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Abstract. Enabling changes at both process type and process instance
level is an essential requirement for any adaptive process-aware infor-
mation system (PAIS). Particularly, it should be possible to migrate a
(long-)running process instance to a new type schema version, even if
this instance has been individually modified before. Further instance mi-
gration must not violate soundness; i.e., structural and behavorial con-
sistency need to be preserved. Compliance has been introduced as basic
notion to ensure that instances, whose state has progressed too far, are
prohibited from being migrated. However, this also excludes them from
further process optimizations, which is not tolerable in many practical
settings. This paper introduces a number of strategies for coping with
non-compliant instances in the context of process change such that they
can benefit from future process type changes on the one hand, but do
not run into soundness problems on the other hand. We show, for ex-
ample, how to automatically adjust process type changes at instance
level to enable the migration of a higher number of instances. The dif-
ferent strategies are compared and discussed along existing approaches.
Altogether, adequate treatment of non-compliant process instances con-
tributes to full process lifecycle support in adaptive PAIS.

1 Introduction

The ability to effectively deal with change has been identified as key functional-
ity for any process-aware information systems (PAIS). Through the separation
of process logic from application code, PAIS facilitate process changes signif-
icantly. In the context of long-running processes (e.g., medical treatment [1]),
PAIS must additionally allow for the propagation of respective changes to ongo-
ing process instances. Regarding the support of such dynamic process changes,
PAIS robustness is fundamental; i.e., dynamic changes must not violate sound-
ness of the running process instances. In response to these challenges adaptive
PAIS have emerged, which allow for dynamic process changes at different levels
[2–6]. Most approaches apply a specific correctness notion to ensure that only
those process instances may migrate to a modified process schema for which
soundness can be ensured afterwards. One of the most prominent criteria used
in this context is compliance [2, 7]. According to it, an instance may migrate to
schema S′ if it is compliant with S′; i.e., current instance trace can be produced
on S′ as well. Based on compliance it is ensured that instances, whose state has
progressed too far, are prohibited from being migrated.



Consider Fig. 1: Based on process schema S process instances I1, ..., In are
running. Then S is transformed into new schema version S′ by applying process
change ∆S . Assume that it can be decided that I1, ..., Ik may migrate to S′ with-
out violating soundness (i.e., they are compliant with S′), whereas Ik+1, ..., In

have already progressed too far (i.e., they are not compliant with S′).1 As sug-
gested by most approaches Ik+1, ..., In then remain running on S. Assume that
a further optimization of the new schema version S′ takes place captured by
process change ∆S′ resulting in new type schema version S′′. Then I1, ..., Ik

may also benefit from ∆S′ if they are compliant with S′′. However, Ik+1, ..., In

are excluded from migration to S′′ anyway since they are not running on S′. This
is not tolerable in many practical settings. Think, for example, of a patient who
is excluded from a new optimized examination because his particular treatment
instance cannot be migrated to the changed process type schema. In these cases,
it is crucial to find strategies to treat non-compliant instances such that they
can benefit from further process optimizations as well (cf. Fig. 1).

S S‘ S‘‘
ΔS ΔS‘ ΔS‘‘

I1, …, Ik I1, …, Ik-j I1, …, Ik-j-i

Ik+1, …, In Ik-j+1, …, Ik Ik-j-i+1, …, Ik-j

migrate
compliant

non-compliant

migrate

adjustment migrate adjustment migrate

Fig. 1. Migrating Compliant Instances and Treating Non-compliant Ones

In this paper, we introduce a number of strategies for coping with non-
compliant instances in the context of process change such that they can benefit
from future process changes on the one hand, but do not run into soundness
problems on the other hand. We show, for example, how to automatically ad-
just process type changes at instance level to enable the migration of a higher
number of instances. In particular, we do not only consider process instances
which are still running according to the process type schema version they were
started on (denoted as unbiased process instances), but we elaborate adjustment
strategies in the context of biased process instances as well; i.e., instances which
have been already individually modified and thus their instance-specific schema
deviates from the original process type schema version. The different strategies
are compared and discussed along existing approaches. Altogether the adequate
treatment of non-compliant process instances contributes to full lifecycle support
1 We assume that instances are clustered along their state.



of business processes in adaptive PAIS. Section 2 introduces background infor-
mation. Section 3 presents different strategies for dealing with non-compliant
instances. In Section 4, we discuss metrics for measuring the distance between
process schemas which is needed for evaluating the different strategies presented
in Section 3. Sections 5 and 6 show how non-compliant process instances can be
adjusted regardless whether they are unbiased or biased. Section 7 provides an
evaluation for applying the different strategies. Section 8 discussed related work
and Section 9 closes with a summary and outlook.

2 Backgrounds

2.1 Basic Concepts

In this section we summarize basic concepts and notions used in this paper. For
each business process to be supported a process type T represented by a process
schema S has to be defined. For a particular type several process schemas may
exist, representing the different versions and evolution of this type over time. In
the following, a single process schema is represented as directed graph, which
comprises a set of nodes – representing activities or control connectors (e.g.,
XOR-Split, AND-Join) – and a set of control edges (i.e., precedence relations)
between them. In the following we assume block-structured process schemas
(like in BPEL). In order to relax strict block structure, we provide additional
sync links for setting up order relations between activities belonging to parallel
branches (similar to the link concept suggested in BPEL). In addition, a process
schema comprises sets of data elements and data edges. A data edge links an
activity with a data element and represents a read or write access of this activity
to the respective data element. Altogether, a process schema S is represented
by a tuple S := (N,CtrlE, SyncE,D,DataE, ...) where N denotes the set of
activities, CtrlE the set of control egdes, SyncE the set of sync edges, D the set
of data elements, and DataE the set of data edges.

Based on process schema S at run-time new process instances can be cre-
ated and executed. For an instance I running on S, start and/or completion
events of corresponding activities are recorded in execution trace σS

I . A compact
representation of trace σS

I is given by instance marking NSI which assigns to
each activity of I its current state. Possible activity states include NotActivated,
Activated, Running, Completed, and Skipped [7].

