

Ulmer Informatik Berichte | Universität Ulm | Fakultät für Ingenieurwissenschaften und Informatik

Extended Caching, Backjumping and Merging for
Expressive Description Logics

Andreas Steigmiller, Thorsten Liebig, Birte Glimm

Ulmer Informatik-Berichte
Nr. 2012-01

Mai 2012

Extended Caching, Backjumping and Merging for
Expressive Description Logics

Andreas Steigmiller1, Thorsten Liebig2, and Birte Glimm1

1 Ulm University, Ulm, Germany, <first name>.<last name>@uni-ulm.de
2 derivo GmbH, Ulm, Germany, liebig@derivo.de

Abstract. With this contribution we push the boundary of some known optimi-
sations such as caching to the very expressive Description Logic SROIQ. The
developed method is based on a sophisticated dependency management and a
precise unsatisfiability caching technique, which further enables better informed
tableau backtracking and more efficient pruning. Additionally, we optimise the
handling of cardinality restrictions, by introducing a strategy called pool-based
merging.
We empirically evaluate the proposed optimisations within the novel reasoning
system Konclude and show that the proposed optimisations indeed result in sig-
nificant performance improvements.

1 Motivation

Tableau algorithms are dominantly used in sound and complete reasoning systems,
which are able to deal with ontologies specified in the OWL 2 DL ontology language
[18]. Such algorithms are usually specified in terms of Description Logics (DLs) [1],
which provide the formal basis for OWL, e.g., OWL 2 is based on the DL SROIQ [12].

To our knowledge, all competitive systems for reasoning with SROIQ knowledge
bases such as FaCT++ [20], HermiT,3 jFact,4 or Pellet [19] use a variant of the tableau
method – a refutation-based calculus that systematically tries to construct an abstraction
of a model for a given query by exhaustive application of so called tableau rules.

Due to the wide range of modelling constructs supported by expressive DLs, the
typically used tableau algorithms have a very high worst-case complexity. Developing
optimisations to nevertheless allow for highly efficient implementations is, therefore, a
long-standing research area in DLs (see, e.g., [14,21]). A very effective and widely im-
plemented optimisation technique is “caching”, where one caches, for a set of concepts,
whether they are known to be, or can safely be assumed to be, satisfiable or unsatisfi-
able [4]. If the set of concepts appears again in a model abstraction, then a cache-lookup
allows for skipping further applications of tableau rules. Caching even allows for im-
plementing worst-case optimal decision procedures forALC [6].

Unfortunately, with increasing expressivity some of the widely used optimisations
become unsound. For instance, naively caching the satisfiability status of interim results

3 http://www.hermit-reasoner.com
4 http://jfact.sourceforge.net/

http://www.hermit-reasoner.com
http://jfact.sourceforge.net/

easily causes unsoundness in the presence of inverse roles due to their possible inter-
actions with universal restrictions [1, Chapter 9]. On the other hand, for features such
as cardinality restrictions there are nearly no optimisations yet. An attempt to use al-
gebraic methods [10,5], i.e., by combining a tableau calculus with a procedure to solve
systems of linear (in)equations, performs well, but requires significant changes to the
calculus and has not (yet) been extended to very expressive DLs such as SROIQ.

Our contribution in this paper is two-fold. We push the boundary of known optimi-
sations, most notably caching, to the expressive DL SROIQ. The developed method is
based on a sophisticated dependency management and a precise unsatisfiability caching
technique, which further enables better informed tableau backtracking and more effi-
cient pruning (Section 3). In addition we optimise the handling of cardinality restric-
tions, by introducing a strategy called pool-based merging (Section 4). Our techniques
are grounded in the widely implemented tableau calculus for SROIQ [12], which
makes it easy to transfer our results into existing tableau implementations. The pre-
sented optimisations are implemented within a novel reasoning system, called Kon-
clude [17]. Our empirical evaluation shows that the proposed optimisations result in
significant performance improvements (Section 5).

2 Preliminaries

Model construction calculi, such as tableau, decide the consistency of a knowledge
base K by trying to construct an abstraction of a model for K , a so-called “completion
graph”. A completion graph G is a tuple (V, E,L, ,̇), where each node x ∈ V represents
one or more individuals, and is labelled with a set of concepts, L(x), which the individ-
uals represented by x are instances of; each edge 〈x, y〉 represents one or more pairs of
individuals, and is labelled with a set of roles, L(〈x, y〉), which the pairs of individuals
represented by 〈x, y〉 are instances of. The relation ,̇ records inequalities, which must
hold between nodes, e.g., due to at-least cardinality restrictions.

The algorithm works by initialising the graph with one node for each Abox in-
dividual/nominal in the input KB, and using a set of expansion rules to syntactically
decompose concepts in node labels. Each such rule application can add new concepts
to node labels and/or new nodes and edges to the completion graph, thereby explicat-
ing the structure of a model. The rules are repeatedly applied until either the graph is
fully expanded (no more rules are applicable), in which case the graph can be used to
construct a model that is a witness to the consistency of K , or an obvious contradiction
(called a clash) is discovered (e.g., both C and ¬C in a node label), proving that the
completion graph does not correspond to a model. The input knowledge baseK is con-
sistent if the rules (some of which are non-deterministic) can be applied such that they
build a fully expanded, clash free completion graph. A cycle detection technique called
blocking ensures the termination of the algorithm.

