

Ulmer Informatik Berichte | Universität Ulm | Fakultät für Ingenieurwissenschaften und Informatik

Adjustment Strategies for
Non-Compliant Process Instances

Stefanie Rinderle-Ma, Manfred Reichert

Ulmer Informatik-Berichte
Nr. 2009-06

März 2009

Adjustment Strategies for Non-Compliant
Process Instances

Stefanie Rinderle-Ma and Manfred Reichert

1Ulm University, Germany, {stefanie.rinderle, manfred.reichert}@uni-ulm.de

Abstract. Enabling changes at both process type and process instance
level is an essential requirement for any adaptive process-aware infor-
mation system (PAIS). Particularly, it should be possible to migrate a
(long-)running process instance to a new type schema version, even if
this instance has been individually modified before. Further instance mi-
gration must not violate soundness; i.e., structural and behavorial con-
sistency need to be preserved. Compliance has been introduced as basic
notion to ensure that instances, whose state has progressed too far, are
prohibited from being migrated. However, this also excludes them from
further process optimizations, which is not tolerable in many practical
settings. This paper introduces a number of strategies for coping with
non-compliant instances in the context of process change such that they
can benefit from future process type changes on the one hand, but do
not run into soundness problems on the other hand. We show, for ex-
ample, how to automatically adjust process type changes at instance
level to enable the migration of a higher number of instances. The dif-
ferent strategies are compared and discussed along existing approaches.
Altogether, adequate treatment of non-compliant process instances con-
tributes to full process lifecycle support in adaptive PAIS.

1 Introduction

The ability to effectively deal with change has been identified as key functional-
ity for any process-aware information systems (PAIS). Through the separation
of process logic from application code, PAIS facilitate process changes signif-
icantly. In the context of long-running processes (e.g., medical treatment [1]),
PAIS must additionally allow for the propagation of respective changes to ongo-
ing process instances. Regarding the support of such dynamic process changes,
PAIS robustness is fundamental; i.e., dynamic changes must not violate sound-
ness of the running process instances. In response to these challenges adaptive
PAIS have emerged, which allow for dynamic process changes at different levels
[2–6]. Most approaches apply a specific correctness notion to ensure that only
those process instances may migrate to a modified process schema for which
soundness can be ensured afterwards. One of the most prominent criteria used
in this context is compliance [2, 7]. According to it, an instance may migrate to
schema S′ if it is compliant with S′; i.e., current instance trace can be produced
on S′ as well. Based on compliance it is ensured that instances, whose state has
progressed too far, are prohibited from being migrated.

Consider Fig. 1: Based on process schema S process instances I1, ..., In are
running. Then S is transformed into new schema version S′ by applying process
change ∆S . Assume that it can be decided that I1, ..., Ik may migrate to S′ with-
out violating soundness (i.e., they are compliant with S′), whereas Ik+1, ..., In

have already progressed too far (i.e., they are not compliant with S′).1 As sug-
gested by most approaches Ik+1, ..., In then remain running on S. Assume that
a further optimization of the new schema version S′ takes place captured by
process change ∆S′ resulting in new type schema version S′′. Then I1, ..., Ik

may also benefit from ∆S′ if they are compliant with S′′. However, Ik+1, ..., In

are excluded from migration to S′′ anyway since they are not running on S′. This
is not tolerable in many practical settings. Think, for example, of a patient who
is excluded from a new optimized examination because his particular treatment
instance cannot be migrated to the changed process type schema. In these cases,
it is crucial to find strategies to treat non-compliant instances such that they
can benefit from further process optimizations as well (cf. Fig. 1).

S S‘ S‘‘
ΔS ΔS‘ ΔS‘‘

I1, …, Ik I1, …, Ik-j I1, …, Ik-j-i

Ik+1, …, In Ik-j+1, …, Ik Ik-j-i+1, …, Ik-j

migrate
compliant

non-compliant

migrate

adjustment migrate adjustment migrate

Fig. 1. Migrating Compliant Instances and Treating Non-compliant Ones

In this paper, we introduce a number of strategies for coping with non-
compliant instances in the context of process change such that they can benefit
from future process changes on the one hand, but do not run into soundness
problems on the other hand. We show, for example, how to automatically ad-
just process type changes at instance level to enable the migration of a higher
number of instances. In particular, we do not only consider process instances
which are still running according to the process type schema version they were
started on (denoted as unbiased process instances), but we elaborate adjustment
strategies in the context of biased process instances as well; i.e., instances which
have been already individually modified and thus their instance-specific schema
deviates from the original process type schema version. The different strategies
are compared and discussed along existing approaches. Altogether the adequate
treatment of non-compliant process instances contributes to full lifecycle support
1 We assume that instances are clustered along their state.

of business processes in adaptive PAIS. Section 2 introduces background infor-
mation. Section 3 presents different strategies for dealing with non-compliant
instances. In Section 4, we discuss metrics for measuring the distance between
process schemas which is needed for evaluating the different strategies presented
in Section 3. Sections 5 and 6 show how non-compliant process instances can be
adjusted regardless whether they are unbiased or biased. Section 7 provides an
evaluation for applying the different strategies. Section 8 discussed related work
and Section 9 closes with a summary and outlook.

2 Backgrounds

2.1 Basic Concepts

In this section we summarize basic concepts and notions used in this paper. For
each business process to be supported a process type T represented by a process
schema S has to be defined. For a particular type several process schemas may
exist, representing the different versions and evolution of this type over time. In
the following, a single process schema is represented as directed graph, which
comprises a set of nodes – representing activities or control connectors (e.g.,
XOR-Split, AND-Join) – and a set of control edges (i.e., precedence relations)
between them. In the following we assume block-structured process schemas
(like in BPEL). In order to relax strict block structure, we provide additional
sync links for setting up order relations between activities belonging to parallel
branches (similar to the link concept suggested in BPEL). In addition, a process
schema comprises sets of data elements and data edges. A data edge links an
activity with a data element and represents a read or write access of this activity
to the respective data element. Altogether, a process schema S is represented
by a tuple S := (N,CtrlE, SyncE,D,DataE, ...) where N denotes the set of
activities, CtrlE the set of control egdes, SyncE the set of sync edges, D the set
of data elements, and DataE the set of data edges.

Based on process schema S at run-time new process instances can be cre-
ated and executed. For an instance I running on S, start and/or completion
events of corresponding activities are recorded in execution trace σS

I . A compact
representation of trace σS

I is given by instance marking NSI which assigns to
each activity of I its current state. Possible activity states include NotActivated,
Activated, Running, Completed, and Skipped [7].

Adaptive process management systems are characterized by their ability to
correctly and efficiently deal with (dynamic) process changes [8]. Before dis-
cussing different levels of change, we give a definition on the topology of change.

Definition 1 (Process Change). Let PS be the set of all process schemas and
let S, S′ ∈ PS. Let further ∆ = <op1, . . . , opn> denote a process change which applies
change operations opi (i=1,. . . ,n) sequentially. Then:

1. S[∆> S′ if and only if ∆ is correctly applicable to S and S′ is the process schema
resulting from the application of ∆ to S (i.e., S′ ≡ S + ∆)

2. S[∆>S′ if and only if there are process schemas S1, S2, . . . , Sn+1 ∈ PS with S =
S1, S′ = Sn+1 and for 1 ≤ i ≤ n: Si[∆i>Si+1 with ∆i = (opi)

In general, we assume that change ∆ is applied to a sound (i.e., correct)
process schema S [9]; i.e., S obeys the correctness constraints set out by the
particular process meta model (e.g., block structuring) . This property is also
denoted as structural soundness. Furthermore, we claim that S′ must obey be-
havorial soundness (i.e., any instance on S′ must not run into deadlocks or
livelocks). This can be achieved in two ways: either ∆ itself preserves soundness
by formal pre-/post-conditions (e.g., ADEPT [3]) or ∆ is applied and soundness
of S′ is checked afterwards (e.g., by reachability analysis).

