by function extendCtxtBlock. As result of Step 2 we obtain a set of
<ctxtblock,option set> pairs; i.e., for each context block (i.e., set of context descrip-
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tions) we obtain the option set to be applied for variant configuration when correspond-
ing context becomes valid – we denote this object as process variant candidates.

Fig. 7: Blocks of valid context descriptions and respective sets of options

// Step 2: Calculate corresponding sets of options
// consider set of valid context descriptions CDvalid as determined in Step 1
for each CtxtDescription ∈ CDvalid do

CalculatedOptions := /0

// check validity of context rules for all defined options
for each Option ∈ allDefinedOptions do

if contextRuleValid(Option,CtxtDescription) = true then
CalculatedOptions := CalculatedOptions ∪ {Option}

// check if set of options has already been created
if hasOptionSet(CalculatedOptions,ProcessVariantCandidates) = false then

// insert new block of context descriptions with one common option set
insertCtxtBlock(ProcessVariantCandidates,CtxtDescription,CalculatedOptions)

else // extend existing block with current context description
extendCtxtBlock(ProcessVariantCandidates,CtxtDescription,CalculatedOptions)

Example 2: For the context model from Fig. 2 we obtain the following process variant can-
didates (i.e., <CtxtBlock,OptionSet>): <{12, 15}, {Option 1, Option 3}>, <{7, 8},{Option 1,
Option 2}>, <{1, 2, 4, 5},{Option 2}>, <{3, 6, 9},{Option 1, Option 2, Option 3}>, <{10, 11, 13,
14},{}>. The option set of the latter candidate is empty; i.e., its model corresponds to the base
process.

Step 3 checks for each process variant candidate the semantic compatibility of its
option set with the defined constraints. This could be based, for example, on LTL or
some other model checking technique. Here, we simply assume that there is a func-
tion checkOptionConstraints, which will return true if the corresponding option
set complies with all explicitly defined option constraints (cf. Section 2). Otherwise,
the respective <CtxtBlock,OptionSet> pair is deleted from the set of process variant
candidates and corresponding information is added to an error report (i.e., ErrorList).
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// Step 3: Check whether options comply with constraints
for each <CtxtBlock,OptionSet> ∈ ProcessVariantCandidates do

if checkOptionConstraints(OptionSet) = false then
// remove candidates that are not complaint with option constraints
removeCandidate(ProcessVariantCandidates,<CtxtBlock,OptionsSet>)
insertInErrorList(..) // write entry to an error report, including incompliant OptionSet

Example 3: The hierarchy constraint described in Section 3 requires that all ancestors of an
option are also applied to the base process. As example consider the constraints defined for the
options from Fig. 3. OptionSet 4, which contains Options 1 and 3 (cf. Fig. 7), does not comply
with the hierarchy constraint. Reason is that ancestor of Option 3 (i.e., Option 2) is not contained
in the option set. Consequently, the context block associated with OptionSet 4 is removed from
the list of variant candidates. Generally, in addition to context-dependencies, option constraints
ensure semantical correctness of option sets and further reduce efforts for checking correctness.

After completing Step 3 we have identified relevant process variant candidates. For
each candidate the elements from its option set have to be ordered, i.e. the sequence in
which the options shall be applied has to be fixed. Provop provides different concepts
for ordering options (e.g., based on time stamps or user defined order). Due to lack of
space we omit details here, but assume that there is a function sortedOptionSet (cf.
Appendix A.10) that defines a partial order for options. If an error occurs, e.g. due to
cyclic ordering constraints explicitly defined by the user, the procedure will stop and
add an entry to the report list, which specifies that the current process variant candidate
has turned out to be inconsistent.

// Steps 4+5: Apply option set to base process and check soundness of variant models
for each <CtxtBlock,OptionSet> ∈ ProcessVariantCandidates do

// create partial order of OptionSet in sortedOptionList
if sortOptionSet(OptionSet,sortedOptionList) = true then

// calculate variant model by applying an option set to the base process
if calculateVariant(BaseProcess,sortedOptionList,VariantModel) = true then

if checkSoundness(VariantModel) = true then // variant model is sound
storeResult(OptionSet, "‘sound"’,..)

else // variant model is not sound
storeResult(OptionSet, "‘not sound"’,..)