Adaptive process management systems are characterized by their ability to
correctly and efficiently deal with (dynamic) process changes [8]. Before dis-
cussing different levels of change, we give a definition on the topology of change.

Definition 1 (Process Change). Let PS be the set of all process schemas and
let S, S′ ∈ PS. Let further ∆ = <op1, . . . , opn> denote a process change which applies
change operations opi (i=1,. . . ,n) sequentially. Then:

1. S[∆> S′ if and only if ∆ is correctly applicable to S and S′ is the process schema
resulting from the application of ∆ to S (i.e., S′ ≡ S + ∆)



2. S[∆>S′ if and only if there are process schemas S1, S2, . . . , Sn+1 ∈ PS with S =
S1, S′ = Sn+1 and for 1 ≤ i ≤ n: Si[∆i>Si+1 with ∆i = (opi)

In general, we assume that change ∆ is applied to a sound (i.e., correct)
process schema S [9]; i.e., S obeys the correctness constraints set out by the
particular process meta model (e.g., block structuring) . This property is also
denoted as structural soundness. Furthermore, we claim that S′ must obey be-
havorial soundness (i.e., any instance on S′ must not run into deadlocks or
livelocks). This can be achieved in two ways: either ∆ itself preserves soundness
by formal pre-/post-conditions (e.g., ADEPT [3]) or ∆ is applied and soundness
of S′ is checked afterwards (e.g., by reachability analysis).

Basically, changes can be triggered and performed at the process type and
process instance level. Changes of a process type T may become necessary to
cover the evolution of the business processes captured in process schemas of this
type [5, 7, 6]. Generally, process engineers can accomplish process type changes
by applying a set of change operations to the current schema version S of type
T [10]. This results in new schema version S′ of T. Execution of future process
instances is usually based on S′. In addition, for long-running instances, it is
often desired to migrate them to the new schema S′ in a controlled and efficient
manner [7, 8]. By contrast, changes of individual process instances are usually
performed by end users and become necessary to react to exceptional situations
[3]. In particular, effects of such changes must be kept local, i.e., they must
not affect other instances of same type. Thus for each individually modified
instance I an instance-specific schema SI is maintained. The difference between
SI and original schema S is captured by the so called instance-specific bias of
I; i.e., ∆I(S). Specifically ∆I(S) captures all change operations applied to S at
instance level in order to obtain instance-specific schema SI . Instances which
have not been individually modified are denoted as unbiased instances.

In the context of process type and process instance changes, structural and
behavorial soundness have to be preserved. In our ADEPT approach, structural
soundness is achieved based on well-defined pre- and post-conditions for the
different change operations [3]. Behavorial soundness, in turn, refers to correct
instance states [7]. If, for example, an activity is started before all its predecessor
activities are completed, this activity will not necessarily be supplied with all
required input data. Behavorial soundness is accomplished by behavorial correct-
ness criteria. In the context of change one prominent example is the compliance
criterion [2] which is used in the remainder of this paper (a detailed comparison
of compliance and other correctness criteria can be found in [8]). Informally,
compliance checks whether execution trace σS

I of instance I on schema S could
also be produced by an instance on S′ in the same order as set out by σS

I .

2.2 Overall Change Framework

Assume that at process type level schema S evolves to schema S′ and that
we want to migrate instances on S to S′ if they are compliant. Out focus is
on how to deal with non-compliant instances in this context. Specifically, we



Change operation ∆ on S opType subject paramList inverseOp
insert(S, X, A, B)a insert X S, A, B delete(S, X)
Effects on S: inserts activity S between activities A and B.

delete(S, X) delete X S insert(S, X, pred(S,X), succ(S,X))b

Effects on S: deletes activities from S
move (S, X, A, B) move X A, B move(S, X, pred(S,X), succ(S,X))
Effects on S: moves activity S from its original position in S to another position betweena ctivity
sets A and B
aBasically, insertion between activities A and B can be generalized to insertion between activity sets
A, B. Additionally, for conditional insert an optional parameter [sc] can be included for representing
a conditional insert (details see [10]).
bpred(S,X) / succ(S,X) denotes the direct predecessor(s) / successor(s) of X in S.

Table 1. Selection of Change Operations on Process Schemas

want to find strategies to cope with non-compliant instances (i.e., to migrate
them to S′ without violating soundness) regardless whether they are unbiased
or biased. Due to their instance-specific bias, the treatment of non-compliant
biased instances poses additional challenges when compared to the treatment of
unbiased ones. In order to tackle these challenges in a systematic way, we base
following considerations on the classification for biased instances as proposed in
[11, 12]. This classification uses the degree of overlap between type change and
instance-specific bias. Overlapping changes occur if at instance level some or all
of the subsequent type changes are anticipated. If ∆I completely anticipates ∆S

(i.e., SI = S′), we denote the changes as equivalent. In this case I can be always
migrated to S′ without any further check. Changes can also subsume each other.
∆I subsumes ∆S (denoted by ∆I � ∆S) if all change operations captured by ∆S

are contained within ∆I , but ∆I also captures additional change operations. In
this case, I is compliant with S′ as well. However, new bias ∆′

I := ∆I\∆S for I on
S′ has to be calculated. In turn, if ∆S subsumes ∆I (denoted by ∆S � ∆I) it has
to be checked whether the changes of ∆S not present for I so far (i.e., ∆S \∆I)
can correctly applied to I. Finally, ∆I and ∆S partially overlap if they have
some change operations ”in common”, but each of them also captures additional
changes. In this case, it has to be checked whether the changes in ∆S \∆I can
be correctly applied to I, and new bias ∆I \∆S has to be calculated for I on S′.