Basically, changes can be triggered and performed at the process type and
process instance level. Changes of a process type T may become necessary to
cover the evolution of the business processes captured in process schemas of this
type [5, 7, 6]. Generally, process engineers can accomplish process type changes
by applying a set of change operations to the current schema version S of type
T [10]. This results in new schema version S′ of T. Execution of future process
instances is usually based on S′. In addition, for long-running instances, it is
often desired to migrate them to the new schema S′ in a controlled and efficient
manner [7, 8]. By contrast, changes of individual process instances are usually
performed by end users and become necessary to react to exceptional situations
[3]. In particular, effects of such changes must be kept local, i.e., they must
not affect other instances of same type. Thus for each individually modified
instance I an instance-specific schema SI is maintained. The difference between
SI and original schema S is captured by the so called instance-specific bias of
I; i.e., ∆I(S). Specifically ∆I(S) captures all change operations applied to S at
instance level in order to obtain instance-specific schema SI . Instances which
have not been individually modified are denoted as unbiased instances.

In the context of process type and process instance changes, structural and
behavorial soundness have to be preserved. In our ADEPT approach, structural
soundness is achieved based on well-defined pre- and post-conditions for the
different change operations [3]. Behavorial soundness, in turn, refers to correct
instance states [7]. If, for example, an activity is started before all its predecessor
activities are completed, this activity will not necessarily be supplied with all
required input data. Behavorial soundness is accomplished by behavorial correct-
ness criteria. In the context of change one prominent example is the compliance
criterion [2] which is used in the remainder of this paper (a detailed comparison
of compliance and other correctness criteria can be found in [8]). Informally,
compliance checks whether execution trace σS

I of instance I on schema S could
also be produced by an instance on S′ in the same order as set out by σS

I .

2.2 Overall Change Framework

Assume that at process type level schema S evolves to schema S′ and that
we want to migrate instances on S to S′ if they are compliant. Out focus is
on how to deal with non-compliant instances in this context. Specifically, we

Change operation ∆ on S opType subject paramList inverseOp
insert(S, X, A, B)a insert X S, A, B delete(S, X)
Effects on S: inserts activity S between activities A and B.

delete(S, X) delete X S insert(S, X, pred(S,X), succ(S,X))b

Effects on S: deletes activities from S
move (S, X, A, B) move X A, B move(S, X, pred(S,X), succ(S,X))
Effects on S: moves activity S from its original position in S to another position betweena ctivity
sets A and B
aBasically, insertion between activities A and B can be generalized to insertion between activity sets
A, B. Additionally, for conditional insert an optional parameter [sc] can be included for representing
a conditional insert (details see [10]).
bpred(S,X) / succ(S,X) denotes the direct predecessor(s) / successor(s) of X in S.

Table 1. Selection of Change Operations on Process Schemas

want to find strategies to cope with non-compliant instances (i.e., to migrate
them to S′ without violating soundness) regardless whether they are unbiased
or biased. Due to their instance-specific bias, the treatment of non-compliant
biased instances poses additional challenges when compared to the treatment of
unbiased ones. In order to tackle these challenges in a systematic way, we base
following considerations on the classification for biased instances as proposed in
[11, 12]. This classification uses the degree of overlap between type change and
instance-specific bias. Overlapping changes occur if at instance level some or all
of the subsequent type changes are anticipated. If ∆I completely anticipates ∆S

(i.e., SI = S′), we denote the changes as equivalent. In this case I can be always
migrated to S′ without any further check. Changes can also subsume each other.
∆I subsumes ∆S (denoted by ∆I � ∆S) if all change operations captured by ∆S

are contained within ∆I , but ∆I also captures additional change operations. In
this case, I is compliant with S′ as well. However, new bias ∆′

I := ∆I\∆S for I on
S′ has to be calculated. In turn, if ∆S subsumes ∆I (denoted by ∆S � ∆I) it has
to be checked whether the changes of ∆S not present for I so far (i.e., ∆S \∆I)
can correctly applied to I. Finally, ∆I and ∆S partially overlap if they have
some change operations ”in common”, but each of them also captures additional
changes. In this case, it has to be checked whether the changes in ∆S \∆I can
be correctly applied to I, and new bias ∆I \∆S has to be calculated for I on S′.

3 Strategies for Coping with Non-compliant Instances

In this section, we discuss novel strategies for coping with non-compliant in-
stances. The basic idea behind is to conduct certain kinds of adjustment (cf.
Fig. 3) to also enable non-compliant instances to migrate to the new schema
version; i.e., to be relinked to the new type schema. One of the possible ad-
justments is to ”simulate” an instance-specific bias such that the effects of the
type change for which the instance has progressed too far (non-compliant) are
”neutralized”. This enables migration or – more precisely – ”re-linking” of the
respective instance to the new type schema version. Consequently, this instance
can benefit from further schema optimization. In the following we present two

Set of running instances on S

Unbiased instances Biased instances

Compliant Non-Compliant

Disjoint Bias Overlapping Bias

Partially
Equivalent Bias

Subsumption
Equivalent Bias

Equivalent
Bias

Structural Conflicts

Compliant ΔI > ΔS ΔI > ΔS
Compliant

Fig. 2. Overview on Instance Cases along Change Overlap

strategies for this bias-based adjustment (cf. Fig. 3). Other adjustments adapt
of instance execution traces or even the type change itself.

3.1 Biased-based Local Adjustment

Strategy 1 (Always-Migrate): Basically, any non-compliant instance can
be migrated (i.e., relinked) to the modified type schema version. The idea is
as follows: Let S be a process schema which is transformed into S′ by change
∆S . Let further I be an instance on S. So far, ∆S is propagated to I when
migrating I to S (i.e., I reflects ∆S after its migration to S′). However, if I is
not compliant with S′, ∆S must not be applied to I; i.e., execution of I should be
continued on its old schema. However, this effect can be also ”simulated” when

Local Adjustment

Global Adjustment

History-based

Strategy 1
Strategy 2
Strategy 1
Strategy 2

Bias-based

Strategy 3Strategy 3

Strategy 4Strategy 4

Adjustments for Coping with
Non-compliant Instances

Strategy 1
Strategies 2/4
+ Strategy 3

Strategy 1
Strategy 3

Strategy 1
Strategy 2
Strategy 4

MOVEDELETEINSERT

Strategies along Change Types

Fig. 3. Overview on Possible Strategies for Coping with Non-Compliant Instances

re-linking I to S′ by ”neutralizing” type change ∆S . ”Neutralizing” means to
introduce an artificial bias ∆I based on S′ which reverses the effects of ∆S for
this particular instance. Consider Fig. 4. At type level new activity X is inserted
between activities A and B. Then instance I (cf. Fig. 4b) is not compliant with
S’ since B is already completed. However, I can still be migrated to to S′ by not
applying type change ∆S . The invalid change ∆S for I on S′ can be ”healed”
by creating an instance-specific bias ∆I(S′) for I on S′; i.e., ∆I(S′) reflects
the deviations between S′ and instance-specific schema SI . Specifically, ∆I(S′)
constitutes the ”inverse” change operation of ∆S . In our example, insertion of
X into S can be reversed by deleting X from S′.

a) Process type schema S:

X

Modified process type schema S`:

S[ΔS>S‘

CXA B C

X ΔS = <insert(S,X,A,B),>

A B

S[ΔS>S

b) Unbiased instance I on S:
migrate

Biased instance I on S‘:

I:
A B C

migrate
A B C Activity States:

Completed

Activity:

A ti t dΔI(S‘) = <delete(S‘,X)>I non-compliant with S‘ Activated

Fig. 4. Strategy 1: Always-Migrate (Example)

Strategy 1 can be applied for any kind of change operation. The challenge is to
determine the ”inverse” change to be maintained for the migrated instance. Tab.
1 shows the inverse changes for insert, delete, and move operations. Alternatively,
we can directly determine schema ”difference” between type schema S′ and
instance-specific schema. Here, already existing approaches can be used. [13], for
example, presentw an approach to compare two schemas S1 and S2 in terms of
high-level change operations (cf. Tab. 1) needed to transform S1 into S2.

