PHILharmonicFlows: Research and Design Methodology

Vera Künzle, Manfred Reichert
PHILharmonicFlows:
Research and Design Methodology

Vera Künzle and Manfred Reichert
Institute of Databases and Information Systems, Ulm University, Germany
vera.kuenzle,manfred.reichert@uni-ulm.de

Abstract. In comprehensive case studies we found out that many limitations of existing Process Management Systems (PrMS) can be traced back to the unsatisfactory integration of processes and data. In the PHILharmonicFlows1 project, we aim at a deep and extensive understanding of the inherent relationships between processes and data, and thus want to overcome some of the fundamental limitations known from activity-centered PrMS. Overall, we target at a comprehensive framework providing integrated access to processes, data, and functions to its users.

1 Introduction

Enterprises spend a lot of time and money for introducing Information Technology (IT) to improve their effectiveness and efficiency [1]. Effectiveness addresses the distance between business goals and the capabilities offered by IT in order to achieve these goals; i.e., the alignment of IT with different business perspectives [2]. These perspectives, in turn, typically comprise business data, business functions, and business processes.

Business data is typically represented by a number of business objects. These cover domain-specific business entities like orders, customers, or products. Each business object, in turn, is represented by a set of attributes. As example consider the delivery date of an order or the name of a customer. In addition, business objects are related to each other; e.g., an order may comprise several products. Business functions, in turn, constitute a wide range of (various) activities. Typically, many of them are used to create and delete business objects or to change their properties. As example consider user forms enabling humans to fill in desired property values. Finally, business processes comprise a number of related business functions to be executed in order to achieve a certain business goal.

To reach competitive advantages, it is further important to introduce new products and services as quickly as possible at the market. In addition, for dealing with increasing competitive pressure and market dynamics, it should be possible to continuously adapt IT systems in a quick and effective way. Hence, rapid development and improved maintenance are important success factors. In this context, process management systems (PrMS) offer promising perspectives in respect to comprehensive lifecycle support of business processes. In these PrMS,

1 Process, Humans and Information Linkage for harmonic Business Flows
business processes are modeled in terms of activities required for achieving a particular business goal as well as their control flow defining the order and the constraints for executing these activities [3]. Each activity is then linked with a specific business function of an application service (e.g., business application). In addition, most PrMS handle atomic data elements which are connected with one or more activities reading or writing it. These data elements are also used for process control (i.e., for evaluating routing conditions).

The remainder of this paper is structured as follows. We first motivate the problem addressed in our research in Section 2. In Section 3 a discussion on how process support looks like in today’s companies follows. Section 4 then introduces fundamental research questions and expected solutions, while Section 5 investigates related work along a well defined evaluation schema. The relevance of our research is discussed in Section 6. Section 7 describes the research methodology we apply. Finally, Section 8 sketches the solution approach we target at and Section 9 closes with a summary and outlook.

2 Problem Statement

Despite the widespread adoption of existing PrMS, there exist numerous processes not adequately supported by these PrMS. In particular, traditional PrMS have been primarily designed for supporting highly structured, repetitive business processes [4]. For various other processes, in turn, there is a contradiction between the way these processes can be defined and the preferred work practice [5, 6, 7]. These processes are often characterized as "information-centric" [8] or "knowledge-intensive" [9]. Further, they are rather "unstructured" [6] and cannot be "straight-jacked into activities" [9]. Moreover, existing PrMS focus on the business process perspective; i.e., activities and their control flow. Business functions (which are linked with activities) and business data, in turn, are usually out of the control of existing PrMS. For this reason, generic support is only provided for process enactment in existing PrMS. For realizing business functions, specific programming is required. Typically, this consumes more time and efforts as the modeling of the corresponding processes. Moreover, in existing PrMS business functions are treated as "black-boxes". This means, what is done during activity execution is out of the control of existing PrMS; i.e., business data is managed by the invoked business functions themselves. Obviously, this missing link between business data and business process prohibits integrated access to them. Consequently, users cannot access and manage data at any point in time during process execution (assuming proper authorization).

3 Background

Many processes not adequately supported by existing PrMS are more or less hard-coded within specific business applications. Consequently, long develop-
ment cycles arise and even simple process changes require costly code adaptations and high efforts for testing. However, the more specific a business application is, the better it meets the requirements of the respective application domain; i.e., business-IT-alignment is improved. In particular, *tailor-made business applications* requiring a customer-specific programming of all functionalities typically fit business needs best.