After successfully executing Step 4, for each process variant candidate we have ob-
tained its option set and the order in which the options shall be applied to the base
process when configuring the corresponding variant. Step 5 then calculates the candi-
date models, if possible, by using function calculateVariant (cf. Appendix A.2). If
an option and its associated change operations are not applicable (e.g., due to missing
object references) Provop will not calculate a candidate model for the corresponding
option set, but will add an entry to an error report. Otherwise, structural and behavioral
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soundness of the resulting variant model are checked, considering the specifics of the
underlying meta-model (function checkSoundness in Appendix A.4). Finally, the pro-
cess variant candidate, together with the respective consistency check result (i.e., either
“consistent” or “inconsistent”) are stored in the report list.

5 Dynamic Reconfiguration of Process Variants

In a dynamic environment it often becomes necessary to adjust running processes [13].
Provop captures this by enabling reactions on context changes and by dynamically re-
configuring variants; i.e., to switch from one variant model to another during runtime.

5.1 Motivation and Basic Issues

Basically, we distinguish between static and dynamic context variables. A static context
variable is set once at configuration time and is not supposed to change during variant
execution. Opposed to this, a dynamic context variable may be updated during runtime.
For example, the context model of a vehicle repair process contains context variable
Security-level, which is defined as static as no value updates occur during variant
execution (cf. Fig. 2). Context variable Workload, in turn, is updated from time to time
according to the current workload level of a specific garage. Consequently, this context
variable is defined as dynamic. The challenge now is to cope with such dynamic (i.e.,
changing) process context and to be able to switch to another process variant on-the-fly.

If the context rule of an option refers to a dynamic context variable the decision
whether or not to apply the corresponding change operations has to be deferred to
runtime. Consequently, the referred variant model has to be dynamically reconfigured.
Provop supports controlled use of such dynamic options through variant branches that
encapsulate single change operations of a (dynamic) option. Their split condition cor-
responds to the context rule of the option. When a variant branch is reached at runtime,
Provop evaluates the process context. If the split condition evaluates to true the variant
branch is executed, i.e., its change operation is applied to the base process. Otherwise,
the variant branch is skipped and all adjustments defined by the option are ignored.

Provop is able to cope with options comprising multiple change operations. It treats
the operations of an option atomically, as this corresponds to the intention of the option
designer. For instance, in our example from Fig. 1, Option 3 comprises two operations
that must not be treated in isolated fashion. Assume that Operation 1 is applied due to
“high” Workload and Operation 2 is omitted because the current context changes in the
meanwhile (e.g., value of context variable Workload changes from high to low). Then
a subcontractor is commissioned, but work still has to be done by the garage itself as
the attribute role of activity Maintenance is not modified due to omitting Operation 2
of Option 3. Obviously, this is no appropriate execution behaviour. Consequently, if the
first variant branch of a dynamic option is applied to the base process, all other variant
branches corresponding to the same option (i.e., change operations associated with this
option) will have to be applied as well.
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For variant branches and the dynamic application of options we also have to en-
sure compliance with the defined option constraints.2 Therefore, Provop makes the use
of dynamic options dependent on these constraints and not only on the context rules
assigned. Furthermore, option constraints are treated with higher priority than context
rules. For the three options introduced in Fig. 1, Fig. 8 gives an example of a dynamic
reconfiguration. Based on the initial context description “Workload = medium AND
Security-Level = low AND Maintenance = Yes” Option 2 is applied to the base
process (cf. Fig. 8a). Assume that during execution of the configured variant, dynamic
context variable Workload is updated from medium to high. Thus, context rules of both
Option 3 and Option 1 (cf. Fig. 3) become valid and are added to the option set (cf.
Fig. 8b). Assume further that later on another context change occurs after Option 3
has become effective (i.e., the corresponding variant branch was executed), but before
the variant branch of Option 1 is reached (e.g. updating the dynamic context variable
Workload from high to medium). Consequently, context rules of Options 3 and 1 be-
come invalid. One possibility is to not apply Option 1 though Option 3 (i.e., its variant
branch) has already been executed (cf. Fig. 8b). As the final check is still required for
the given scenario the effects of Option 1 will not be omitted anymore. Here the im-
plication constraint defined between Options 3 and 1 ensures that Option 1 cannot be
omitted; i.e., the option set shown in Fig. 8c is not allowed at runtime.