Strategy 2 (Instance-Specific Adjustment) The idea behind Strategy 2 is
to conduct instance-specific adjustments of type changes in order to be able to
relink non-compliant instances to the new type schema version. For this pur-
pose we exploit specific semantics of the applied change operation [10]: When
applying an insert operation, for example, the user has to specify the position
where to insert the new activities (cf. Tab. 1). Thus the insert operation is a can-
didate for instance-specific adjustments since such position parameters can be
easily adapted; e.g., by inserting an activtiy ”later” than originally intended. In
the following, instance-specific adjustment is elaborated in the context of insert
operations. Section 5 also provides a discussion for adjusting move operations.

Consider the example depicted in Fig. 5. Instance I (cf. Fig. 5b) is not com-
pliant with new type schema S′ since B is already in state Running. Basically,
if no semantic constraints are violated, at instance level X can be inserted at
other positions as well, specifically at those positions within the instance-specific
schema, where I becomes compliant again. Assuming that we keep A as the ”left
anchor” for the insert operation, possible ”right anchors” for the insertion are C
and D respectively. Consider first insertion of X between A and C (¬): When
applying change ∆1

I(S) to I as instance-specific adjustment, we obtain instance
schema S1

I . The bias between S1
I and S′ is then captured by ∆1

I(S
′) and reflects

an insertion with ”relaxed” insertion position.2 Schema S2
I resulting from the

insertion of X between A and D is depicted in Fig. 5b (). Obviously, the ques-
tion is which of the two schemas we shall prefer. The premise of this paper is
to enable migration of non-compliant instances such that they can benefit from
further optimizations. In general, the application of further modifications at type
level will be supported best by keeping the instance-specific schemas ”as close
as possible” to the type schema version they are migrated to. Here, intuitively,
S1

I is ”closer” to S′ when compared to S2
I . In order to formally define ”as close

as possible” a distance metric between process schemas is needed (cf. Section 4).
Basically, it is also possible to use ”left anchors” other than A for realizing

instance-specific adjustments. Consider Fig. 5b(®): When compared to S′ the
order between X and B has been reversed for Fig. 5b(®), whereas for Fig. 5b(¬)
X and B are ordered in parallel. Thus for Fig. 5b(¬), still X can be started before
B is finished, what is not possible in Fig. 5b(®). Hence, the instance schema from
Fig. 5b(¬) is ”closest” to S′. – Altogether, from the above discussion two basic
research questions can be derived:

1. How to measure the distance between process type and instance schemas?
2. How to determine instance-specific adjustments ∆I(S′) such that I

– is compliant with SI where S′[∆I(S′) > SI

– and the distance between instance schema SI and modified type schema
S′ becomes minimal?

For the first question different approaches exist. We discuss them
in Section 4. The second question is targeted in Sections 5 and 6.

3.2 Strategy 3: History-Based Adjustment

History-based adjustment is mainly applied for delete operations (e.g., an in-
stance is not compliant if the activity to be deleted is already running or com-
pleted). Basically, deletion of activities ”in the past” of process instances can be
enabled by adjusting instance traces. Assume, for example, that activity X is to
be deleted from schema S resulting in schema S′. Regarding instance I on S,
X has been already completed and respective start and end events for X were
logged in σS

I . Thus σS
I cannot be ”replayed” on S′ and compliance for I on S′

2 i.e., X is not inserted between A and B, but between A and the first ”possible”
successor of B.

a) Process type schema S:

X

Modified process type schema S`:

ΔS = <insert(S X A B) > S[ΔS>S‘

CXA B C

X ΔS <insert(S,X,A,B),>

A B DD

S[ΔS>S

b) Unbiased instance I on S: Biased instance I on S‘:

X S1
I

A B C D

I non compliant ith S‘ A B C

X

+ + D

S I

Δ1
I(S‘) = <move(S, X, A, C)>

I non-compliant with S‘ A B C+ + D

X S2
I

CBA X D
A B C+ + D

S3
Δ3

I(S‘) = <move(S, X, B, C)>
Δ2

I(S‘) = <move(S, X, A, D)>

S3
I

CompletedActivity + AND-Split/Join
Δ4

I(S‘) = <move(S, X, B, C)>

XBA C D

Running S4
I

Fig. 5. Strategy 1: Instance-Specific Adjustment (Example)

is not fulfilled. However, when discarding the respective trace entries of X from
σS

I , the modified trace can be replayed on S′ and thus I can be migrated. Entries
of deleted activities are not physically deleted from the exeuction traces, but are
only flagged within the trace in order to preserve traceability. As shown in [14]
Strategy 3 does not harm soundness of the affected instances.

3.3 Strategy 4: Global-Adjustment

Basically, adjusting schema changes may be done at both, the process type and
the process instance level. Assume that process type schema S is transformed
into another type schema S′ by change ∆S . Let further I be an instance on
S which is not compliant with S′. If ∆S is adjusted to ∆′

S at type level (i.e.,
transforming S into S′′ instead of S′), more instances running on S may becomes
compliant with S′′ afterwards. Generally, more instances will become compliant
with a changed type schema, if added activities are inserted ”as late as possible”.
Most important, all data dependencies (or additionally, semantics constraints)
imposed by the process type schema and the intended change must be fulfilled.
For the given example this implies that activities X and Y can be inserted ”later
in the type schema” (i.e., as ”close” to the process end as possible) as long as
the data dependency between them is still fulfilled. Since a process type schema

might contain more than one process end node, the formalization of ”later in a
process graph” should not be based on structural properties; i.e., we aim at being
independent of a particular process meta model. As for the compliance criterion,
we use process traces in this context. Due to lack of space we omit a formalization
here. Finally, when inserting two or more data-dependent activities, additional
constraints must hold. More precisely, it cannot be allowed to move the insertion
position of the writing activity ”behind” the reading activity since the resulting
schema would not be correct anymore.

4 Metrics on Process Schemas

As discussed in the context of Strategy 2, measuring the distance between type
and instance schema is an important task. Basically, there exist different ap-
proaches for this, ranging from activity coverage [15] over fitness functions (e.g.,
in connection with genetic process mining [16]), to process similarity as defined
in [15]. Activity coverage quantifies the distance between two process schemas
S1 and S2 in terms of the difference between their activity sets.

Regarding the examples depicted in Fig. 5, activity coverage is 100% for all
schemas. However, there are structural differences between instance schemas Sj

I

(j= 1, .., 4) and S′. First of all, for each Sj
I a bias ∆j

I between Sj
I and S′ arises.