Regarding the support of business processes, companies typically face Mortons fork: Either they can use PrMS to enable rapid development as well as improved maintenance and therefore achieve a high degree of efficiency, or they directly apply tailor-made applications for providing the required effectiveness; i.e., adequate business-IT-alignment (cf. Fig. 1).

![Fig. 1. Dilemma between efficiency and effectiveness](image)

Many companies have achieved considerable benefits from their investments in *domain-specific business applications* (i.e., ERP packages). Regarding the latter, some standard functionality is already pre-implemented. These applications can be customized for the specific needs of an enterprise. Usually, customizability is realized through configuration support (e.g., based on some settings one can configure a particular process variant). Thus, domain-specific business applications constitute a trade-off between effectiveness and efficiency. However, since configurability depends on the range of preconfigured alternatives, domain-specific enterprise applications are huge and complex [10]. An additional problem emerging in this context are the lack of transparency of the configurable processes.

4 Research Questions

Starting with the basic observation that there are business processes not adequately supported by existing PrMS, we define the following research questions:

Research Question 1: What are the common properties of business processes currently not adequately supported by PrMS?

Expected Solution: A collection of characteristic properties relating to different
business perspectives; i.e., the inter-relationships between business processes, business data, business functions, and users.

Research Question 2: Which requirements must be fulfilled by a PrMS to adequately capture these properties?
Expected Solution: A set of elicited requirements for PrMS enabling the support of the identified properties.

Research Question 3: How to support the requirements elicited in an integrated process support framework?
Expected Solution: Concepts, methods and tools for realizing a PrMS enabling process support in tight integration with data to overcome the aforementioned limitations.

5 Related Work

Generally, we believe that the identified limitations of existing PrMS can be traced back to the unsatisfactory integration of processes and data. In particular, many processes necessitate object-awareness; i.e., they focus on the processing of business data represented by business objects. The latter comprise a set of object attributes and are related to each other. To understand the inherent relationships between process and data, we investigate on processes currently not adequately supported. This includes a systematic analysis of their properties. In summary, our process analysis has revealed the following major characteristics of object-aware processes:

1. **Object behavior**: The behavior of the involved business objects must be taken into account during process execution.
2. **Object interactions**: Interactions between business objects must be adequately considered; i.e., the behavior of individual objects must be coordinated with the one of related business objects.
3. **Data-driven execution**: Since the progress of a process mainly depends on available business objects and on their attribute values, process execution has to be accomplished in a data-driven manner.
4. **Integrated access**: Authorized users must be able to access and manage process-related objects at any point in time (assuming proper authorization).
5. **Flexible activity execution**: Activities must be executable at different levels of granularity. While one user may work on a particular object instance, another one may process a number of related object instances in one go.

Though there exist several approaches targeting at a tighter integration of business processes and business data [9, 11, 12, 13, 14, 7, 5], as illustrated in Fig. 2, none of them supports all identified properties in an integrated and comprehensive way. In addition, some approaches only deal with the modeling of processes,
but exclude process execution; e.g., they do not provide a well-defined operational semantics for the automatic enactment of the defined processes. Consequently, existing approaches provide generic support for only few of the identified characteristics.

6 Relevance

Altogether we believe that a tighter integration of the different business perspectives (cf. Fig. 3) will provide an important contribution to overcome some of the fundamental limitations known from contemporary PrMS. For this purpose, we aim at a deep and extensive understanding of the inherent relationships that exist between processes, data, functions, and users in order to enable generic enactment for object-aware process management. Their support could impact the realization of more flexible process management technology in which daily work can be done in a more natural way.

Moreover, we assume that a tighter integration between process and data not only fosters effectivity, but also efficiency. This means, not only generic process support but also generic business functions become possible. In addition to process-oriented views (i.e., work-lists) we aim at the automatic generation of form-based activities and data-oriented views (e.g., overview table) at run-time. This way, integrated access to business process, business functions, and business data shall be provided to users.
7 Research Design and Methods

Regarding research in the field of information technology (IT), there are two kinds of sciences: design science and natural science [15, 1]. Natural science research is a knowledge-producing activity comprising the two steps discovery and justification [15]. Design science, in turn, is a knowledge-using activity [15]. It aims at developing IT systems. Here, building and evaluation as the two major activities [1].

Generally, doing research means applying natural science. Regarding IT, however, design research is considered as being more successful and important. Nevertheless, technology and behavior cannot be separated from each other [1]. Thus, in accordance with [15, 1], it is an opportunity for IT research to make significant contributions by engaging in both. As illustrated in Fig. 4, IT research calls for synergistic efforts between natural and design science research [1].