3 Strategies for Coping with Non-compliant Instances

In this section, we discuss novel strategies for coping with non-compliant in-
stances. The basic idea behind is to conduct certain kinds of adjustment (cf.
Fig. 3) to also enable non-compliant instances to migrate to the new schema
version; i.e., to be relinked to the new type schema. One of the possible ad-
justments is to ”simulate” an instance-specific bias such that the effects of the
type change for which the instance has progressed too far (non-compliant) are
”neutralized”. This enables migration or – more precisely – ”re-linking” of the
respective instance to the new type schema version. Consequently, this instance
can benefit from further schema optimization. In the following we present two
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Fig. 2. Overview on Instance Cases along Change Overlap

strategies for this bias-based adjustment (cf. Fig. 3). Other adjustments adapt
of instance execution traces or even the type change itself.

3.1 Biased-based Local Adjustment

Strategy 1 (Always-Migrate): Basically, any non-compliant instance can
be migrated (i.e., relinked) to the modified type schema version. The idea is
as follows: Let S be a process schema which is transformed into S′ by change
∆S . Let further I be an instance on S. So far, ∆S is propagated to I when
migrating I to S (i.e., I reflects ∆S after its migration to S′). However, if I is
not compliant with S′, ∆S must not be applied to I; i.e., execution of I should be
continued on its old schema. However, this effect can be also ”simulated” when

Local Adjustment

Global Adjustment

History-based

Strategy 1
Strategy 2
Strategy 1
Strategy 2

Bias-based

Strategy 3Strategy 3

Strategy 4Strategy 4

Adjustments for Coping with
Non-compliant Instances

Strategy 1
Strategies 2/4 
+ Strategy 3

Strategy 1
Strategy 3

Strategy 1
Strategy 2
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MOVEDELETEINSERT

Strategies along Change Types

Fig. 3. Overview on Possible Strategies for Coping with Non-Compliant Instances



re-linking I to S′ by ”neutralizing” type change ∆S . ”Neutralizing” means to
introduce an artificial bias ∆I based on S′ which reverses the effects of ∆S for
this particular instance. Consider Fig. 4. At type level new activity X is inserted
between activities A and B. Then instance I (cf. Fig. 4b) is not compliant with
S’ since B is already completed. However, I can still be migrated to to S′ by not
applying type change ∆S . The invalid change ∆S for I on S′ can be ”healed”
by creating an instance-specific bias ∆I(S′) for I on S′; i.e., ∆I(S′) reflects
the deviations between S′ and instance-specific schema SI . Specifically, ∆I(S′)
constitutes the ”inverse” change operation of ∆S . In our example, insertion of
X into S can be reversed by deleting X from S′.

a) Process type schema S:

X

Modified process type schema S`:

S[ΔS>S‘

CXA B C

X ΔS = <insert(S,X,A,B),>

A B

S[ΔS>S

b) Unbiased instance I on S:
migrate

Biased instance I on S‘:

I:
A B C

migrate
A B C Activity States:

Completed

Activity:

A ti t dΔI(S‘) = <delete(S‘,X)>I non-compliant with S‘ Activated

Fig. 4. Strategy 1: Always-Migrate (Example)

Strategy 1 can be applied for any kind of change operation. The challenge is to
determine the ”inverse” change to be maintained for the migrated instance. Tab.
1 shows the inverse changes for insert, delete, and move operations. Alternatively,
we can directly determine schema ”difference” between type schema S′ and
instance-specific schema. Here, already existing approaches can be used. [13], for
example, presentw an approach to compare two schemas S1 and S2 in terms of
high-level change operations (cf. Tab. 1) needed to transform S1 into S2.

Strategy 2 (Instance-Specific Adjustment) The idea behind Strategy 2 is
to conduct instance-specific adjustments of type changes in order to be able to
relink non-compliant instances to the new type schema version. For this pur-
pose we exploit specific semantics of the applied change operation [10]: When
applying an insert operation, for example, the user has to specify the position
where to insert the new activities (cf. Tab. 1). Thus the insert operation is a can-
didate for instance-specific adjustments since such position parameters can be
easily adapted; e.g., by inserting an activtiy ”later” than originally intended. In
the following, instance-specific adjustment is elaborated in the context of insert
operations. Section 5 also provides a discussion for adjusting move operations.



Consider the example depicted in Fig. 5. Instance I (cf. Fig. 5b) is not com-
pliant with new type schema S′ since B is already in state Running. Basically,
if no semantic constraints are violated, at instance level X can be inserted at
other positions as well, specifically at those positions within the instance-specific
schema, where I becomes compliant again. Assuming that we keep A as the ”left
anchor” for the insert operation, possible ”right anchors” for the insertion are C
and D respectively. Consider first insertion of X between A and C (¬): When
applying change ∆1

I(S) to I as instance-specific adjustment, we obtain instance
schema S1

I . The bias between S1
I and S′ is then captured by ∆1

I(S
′) and reflects

an insertion with ”relaxed” insertion position.2 Schema S2
I resulting from the

insertion of X between A and D is depicted in Fig. 5b (). Obviously, the ques-
tion is which of the two schemas we shall prefer. The premise of this paper is
to enable migration of non-compliant instances such that they can benefit from
further optimizations. In general, the application of further modifications at type
level will be supported best by keeping the instance-specific schemas ”as close
as possible” to the type schema version they are migrated to. Here, intuitively,
S1

I is ”closer” to S′ when compared to S2
I . In order to formally define ”as close

as possible” a distance metric between process schemas is needed (cf. Section 4).
Basically, it is also possible to use ”left anchors” other than A for realizing

instance-specific adjustments. Consider Fig. 5b(®): When compared to S′ the
order between X and B has been reversed for Fig. 5b(®), whereas for Fig. 5b(¬)
X and B are ordered in parallel. Thus for Fig. 5b(¬), still X can be started before
B is finished, what is not possible in Fig. 5b(®). Hence, the instance schema from
Fig. 5b(¬) is ”closest” to S′. – Altogether, from the above discussion two basic
research questions can be derived:

1. How to measure the distance between process type and instance schemas?
2. How to determine instance-specific adjustments ∆I(S′) such that I

– is compliant with SI where S′[∆I(S′) > SI

– and the distance between instance schema SI and modified type schema
S′ becomes minimal?