According to the process similarity notion introduced in [15], for example, the
distance between two process schemas can be determined as number of high-level
change operations (i.e., insert, move, and delete operations) needed to transform
the one schema into the other. Regarding our scenario from Fig. 5, for each
Sj

I exactly one high-level change, specifically a move operation, is required to
capture the difference between S′ and Sj

I . Using this measure, therefore, the
similarity to S′ would be the same for all Sj

I (j = 1, ..., 4). Thus, we need
an additional measurement in terms of control relations between the different
activities. Intuitively, such structural fitness can be expressed considering the
number of control relations different for S′ and Sj

I . This number should be
minimized in order to enable propagation of subsequent schema changes.

Definition 2 (Structural Distance). Let S = (N, CtrlE, SyncE, ...) and S’ =
(N, CtrlE’, SyncE’, ...) (cf. Section 2) be two (block-structured) process schemas
having equal activity set (i.e., activity coverage of 100%, cf. Section 7). Let fur-
ther succ*(S, n) denote the set of all direct or indirect successors of activity n
in S3, formally:

succ*: S × N 7→ 2N with

succ*(S, n) = {n∗ ∈ N |n∗ ∈ succ(S, n)∨ ∃n∗∗ ∈ succ(S, n) : n∗ ∈ succ∗(S, n∗∗))}
with succ(S, n) denoting the set of all direct successors of n in S, i.e., regarding
control and sync edges

3 At this point we assume acyclic process structures. However, in general cyclic struc-
tures can contribute to a treatment of non-compliant instances. A sketch of the so
called delayed migration using loop backward jumps is provided in Section 8.

The structural fitness between S and S’ can then be quantified by function
sD(S, S’) which sums up the cardinalities of the difference sets between the suc-
cessor sets for all activities contained in S and S’.

sD: S × S 7→ N with

sD(S,S’) = |
S

n∈N (succ∗(S, n) \ succ∗(S′, n)) ∪ (succ∗(S′, n) \ succ∗(S, n)|

Fig. 6 summarizes and compares the respective successor sets for the different
schemas from Fig. 5. As can be seen instance-specific schema S1

I has minimal
structural distance to S′. Hence, deciding for an instance-specific adjustment in
order to ”make” I compliant with S′ (cf. Fig. 5b), change ∆1

I would be considered
as optimal instance-specific adjustment.

Schema S = S‘ S1
I S2

I S3
I S4

I

succ*(S, A) {X, B, C, D} {X, B, C, D} {X, B, C, D} {X, B, C, D} {X, B, C, D}

succ*(S X) {B C D} {C D} 1 {D} 2 {C D} 1 {D} 2succ*(S, X) {B, C, D} {C, D} 1 {D} 2 {C, D} 1 {D} 2

succ*(S, B) {C, D} {C, D} {C, D} {X, C, D} 1 {X, C, D} 1

succ*(S, C) {D} {D} {D} {D} {X, D} 1(,) { } { } { } { } { , }

succ*(S, D) ∅ ∅ ∅ ∅ ∅
sD(S‘, S) 1 2 2 4

Fig. 6. Successor Sets and Structural Distances for the Scenario from Fig. 5

5 Instance-Specific Adjustment of Unbiased Instances

Bias-based strategies as introduced in Section 3.1 are promising approaches for
treating non-compliant instances. Assume that instance I on S is not compliant
with modified type schema version S′ (S[∆S > S′). However, if type change ∆S

can be locally adjusted to ∆I(S′) such that I becomes compliant with instance
schema S|∆I(S′) > SI , I can be relinked to S′ using bias ∆I(S′) (Strategy 2). As
motivated by Fig. 5, different adjustments of ∆S are conceivable. However, we are
particularly interested in the adjustment which results in the lowest structural
distance sD(S′, SI) between instance schema SI and type schema S′ (cf. Def.
2). In this section we show how to automatically derive such optimal instance-
specific adjustment for unbiased process instances. In the example from Fig. 5,
optimal instance-specific adjustment for operation ”insert activity X between A
and B” is achieved if X is inserted between A and the next possible successor
of A which has not been started yet. Theorem 1 captures this aspect:

Theorem 1 (Optimal Instance-specific Adjustment). Let S, S’ be two
process schemas and let ∆S = <insert(S, X, A, B)> be an insert operation

which transforms S into S’; i.e., S[∆S > S′. Let further I ∈ I (I denotes the set
of all instances) be an instance running on S for which NSI(B) ∈ {Running,
Completed} holds for the state of activity B (cf. Section 2); i.e., I is not compli-
ant with S’. We define instance-specific adjustment ∆I(S′) as follows:

∆I(S′) = move(S’,X,A,C) with C ∈ nextNonStartedSucc(S’,I,B)4 where
nextNonStartedSucc: S × I × N 7→ 2N

nextNotStartedSucc(S’,I,n) =
{n ∈ succ*(S’,X) | NSI(n) 6∈ {Running, Completed}
∧ (6 ∃ n’: NSI(n′) 6∈ {Running, Completed} ∧ n ∈ succ*(S’,n’) }

Then: I is compliant with SI where S′[∆I(S′)>SI and
dS(S’,SI) = min{dS(S’,S̃I) | S′[˜∆I(S′)>S̃I with I compliant with S̃I}

A proof of Theorem 1 can be cound in Appendix A.
For each insert operation applied to process schema S a corresponding move

operation is generated based on Theorem 1 if necessary; i.e., if I is not compliant
regarding this particular insert operation. As example consider Fig. 7: instance
I is not compliant with S′. Hence for both insert operations (i.e., of X and Y)
two corresponding move operations are applied to realize an instance-specific
adjustment (bias).

So far, insert and delete operations have been discussed. Regarding insert
operations instance-specific adjustments can be applied (cf. Strategy 2) whereas
for delete operations, adjustment of the execution history of the affected instance
might relax compliance issues (cf. Strategy 3). What about move operations?
First of all, moving an activity can be seen as combination of a delete and
insert operation. Second, regarding compliance, an activity cannot be moved if
it has been already started or completed. Furthermore it cannot be moved before
an activity which has been already started or completed. Thus we distinguish
between the following cases: if an activity shall be moved, which has been already
started or completed, we apply history-based adjustment (Strategy 3). If the
activity is to be moved before an already started or completed activity, we apply
instance-specific adjustment (Strategy 2).

6 Instance-Specific Adjustment of Biased Instances

Fig. 2 has already given an overview on the different classes of overlap between
schema changes at the process type and the process instance level. In this sec-
tion we investigate whether and – if yes – how the strategies for dealing with
non-compliant instances (cf. Section 3) can be applied in the context of biased
instances as well. First of all, one can observe that instances with equivalent bias
and instances having subsumption equivalent bias (i.e., ∆I � ∆S) are always
compliant with the changed schema (cf. Section 2). Consequently, for these two

4 In connection with parallel or alternative branchings more than one successor of B
can be the ”next non-started activity”. In this case one of them is chosen arbitrarily
or the user is asked to make a choice.

a) Process Type Schema S: Process Type Schema Sb:
ΔS= < insert(S,X,C,E).

insert(S Y A B)>C E C X Einsert(S, Y, A, B)>

A B

C E

X FX A B

C X

X FX

E

Y

b) Instances on Schema S:

D D

ΔI = < insert(S X C F)>

C E

b) Instances on Schema S: Δ < insert(S,X,C,F)>

Δ (S‘) < (S X C F) (S Y A D)
A B X FX

D
X

Δ I(S‘)= < move(S,X,C,F), move(S, Y, A, D)>

A B

C

X FX

E

+ ++
Δ I(S)= <>

+A B X FX

D

+ +
Activity

X XOR-Split/Join

Control edge

S d

+ +

Activity States: Completed

Sync edge
Y

sD(S‘, S‘I) = 5Skipped

Activated

Fig. 7. Instance-specific Adjustment (Example)

classes no additional reasoning on treatment of non-compliant instances becomes
necessary. From the remaining overlap classes, we first focus on instances with
disjoint bias; i.e., changes at type level and instance level which are completely
different. An example is depicted in Fig. 8. Regarding instance I, activity Y has
been inserted between B and C (captured by instance-specific bias ∆I(S)). Then
at type level, schema change ∆S inserts X between A and B. Obviously, ∆S and
∆I are disjoint and I is not compliant with S′ (since B is already completed).
Transferring the instance-specific adjustment as presented in Theorem 1 to this
scenario, first of all next successor of B in SI which has not been started yet
is determined; i.e., activity Y . Thus, the instance-specific adjustment of ∆S at
instance level yields move operation move(S’, X, A, Y). Since ∆S and ∆I(S) are
disjoint, the instance-specific adjustment does not conflict with the original bias.
Thus, new bias ∆I(S′) turns out as concatenation of the bias before migration
and the instance-specific adjustment; i.e., ∆I(S′) as shown in Fig. 8. Due to lack
of space we omit formal details and proofs here.

If type schema change ∆S subsumes instance change ∆I (i.e., ∆succ∆I)
instance-specific adjustment has to be carried out for all insert operations in ∆S\
∆I for which I has progressed too far. How to determine difference sets between
changes is outside the scope of this paper. For all adjusted insert operations the
corresponding move operation can be determined based on Theorem 1. These

a) Process schema S:

X

Modified process schema S`:

CXA B C

X ΔS = <insert(S,X,A,B),>

A B

b) Biased instance I on S: migrate Biased instance
I on S‘:X I on S :

CBA Y

A B Y

X

+ + C

Activity:

Disjoint bias ΔI(S) = <insert(S, Y, B, C)>
A B Y+ + C

ΔI(S‘) = <insert(S‘, Y, B, C), move(S‘, X, A, Y)>

Activity States: Completed

Fig. 8. Instance-specific Adjustment for Instances with Disjoint Bias

move operations have to be stored as instance-specific bias on S′ after migration.
Fig. 9 shows an example.

a) Process schema S:

X

Modified process schema S`:

Y

BXA B C

X ΔS = <insert(S,X,A,B), insert(S, Y, X, B),>

A Y C

Y

b) Biased instance I on S: Biased instance I on S‘:
Y

A

migrateCXA B

X B C

Y

+ +A
ΔI(S) = <insert(S, X, A, B)>

X B C+ +

ΔI(S‘) = <move(S‘, Y, X, C)>Δs/ΔI(S) = <insert(S, Y, X, B)>

Fig. 9. Instance-specific Adjustment of Instances with Subsumption Equivalent Bias

7 Strategy Evaluation

Assume that instances IS := {I1, ..., In} are running on type schema S which
is then transformed into schema S′ (S[∆S>S’). Assume further that a subset of

the running instances is not compliant with S’. In this section we want to eval-
uate the quality of the different strategies introduced in Section 3 for treating
non-compliant instances. On the one hand, the quality of a strategy is based
on the number of instances which can be migrated additionally to the number
of compliant instances (i.e., instances without applying any strategy). On the
other hand, we also have to consider the ”price” to be paid for each additionally
migrated instance I. The latter is reflected by the distance between instance
schema SI and S′ after migration. One metric for measuring the structural dis-
tance between process schemas SI := (NI , CtrlEI , ...) and S′ = (N ′, CtrlE′, ...)
is provided in Def. 2. However, this metrics can be only applied if SI and S′ have
the same activity sets; i.e., there exists a bijective mapping between NI and N ′

or – in other words – activity coverage between SI and S′ is 100%. Actually,
activity coverage can be also used to compare process schemas, for example, in
the context of Strategy 1 (cf. Section 3), which leads to NI 6= N ′ in most cases.
Finally, process schemas SI and S′ can be also compared based on the number
of high-level operations necessary to transform SI into S′ (denoted as process
similarity [15]). For a definition of all three metrics see Tab. 2:

Metric M Formula Preconditions

Process Similarity PS(SI ,S’):= #ops
|NI |+|N′|−|NI∩N′|

a

Activity Coverage AC(SI ,S’):=
|NI∩N′|

|NI |+|N′|−|NI∩N′|

Structural Distance SD(SI ,S’):=
sD(SI ,S′)

|NI |
AC(SI ,S’) = 100%

a ops denotes the high-level operations applied for transforming SI into S′.
Table 2. Different Metrics for Comparing Process schemas

Below Formula (1) enables evaluation of the quality of Strategies 1 to 4.
Specifically, #mIs denotes the number of migratable instances when applying
strategy s. Note that we can compare the application of a strategy with the
case of applying no strategy. Then #mIs reflects the number of instances, which
are compliant with modified type schema version S′ anyway. The remainder of
the formula quantifies the side-effects when applying one of the strategies. If
we do not apply any strategy, the formula yields SC(”none”, S’, IS) = #mIs

|IS | ;
i.e., the number of compliant instances divided by the number of all instances.
For Strategy 1, for example, which enables migration of all instances (”always-
migrate”), #mIs = |IS | holds.

SC(s, S
′
, IS) :=

#mIs −
P

I∈IS
PS(SI , S′) −

P
I∈IS

AC(SI , S′) −
P

I∈IS
sD(SI , S′)

|IS |
(1)

Consider the scenario depicted in Fig. 10. Type schema S is transformed
into S′ by inserting activity X between A and B and by deleting C. Assume
that 500 instances are running based on S and that they are clustered along

their current instance state. Assume further that for instances I1, ..., I100, activ-
ity A is completed and B is activated, for instances I101, ..., I200 A and B are
completed and C is activated, and for I201, ..., I500 activities, A, B, and C are
completed whereas D is either activated or running. Then instances I1, ..., I100

are compliant with S′, whereas I101, ..., I500 have progressed too far; i.e., they
are non-compliant with S′. Without any further treatment of the non-compliant
instances the quality turns out as SC(”none”,S’,IS) = 0.2.

The result of applying our four strategies is illustrated by Fig. 10. First, Strat-
egy 1 (Always-Migrate) is applied to instances I101, ..., I500. Instances I101, ..., I200

are not compliant with respect to the insertion of X, but they are compliant with
respect to the deletion of C. Hence, when applying Strategy 1 to I101, ..., I200,
the insert operation has to be neutralized, which can be expressed by a delete
operation on S′ (i.e., to delete X on S′). Contrary, instances I201, ..., I500 are not
compliant with respect to both changes. Hence also the deletion of C has to be
neutralized by a respective insert operation (cf. Fig. 10).