Fig. 8: Dynamic context change at runtime

Another challenge is to still ensure correct execution behavior of the variant model
even if its context and thus the set of applied dynamic options varies during runtime.
One rigid policy would be to ignore dynamic context changes. Obviously, this disal-
lows reactions on context changes and dynamic variant reconfigurations (by applying
or omitting options). However, dynamic checks during runtime do not always consti-
tute a realistic solution, particularly if complex reconfigurations become necessary and
end users shall be not involved. Provop ensures soundness of process variant models
by checking soundness of all producible process models already at buildtime including
dynamic reconfigurations; i.e., Provop checks soundness of all possible variant models
that can result from dynamic reconfigurations due to context changes (cf. Fig. 8). Again
the applied options must comply with the defined constraints. By preventively checking
soundness for dynamically (re-)configurable variants we guarantee that runtime context
changes and variant reconfigurations lead again to a sound variant model.

2 In Provop a distinction is made for each option constraint whether it is only relevant in static
context or will be considered at runtime as well.
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5.2 Checking Soundness of Configurable Variant Models A-priori

The procedure introduced in Sect. 4 has not considered dynamic variant reconfiguration
so far; i.e., dynamic context changes and changing option sets have been factored out.
We now extend our method with Step 6 which also checks soundness for all process
variants that may be dynamically (re-)configured. Basic to Step 6 is the idea to test for
each valid context description whether or not we need a preventive soundness check
that considers potential dynamic changes of context variables. This will be the case
if dynamic options are added or removed from a given option set (due to its context
rule becoming valid or invalid when context changes). First, we identify both static op-
tions (i.e., options not affected by context changes) and dynamic ones using function
calculateDynamicOptions (cf. Appendix A.1). Basically, for a considered context
description, this function fixes the values of static context variables, whereas it tests
all possible value allocations for dynamic context variables; i.e., runtime change of dy-
namic variables is simulated leading to additional context descriptions. Out of this we
obtain the dynamic options (dynamicOptions) and the static ones (staticOptions)
by checking whether the context rule of an option is valid in all created context descrip-
tions (i.e., the option is static), is not valid in any created context description (i.e., is not
relevant for this context description at all and we can ignore it), or is valid in at least
one but not all context descriptions (i.e., the option is dynamic).

// Step 6: Simulate dynamic context change
// use CDvalid created in Step 1 (cf. Section 4.3)
for each CtxtDescription ∈ CDvalid do

// identify static and dynamic options
calculateDynamicOptions(CtxtDescription, dynamicOptions, staticOptions)
if dynamicOptions 6= /0 then

// create power set of all defined options
for each dynOptionSet ∈ getPowerSet(dynamicOptions) do

// join subset of dynamic options with static options
simOptionSet := dynOptionSet ∪ staticOptions
// check if option set is compliant with defined option constraints
if checkOptionConstraints(simOptionSet) = true then // cf. Appendix A.3

// check entries of result list if option set has already been checked
if simOptionSet ∈ ResultList then

if (getResult(ResultList,simOptionSet) = "‘not sound"’) then
insertInErrorList(...) // option set is inconsistent

else // option set is compliant with constraints but has not been checked yet
repeat Step 4 and 5 of the main algorithm (cf. Section 4.3)

else insertInErrorList(..) // cf. Step 3

Example 4: Assume that we invoke function calculateDynamicOptions with context de-
scription “Workload = high, Security-level = medium, Maintenance = yes”. Then, ev-
ery possible value of dynamic context variable Workload is simulated resulting in two additional
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context descriptions to be checked; i.e. for Workload = low and Workload = medium with val-
ues of static context variables Security-level and Maintenance being fixed. Following this,
validity of context rules assigned to the options within these three context descriptions is checked.
We obtain: staticOptions = {Option 2}, dynamicOptions = {Option 1, Option 3}.