Our main research activities are as follows (cf. Fig. 5): We start with natural research to identify the characteristic properties of object-aware processes (cf. Research Question 1). To deal with Research Question 2, we evaluate existing approaches (using already available and applicable knowledge) to elicit the requirements for a PrMS supporting the identified properties. Finally, we address Research Question 3 and develop a comprehensive framework and proof-of-concept prototype for object-aware process management based on design research.

7.1 Doing Natural Research: Property Investigation and Justification

To discover the properties of those business processes not adequately supported by current PrMS, we perform a detailed property investigation by analyzing these business processes. We then justify our findings with an extensive literature study.
Fig. 4. IT Research [1]

Fig. 5. Research Methodology
Process analysis Data Source: Due to the limitations of contemporary PrMS there exist numerous business applications (e.g., ERP or CRM systems) which are process-aware, but do not rely on PrMS. Instead they contain hard-coded process logic; i.e., process logic interwoven with application code. To ensure that the processes we analyze are not "self-made" examples, but constitute real-world processes of high practical relevance, we select processes as implemented in existing business applications. Amongst others, we analyze the processes implemented in the human resource management system Persis and the conference reviewing system EasyChair [16, 17]. In particular, our evaluation is not restricted to the inspection of user interfaces solely. In addition, we rely on extensive practical experiences gathered during the development of contemporary business applications; i.e., we have deep insights into their application code and process logic. Finally, we underpin our results by interviewing system users as well as business consultants being familiar with the respective business applications.

Selection Criteria: We evaluate the processes (and additional features) based on the main business perspectives. These comprise processes, data, functions, and users. In particular, we focus on their interdependencies.

Literature study Ensuring importance: We complement our process analyses by an extensive literature study. This way we want show that other researchers consider some of the properties we identified as being relevant as well.

Ensuring completeness: To not exclude important properties already identified by other researchers, we compare our analysis results with existing literature. However, to set a focus we exclude properties in respect to process change and process evolution. Instead, our focus is on process modeling, execution and monitoring.

Ensuring generalisation: Interestingly, some authors refer to similar application examples as we do, while addressing different properties. Based on these insights we contrast the different application examples with the total set of identified properties. This way, we are able to demonstrate two things: first, the properties are related to each other. Second, broad support for them is required by a variety of processes from different application domains.

7.2 Using applicable knowledge: Requirements Engineering

Concerning Research Question 2, we first discuss to what degree existing PrMS cover the identified properties. More precisely, we evaluate which properties cannot be directly supported when applying traditional imperative and declarative process support paradigms [18]. Based on this evaluation we then elicit the basic requirements as inquired by Research Question 2.
7.3 Doing Design Research: Framework Design and Proof-of-Concept

Hevner et al [1] consider solution design as search process being inherently iterative. This has been confirmed by other authors [19, 20]. Simon [19], in turn, describes the nature of the design process as a "Generate/Test Cycle". The spiral model [20], in turn, defines an approach in which one and the same step is repeated several times, each time improving the results of the previous outcome. For this purpose, we perform iterative walkthroughs. In particular, we revise our solution and improve it step by step. This leads to different development versions. Additionally, we investigate in user interface design [21, 22]. This way, shortcomings concerning the usability of the framework design are identified at early project stages and can be considered in subsequent iterative revisions.

To evaluate our framework we develop a proof-of-concept prototype for the modeling as well as the run-time environment. In addition, we apply the prototype to real-world cases. In particular, we use scenarios from the medical domain, order processing, and house building which are different from the ones we consider in the context of our process analyses. Finally, we elaborate the benefits of our approach when applying it to these processes as well as lessons learned.

8 Contribution

In the course of our PHILharmonicFlows project we are developing a comprehensive framework supporting the modeling, execution and monitoring of object-aware processes. Opposed to traditional process support paradigms, we provide a uniform methodology for modeling processes on well-defined levels of granularity. The proper execution as well as termination of processes at run-time is further ensured by a set of correctness rules. In addition, a well-defined operational semantics not only enables generic support for process execution, but also generic realization of business functions. In particular, PHILharmonicFlows enables integrated access to business processes, business functions, and business data. For this purpose, we automatically create end-user components like worklists, form-based activities, and overview tables during run-time based on the corresponding models.