As summarized in Fig. 3, some of the strategies are applicable in the context
of certain change operations; i.e., Strategy 2 for insert operations and Strategy
3 for delete operations. Type schema change ∆S captures an insert as well as a
delete operation. Hence, we have to combine Strategies 2 and 3 in order to ade-
quately treat non-compliant instances by bias-based local adjustment. Regard-
ing instances I101, ..., I200, the delete operation can be applied (no history-based
adjustment). However the insert operation has to be adjusted to a move oper-
ation as depicted in Fig. 10. Regarding instances I201, ..., I500 we have to apply
history-based adjustment for the deletion of C as well (i.e., logically discarding
the entries of C in traces of I201, ..., I500). Finally, Fig. 10 shows an example for
the application of Strategy 4 (Global Adjustment); i.e., by inserting activity X
between C and D instead of between A and B all instances, for which D has
not been started yet become compliant with S′′ (e.g., I1, ..., I450). Altogether,
we obtain the following quality estimations for Strategies 1, 2, and 4 as depicted
in Fig. 10:

• Strategy 1: S(s1, S’, {I1, ..., I500}) = 500−(100∗0.25+300∗0.4)+(100∗0.75+300∗0.6)
500

= 1.31

• Strategy 2: S(s2, S’, {I1, ..., I500}) = 500−500∗0.25+500−500∗0.25
500

= 1.5

• Strategy 4: S(s3, S’, {I1, ..., I500}) = 450+500
500

= 1.9

8 Related Work

There is a plethora of approaches dealing with correctness issues in adaptive
PAIS [5, 17, 6, 7, 4]. The kind of applied correctness criterion often depends on
the used process meta model. A discussion and comparison of the particular
correctness criteria is given in [8]. Aside from the applied correctness criteria,
mostly, these approaches do neither address the question of how to increase the
number of migratable instances nor how to deal with non-compliant instances.
Most approaches which treat non-compliant instances are based on partial roll-
back [4, 18] (cf. Sect. 4). An alternative approach supporting delayed migrations
of non-compliant instances is offered by Flow Nets [17]. Even if instance I on S is

a) Process Schema S: S`:ΔS = < insert(S,X,A,B), delete(S,C)>

Strategy 1: Always Migrate ΔIj = <delete(S‘,X)>, j = 101, …, 200

A B C D A X B D

SC(1,S‘,I)=1.31

I101, …, 200 A B D

ΔIj delete(S ,X) , j 101, …, 200

A B C D

I201, …, 500 A B C D

ΔIj = <delete(S‘,X), insert(S, C, B, D)>, j = 201, …, 500

A B C D

Strategy 2: Local Adjustment

I
X

SC(2,S‘,I)=1.5

I101, …, 500

ΔIj = <move(S‘,X,A,D)>, j = 101, …, 500
A B D+ +

A B C D

Ij (, , ,) , j , ,

A B X DA B C D

Strategy 4: Global Adjustment Δ‘S = < insert(S,X,C,D), delete(S,C)>
S:

SC(4,S‘,I)=1.9

A B X DA B C D

Fig. 10. Application of Different Strategies

not compliant with S′ within the actual iteration of a loop, a delayed migration
of I to the new change region is possible when another loop iteration takes place.

Frameworks for process flexibility have been presented in [19, 10]. In [19],
different paradigms for process flexibility and related technologies are described.
[10] provides change patterns and evaluates different approaches based on them.
However, [19, 10] do not address the treatment of non-compliant instances.

For treating non-compliant instances, partial rollback has been suggested [4,
18]. Applying this policy for instances which have already progressed too far
results in a compliant state. Generally, instance rollback is accomplished by
compensating activities [4]. An obvious drawback is that it is not always pos-
sible to find compensating activities, i.e., to adequately rollback non-compliant
instances. Apart from this, rollback is mostly connected with loss of work and
thus not well accepted by users.

9 Summary and Outlook

So far, non-compliant process instances have been excluced from being migrated
to the new process type schema version in order to preserve soundness. Con-
sequently, these instances are also excluded from any future process optimiza-
tions. Thus, in this paper we provided four strategies to cope with non-compliant
process instances. Specifically, the strategies are based on adjustments either of

process changes at type schema level or instance level. Alternatively, adjustments
of the instance traces are helpful in some cases. All strategies preserve soundness
of the running instances after relinking them to the new type schema version.
In particular, we elaborated the migration of instances by locally adjusting the
type schema change at instance level; e.g., moving the insertion position such
that the instances become compliant with the resulting instance-specific schema.
How respective adjustments can be determined such that the distance between
instance-specific schema and modified type schema version becomes minimal has
been shown as well. Finally, all strategies were evaluated along an example. In
future work, we aim at implementing the different strategies together with our
framework on relaxing compliance notions within the ADEPT2 system. Further-
more, we plan to investigate the interplay between relaxing compliance, treating
non-compliant instances, and ensuring semantic process constraints.

References

1. Lenz, R., Reichert, M.: IT support for healthcare processes – premises, challenges,
perspectives. Data and Knowledge Eng. 61 (2007) 39–58

2. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data and Knowledge
Engineering 24 (1998) 211–238

3. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. J of Intelligent Information Systems 10 (1998) 93–129

4. Sadiq, S., Marjanovic, O., Orlowska, M.: Managing change and time in dynamic
workflow processes. IJCIS 9 (2000) 93–116

5. van der Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling
problems related to change. Theoret. Comp. Science 270 (2002) 125–203

6. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer (2007)

7. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases 16 (2004) 91–116

8. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Eng. 50 (2004) 9–34

9. Dehnert, J., Zimmermann, A.: On the suitability of correctness criteria for business
process models. In: Int’l Conference Business Process Management. (2005) 386–391

10. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data and
Knowledge Engineering 66 (2008) 438–466

11. Rinderle, S., Reichert, M., Dadam, P.: On dealing with structural conflicts between
process type and instance changes. In: Int’l Conf. on Business Process Management.
(2004) 274–289

12. Rinderle, S.: Schema Evolution in Process Management Systems. PhD thesis, Ulm
University (2004)

13. Li, C., Reichert, M., Wombacher, A.: On measuring process model similarity based
on high-level change operations. In: 27th Int’l Conf. on Conceptual Modeling
(ER’08). (2008) 248–264

14. Rinderle-Ma, S., Reichert, M., Weber, B.: Relaxed compliance notions in adaptive
process management systems. In: Int’l Conf. on Conceptual Modeling (ER’08).
(2008) 232–247

15. Li, C., Reichert, M., Wombacher, A.: Discovering reference process models by
mining process variants. In: Int’l Conf. on Web Services. (2008)

16. Alves de Medeiros, A., Weijters, A., van der Aalst, W.: Genetic process mining: An
experimental evaluation. Data Mining and Knowl. Discovery 14 (2007) 245–304

17. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: ACM Conf. on Organizational Computing Systems. (1995) 10–21

18. Reichert, M., Dadam, P., Bauer, T.: Dealing with forward and backward jumps in
workflow management systems. Software and Syst. Modeling 2 (2003) 37–58

19. Mulyar, N., Schonenberg, M., Mans, R., Russell, N., van der Aalst, W.: Towards a
taxonomy of process flexibility (extended version). Technical Report BPM-07-11,
Brisbane/Eindhoven: BPMcenter.org (2007)

20. Rinderle, S., Reichert, M., Jurisch, M., Kreher, U.: On representing, purging, and
utilizing change logs in process management systems. In: Proc. of 4the Int’l Conf.
on Business Process Management, September, Vienna, Austria. (2006) 241–256

A Proofs

Theorem 1 (Optimal Instance-specific Adjustment). Let S, S’ be two
process schemas and let ∆S = <insert(S, X, A, B)> be an insert operation
which transforms S into S’; i.e., S[∆S > S′. Let further I ∈ I (I denotes the set
of all instances) be an instance running on S for which NSI(B) ∈ {Running,
Completed} holds for the state of activity B (cf. Section 2); i.e., I is not compli-
ant with S’. We define instance-specific adjustment ∆I(S′) as follows:

∆I(S′) = move(S’,X,A,C) with C ∈ nextNonStartedSucc(S’,I,B)5 where
nextNonStartedSucc: S × I × N 7→ 2N

nextNotStartedSucc(S’,I,n) =
{n ∈ succ*(S’,X) | NSI(n) 6∈ {Running, Completed}
∧ (6 ∃ n’: NSI(n′) 6∈ {Running, Completed} ∧ n ∈ succ*(S’,n’) }

Then: I is compliant with SI where S′[∆I(S′)>SI and
dS(S’,SI) = min{dS(S’,S̃I) | S′[˜∆I(S′)>S̃I with I compliant with S̃I}

For proofing Theorem 1, we use the following two Lemmata: Lemma 1 pro-
vides an estimation for the structural difference between a modifed type schema
version and an instance-specific schema, if the assumption of Theorem ?? hold.
Again under the assumptions of Theorem 1, Lemma 2 gives an estimation for the
structural difference when the instance-specific change is modified by choosing
another left anchor for the move operation at instance level as suggested for the
instance-specific change with minimal structural difference.