2.1 Dependency Tracking

Dependency tracking keeps track of all dependencies that cause the existence of con-
cepts in node labels, roles in edge labels as well as accompanying constrains such as

2

inequalities that must hold between nodes. Dependencies are associated with so-called
facts, defined as follows:

Definition 1 (Fact) We say that G contains a concept fact C(x) if x ∈ V and C ∈ L(x),
G contains a role fact r(x, y) if 〈x, y〉 ∈ E and r ∈ L(〈x, y〉), and G contains an inequality
fact x ,̇ y if x, y ∈ V and (x, y) ∈ ,̇. We denote the set of all (concept, role, or inequality)
facts in G as FactsG.

Dependencies now relate facts in a completion graph to the facts that caused their exis-
tence. Additionally, we annotate these relations with a running index, called dependency
number, and a branching tag to track non-deterministic expansions:

Definition 2 (Dependency) Let d be a pair in FactsG ×FactsG. A dependency is of the
form dn,b with n ∈ IN0 a dependency number and b ∈ IN0 a branching tag.

We inductively define the dependencies for G, written DepG. If G is an initial com-
pletion graph, then DepG = ∅. Let R be a tableau rule applicable to a completion
graph G with {c0, . . . , ck} a minimal set of facts in G that satisfy the preconditions of
R. If DepG = ∅, then nm = bm = 0, otherwise, let nm = max{n | dn,b ∈ DepG} and
bm = max{b | dn,b ∈ DepG}. If R is non-deterministic, then bR = 1 + bm, otherwise
bR = 0. Let G′ be the completion graph obtained from G by applying R and let c′0, . . . , c

′
`

be the newly added facts in G′, then

DepG′ = DepG ∪ {(c′j, ci)n,b | 0 ≤ i ≤ k, 0 ≤ j ≤ `, n = nm + 1 + (j ∗ k) + i,
b = max{{bR} ∪ {b′ | (ci, c)n′,b′ ∈ DepG}}}.

The branching tag indicates which facts were added non-deterministically:

Definition 3 (Non-deterministic Dependency) For dn,b ∈ DepG with d = (c1, c2), let
Dd = {(c2, c3)n′,b′ | (c2, c3)n′,b′ ∈ DepG}. The dependency dn,b is a non-deterministic
dependency in G if b > 0 and either Dd = ∅ or max{b′ | (c, c′)n′,b′ ∈ Dd} < b.

a0

x1

x2

L(a0) = {

L(x1) = {

L(x2) = {

(∃r.(A u (∃r.(∀r−.B)))) , (∀r.¬B) , (C t D) , C }

r }

(A u (∃r.(∀r−.B))) , ¬B , A , (∃r.(∀r−.B)) , B }

r }

(∀r−.B) }

L(〈a0, x1〉) = {

L(〈x1, x2〉) = {

b2,0

c3,0

f 6,0
g7,0

d4,0
e5,0

a1,1

h8,0

i9,0

j10,0

k11,0

Fig. 1. Tracked dependencies for all facts in the generated completion graph

3

Figure 1 illustrates a completion graph obtained in the course of testing the consis-
tency of a knowledge base with three concept assertions:

a0 : (∃r.(A u (∃r.(∀r−.B)))) a0 : (∀r.¬B) a0 : (C t D).
Thus, the completion graph is initialised with the node a0, which has the three con-
cepts in its label. Initially, the set of dependencies is empty. For the concepts and roles
added by the application of tableau rules, the dependencies are shown with dotted lines,
labelled with the dependency. The dependency number increases with every new de-
pendency. The branching tag is only non-zero for the non-deterministic addition of C to
the label of a0 in order to satisfy the disjunction (C t D). Note the presence of a clash
due to B and ¬B in the label of x1.

3 Extended Caching and Backtracking

In the following we introduce improvements to caching and backjumping by present-
ing a more informed dependency directed backtracking strategy that also allows for
extracting precise unsatisfiability cache entries.

3.1 Dependency Directed Backtracking

Dependency directed backtracking is an optimisation that can effectively prune irrele-
vant alternatives of non-deterministic branching decisions. If branching points are not
involved in clashes, it will not be necessary to compute any more alternatives of these
branching points, because the other alternatives cannot eliminate the cause of the clash.
To identify involved non-deterministic branching points, all facts in a completion graph
are labelled with information about the branching points they depend on. Thus, the
united information of all clashed facts can be used to identify involved branching points.
A typical realisation of dependency directed backtracking is backjumping [1,21], where
the dependent branching points are collected in the dependency sets for all facts.

3.2 Unsatisfiability Caching

Another widely used technique to increase the performance of a tableau implementation
is caching, which comes in two flavours: satisfiability and unsatisfiability caching. For
the former, one caches sets of concepts, e.g., from node labels, that are known to be
satisfiable. In contrast, for an unsatisfiability cache, we cache sets of concepts that are
unsatisfiable. For such a cached set, any superset is also unsatisfiable. Thus, one is
interested in caching a minimal, unsatisfiable set of concepts. Although the caching of
satisfiable and unsatisfiable sets of concepts is often considered together, we focus here
on the unsatisfiability caching problem since the two problems are quite different in
nature and already the required data structure for an efficient cache retrieval can differ
significantly.