For the first question different approaches exist. We discuss them
in Section 4. The second question is targeted in Sections 5 and 6.

3.2 Strategy 3: History-Based Adjustment

History-based adjustment is mainly applied for delete operations (e.g., an in-
stance is not compliant if the activity to be deleted is already running or com-
pleted). Basically, deletion of activities ”in the past” of process instances can be
enabled by adjusting instance traces. Assume, for example, that activity X is to
be deleted from schema S resulting in schema S′. Regarding instance I on S,
X has been already completed and respective start and end events for X were
logged in σS

I . Thus σS
I cannot be ”replayed” on S′ and compliance for I on S′

2 i.e., X is not inserted between A and B, but between A and the first ”possible”
successor of B.
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Fig. 5. Strategy 1: Instance-Specific Adjustment (Example)

is not fulfilled. However, when discarding the respective trace entries of X from
σS

I , the modified trace can be replayed on S′ and thus I can be migrated. Entries
of deleted activities are not physically deleted from the exeuction traces, but are
only flagged within the trace in order to preserve traceability. As shown in [14]
Strategy 3 does not harm soundness of the affected instances.

3.3 Strategy 4: Global-Adjustment

Basically, adjusting schema changes may be done at both, the process type and
the process instance level. Assume that process type schema S is transformed
into another type schema S′ by change ∆S . Let further I be an instance on
S which is not compliant with S′. If ∆S is adjusted to ∆′

S at type level (i.e.,
transforming S into S′′ instead of S′), more instances running on S may becomes
compliant with S′′ afterwards. Generally, more instances will become compliant
with a changed type schema, if added activities are inserted ”as late as possible”.
Most important, all data dependencies (or additionally, semantics constraints)
imposed by the process type schema and the intended change must be fulfilled.
For the given example this implies that activities X and Y can be inserted ”later
in the type schema” (i.e., as ”close” to the process end as possible) as long as
the data dependency between them is still fulfilled. Since a process type schema



might contain more than one process end node, the formalization of ”later in a
process graph” should not be based on structural properties; i.e., we aim at being
independent of a particular process meta model. As for the compliance criterion,
we use process traces in this context. Due to lack of space we omit a formalization
here. Finally, when inserting two or more data-dependent activities, additional
constraints must hold. More precisely, it cannot be allowed to move the insertion
position of the writing activity ”behind” the reading activity since the resulting
schema would not be correct anymore.

4 Metrics on Process Schemas

As discussed in the context of Strategy 2, measuring the distance between type
and instance schema is an important task. Basically, there exist different ap-
proaches for this, ranging from activity coverage [15] over fitness functions (e.g.,
in connection with genetic process mining [16]), to process similarity as defined
in [15]. Activity coverage quantifies the distance between two process schemas
S1 and S2 in terms of the difference between their activity sets.

Regarding the examples depicted in Fig. 5, activity coverage is 100% for all
schemas. However, there are structural differences between instance schemas Sj

I

(j= 1, .., 4) and S′. First of all, for each Sj
I a bias ∆j

I between Sj
I and S′ arises.

According to the process similarity notion introduced in [15], for example, the
distance between two process schemas can be determined as number of high-level
change operations (i.e., insert, move, and delete operations) needed to transform
the one schema into the other. Regarding our scenario from Fig. 5, for each
Sj

I exactly one high-level change, specifically a move operation, is required to
capture the difference between S′ and Sj

I . Using this measure, therefore, the
similarity to S′ would be the same for all Sj

I (j = 1, ..., 4). Thus, we need
an additional measurement in terms of control relations between the different
activities. Intuitively, such structural fitness can be expressed considering the
number of control relations different for S′ and Sj

I . This number should be
minimized in order to enable propagation of subsequent schema changes.

Definition 2 (Structural Distance). Let S = (N, CtrlE, SyncE, ...) and S’ =
(N, CtrlE’, SyncE’, ...) (cf. Section 2) be two (block-structured) process schemas
having equal activity set (i.e., activity coverage of 100%, cf. Section 7). Let fur-
ther succ*(S, n) denote the set of all direct or indirect successors of activity n
in S3, formally:

succ*: S × N 7→ 2N with

succ*(S, n) = {n∗ ∈ N |n∗ ∈ succ(S, n)∨ ∃n∗∗ ∈ succ(S, n) : n∗ ∈ succ∗(S, n∗∗))}
with succ(S, n) denoting the set of all direct successors of n in S, i.e., regarding
control and sync edges

3 At this point we assume acyclic process structures. However, in general cyclic struc-
tures can contribute to a treatment of non-compliant instances. A sketch of the so
called delayed migration using loop backward jumps is provided in Section 8.



The structural fitness between S and S’ can then be quantified by function
sD(S, S’) which sums up the cardinalities of the difference sets between the suc-
cessor sets for all activities contained in S and S’.

sD: S × S 7→ N with

sD(S,S’) = |
S

n∈N (succ∗(S, n) \ succ∗(S′, n)) ∪ (succ∗(S′, n) \ succ∗(S, n)|

Fig. 6 summarizes and compares the respective successor sets for the different
schemas from Fig. 5. As can be seen instance-specific schema S1

I has minimal
structural distance to S′. Hence, deciding for an instance-specific adjustment in
order to ”make” I compliant with S′ (cf. Fig. 5b), change ∆1

I would be considered
as optimal instance-specific adjustment.