One fundamental pillar of our framework enables the processing of individual business objects to enforce object behavior. Like existing work considering object behavior during process execution [12, 23, 11, 24, 8, 13, 25, 14], our approach applies the well established concept of modeling object behavior in terms of states and state transitions. Opposed to existing approaches, however, PHILharmonicFlows enables a mapping between attribute values and objects states and therefore ensures compliance between them [26]. Moreover, this mapping allows us to combine object behavior with data-driven execution.

Another fundamental pillar of our framework enables the modeling and execution of processes involving multiple business objects (i.e., objects of the same and of different type). Thereby, we consider their individual behavior as well as their inter-relationships. More precisely, we enable the coordination of object-specific
processes that represent object behavior taking the relationships between the involved business objects into account. Regarding the latter, we obtain a complex process structure comprising inter-related, object-specific processes. Opposed to existing work [12, 7] we hide this complex structure from modelers as well as from end users. For this purpose, our approach provides sophisticated concepts for defining aggregations abstracting from individual business objects. This way, different cardinality constraints can be taken into account. In addition, coordination is not only possible along direct object relations (e.g., a review directly refers to a paper). In fact, in PHILharmonicFlows the processing of business objects can be coordinated based on complex inter-relationships taking transitive as well as transverse relationships between business objects into account.

The presented execution paradigm applies data-driven process execution in a comprehensive way; i.e., in respect to object behavior and object interactions. Since in some situations explicit user decisions and commitments are required, PHILharmonicFlows combines its data-driven execution paradigm with activity-oriented aspects. Finally, such tight integration of process and data necessitates advanced concepts for user integration; i.e., process authorization must be compliant with data authorization and vice versa. For this purpose, we introduce an advanced concept for actor assignment and authorization.

9 Summary and Outlook

Our basic mission in the PHILharmonicFlows project is to develop generic concepts, methods and tools for realizing object- and process-aware information systems. In particular, we aim at the flexible integration of business data, business processes, and business functions to overcome limitations known from purely activity-centered PrMS. In this paper, we report on our overall vision and on the research methodology we apply.

We have already conducted extended process analysis in the areas of human resource management and paper reviewing. In [16, 17] we reported on the basic challenges for integrating processes, data, functions and users, and we described the properties of object-aware process management in detail [27]. Based on a detailed comparison of traditional process support paradigms [18] we elicit the major requirements for object-aware process support [18, 27]. Currently, we are developing a comprehensive framework for object-aware process management [27, 26] as well as a proof-of-concept prototype. In [27] we give an overview about our framework, whereas [26] reports on our modeling paradigm for integrating processes and data at the micro level (i.e., for realizing object behavior). In future work we elaborate more detailed issues in the context of our framework and apply it to other real world processes for evaluation purpose (i.e., health care, order processing, house building).
References

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich
Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de
Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe
 Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
 Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
 Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
 Graph Isomorphism is low for PP

91-05 Johannes Körbler, Thomas Thierauf
 Complexity Restricted Advice Functions

91-06* Uwe Schöning
 Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Körbler, J. Toran
 The Power of Middle Bit

91-08* V. Arvind, Y. Han, L. Hamachandra, J. Körbler, A. Lozano, M. Mundhenk, A. Ogiwara,
 U. Schöning, R. Silvestri, T. Thierauf
 Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Körbler, Martin Mundhenk
 On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
 Top-down Parsing with Simultaneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
 17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Körbler, M. Mundhenk
 Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Körbler
 Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Künnemann, Heiko Vogler
 Synthesized and inherited functions -a new computational model for syntax-directed semantics

92-07* Heinz Fassbender, Heiko Vogler
 A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost Narrowing
92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any
Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal Communications Manager

The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree Transducers
94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars:
Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman, Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Independent Massive Parallelization of Divide-And-Conquer Algorithms
95-06
Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07
P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08
Jürgen Kehrer, Peter Schulthes
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09
Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10
Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen Netzen am Beispiel Truck Backer-Upper

95-12
Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13
Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14
Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01
Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche mit VSE

96-02
Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of Using the ORD-Horn Class

96-03
Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04
Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am Beispiel der Domäne Concurrent-Engineering

96-05
Gerhard Schelhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06
Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07
Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08
David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with Composition and Extraction

96-09
Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT-Ansätzen
Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

Klaus Achatz, Helmut Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation Rule, its Applications and Variants

Jochem Messner
Pattern Matching in Trace Monoids

Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management Systems with Subnets and Server Migration

Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow Dependencies

Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure

Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den digitalen Mobilfunkstandard DECT