Definition 4 (Unsatisfiability Cache) Let K be a knowledge base, ConK the set of
(sub-)concepts that occur in K . An unsatisfiability cache UCK for K is a subset of

4

2ConK such that each cache entry S ∈ UCK is an unsatisfiable set of concepts. An un-
satisfiability retrieval for UCK and a completion graph G for K takes a set of concepts
S ⊆ ConK from a node label of G as input. If UCK contains a set S⊥ ⊆ S , then S⊥ is
returned; otherwise, the empty set is returned.

Deciding when we can safely create a cache entry rapidly becomes difficult with
increasing expressivity of the used DL. Already with blocking on tableau-based systems
for the DL ALC care has to be taken to not generate invalid cache entries [8]. There
are some approaches for caching with inverse roles [2,3,6], where possible propagations
over inverse roles from descendant nodes are taken into account. The difficulty increases
further in the presence of nominals and, to the best of our knowledge, the problem of
caching with inverses and nominals has not yet been addressed in the literature. In this
setting, it is difficult to determine, for a node x with a clash in its label, which nodes
(apart from x) are also labelled with unsatisfiable sets of concepts. Without nominals
and inverse roles, we can determine the ancestor y of x with the last non-deterministic
expansion and consider the labels of all nodes from x up to y as unsatisfiable. With
inverse roles, a non-deterministic rule application on a descendant node of x can be
involved in the creation of the clash, whereby the node labels that can be cached as
unsatisfiable become limited.

In order to demonstrate the difficulties with inverse roles, let us assume that the
example in Figure 1 is extended such that ((∀r−.B) t E) ∈ L(x2) and that (∀r−.B) ∈
L(x2) results from the non-deterministic expansion of the disjunction. For the resulting
clash in L(x1), it is not longer sufficient to consider only non-deterministic expansions
on ancestor nodes. The label of x2 cannot be cached because some facts (¬B) involved
in the clash are located on different nodes (x1). Furthermore, if trying the disjunct E also
leads to a clash, the disjunction ((∀r−.B) t E) in L(x2) is unsatisfiable in the context
of this completion graph. Nevertheless, a cache entry cannot be generated because (at
least) the first disjunct involves facts of an ancestor node. In order to also handle inverse
roles, it would, therefore, be necessary to remember all nodes or at least the minimum
node depth involved in the clashes of all alternatives. In the presence of nominals, it
further becomes necessary to precisely manage the exact causes of clashes, e.g., via
tracking the dependencies as presented in Section 2.1. If such a technique is missing,
often the only option is to deactivate caching completely [19,21].

Since node labels can have many concepts that are not involved in any clashes, the
precise extraction of a small set of concepts that are in this combination unsatisfiable
would yield better entries for the unsatisfiability cache. With an appropriate subset re-
trieval potentially more similar also unsatisfiable node labels can be found within the
cache. We call this technique precise caching. Although techniques to realise efficient
subset retrieval exist [11], unsatisfiability caches based on this idea are only imple-
mented in very few DL reasoners [9]. Furthermore, the often used backjumping only
allows the identification of all branching points involved in a clash, but there is no in-
formation about how the clash is exactly caused. As a result, only complete node labels
can be saved in the unsatisfiability cache. We refer to this often used form of caching
combined with only an equality cache retrieval as label caching.

For precise caching, the selection of an as small as possible but still unsatisfiable
subset of a label as cache entry should be adjusted to the cache retrieval strategy, i.e.,

5

the strategy of when the cache is queried in the tableau algorithm. Going back to the
example in Figure 1, for the node x1 the set {¬B, (∃r.(∀r−.B))} could be inserted into the
cache as well as {¬B, (Au (∃r.(∀r−.B)))}. The number of cache entries should, however,
be kept small, because the performance of the retrieval decreases with an increasing
number of entries. Thus, the insertion of concepts for which the rule application is cheap
(e.g., concept conjunction) should be avoided. Concepts that require the application
of non-deterministic or generating rules are more suitable, because the extra effort of
querying the unsatisfiability cache before the rule application can be worth the effort.
Optimising cache retrievals for incremental changes further helps to efficiently handle
multiple retrievals for the same node with identical or slightly extended concept labels.

The creation of new unsatisfiability cache entries based on dependency tracking
can be done during backtracing, which is also coupled with the dependency directed
backtracking as described next. Basically all facts involved in a clash are backtraced to
collect the facts that cause the clash within one node, whereby then an unsatisfiability
cache entry can be created.

3.3 Dependency Backtracing

The dependency tracking defined in Section 2.1 completely retains all necessary infor-
mation to exactly trace back the cause of the clash. Thus, this backtracing is qualified
to identify all involved non-deterministic branching points for the dependency directed
backtracking and also to identify small unsatisfiable sets of concepts that can be used
to create new unsatisfiability cache entries.

Algorithm 1 performs the backtracing of facts and their tracked dependencies in the
presence of inverse roles and nominals. If all facts and their dependencies are collected
on the same node while backtracing, an unsatisfiability cache entry with these facts can
be generated, assuming all facts are concept facts. As long as no nominal or Abox indi-
vidual occurs in the backtracing, the unsatisfiability cache entries can also be generated
while all concept facts have the same node depth. Thus, an important task of the back-
tracing algorithm is to hold as many facts as possible within the same node depth to
allow for the generation of many cache entries. To realise the backtracing, we introduce
the following data structure:

Definition 5 (Fact Dependency Node Tuple) A fact dependency node tuple for G is a
triple 〈c, dn,b, x〉 with c ∈ FactsG, dn,b ∈ DepG and x ∈ V. Abbreviatory we also write
〈C, dn,b, x〉 if c is the concept fact C(x).