Schema S = S‘ S1
I S2

I S3
I S4

I

succ*(S, A) {X, B, C, D} {X, B, C, D} {X, B, C, D} {X, B, C, D} {X, B, C, D}

succ*(S X) {B C D} {C D} 1 {D} 2 {C D} 1 {D} 2succ*(S, X) {B, C, D} {C, D} 1 {D} 2 {C, D} 1 {D} 2

succ*(S, B) {C, D} {C, D} {C, D} {X, C, D} 1 {X, C, D} 1

succ*(S, C) {D} {D} {D} {D} {X, D} 1( , ) { } { } { } { } { , }

succ*(S, D) ∅ ∅ ∅ ∅ ∅
sD(S‘, S) 1 2 2 4

Fig. 6. Successor Sets and Structural Distances for the Scenario from Fig. 5

5 Instance-Specific Adjustment of Unbiased Instances

Bias-based strategies as introduced in Section 3.1 are promising approaches for
treating non-compliant instances. Assume that instance I on S is not compliant
with modified type schema version S′ (S[∆S > S′). However, if type change ∆S

can be locally adjusted to ∆I(S′) such that I becomes compliant with instance
schema S|∆I(S′) > SI , I can be relinked to S′ using bias ∆I(S′) (Strategy 2). As
motivated by Fig. 5, different adjustments of ∆S are conceivable. However, we are
particularly interested in the adjustment which results in the lowest structural
distance sD(S′, SI) between instance schema SI and type schema S′ (cf. Def.
2). In this section we show how to automatically derive such optimal instance-
specific adjustment for unbiased process instances. In the example from Fig. 5,
optimal instance-specific adjustment for operation ”insert activity X between A
and B” is achieved if X is inserted between A and the next possible successor
of A which has not been started yet. Theorem 1 captures this aspect:

Theorem 1 (Optimal Instance-specific Adjustment). Let S, S’ be two
process schemas and let ∆S = <insert(S, X, A, B)> be an insert operation



which transforms S into S’; i.e., S[∆S > S′. Let further I ∈ I (I denotes the set
of all instances) be an instance running on S for which NSI(B) ∈ {Running,
Completed} holds for the state of activity B (cf. Section 2); i.e., I is not compli-
ant with S’. We define instance-specific adjustment ∆I(S′) as follows:

∆I(S′) = move(S’,X,A,C) with C ∈ nextNonStartedSucc(S’,I,B)4 where
nextNonStartedSucc: S × I × N 7→ 2N

nextNotStartedSucc(S’,I,n) =
{n ∈ succ*(S’,X) | NSI(n) 6∈ {Running, Completed}
∧ (6 ∃ n’: NSI(n′) 6∈ {Running, Completed} ∧ n ∈ succ*(S’,n’) }

Then: I is compliant with SI where S′[∆I(S′)>SI and
dS(S’,SI) = min{dS(S’,S̃I) | S′[ ˜∆I(S′)>S̃I with I compliant with S̃I}

A proof of Theorem 1 can be cound in Appendix A.
For each insert operation applied to process schema S a corresponding move

operation is generated based on Theorem 1 if necessary; i.e., if I is not compliant
regarding this particular insert operation. As example consider Fig. 7: instance
I is not compliant with S′. Hence for both insert operations (i.e., of X and Y )
two corresponding move operations are applied to realize an instance-specific
adjustment (bias).

So far, insert and delete operations have been discussed. Regarding insert
operations instance-specific adjustments can be applied (cf. Strategy 2) whereas
for delete operations, adjustment of the execution history of the affected instance
might relax compliance issues (cf. Strategy 3). What about move operations?
First of all, moving an activity can be seen as combination of a delete and
insert operation. Second, regarding compliance, an activity cannot be moved if
it has been already started or completed. Furthermore it cannot be moved before
an activity which has been already started or completed. Thus we distinguish
between the following cases: if an activity shall be moved, which has been already
started or completed, we apply history-based adjustment (Strategy 3). If the
activity is to be moved before an already started or completed activity, we apply
instance-specific adjustment (Strategy 2).

6 Instance-Specific Adjustment of Biased Instances

Fig. 2 has already given an overview on the different classes of overlap between
schema changes at the process type and the process instance level. In this sec-
tion we investigate whether and – if yes – how the strategies for dealing with
non-compliant instances (cf. Section 3) can be applied in the context of biased
instances as well. First of all, one can observe that instances with equivalent bias
and instances having subsumption equivalent bias (i.e., ∆I � ∆S) are always
compliant with the changed schema (cf. Section 2). Consequently, for these two

4 In connection with parallel or alternative branchings more than one successor of B
can be the ”next non-started activity”. In this case one of them is chosen arbitrarily
or the user is asked to make a choice.
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Fig. 7. Instance-specific Adjustment (Example)

classes no additional reasoning on treatment of non-compliant instances becomes
necessary. From the remaining overlap classes, we first focus on instances with
disjoint bias; i.e., changes at type level and instance level which are completely
different. An example is depicted in Fig. 8. Regarding instance I, activity Y has
been inserted between B and C (captured by instance-specific bias ∆I(S)). Then
at type level, schema change ∆S inserts X between A and B. Obviously, ∆S and
∆I are disjoint and I is not compliant with S′ (since B is already completed).
Transferring the instance-specific adjustment as presented in Theorem 1 to this
scenario, first of all next successor of B in SI which has not been started yet
is determined; i.e., activity Y . Thus, the instance-specific adjustment of ∆S at
instance level yields move operation move(S’, X, A, Y). Since ∆S and ∆I(S) are
disjoint, the instance-specific adjustment does not conflict with the original bias.
Thus, new bias ∆I(S′) turns out as concatenation of the bias before migration
and the instance-specific adjustment; i.e., ∆I(S′) as shown in Fig. 8. Due to lack
of space we omit formal details and proofs here.