If set dynamicOption created by calculateDynamicOptions is not empty, a dy-
namic reconfiguration might become necessary. Thus, we need to calculate new option
sets for the context descriptions which result when considering any possible context
change at any point in time during execution. First of all, static options are fixed; i.e.,
they are considered to be always part of each newly created option set. To simulate
reconfiguration, the static options are combined with every possible subset of dynamic
options; i.e., each element of the power set of dynamicOptions is joined with fixed set
staticOptions resulting in a temporary option set simOptionSet.

Example 5: For our example the power set of dynamicOptions is /0, {Option 1}, {Option 3},
and {Option 1, Option 3}. Each of these subsets is joined with staticOptions leading to 4
option sets: {Option 2}, {Option 1, Option 2}, {Option 3, Option 2}, and {Option 1, Option 3,
Option 2}. Each of these option sets is then checked whether or not it is compliant with defined
option constraints. In our example the simulated set {Option 3, Option 2} is not compliant. Thus,
an entry to the error list is written.

After creating such temporary option set simOptionSet its compliance with the
option constraints is checked using function checkOptionConstraints. We then val-
idate whether consistency of simOptionSet has already been checked; i.e., applicabil-
ity of options is guaranteed and the resulting variant model is sound. If we have not
yet checked the option set, Steps 4 and 5 of our procedure are re-applied. Altogether,
Provop enables correctness by construction for variants based on static as well as dy-
namic options.

6 Related Work

Though the adequate support of process variants is highly relevant for practice, only
few approaches for variant management exist.

There exists adaptive process management technology that enables dynamic pro-
cess changes during runtime; i.e., authorized users may dynamically adapt the structure
(i.e., the schema) of running process instances (e.g., by adding, deleting or moving ac-
tivities) [16, 17, 13, 18, 19]. Obviously, this runtime flexibility results in a multitude of
process variants, of which each represents one particular case (i.e., process instance).
The approach described in [17] additionally provides support for the management and
retrieval of the resulting process instance variants. In particular, it becomes possible to
store, manage, and query large collections of process variants within a process reposi-
tory. Graph-based search techniques are used in order to retrieve process variants that
are similar to a user-defined process fragment (i.e., the query is represented as graph).
Obviously, this approach requires profound knowledge about the structure of stored
process instances, an assumption which does not always hold in practice. Variant search
based on process meta data (e.g., the process context) is not considered.

15



An important area related to variant management is reference process modeling. A
reference process has recommending character, covers a family of process models, and
can be customized to meet specific needs. Configurable event process chains (C-EPCs),
for example, provide support for both the specification and customization of reference
process models [8, 9]. When modeling a reference process, EPC functions (and decision
nodes) can be annotated to indicate whether or not they are mandatory or optional. This
information is considered when configuring C-EPCs. A similar approach is presented in
[11]. Here the concepts for configuring a reference process model (i.e., to enable, hide
or block a configurable process element) are transferred to workflow models. Similar
to Provop constraints regarding the application of different adjustments of the reference
process can be defined (e.g., two activities either may have to be deleted together or
none of them). As opposed to Provop, it neither is allowed to move or add model el-
ements nor to adapt element attributes when configuring a variant. Finally, [7] shows
how to configure reference process models incrementally and in a way that ensures the
correctness of the process variants, both with respect to syntax and behavioral seman-
tics. As opposed to Provop, this approach assumes that the reference process model is
sound.
Different work exits on how specialization can be applied to deal with process model
variability taking advantage of the generative nature of a specialization hierarchy [20,
21]. [20] has shown how specialization can be realized for state and dataflow diagrams
respectively. For both diagram types a set of transformation rules is provided result-
ing in process specializations when applying them to a particular model. Similarly,
[21] discusses transformation rules to define specialization for models based on Petri
Nets. Basically, specialization allows to capture process variants. As opposed to these
approaches, Provop follows an operational approach, which is independent of the un-
derlying process meta model. In addition, we provide comprehensive support for the
context- and constraint-based configuration of process variants.
Fundamental characteristics of software variability in software engineering are described
in [22]. In particular, software variants exist in software architectures and software prod-
uct lines [23, 24]. Often feature diagrams are used for modeling software systems with
varying features; correctness issues are not considered. Another contribution stems from
PESOA [25] which provides basic concepts for variant modeling based on UML. Dif-
ferent variability techniques like inheritance, parameterization, and extension points are
provided. As opposed to PESOA, Provop provides a more powerful instrument for de-
scribing variance in a uniform and easy manner. Finally, [26] goes beyond control flow
and extends business process configuration to roles and objects.