If a clash is discovered in the completion graph, a set of fact dependency node tuples
is generated for the backtracing. Each tuple consists of a fact involved in the clash, an
associated dependency and the node where the clash occurred. The algorithm gets this
set T of tuples as input and incrementally traces the facts back from the node with the
clash to nodes with depth 0 (Abox individuals or root nodes).

In each loop round (line 3) some tuples of T are exchanged with tuples, whose facts
are the cause of the exchanged one. To identify which tuple has to be traced back first,
the current minimum node depth (line 4) and the maximum branching tag (line 5) are
extracted from the tuples of T . All tuples, whose facts are located on a deeper node and

6

Algorithm 1 Backtracing Algorithm
Require: A set of fact dependency node tuples T obtained from clashes
1: procedure dependencyBacktracing(T)
2: pendingUnsatCaching← f alse
3: loop
4: minD ←minimumNodeDepth(T)
5: maxB ←maximumBranchingTag(T)
6: A← {t ∈ T | nodeDepth(t)> minD ∧ hasDeterministicDependency(t)}
7: C ← ∅
8: if A , ∅ then
9: pendingUnsatCaching← true

10: for all t ∈ A do
11: T ← (T \ t) ∪ getCauseTuplesByDependency(t)
12: end for
13: else
14: B← {t ∈ T | nodeDepth(t)> minD ∧ branchingTag(t)= maxB}

15: if B = ∅ then
16: if pendingUnsatCaching = true then
17: pendingUnsatCaching←tryCreateUnsatCacheEntry(T)
18: end if
19: if hasNoDependency(t) for all t ∈ T then
20: pendingUnsatCaching←tryCreateUnsatCacheEntry(T)
21: return
22: end if
23: C ← {t ∈ T | branchingTag(t)= maxB}

24: end if
25: t ←anyElement(B ∪C)
26: if hasDeterministicDependency(t) then
27: T ← (T \ t) ∪ getCauseTuplesByDependency(t)
28: else
29: b←getNonDeterministicBranchingPoint(t)
30: if allAlternativesOfNonDetBranchingPointProcessed(b) then
31: T ← T ∪ loadTuplesFromNonDetBranchingPoint(b)
32: T ← (T \ t) ∪ getCauseTuplesByDependency(t)
33: T ←forceTuplesBeforeBranchingPoint(T, b)
34: pendingUnsatCaching←tryCreateUnsatCacheEntry(T)
35: else
36: T ←forceTuplesBeforeBranchingPoint(T, b)
37: saveTuplesToNonDetBranchingPoint(T, b)
38: jumpBackTo(maxB)
39: return
40: end if
41: end if
42: end if
43: end loop
44: end procedure

7

whose dependencies are deterministic, are collected in the set A. Such tuples will be
directly traced back until their facts reach the current minimum node depth (line 10-
12). If there are no more tuples on deeper nodes with deterministic dependencies, i.e.,
A = ∅, the remaining tuples from deeper nodes with non-deterministic dependencies
and the current branching tag are copied into B (line 14) in the next round. If B is not
empty, one of these tuples (line 25) and the corresponding non-deterministic branching
point (line 29) are processed. The backtracing is only continued, if all alternatives of the
branching point are computed as unsatisfiable. In this case, all tuples, saved from the
backtracing of other unsatisfiable alternatives, are added to T (line 31). Moreover, for c
the fact in t, t can be replaced with tuples for the fact on which c non-deterministically
depends (line 32).

For a possible unsatisfiability cache entry all remaining tuples, which also depend
on the non-deterministic branching point, have to be traced back until there are no tuples
with facts of some alternatives of this branching point left (line 33). An unsatisfiability
cache entry is only generated (line 34), if all facts in T are concept facts for the same
node or on the same node depth.

Unprocessed alternatives of a non-deterministic branching point have to be com-
puted before the backtracing can be continued. It is, therefore, ensured that tuples do
not consist of facts and dependencies from this alternative, which also allows for re-
leasing memory (line 36). The tuples are saved to the branching point (line 37) and the
algorithm jumps back to an unprocessed alternative (line 38).

If B is also empty, but there are still dependencies to previous facts, some tuples
based on the current branching tag have to remain on the current minimum node depth.
These tuples are collected in the set C (line 23) and are processed separately one per
loop round, similar to the tuples of B, because the minimum node depth or maximum
branching tag may change. The tuples of C can have deterministic dependencies, which
are processed like the tuples of A (line 27). If all tuples have no more dependencies to
previous facts, the algorithm terminates (line 21).

Besides the creation of unsatisfiability cache entries after non-deterministic depen-
dencies (line 34), cache entries may also be generated when switching from a deeper
node to the current minimum node depth in the backtracing (line 9 and 17) or when the
backtracing finishes (line 20). The function that tries to create new unsatisfiability cache
entries (line 17, 20, and 34) returns a Boolean flag that indicates whether the attempt
has failed, so that the attempt can be repeated later.