If type schema change ∆S subsumes instance change ∆I (i.e., ∆succ∆I)
instance-specific adjustment has to be carried out for all insert operations in ∆S\
∆I for which I has progressed too far. How to determine difference sets between
changes is outside the scope of this paper. For all adjusted insert operations the
corresponding move operation can be determined based on Theorem 1. These
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move operations have to be stored as instance-specific bias on S′ after migration.
Fig. 9 shows an example.
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7 Strategy Evaluation

Assume that instances IS := {I1, ..., In} are running on type schema S which
is then transformed into schema S′ (S[∆S>S’). Assume further that a subset of



the running instances is not compliant with S’. In this section we want to eval-
uate the quality of the different strategies introduced in Section 3 for treating
non-compliant instances. On the one hand, the quality of a strategy is based
on the number of instances which can be migrated additionally to the number
of compliant instances (i.e., instances without applying any strategy). On the
other hand, we also have to consider the ”price” to be paid for each additionally
migrated instance I. The latter is reflected by the distance between instance
schema SI and S′ after migration. One metric for measuring the structural dis-
tance between process schemas SI := (NI , CtrlEI , ...) and S′ = (N ′, CtrlE′, ...)
is provided in Def. 2. However, this metrics can be only applied if SI and S′ have
the same activity sets; i.e., there exists a bijective mapping between NI and N ′

or – in other words – activity coverage between SI and S′ is 100%. Actually,
activity coverage can be also used to compare process schemas, for example, in
the context of Strategy 1 (cf. Section 3), which leads to NI 6= N ′ in most cases.
Finally, process schemas SI and S′ can be also compared based on the number
of high-level operations necessary to transform SI into S′ (denoted as process
similarity [15]). For a definition of all three metrics see Tab. 2:

Metric M Formula Preconditions

Process Similarity PS(SI ,S’):= #ops
|NI |+|N′|−|NI∩N′|

a

Activity Coverage AC(SI ,S’):=
|NI∩N′|

|NI |+|N′|−|NI∩N′|

Structural Distance SD(SI ,S’):=
sD(SI ,S′)

|NI |
AC(SI ,S’) = 100%

a ops denotes the high-level operations applied for transforming SI into S′.
Table 2. Different Metrics for Comparing Process schemas

Below Formula (1) enables evaluation of the quality of Strategies 1 to 4.
Specifically, #mIs denotes the number of migratable instances when applying
strategy s. Note that we can compare the application of a strategy with the
case of applying no strategy. Then #mIs reflects the number of instances, which
are compliant with modified type schema version S′ anyway. The remainder of
the formula quantifies the side-effects when applying one of the strategies. If
we do not apply any strategy, the formula yields SC(”none”, S’, IS) = #mIs

|IS | ;
i.e., the number of compliant instances divided by the number of all instances.
For Strategy 1, for example, which enables migration of all instances (”always-
migrate”), #mIs = |IS | holds.

SC(s, S
′
, IS) :=

#mIs −
P

I∈IS
PS(SI , S′) −

P
I∈IS

AC(SI , S′) −
P

I∈IS
sD(SI , S′)

|IS |
(1)

Consider the scenario depicted in Fig. 10. Type schema S is transformed
into S′ by inserting activity X between A and B and by deleting C. Assume
that 500 instances are running based on S and that they are clustered along



their current instance state. Assume further that for instances I1, ..., I100, activ-
ity A is completed and B is activated, for instances I101, ..., I200 A and B are
completed and C is activated, and for I201, ..., I500 activities, A, B, and C are
completed whereas D is either activated or running. Then instances I1, ..., I100

are compliant with S′, whereas I101, ..., I500 have progressed too far; i.e., they
are non-compliant with S′. Without any further treatment of the non-compliant
instances the quality turns out as SC(”none”,S’,IS) = 0.2.

The result of applying our four strategies is illustrated by Fig. 10. First, Strat-
egy 1 (Always-Migrate) is applied to instances I101, ..., I500. Instances I101, ..., I200

are not compliant with respect to the insertion of X, but they are compliant with
respect to the deletion of C. Hence, when applying Strategy 1 to I101, ..., I200,
the insert operation has to be neutralized, which can be expressed by a delete
operation on S′ (i.e., to delete X on S′). Contrary, instances I201, ..., I500 are not
compliant with respect to both changes. Hence also the deletion of C has to be
neutralized by a respective insert operation (cf. Fig. 10).

As summarized in Fig. 3, some of the strategies are applicable in the context
of certain change operations; i.e., Strategy 2 for insert operations and Strategy
3 for delete operations. Type schema change ∆S captures an insert as well as a
delete operation. Hence, we have to combine Strategies 2 and 3 in order to ade-
quately treat non-compliant instances by bias-based local adjustment. Regard-
ing instances I101, ..., I200, the delete operation can be applied (no history-based
adjustment). However the insert operation has to be adjusted to a move oper-
ation as depicted in Fig. 10. Regarding instances I201, ..., I500 we have to apply
history-based adjustment for the deletion of C as well (i.e., logically discarding
the entries of C in traces of I201, ..., I500). Finally, Fig. 10 shows an example for
the application of Strategy 4 (Global Adjustment); i.e., by inserting activity X
between C and D instead of between A and B all instances, for which D has
not been started yet become compliant with S′′ (e.g., I1, ..., I450). Altogether,
we obtain the following quality estimations for Strategies 1, 2, and 4 as depicted
in Fig. 10:

• Strategy 1: S(s1, S’, {I1, ..., I500}) = 500−(100∗0.25+300∗0.4)+(100∗0.75+300∗0.6)
500

= 1.31

• Strategy 2: S(s2, S’, {I1, ..., I500}) = 500−500∗0.25+500−500∗0.25
500

= 1.5

• Strategy 4: S(s3, S’, {I1, ..., I500}) = 450+500
500

= 1.9

8 Related Work

There is a plethora of approaches dealing with correctness issues in adaptive
PAIS [5, 17, 6, 7, 4]. The kind of applied correctness criterion often depends on
the used process meta model. A discussion and comparison of the particular
correctness criteria is given in [8]. Aside from the applied correctness criteria,
mostly, these approaches do neither address the question of how to increase the
number of migratable instances nor how to deal with non-compliant instances.
Most approaches which treat non-compliant instances are based on partial roll-
back [4, 18] (cf. Sect. 4). An alternative approach supporting delayed migrations
of non-compliant instances is offered by Flow Nets [17]. Even if instance I on S is
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not compliant with S′ within the actual iteration of a loop, a delayed migration
of I to the new change region is possible when another loop iteration takes place.