Manfred Reichert, Peter Dadam
ADEPTflex - Supporting Dynamic Changes of Workflows Without Loosing Control

Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development environment

Christian Heinlein
Grundlagen von Interaktionsausdrücken

Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem Provers
97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und Analyse

98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998-12</td>
<td>Gerhard Schellhorn</td>
<td>Proving Properties of Directed Graphs: A Problem Set for Automated Theorem Provers</td>
</tr>
<tr>
<td>1998-13</td>
<td>Gerhard Schellhorn, Wolfgang Reif</td>
<td>Theorems from Compiler Verification: A Problem Set for Automated Theorem Provers</td>
</tr>
<tr>
<td>1998-14</td>
<td>Mohammad Ali Livani</td>
<td>SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN</td>
</tr>
<tr>
<td>1999-01</td>
<td>Susanne Boll, Wolfgang Klas, Utz Westermann</td>
<td>A Comparison of Multimedia Document Models Concerning Advanced Requirements</td>
</tr>
<tr>
<td>1999-02</td>
<td>Thomas Bauer, Peter Dadam</td>
<td>Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und Simulation</td>
</tr>
<tr>
<td>1999-03</td>
<td>Uwe Schöning</td>
<td>On the Complexity of Constraint Satisfaction</td>
</tr>
<tr>
<td>1999-04</td>
<td>Ercument Canver</td>
<td>Model-Checking zur Analyse von Message Sequence Charts über Statecharts</td>
</tr>
<tr>
<td>1999-05</td>
<td>Johannes Köbler, Wolfgang Lindner, Rainer Schuler</td>
<td>Derandomizing RP if Boolean Circuits are not Learnable</td>
</tr>
<tr>
<td>1999-06</td>
<td>Utz Westermann, Wolfgang Klas</td>
<td>Architecture of a DataBlade Module for the Integrated Management of Multimedia Assets</td>
</tr>
<tr>
<td>1999-08</td>
<td>Vikraman Arvind, Johannes Köbler</td>
<td>Graph Isomorphism is Low for ZPPNP and other Lowness results</td>
</tr>
<tr>
<td>1999-09</td>
<td>Thomas Bauer, Peter Dadam</td>
<td>Efficient Distributed Workflow Management Based on Variable Server Assignments</td>
</tr>
<tr>
<td>2000-02</td>
<td>Thomas Bauer, Peter Dadam</td>
<td>Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-Management-System ADEPT</td>
</tr>
<tr>
<td>2000-03</td>
<td>Gregory Baratoff, Christian Toepfer, Heiko Neumann</td>
<td>Combined space-variant maps for optical flow based navigation</td>
</tr>
<tr>
<td>2000-04</td>
<td>Wolfgang Gehring</td>
<td>Ein Rahmenwerk zur Einführung von Leistungspunktsystemen</td>
</tr>
</tbody>
</table>
2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein
Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
(Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols)

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules

2004-02 Christian Heinlein
Concept and Implementation of C++, an Extension of C++ to Support User-Defined
Operator Symbols and Control Structures

2004-03 Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01 Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
19th Workshop on (Constraint) Logic Programming

2005-02 Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03 Walter Guttmann, Markus Maucher
Constrained Ordering

2006-01 Stefan Sarstedt
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02 Alexander Raschke, Ramin Tavakoli Kolagari
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
Systemen

2006-03 Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
Eine qualitative Untersuchung zur Produktlinien-Integration über
Organisationsgrenzen hinweg