For an example, we consider the clash {¬B, B} in the completion graph of Figure 1.
The initial set of tuples for the backtracing is T1 (see Figure 2). Thus, the minimum node
depth for T1 is 1 and the maximum branching tag is 0. Because there are no tuples on a
deeper node, the sets A and B are empty for T1. Since all clashed facts are generated de-
terministically, the dependencies of the tuples have the current maximum branching tag
0 and are all collected into the set C. The backtracing continues with one tuple t from
C, say t = 〈B, k11,0, x1〉. The dependency k of t relates to the fact (∀r−.B)(x2), which is a
part of the cause and replaces the backtraced tuple t in T1. The resulting set T2 is used in
the next loop round. The minimum node depth and the maximum branching tag remain
unchanged, but the new tuple has a deeper node depth and is traced back with a higher
priority to enable unsatisfiability caching again. Thus, 〈(∀r−.B), i9,0, x2〉 is added to the

8

T1 = {〈¬B, d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈B, j10,0, x1〉, 〈B, k11,0, x1〉}
↓

T2 = {〈¬B, d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈B, j10,0, x1〉, 〈(∀r−.B), i9,0, x2〉}
↓

T3 = {〈¬B, d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈B, j10,0, x1〉, 〈(∃r.(∀r−.B)), g7,0, x1〉}
↓

T4 = {〈¬B, d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈r(x1, x2), h8,0, x1〉, 〈(∃r.(∀r−.B)), g7,0, x1〉}
↓

T5 = {〈¬B, d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈(∃r.(∀r−.B)), g7,0, x1〉}
↓

T6 = {〈¬B, d4,0, x1〉, 〈(∀r.¬B),−, a0〉, 〈(∃r.(∀r−.B)), g7,0, x1〉}
↓

T7 = {〈r(a0, x1), b2,0, x1〉, 〈(∀r.¬B),−, a0〉, 〈(A u (∃r.(∀r−.B))), c3,0, x1〉}
↓

T8 = {〈(∃r.(A u (∃r.(∀r−.B))))−, a0〉, 〈(∀r.¬B),−, a0〉}

Fig. 2. Backtracing sequence of tuples as triggered by the clash of Figure 1

set A and then replaced by its cause, leading to T3. Additionally, a pending creation
of an unsatisfiability cache entry is noted, which is attempted in the third loop round
since A and B are empty. The creation of a cache entry is, however, not yet sensible
and deferred since T3 still contains an atomic clash. Let t = 〈B, j10,0, x1〉 ∈ C be the
tuple from T3 that is traced back next. In the fourth round, the creation of a cache entry
is attempted again, but fails because not all facts are concepts facts. The backtracing
of 〈r(x1, x2), h8,0, x1〉 then leads to T5. In the following round an unsatisfiability cache
entry is successfully created for the set {¬B, (∃r.(∀r−.B))}. Assuming that now the tuple
〈¬B, e5,0, x1〉 is traced back, we obtain T6, which includes the node a0. Thus, the mini-
mum node depth changes from 1 to 0. Two more rounds are required until T8 is reached.
Since all remaining facts in T8 are concept assertions, no further backtracing is possible
and an additional cache entry is generated for the set {(∃r.(Au (∃r.(∀r−.B)))), (∀r.¬B)}.

If a tuple with a dependency to node a0 had been traced back first, it would have
been possible that the first unsatisfiability cache entry for the set {¬B, (∃r.(∀r−.B))}
was not generated. In general, it is not guaranteed that an unsatisfiability cache entry
is generated for the node where the clash is discovered if there is no non-deterministic
rule application and if the node is not a root node or an Abox individual. Furthermore,
if there are facts that are not concept facts, these can be backtraced with higher priority,
analogous to the elements of the set A, to make unsatisfiability cache entries possible
again. To reduce the repeated backtracing of identical tuples in different rounds, an
additional set can be used to store processed tuples for the alternative for which the
backtracing is performed.

The backtracing can also be performed over nominal and Abox individual nodes.
However, since Abox and absorbed nominal assertions such as {a} v C have no previous
dependencies, this can lead to a distributed backtracing stuck on different nodes. In this
case, no unsatisfiability cache entries are possible.

A less precise caching can lead to an adverse interaction with dependency directed
backtracking. Consider the example of Figure 3, where the satisfiability of the combina-
tion of the concepts (∃r.(∃s.(AuB))), ((C1u∀r.C)t(C2u∀r.C)), and ((D1u∀r.(∀s.¬A))t
(D2u∀r.(∀s.¬A))) is tested. Note that, in order to keep the figure readable, we no longer
show complete dependencies, but only the branching points for non-deterministic deci-

9

L(x0) = {(∃r.(∃s.(A u B))), ((C1 u ∀r.C) t (C2 u ∀r.C)),
((D1 u ∀r.(∀s.¬A)) t (D2 u ∀r.(∀s.¬A)))}

x0

x0
L(x0) ∪ {(C1 u ∀r.C)1} x0

x0 L(x0) ∪ {(D1 u ∀r.(∀s.¬A))2} x0
L(x0) ∪ {(D2u

∀r.(∀s.¬A))2}

x1 L(x1) = {(∃s.(A u B)),C1, (∀s.¬A)2} x1
a. entire label cached,

dependency set {1, 2}

b. concepts precisely cached,
dependency set {2}x2 L(x2) = {(A u B), A, B,¬A2}

clash {A,¬A}, dependency set {2}

t1 t1

t2 t2

r r

s backjumping

a. backjumping

b. backjumping

Fig. 3. More pruned alternatives due to dependency directed backtracking and precise caching
(b.) in contrast to label caching (a.)