7 Summary and Outlook

We have described the Provop approach for configuring and managing process vari-
ants. In this paper, we put emphasis on how to ensure correctness of configured pro-
cess variants by construction, taking into account semantical as well as structural con-
straints. Furthermore, we considered issues related to the dynamic re-configuration of
process variants due to changing process context. We have prototypically implemented
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the Provop approach on top of the ARIS tool utilizing the programming interface pro-
vided by it [27]. In future research we will apply Provop in industrial context.
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A Appendix

In the following we describe the main functions used by our consistency checking pro-
cedure as introduced in Sections 4.3 and 5. Each function is defined by a name, input
and output parameters, and results. Furthermore, we provide a short description and
pseudocode. The functions are listed in alphabetical ordering.
Global variables of the functions are the context model (i.e., CtxtModel) and the de-
fined options (i.e., allDefinedOptions).

A.1 calculateDynamicOptions

calculateDynamicOptions
Input:

CtxtDescription: allocation of current values to context variables
Output:

dynamicOptions: option set
staticOptions: option set

This function identifies all static as well as dynamic options for a considered con-
text description by fixing values of static context variables and by permuting all
possible value allocations for dynamic context variables. It further checks whether
or not the context rule of an option is valid for all created context descriptions (i.e.,
the option is static), is not valid in any created context description (i.e., the option
is not relevant in this context description at all), or is valid in at least one but not
all context descriptions (i.e., the option is dynamic).

// get all context variables defined as static in the corresponding context model
Vstat = {StatV1, .. , StatVn} ∈ CtxtModel

with StatVi.mode = static for i = 1..n
// get all context variables defined as dynamic in the corresponding context model
Vdyn = {DynV1, .. , DynVm} ∈ CtxtModel

with DynV j.mode = dynamic for j = 1..m

// initialization
staticOptions = /0

dynamicOptions = /0

// init for each option the attributes alwaysUsed and neverUsed
for each option ∈ allDefinedOptions do

alwaysUsed(option) = true
neverUsed(option) = true
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// for each static context variable create a tupel with name and current value
(given by current context description)
for each i = 1..n do

StatSimVari := <StatVi.name, getValue(StatVi.name,CtxtDescription)>

// for each dynamic context variable create a set of tupels with each tupel
compraising the name and one possible value out of the value range of a context
variable
for each j = 1..m do

DynSimVar j := {<DynV j.name, value1>, . . . , <DynV j.name, valuek>}
with value1 . . . valuek ∈ ValueRange(DynV j)

// simulate dynamic change of context by creating a set of context descriptions out
of the cross product of the above created tupels (i.e., <CtxtVariable.name,value>)
for each CtxtDescr
∈ {StatSimVar1} ×. . . × {StatSimVark} × {DynSimVar1} ×. . . × {DynSimVarm}

for each Option ∈ allDefinedOptions do
if contextRuleValid(Option,CtxtDescr) then

neverUsed(Option) = false
else alwaysUsed(Option) = false

// static options are always applied, whereas dynamic ones are applied in at least
one but not all context descriptions
for each Option ∈ allDefinedOptions do

if alwaysUsed(Option) then staticOptions := staticOptions ∪ {Option}
else if alwaysUsed(Option)= false AND neverUsed(Option) = false then

dynamicOptions := dynamicOptions ∪ {Option}

A.2 calculateVariant

calculateVariant
Input:

BaseProcess: base process to be transformed
sortedOptionList: sorted list of options

Output:
VariantModel: model of a specific process variant

Result:
Boolean

The result of this function will be true, if no eccor occurs, otherwise it will be
false.
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For each option from sortedOptionList all assigned operations are applied to
the base process. Thereby, the different operation types are considered and corre-
sponding functions are applied. The specific algorithms of our change operations
are out of scope of this paper and are omitted here.