2006-04 Thorsten Liebig
Reasoning with OWL - System Support and Insights –

2008-01 H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for graphical display
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-03</td>
<td>Frank Raiser</td>
<td>Semi-Automatic Generation of CHR Solvers from Global Constraint Automata</td>
</tr>
<tr>
<td>2008-04</td>
<td>Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander</td>
<td>Entscheidungsdocumentation bei der Entwicklung innovativer Systeme für produktlinien-basierte Entwicklungsprozesse</td>
</tr>
<tr>
<td>2008-05</td>
<td>Markus Kalb, Claudia Dittrich, Peter Dadam</td>
<td>Support of Relationships Among Moving Objects on Networks</td>
</tr>
<tr>
<td>2008-06</td>
<td>Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)</td>
<td>WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke</td>
</tr>
<tr>
<td>2008-07</td>
<td>M. Maucher, U. Schöning, H.A. Kestler</td>
<td>An empirical assessment of local and population based search methods with different degrees of pseudorandomness</td>
</tr>
<tr>
<td>2008-08</td>
<td>Henning Wunderlich</td>
<td>Covers have structure</td>
</tr>
<tr>
<td>2008-09</td>
<td>Karl-Heinz Niggl, Henning Wunderlich</td>
<td>Implicit characterization of FPTIME and NC revisited</td>
</tr>
<tr>
<td>2008-10</td>
<td>Henning Wunderlich</td>
<td>On span-P^c and related classes in structural communication complexity</td>
</tr>
<tr>
<td>2008-11</td>
<td>M. Maucher, U. Schöning, H.A. Kestler</td>
<td>On the different notions of pseudorandomness</td>
</tr>
<tr>
<td>2008-12</td>
<td>Henning Wunderlich</td>
<td>On Toda’s Theorem in structural communication complexity</td>
</tr>
<tr>
<td>2008-13</td>
<td>Manfred Reichert, Peter Dadam</td>
<td>Realizing Adaptive Process-aware Information Systems with ADEPT2</td>
</tr>
<tr>
<td>2009-01</td>
<td>Peter Dadam, Manfred Reichert</td>
<td>The ADEPT Project: A Decade of Research and Development for Robust and Flexible Process Support Challenges and Achievements</td>
</tr>
<tr>
<td>2009-03</td>
<td>Alena Hallerbach, Thomas Bauer, Manfred Reichert</td>
<td></td>
</tr>
</tbody>
</table>
Correct Configuration of Process Variants in Provop

2009-04
Martin Bader
On Reversal and Transposition Medians

2009-05
Barbara Weber, Andreas Lanz, Manfred Reichert
Time Patterns for Process-aware Information Systems: A Pattern-based Analysis

2009-06
Stefanie Rinderle-Ma, Manfred Reichert
Adjustment Strategies for Non-Compliant Process Instances

2009-07
Statistical Computing 2009 – Abstracts der 41. Arbeitstagung

2009-08
Ulrich Kreher, Manfred Reichert, Stefanie Rinderle-Ma, Peter Dadam
Effiziente Repräsentation von Vorlagen- und Instanzdaten in Prozess-Management-Systemen

2009-09
Dammertz, Holger, Alexander Keller, Hendrik P.A. Lensch
Progressive Point-Light-Based Global Illumination

2009-10
Dao Zhou, Christoph Müssel, Ludwig Lausser, Martin Hopfensitz, Michael Kühl, Hans A. Kestler
Boolean networks for modeling and analysis of gene regulation

2009-11
J. Hanika, H.P.A. Lensch, A. Keller
Two-Level Ray Tracing with Recording for Highly Complex Scenes

2009-12
Stephan Buchwald, Thomas Bauer, Manfred Reichert
Durchgängige Modellierung von Geschäftsprozessen durch Einführung eines Abbildungsmodells: Ansätze, Konzepte, Notationen

2010-01
Hariolf Beth, Frank Raiser, Thom Frühwirth
A Complete and Terminating Execution Model for Constraint Handling Rules

2010-02
Ulrich Kreher, Manfred Reichert
Speichereffiziente Repräsentation instanzspezifischer Änderungen in Prozess-Management-Systemen

2010-03
Patrick Frey
Case Study: Engine Control Application

2010-04
Matthias Lohrmann und Manfred Reichert
Basic Considerations on Business Process Quality

2010-05
HA Kestler, H Binder, B Lausen, H-P Klenk, M Schmid, F Leisch (eds):
Statistical Computing 2010 - Abstracts der 42. Arbeitstagung

2010-06
Vera Künzle, Barbara Weber, Manfred Reichert
Object-aware Business Processes: Properties, Requirements, Existing Approaches
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-01</td>
<td>Stephan Buchwald, Thomas Bauer, Manfred Reichert</td>
<td>Flexibilisierung Service-orientierter Architekturen</td>
</tr>
<tr>
<td>2011-02</td>
<td>Johannes Hanika, Holger Dammertz, Hendrik Lensch</td>
<td>Edge-Optimized À-Trous Wavelets for Local Contrast Enhancement with Robust Denoising</td>
</tr>
<tr>
<td>2011-03</td>
<td>Stefanie Kaiser, Manfred Reichert</td>
<td>Datenflussvarianten in Prozessmodellen: Szenarien, Herausforderungen, Ansätze</td>
</tr>
<tr>
<td>2011-05</td>
<td>Vera Künzle, Manfred Reichert</td>
<td>PHILharmonicFlows: Research and Design Methodology</td>
</tr>
</tbody>
</table>