sions. First, the two disjunctions are processed. Assuming that the alternative with the
disjuncts (C1 u ∀r.C) and (D1 u ∀r.(∀s.¬A)) is considered first (shown on the left-hand
side of Figure 3), an r-successor x1 with label {(∃s.(A u B)),C1, (∀s.¬A)2} is gener-
ated. The branching points indicate which concepts depend on which non-deterministic
decision. For example, C is in L(x1) due to the disjunct (C1 u ∀r.C) of the first non-
deterministic branching decision (illustrated in Figure 3 with the superscript 1). In
the further generated s-successor x2 a clash is discovered. For the only involved non-
deterministic branching point 2, we have to compute the second alternative. Thus, an
identical r-successor x1 is generated again for which we can discover the unsatisfiability
with a cache retrieval. If the entire label of x1 was inserted to the cache, the dependent
branching points of all concepts in the newly generated node x1 would have to be con-
sidered for further dependency directed backtracking. Thus, the second alternative of
the first branching decision also has to be evaluated (c.f. Figure 3, a.). In contrast, if the
caching was more precise and only the combination of the concepts (∃s.(A u B)) and
(∀s.¬A) was inserted into the unsatisfiability cache, the cache retrieval for the label of
node x1 would return the inserted subset. Thus, only the dependencies associated to the
concepts of the subset could be used for further backjumping, whereby it would not be
necessary to evaluate the remaining alternatives (c.f. Figure 3, b.).

4 Optimised Merging

At-most cardinality restrictions require the non-deterministic merging of role neigh-
bours until the cardinality restriction is satisfied. Only for cardinalities of 1, merging
is deterministic. The usual merging approach [12], which can still be found in several
available reasoner implementations, employs a ≤-rule that shrinks the number of role
neighbours by one with each rule application. Each such merging step gathers pairs of

10

w, x, y, z

wz, x, ywy, x, zwx, y, z w, xy, z w, xz, y w, x, yz
merge(w, x)

merge(w, y)
merg

e(w
, z)

merge(x, y)
merge(x, z)

merge(y, z)

wyz, xwx, yzwxz, ywxy, z wy, xz wz, xy w, xyz

m
er

ge
(w

x,
y)

merge(wx, z)

merge(y, z)

merg
e(w

y,
x)

merge(wy, z)
merge(x, z)

merg
e(w

z,
x)

m
erge(wz, y)

merge(x, y)

merge(w, xy) merge(w, z) merge(xy, z)

merge(w, xz)

mer
ge

(w
, y

)

merge(xz, y)

merge(w, x)

merge(w, y
z) m

erge(x, yz)

Fig. 4. Non-deterministic alternatives for pair-based merging

potentially mergeable neighbouring nodes. For each merging pair a branch is gener-
ated in which the merging of the pair is executed. Without optimisations, this approach
leads to an inefficient implementation since for merging problems that require more
than one merging step, several identical merging combinations have to be evaluated
multiple times. Throughout this section, we consider the following example: a node in
the completion graph has four r-neighbours w, x, y and z, which have to be merged into
two nodes. The naive approach described above leads to eighteen non-deterministic al-
ternatives (c.f. Figure 4): in the first of two necessary merging steps there are

∑n−1
i=1 i,

i.e., six possible merging pairs. A second merging step is required to reduce the remain-
ing three nodes to two. If the merging rule is applied again without any restrictions,
each second merging step generates three more non-deterministic alternatives. How-
ever, only seven of these eighteen alternatives overall are really different. For example,
the combination wxy, z, where the nodes w, x and y have been merged, can be generated
by merge(merge(w, x), y), merge(merge(w, y), x) and merge(merge(x, y),w).

The amount of redundant alternatives depends also strongly on the test cases and
on the strategy of rule application. Applying the ≤-rule with a higher priority than the
generating rules, can, in some cases, reduce the number of redundant merging combi-
nations. Going back to the example, if the merging rule is applied already before the
creation of the forth r-neighbour z, we only have three non-deterministic alternatives
for the first merging step (Figure 5). After also adding z to the completion graph, a fur-

w, x, y

wy, x, zwx, y, z w, xy, z

merge(w, y)merge(w, x
) merge(x, y)

wyz, xwx, yzwxz, ywxy, z wy, xz wz, xy w, xyz

merg
e(w

x, y
)

m
er

ge
(w

x,
z) merge(y, z)

merge(wy, x)

m
erge(w

y,z)

merge(x, z)

merge(w, xy)

m
erge(w

, z)

merge(xy, z)

Fig. 5. Non-deterministic alternatives for pair-based merging with a prioritized ≤-rule

11

ther merging step is necessary resulting in three further possible merging pairs for each
of the three alternatives. Out of the nine alternatives, there are again merging combina-
tions that lead to the same outcome: merge(merge(w, x), y), merge(merge(w, y), x) and
merge(merge(x, y),w). Although the amount of redundant merging combinations can be
reduced, it is not always possible to apply this strategy since the concept that triggers
the application of the ≤-rule can be hidden within disjunctions or may be added via
propagations over inverse roles at a later stage.

The problem is very similar to the syntactic branching search [1], where unsatisfi-
able concepts of non-disjoint branches might have to be evaluated multiple times. The
semantic branching technique is commonly used to avoid such redundant evaluations
and in the merging context an analogous approach can be very beneficial.