Lemma 1 (Structural Distance for Instance-Specific Adjustment (1)).
Let the assumptions be as defined for Theorem 1. Then:

sD(SI ,S’) = |succ∗(S′, A) ∩ pred∗(S′, C)|-1
5 In connection with parallel or alternative branchings more than one successor of B

can be the ”next non-started activity”. In this case one of them is chosen arbitrarily
or the user is asked to make a choice.

Proof of Lemma 1: For illustration see Fig. 11.
The only activity within SI which is affected by ∆I in terms of changes of

its successor set is X when compared to S′. Reason is that for ”left anchor” A
(and all its predecessors) the set of successors remains the same (i.e., X is only
inserted at a different position). Symmetrically, for ”right anchor” C (and all
its successors) their successor sets are not affected by ∆I(S′) at all. Thus, the
possibly affected activities are within set succ∗(SI , A) ∩ pred∗(SI , C).

When digging deeper we obtain the following results: For activities in set
(succ∗(SI , A)∩pred∗(SI , X)) their successor sets remain equal as well when com-
pared to S′. Note that X is actually present in their successor sets and the exact
position does not matter. For all activities in succ∗(SI , X) ∩ pred∗(SI , C), X is
inserted in parallel. Assume that A and B are direct successors in S and X is in-
serted serially between A and B resulting in S′. Since B has been already started
for I, X is moved between A and a successor of B. Thus, this always results in
inserting X at least parallel to B. Altogether, for succ∗(SI , X) ∩ pred∗(SI , C)
there is also no change in their successor sets when compared to S′ since no new
order relations are introduced for these activities.

In summary, only the successor set of X is affected when comparing SI and
S′. As argued before, X is moved parallel to the activities which are in set
succ∗(S′, A)∩ pred ∗ (S′, C) except X itself. Thus, for all these activites (except
X) X ”looses” one successor when comparing S′ and SI . Out of this statement
Lemma 1 can be directly concluded. �

Process Schema S: ΔS = < insert(S,X,A,B)>

+

S`:

AA BB CC DD EE

AA XX CC DD EE EEAA BB CC DD EE

+

XX

AA BB CC DD EE

Fig. 11. Illustration of Lemmata 1 and 2

Lemma 2 (Structural Distance for Instance-Specific Adjustments (2)).
Let the assumptions be as defined for Theorem 1. Then for ∆I = move(S’,X,Y,C)
with Y ∈ succ*(S’,A) (with S’[∆I > SI , I compliant with SI):

sD(SI ,S’) = |succ∗(S′, A)∩ pred∗(S′, C)| − 1 + |succ∗(S′, A)∩ pred∗(S′, Y)|

Proof Sketch of Lemma 2:
The basic consideration behind Lemma 1 is that change ∆I(S′) can be

”mapped” to change ∆I(S′) as described in Theorem 1. This can be done as
follows: Consider Fig. 11: X can be inserted between A and E; i.e., by change
∆I(S′) = move(S’,X,A,E). According to Lemma 1 for each activity X is moved
parallel to, X ”looses” one successor. Shifting the left anchor from A towards E
can be expressed by inserting a sync edge between new anchor Y and X; e.g.,
if we chose B as left anchor (i.e., ∆I(S′) = move(S’,X,B,E)). By doing so, B
”receives” new successor X. If, for example, D is chosen as left anchor, B, C,
and D have new successor X. Thus, for all activities ”between” A and Y one
new successor occurs. �

Proof of Theorem 1:
Preconditions:

1. ∆S = <insert(S,X,A,B)>
2. S[∆S > S′

3. I ∈ I on S
4. NSI(B) ∈{Running, Completed}
5. ∆I(S′) = move(S’,X,A,C) with

C ∈ nextNonStartedSucc(S’,I,B) =⇒ NSI(C) ∈ {NotActivated, Activated}
6. S’[∆I(S′) > SI

Statement:
(1) I compliant with SI

∧
(2) dS(S’,SI) = min{dS(S’,S̃I) | S′[˜∆I(S′)>S̃I with I compliant with S̃I}

We proof Theorem 1 by contradiction.

Contradicton Assumption:

¬((1) ∧ (2)) ≡ ¬(1) ∨ ¬ (2) ≡
¬ ((1) I compliant with SI ∧

(2) dS(S’,SI) = min{dS(S’,S̃I) | S′[˜∆I(S′)>S̃I

with I compliant with S̃I}) ≡
(¬1) I is not compliant with SI ∨

(¬2) ∃∆I(S′) with dS(S’,SI) ≥ dS(S’, SI) with
S’[∆I(S′) > SI

Preliminaries for Case (¬1): Basically, compliance is defined based on execution
traces [2, 7]; i.e., instance I is compliant with changed type schema version S′

if trace σS
I of I on S could have been also produced on S′. As discussed in [7],

for example, checking compliance based on generating and replaying execution
traces can be quite expensive. Thus, comparable to serializability in database

systems, for example, we have stated precise compliance conditions (cf. [7, 8, 12,
20], based on which compliance can be quickly checked. The idea is to exploit
the semantics of the applied change operation (e.g., an insert or move operation)
and to evaluate the node states NSI of ”critical” activities; i.e., activities which
constitute the change region of the the particular activity. For deletion, for exam-
ple, the change region is built by the activity to be deleted (change semantics).
It can be shown that compliance is ensured if the activity to be deleted is in
state NotActivated or Activated. In the context of Theorem 1 we are interested
in move operations.

The compliance conditions for move operation move(S’,X,A,C) are as follows:
NSI(X) ∈{NotActivated, Activated} ∧ NSI(C) 6∈ {Running, Completed}

Case ¬(1): I is not compliant with SI =⇒
∆I(S′) violates the compliance condition for move operations, i.e.,
NSI(X) 6∈{NotActivated, Activated}

∨ NSI(C) 6∈ {NotActivated, Activated} =⇒ Contradiction

since NSI(X) = NotActivated since X is newly inserted at type schema level
and NSI(C) ∈ {NotActivated, Activated} according to Precondition (5)

Case ¬(2): ∃∆I(S′) with dS(S’,SI) ≥ dS(S’, SI) with S’[∆I(S′) > SI

Pre-Considerations:

We assume implicitly that dS(S’,SI) and dS(S’, SI) are defined =⇒
N’ = N ′

I = NI

for S’= (N’, CtrlE, ...), SI = (NI , CtrlEI , ...), and SI = (NI , CtrlEI , ...).
From this assumption we can conclude that opType(∆I(S′)) = move (cf. Table
1)
Since we assume further that I is compliant with SI , subject((∆I(S′)) = S
follows (cf. Table 1); i.e., altogether ∆I(S′) = move(S’,X,Y,Z).
Consequently, ∆I(S′) and ∆I(S′) differ in their parameter list. Here we can
distinguish the following cases:

Case A: Y = A, Z 6= C; i.e., maintaining ”left anchor” A
With Lemma 1 we obtain:

sD(SI ,S’) = |succ∗(S′, A)∩pred∗(S′, Y)|−1
!
< |succ∗(S′, A)∩pred∗(S′, C)|-1

Under the assumption that ∆I is a valid change (i.e., Y ∈ succ*(SI ,A)) and
compliance conditions hold for ∆I(S′) (i.e., NSI(Y) 6∈ {Running, Completed})
a contradiction to the preconditions results, since in this case C cannot be one
of the next non-started successor of A in S’

Case B: Y 6= A, Z = C; i.e., maintaining ”right anchor” C
Case B1: Y ∈ succ*(S’,A)
With Lemma 1 and Lemma 2 we obtain:
sD(SI ,S’) = |succ∗(S′, A)∩ pred∗(S′, C)|-1 + |succ∗(S′, A)∩ pred∗(S′, Y)|

!
<

|succ∗(S′, A) ∩ succ∗(S′, C)|-1 =⇒ Contradiction
Case B2: Y ∈ pred*(S’,A)

Intuitively clear. If we move X between a predecessor of A and C, X is
moved parallel to A. Thus at least A ”looses” X as successor and we obtain
sD(SI ,S’) ≥ sD(SI ,S’) + 1

Case C: Y 6= A, Z 6= =⇒ follows from Case A and Case B �

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich

Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de

Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe

Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Köbler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schöning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Köbler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara,
U. Schöning, R. Silvestri, T. Thierauf
Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Köbler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kühnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntax-directed
semantics

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost
Narrowing

92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any
Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal
Communications Manager

93-02 M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch
The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree
Transducers

94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

94-09 F.W. von Henke, A. Dold, H. Rueß, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars:
Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman,Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algorithms

95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger
kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schulthess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen
Netzen am Beispiel Truck Backer-Upper

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche
mit VSE

96-02 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of
Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am
Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with
Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT–
Ansätzen

96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmuth Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation
Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids

97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow
Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure

97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den
digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
ADEPTflex - Supporting Dynamic Changes of Workflows Without Loosing Control

97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development
environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken

97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem
Provers

97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für
eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information
Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

97-18 Johannes Köbler,Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity
Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde
Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und
Analyse

98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment

98-12 Gerhard Schellhorn

Proving Properties of Directed Graphs: A Problem Set for Automated Theorem
Provers

98-13 Gerhard Schellhorn, Wolfgang Reif
Theorems from Compiler Verification: A Problem Set for Automated Theorem
Provers

98-14 Mohammad Ali Livani
SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN

98-15 Mohammad Ali Livani, Jörg Kaiser
Predictable Atomic Multicast in the Controller Area Network (CAN)

99-01 Susanne Boll, Wolfgang Klas, Utz Westermann
A Comparison of Multimedia Document Models Concerning Advanced Requirements

99-02 Thomas Bauer, Peter Dadam
Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und
Simulation

99-03 Uwe Schöning
On the Complexity of Constraint Satisfaction

99-04 Ercument Canver
Model-Checking zur Analyse von Message Sequence Charts über Statecharts

99-05 Johannes Köbler, Wolfgang Lindner, Rainer Schuler
Derandomizing RP if Boolean Circuits are not Learnable

99-06 Utz Westermann, Wolfgang Klas
Architecture of a DataBlade Module for the Integrated Management of Multimedia
Assets

99-07 Peter Dadam, Manfred Reichert
Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems,
Applications. Paderborn, Germany, October 6, 1999, GI–Workshop Proceedings,
Informatik ’99

99-08 Vikraman Arvind, Johannes Köbler
Graph Isomorphism is Low for ZPPNP and other Lowness results

99-09 Thomas Bauer, Peter Dadam
Efficient Distributed Workflow Management Based on Variable Server Assignments

2000-02 Thomas Bauer, Peter Dadam
Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-
Management-System ADEPT

2000-03 Gregory Baratoff, Christian Toepfer, Heiko Neumann
Combined space-variant maps for optical flow based navigation

2000-04 Wolfgang Gehring
Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)
FM-Tools 2000: The 4th Workshop on Tools for System Design and Verification

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-
Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in
ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and
Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-
Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness
Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein

Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
(Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols)

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules

2004-02 Christian Heinlein
Concept and Implementation of C+++, an Extension of C++ to Support User-Defined
Operator Symbols and Control Structures

2004-03 Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01 Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
19th Workshop on (Constraint) Logic Programming

2005-02 Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03 Walter Guttmann, Markus Maucher
Constrained Ordering

2006-01 Stefan Sarstedt
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02 Alexander Raschke, Ramin Tavakoli Kolagari
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
Systemen

2006-03 Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
Eine qualitative Untersuchung zur Produktlinien-Integration über
Organisationsgrenzen hinweg

2006-04 Thorsten Liebig
Reasoning with OWL - System Support and Insights –

2008-01 H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for graphical display

2008-02 Manfred Reichert, Peter Dadam, Martin Jurisch,l Ulrich Kreher, Kevin Göser,
 Markus Lauer

 Architectural Design of Flexible Process Management Technology

2008-03 Frank Raiser
 Semi-Automatic Generation of CHR Solvers from Global Constraint Automata

2008-04 Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander
Entscheidungsdokumentation bei der Entwicklung innovativer Systeme für
produktlinien-basierte Entwicklungsprozesse

2008-05 Markus Kalb, Claudia Dittrich, Peter Dadam

 Support of Relationships Among Moving Objects on Networks

2008-06 Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)
 WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke

2008-07 M. Maucher, U. Schöning, H.A. Kestler
An empirical assessment of local and population based search methods with different
degrees of pseudorandomness

2008-08 Henning Wunderlich
Covers have structure

2008-09 Karl-Heinz Niggl, Henning Wunderlich
Implicit characterization of FPTIME and NC revisited

2008-10 Henning Wunderlich
On span-Pсс and related classes in structural communication complexity

2008-11 M. Maucher, U. Schöning, H.A. Kestler
On the different notions of pseudorandomness

2008-12 Henning Wunderlich
On Toda’s Theorem in structural communication complexity

2008-13 Manfred Reichert, Peter Dadam
Realizing Adaptive Process-aware Information Systems with ADEPT2

2009-01 Peter Dadam, Manfred Reichert
The ADEPT Project: A Decade of Research and Development for Robust and Fexible
Process Support
Challenges and Achievements

2009-02 Peter Dadam, Manfred Reichert, Stefanie Rinderle-Ma, Kevin Göser, Ulrich Kreher,
Martin Jurisch
Von ADEPT zur AristaFlow® BPM Suite – Eine Vision wird Realität “Correctness by
Construction” und flexible, robuste Ausführung von Unternehmensprozessen

2009-03 Alena Hallerbach, Thomas Bauer, Manfred Reichert
Correct Configuration of Process Variants in Provop

2009-04 Martin Bader

On Reversal and Transposition Medians

2009-05 Barbara Weber, Andreas Lanz, Manfred Reichert
Time Patterns for Process-aware Information Systems: A Pattern-based Analysis

2009-06 Stefanie Rinderle-Ma, Manfred Reichert
Adjustment Strategies for Non-Compliant Process Instances

Ulmer Informatik-Berichte
ISSN 0939-5091

Herausgeber:
Universität Ulm
Fakultät für Ingenieurwissenschaften und Informatik
89069 Ulm