A.3 checkOptionConstraints

checkOptionConstraints
Input:

OptionSet: set of options
Result

Boolean

The result of this function will be true if all defined option constraints are met by
the option set OptionSet.

A.4 checkSoundness

checkSoundness
Input:

VariantModel: model of a specific process variant
Result

Boolean

The result of this function will be true if the VariantModel is sound consid-
ering the specific soundness criteria of the underlying process meta model. Other-
wise, the result will be false (i.e. at least one criterion is violated).

A.5 contextDescriptionValid

contextDescriptionValid
Input:

CtxtDescription: allocation of current values to context variables
Result

Boolean

21



The result of this function will be true if the context description is valid regarding
all given context constraints of the underlying context model CtxtModel. Other-
wise the result will be false. The trivial algorithm behind this function is omitted
here.

A.6 contextRuleValid

contextRuleValid
Input:

Option: option defined for the current base process
CtxtDescription : allocation of current values to context variables

Result
Boolean

The result of this function will be true if the associated context rule to an op-
tion is valid. Otherwise the result is false. The apparently trivial algorithm of the
function is omitted here.

A.7 extendCtxtBlock

extendCtxtBlock
Input:

CtxtDescription: allocation of current values to context variables
ProcessVariantCandidates: set of <CtxtBlock,OptionSet> pairs
CalculatedOptions: set of options

This function identifies a <CtxtBlock,OptionSet> pair within the
ProcessVariantCandidates whose OptionSet is equal to option set
CalculatedOptions. The set of context descriptions (i.e. CtxtBlock), of
the identified pair is then extended by context description CtxtDescription.
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A.8 hasOptionSet

hasOptionSet
Input:

CalculatedOptions: set of options
ProcessVariantCandidates: set of <CtxtBlock,OptionSet> pairs

Result
Boolean

The result of this function will be true if the option set CalculatedOptions is
covered by a <CtxtBlock,OptionSet> pair from ProcessVariantCandidates.
Otherwise the result will be false.

A.9 insertCtxtBlock

insertCtxtBlock
Input:

ProcessVariantCandidates: set of <CtxtBlock,OptionSet> pairs
CtxtDescription: allocation of current values to context variables
CalculatedOptions: set of options

The function creates a new context block CtxtBlock that comprises the context
description CtxtDescription. Furthermore, the CtxtBlock and the option set
CalculatedOptions are added to object ProcessVariantCandidates; i.e., pair
<CtxtBlock,CalculatedOptions> is inserted.

A.10 sortOptionSet

sortOptionSet
Input:

OptionSet: set of options
Output:

sortedOptionList: sorted list of options
Result:

Boolean

Let getTimeStamp(Option) be the function that returns the creation time of
an option and let SeqConstraint(Optioni,Option j) be defined as sequencing con-
straint between options Optioni and Option j (i.e. Optioni shall be applied to the
base process before Option j). Let further SeqConstraint∗(Optioni,Option j) be the
transitive closure of SeqConstraint(Optioni,Option j).
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if ∃ SeqConstraint∗(Optioni,Option j)
AND ∃ SeqConstraint∗(Option j,Optioni) = true then // i.e. cyclic constraints

// write an entry to the error log, including the error causing options
(i.e., the options that are part of the cyclic sequencing constraints)
insertInErrorList(...)
return false

else
for each i < j ∈ (1, . . .n) do

if ∃ SeqConstraint∗(Optioni,Option j)
OR

(
@ SeqConstraint∗(Optioni,Option j)

AND @ SeqConstraint∗(Option j,Optioni)
)

AND
(
getTimeStamp(Optioni) < getTimeStamp(Option j)

)
= true then

// sort options by any sorting algorithm
sortedOptionList = (Option1, . . . ,Optionn) with Optioni < Option j

return true
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