In order to apply this technique, all nodes of previously tested merging pairs are
set to be pairwise distinct. For example, when merging (w, x) in the first merging step
leads to a clash, w and x are set to be distinct because this combination has been tested
and should be avoided in future tests. In the second alternative, the nodes w and y are
merged, which leads to wy,̇x. As a result of the inequality, merge(merge(w, y), x) is
never tested in the second merging step (Figure 6). If also merging w and y fails, a
further inequality w,̇y is added. Finally, for the last two alternatives of the first merg-
ing step the inequality constraints prevent further merging and show that these alter-
natives are unsatisfiable. Summing up, with the inequalities the total number of non-
deterministic alternatives can be reduced to nine in this example. Unfortunately, simi-
larly sophisticated merging techniques can hardly be found in current reasoners.

Apart from using the inequality information, the pool-based merging method that
we propose also prevents the redundant evaluation of previously computed merging at-
tempts. Furthermore it works very well in combination with dependency directed back-
tracking due to the thin and uniform branching tree.

Regarding the implementation of the pool-based merging method, the nodes that
have to be merged are managed in a queue. Each merging step takes the next node
from the queue and non-deterministically inserts this node into a so-called pool, where
the number of pools corresponds to the required cardinality. All pools are considered
as distinct and nodes within one pool are merged together. If there are several empty
pools, we will only generate one alternative, where the node is inserted in one of these

w, x, y, z

wz, x, y
wz,̇x,wz,̇y

wy, x, z
wy,̇x

wx, y, z w, xy, z
w,̇xy,w,̇z

w, xz, y
w,̇xz,w,̇y

xz,̇y

w, x, yz
w,̇x,w,̇yz

x,̇yz

merge(w,
x)

merg
e(w
, y)

m
erge(w

,z)

merge(x, y)

merge(x, z)
merge(y, z)

wxy, z wxz, y
wxz,̇y

wx, yz
wx,̇yz

wyz, x
wyz,̇x

wy, xz
wy,̇xz

wz, xy
wz,̇xy

w, xyz
w,̇xyz

m
erge(w

x,y)

merge(wx, z)

merge(y, z)
merge(wy, z)

merge(x, z)
merge(x, y)

merge(xy, z)

Fig. 6. Non-deterministic merging alternatives with added inequality information

12

−,−

w,−

wx,− w, x

wx, ywxy,− wy, x w, xy

wx, yzwxz, y wyz, x wy, zx wz, xy w, xyz

merge(−,w)

merge(w, x) merge(−, x)

merge(−, y)merge(wx, y) merge(w, y) merge(x, y)

merge(y, z)merge(wx, z)
merge(wy, z)

merge(x, z)
merge(w, z)

merge(xy, z)

Fig. 7. Pool-based merging approach to avoid redundant evaluation of previous merging attempts

empty pools. If several empty pools were initialised with the same node, once again
redundant merging combinations would have to be evaluated. For the example, the gen-
erated merging combinations due to the pool based merging procedure are illustrated
in Figure 7. At the beginning, all nodes are in the queue and both pools are empty. In
the first merging step the node w is taken from the queue and inserted to the first empty
pool. In the second step the next node x is non-deterministically inserted into the first
pool together with the node w or into another empty pool. This process continues until
the cardinality restriction is satisfied. Note that z is not removed from the queue for
the alternative shown on the left-hand side since the cardinality is already satisfied. If
a clash occurs in an alternative, all relevant merging steps can be identified with the
dependency directed backtracking. Different insertion alternatives are, therefore, only
tested for nodes that are involved in the clashes. In the worst-case also the pool based
merging is systematically testing all possible combinations, but the different generation
of these alternatives prevents redundant evaluations. Other tableau expansions rules for
SROIQ, such as the choose- or the NN-rule, are not influenced by the merging method,
consequently also qualified cardinality restrictions are supported in combination with
the pool based merging.

5 Evaluation

Our Konclude reasoning system implements the enhanced optimisation techniques for
SROIQ described above. In the following, we first compare different caching methods.
Furthermore, we benchmark our pool-based merging technique against the standard
pair-based approach that is used in most other systems.

We evaluate dependency directed backtracking and unsatisfiability caching with the
help of concept satisfiability tests from the well-known DL 98 benchmark suite [13] and
spot tests regarding cardinality restrictions and merging first proposed in [15]. From
the DL 98 suite we selected satisfiable and unsatisfiable test cases (with _n resp. _p
postfixes) and omitted those for which unsatisfiability caching is irrelevant and tests
that were too easy to serve as meaningful and reproducible sample.

With respect to caching, we distinguish between precise caching and label caching
as described in Section 3.2. To recall, precise caching stores precise cache entries con-

13

256

1024

4096

16384

65536

262144

precise caching, relevant dependency label caching, relevant dependency precise caching, unfiltered dependency

label caching, unfiltered dependency no unsatisfiability caching

64

256

Fig. 8. Log scale comparison of processed alternatives for different caching methods

sisting of only those backtraced sets of concepts that are explicitly known to cause
an unsatisfiability in combination with subset retrieval, while label caching stores and
returns only entire node labels.

Independent of the caching method, we distinguish between unfiltered and relevant
dependencies for further dependency backtracing after a cache hit. Unfiltered depen-
dency denotes the backtracing technique that uses all the concept facts and their depen-
dencies within a node label, for which the unsatisfiability has been found in the cache.
In contrast, relevant dependency uses only those facts and dependencies of a node label
for further backtracing that caused the unsatisfiability (as if the unsatisfiability would
be found without caching).