Frameworks for process flexibility have been presented in [19, 10]. In [19],
different paradigms for process flexibility and related technologies are described.
[10] provides change patterns and evaluates different approaches based on them.
However, [19, 10] do not address the treatment of non-compliant instances.

For treating non-compliant instances, partial rollback has been suggested [4,
18]. Applying this policy for instances which have already progressed too far
results in a compliant state. Generally, instance rollback is accomplished by
compensating activities [4]. An obvious drawback is that it is not always pos-
sible to find compensating activities, i.e., to adequately rollback non-compliant
instances. Apart from this, rollback is mostly connected with loss of work and
thus not well accepted by users.

9 Summary and Outlook

So far, non-compliant process instances have been excluced from being migrated
to the new process type schema version in order to preserve soundness. Con-
sequently, these instances are also excluded from any future process optimiza-
tions. Thus, in this paper we provided four strategies to cope with non-compliant
process instances. Specifically, the strategies are based on adjustments either of



process changes at type schema level or instance level. Alternatively, adjustments
of the instance traces are helpful in some cases. All strategies preserve soundness
of the running instances after relinking them to the new type schema version.
In particular, we elaborated the migration of instances by locally adjusting the
type schema change at instance level; e.g., moving the insertion position such
that the instances become compliant with the resulting instance-specific schema.
How respective adjustments can be determined such that the distance between
instance-specific schema and modified type schema version becomes minimal has
been shown as well. Finally, all strategies were evaluated along an example. In
future work, we aim at implementing the different strategies together with our
framework on relaxing compliance notions within the ADEPT2 system. Further-
more, we plan to investigate the interplay between relaxing compliance, treating
non-compliant instances, and ensuring semantic process constraints.
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A Proofs

Theorem 1 (Optimal Instance-specific Adjustment). Let S, S’ be two
process schemas and let ∆S = <insert(S, X, A, B)> be an insert operation
which transforms S into S’; i.e., S[∆S > S′. Let further I ∈ I (I denotes the set
of all instances) be an instance running on S for which NSI(B) ∈ {Running,
Completed} holds for the state of activity B (cf. Section 2); i.e., I is not compli-
ant with S’. We define instance-specific adjustment ∆I(S′) as follows:

∆I(S′) = move(S’,X,A,C) with C ∈ nextNonStartedSucc(S’,I,B)5 where
nextNonStartedSucc: S × I × N 7→ 2N

nextNotStartedSucc(S’,I,n) =
{n ∈ succ*(S’,X) | NSI(n) 6∈ {Running, Completed}
∧ (6 ∃ n’: NSI(n′) 6∈ {Running, Completed} ∧ n ∈ succ*(S’,n’) }

Then: I is compliant with SI where S′[∆I(S′)>SI and
dS(S’,SI) = min{dS(S’,S̃I) | S′[ ˜∆I(S′)>S̃I with I compliant with S̃I}

For proofing Theorem 1, we use the following two Lemmata: Lemma 1 pro-
vides an estimation for the structural difference between a modifed type schema
version and an instance-specific schema, if the assumption of Theorem ?? hold.
Again under the assumptions of Theorem 1, Lemma 2 gives an estimation for the
structural difference when the instance-specific change is modified by choosing
another left anchor for the move operation at instance level as suggested for the
instance-specific change with minimal structural difference.

Lemma 1 (Structural Distance for Instance-Specific Adjustment (1)).
Let the assumptions be as defined for Theorem 1. Then:

sD(SI ,S’) = |succ∗(S′, A) ∩ pred∗(S′, C)|-1
5 In connection with parallel or alternative branchings more than one successor of B

can be the ”next non-started activity”. In this case one of them is chosen arbitrarily
or the user is asked to make a choice.



Proof of Lemma 1: For illustration see Fig. 11.
The only activity within SI which is affected by ∆I in terms of changes of

its successor set is X when compared to S′. Reason is that for ”left anchor” A
(and all its predecessors) the set of successors remains the same (i.e., X is only
inserted at a different position). Symmetrically, for ”right anchor” C (and all
its successors) their successor sets are not affected by ∆I(S′) at all. Thus, the
possibly affected activities are within set succ∗(SI , A) ∩ pred∗(SI , C).

When digging deeper we obtain the following results: For activities in set
(succ∗(SI , A)∩pred∗(SI , X)) their successor sets remain equal as well when com-
pared to S′. Note that X is actually present in their successor sets and the exact
position does not matter. For all activities in succ∗(SI , X) ∩ pred∗(SI , C), X is
inserted in parallel. Assume that A and B are direct successors in S and X is in-
serted serially between A and B resulting in S′. Since B has been already started
for I, X is moved between A and a successor of B. Thus, this always results in
inserting X at least parallel to B. Altogether, for succ∗(SI , X) ∩ pred∗(SI , C)
there is also no change in their successor sets when compared to S′ since no new
order relations are introduced for these activities.

In summary, only the successor set of X is affected when comparing SI and
S′. As argued before, X is moved parallel to the activities which are in set
succ∗(S′, A)∩ pred ∗ (S′, C) except X itself. Thus, for all these activites (except
X) X ”looses” one successor when comparing S′ and SI . Out of this statement
Lemma 1 can be directly concluded. �

Process Schema S: ΔS = < insert(S,X,A,B)>

+

S`:

AA BB CC DD EE

AA XX CC DD EE EEAA BB CC DD EE

+

XX

AA BB CC DD EE

Fig. 11. Illustration of Lemmata 1 and 2

Lemma 2 (Structural Distance for Instance-Specific Adjustments (2)).
Let the assumptions be as defined for Theorem 1. Then for ∆I = move(S’,X,Y,C)
with Y ∈ succ*(S’,A) (with S’[∆I > SI , I compliant with SI):

sD(SI ,S’) = |succ∗(S′, A)∩ pred∗(S′, C)| − 1 + |succ∗(S′, A)∩ pred∗(S′, Y )|



Proof Sketch of Lemma 2:
The basic consideration behind Lemma 1 is that change ∆I(S′) can be

”mapped” to change ∆I(S′) as described in Theorem 1. This can be done as
follows: Consider Fig. 11: X can be inserted between A and E; i.e., by change
∆I(S′) = move(S’,X,A,E). According to Lemma 1 for each activity X is moved
parallel to, X ”looses” one successor. Shifting the left anchor from A towards E
can be expressed by inserting a sync edge between new anchor Y and X; e.g.,
if we chose B as left anchor (i.e., ∆I(S′) = move(S’,X,B,E)). By doing so, B
”receives” new successor X. If, for example, D is chosen as left anchor, B, C,
and D have new successor X. Thus, for all activities ”between” A and Y one
new successor occurs. �

Proof of Theorem 1:
Preconditions:

1. ∆S = <insert(S,X,A,B)>
2. S[∆S > S′

3. I ∈ I on S
4. NSI(B) ∈{Running, Completed}
5. ∆I(S′) = move(S’,X,A,C) with

C ∈ nextNonStartedSucc(S’,I,B) =⇒ NSI(C) ∈ {NotActivated, Activated}
6. S’[∆I(S′) > SI

Statement:
(1) I compliant with SI

∧
(2) dS(S’,SI) = min{dS(S’,S̃I) | S′[ ˜∆I(S′)>S̃I with I compliant with S̃I}

We proof Theorem 1 by contradiction.

Contradicton Assumption:

¬((1) ∧ (2)) ≡ ¬(1) ∨ ¬ (2) ≡
¬ ((1) I compliant with SI ∧

(2) dS(S’,SI) = min{dS(S’,S̃I) | S′[ ˜∆I(S′)>S̃I

with I compliant with S̃I}) ≡
(¬1) I is not compliant with SI ∨

(¬2) ∃∆I(S′) with dS(S’,SI) ≥ dS(S’, SI) with
S’[∆I(S′) > SI

Preliminaries for Case (¬1): Basically, compliance is defined based on execution
traces [2, 7]; i.e., instance I is compliant with changed type schema version S′

if trace σS
I of I on S could have been also produced on S′. As discussed in [7],

for example, checking compliance based on generating and replaying execution
traces can be quite expensive. Thus, comparable to serializability in database



systems, for example, we have stated precise compliance conditions (cf. [7, 8, 12,
20], based on which compliance can be quickly checked. The idea is to exploit
the semantics of the applied change operation (e.g., an insert or move operation)
and to evaluate the node states NSI of ”critical” activities; i.e., activities which
constitute the change region of the the particular activity. For deletion, for exam-
ple, the change region is built by the activity to be deleted (change semantics).
It can be shown that compliance is ensured if the activity to be deleted is in
state NotActivated or Activated. In the context of Theorem 1 we are interested
in move operations.

The compliance conditions for move operation move(S’,X,A,C) are as follows:
NSI(X) ∈{NotActivated, Activated} ∧ NSI(C) 6∈ {Running, Completed}

Case ¬(1): I is not compliant with SI =⇒
∆I(S′) violates the compliance condition for move operations, i.e.,
NSI(X) 6∈{NotActivated, Activated}

∨ NSI(C) 6∈ {NotActivated, Activated} =⇒ Contradiction  

since NSI(X) = NotActivated since X is newly inserted at type schema level
and NSI(C) ∈ {NotActivated, Activated} according to Precondition (5)

Case ¬(2): ∃∆I(S′) with dS(S’,SI) ≥ dS(S’, SI) with S’[∆I(S′) > SI

Pre-Considerations:

We assume implicitly that dS(S’,SI) and dS(S’, SI) are defined =⇒
N’ = N ′

I = NI

for S’= (N’, CtrlE, ...), SI = (NI , CtrlEI , ...), and SI = (NI , CtrlEI , ...).
From this assumption we can conclude that opType(∆I(S′)) = move (cf. Table
1)
Since we assume further that I is compliant with SI , subject((∆I(S′)) = S
follows (cf. Table 1); i.e., altogether ∆I(S′) = move(S’,X,Y,Z).
Consequently, ∆I(S′) and ∆I(S′) differ in their parameter list. Here we can
distinguish the following cases:

Case A: Y = A, Z 6= C; i.e., maintaining ”left anchor” A
With Lemma 1 we obtain:

sD(SI ,S’) = |succ∗(S′, A)∩pred∗(S′, Y )|−1
!
< |succ∗(S′, A)∩pred∗(S′, C)|-1

Under the assumption that ∆I is a valid change (i.e., Y ∈ succ*(SI ,A)) and
compliance conditions hold for ∆I(S′) (i.e., NSI(Y ) 6∈ {Running, Completed})
a contradiction to the preconditions results, since in this case C cannot be one
of the next non-started successor of A in S’  

Case B: Y 6= A, Z = C; i.e., maintaining ”right anchor” C
Case B1: Y ∈ succ*(S’,A)
With Lemma 1 and Lemma 2 we obtain:
sD(SI ,S’) = |succ∗(S′, A)∩ pred∗(S′, C)|-1 + |succ∗(S′, A)∩ pred∗(S′, Y )|

!
<

|succ∗(S′, A) ∩ succ∗(S′, C)|-1 =⇒ Contradiction  
Case B2: Y ∈ pred*(S’,A)



Intuitively clear. If we move X between a predecessor of A and C, X is
moved parallel to A. Thus at least A ”looses” X as successor and we obtain
sD(SI ,S’) ≥ sD(SI ,S’) + 1

Case C: Y 6= A, Z 6= =⇒ follows from Case A and Case B �
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