Konclude natively maintains relevant dependencies and implements precise unsat-
isfiability caching based on hash data structures [11] in order to efficiently facilitate
subset cache retrieval. Figure 8 shows the total number of processed non-deterministic
alternatives for five configurations of caching precision and dependency handling for a
selection of test cases solvable within one minute. Note that runtime is not a reasonable
basis of comparison since all configuration variants of Figure 8 have been implemented
(just for the purpose of evaluation) on top of the built-in and computationally more
costly precise caching approach.

Figure 8 reveals that, amongst the tested configurations, precise caching provides
the most effective pruning method. For some test cases it can reduce the number of non-
deterministic alternatives by two orders of magnitude in comparison to label caching
with unfiltered dependencies. Particularly the test cases k_path_n/p are practically solv-
able for Konclude only with precise caching at their largest available problem size
(#21). The difference between relevant and unfiltered dependencies is less significant
at least within our set of test cases. If label caching and unfiltered dependencies are
used together, then, sometimes, (here for the test cases k_t4p_p/n and k_poly_p) the
number of processed alternatives is even increasing in comparison to the configuration
without unsatisfiability caching. The reason for this is that with the less exact unfiltered
dependencies additional non-deterministic branching points are identified as relevant
after a cache hit (described in Section 3.3). This adverse interaction with dependency

14

1000

10000

re
a

so
n

in
g

 t
im

e
 [

m
s]

precise caching no unsatisfiability caching
timeout (1 minute)

10

100

re
a

so
n

in
g

 t
im

e
 [

m
s]

Fig. 9. Log scale comparison of reasoning time for precise and no unsatisfiability caching

directed backtracking can also occur with the precise caching and unfiltered dependency
configuration. However, precise caching generally reduces the number of processed al-
ternatives, because the precise cache entries and the subset retrieval allows that the
unsatisfiability can be found earlier in the cache.

Figure 9 shows the reasoning time for precise and no unsatisfiability caching for our
Konclude reasoning system. In all test cases precise caching significantly improves or at
least does not downgrade overall reasoning time. For the test cases k_poly_p/n the num-
ber of processed non-deterministic alternatives can be reduced with precise caching,

150

200

250

300

350

400

450

500

to
ta

l
re

a
so

n
in

g
 t

im
e

 [
m

s]

other reasoning time backtracing time unsatisfiability cache retrieval time

0

50

100

150

to
ta

l
re

a
so

n
in

g
 t

im
e

 [
m

s]

Fig. 10. Share of cache retrieval and dependency backtracing on the reasoning time

15

but the additional effort of managing and querying the cache prevents performance im-
provements. This effect can sometimes be observed, if the work in the alternatives is
negligible, but the cache entries are relatively complex. Additionally, we have experi-
enced an increase of memory usage by a worst-case factor of two in case of dependency
tracking in comparison to no dependency handling.

In Figure 10 the total reasoning time is splitted into three parts: (i) the time required
for the subset retrieval of the precise unsatisfiability cache, (ii) the time for dependency
backtracing including the time for the creation of new cache entries, and (iii) the re-
maining other reasoning time. Only for the test cases k_ph_n and 1b-SHIN the times
for dependency backtracing and the subset retrieval have a significant contribution to the
total reasoning time. Nevertheless, with precise caching many alternatives are pruned
and the reasoning time decreases. In contrast to this, traditional label caching cannot
improve the reasoning time for these test cases, because the algorithm does not create
exact identical node labels in the different alternatives and, therefore, the label caching
has no cache hit at all.

A comparison between Konclude and other widely used reasoning systems is shown
in Figure 11. Now the total processing time is shown for the test cases, i.e. the loading
and pre-processing times are also included. The tests are conducted with the OWLlink
interface [16] on an Intel Core i7 940 quad core processor running at 2.93 GHz. HermiT,
FaCT++ and Pellet are queried with the help of the OWLlink API 5 and Konclude
and RacerPro [7] are supporting OWLlink natively. The results show an average over
five runs. Although Konclude can achieve good results, other reasoning systems are

5 http://owllink-owlapi.sourceforge.net/

Fig. 11. Comparison of total processing time for different reasoning systems

16

16

64

256

1024

4096

16384

65536

262144

1048576

pool-based merging pair-based merging

t
im

e
o
u
t

t
im

e
o
u
t

1

4

16

Fig. 12. Processed alternatives (on a logarithmic scale) for different merging methods

even faster for some test cases. Especially FaCT++ significantly outperforms all other
reasoning systems for the k_path_p/n test cases. Without precise caching Konclude is
not even able to solve these test cases within the time limit of one minute. A possible
reason for this might be the different processing strategy of nodes in the completion
graph or the different optimised data structures. Moreover, we have not implemented
all known optimisations into Konclude so far.

Figure 12 compares pool-based with pair-based merging in terms of non-determi-
nistic alternatives that have to be processed in order to solve selected test cases from

Fig. 13. Comparison of total processing time for different reasoning systems

17

[15]. In addition to the built-in pool-based merging we also added pair-based merging
to our Konclude system. The test cases 10c and 10d are variants of the original test
case 10a in terms of different problem sizes (10c) as well as more hidden contradic-
tions nested within disjunctions (10d). The pool-based approach introduced in Sec. 4
clearly dominates the naive pair-based merging, especially when dealing with satisfi-
able problems (1b and 2b) and expressive DLs. Note that the test cases 1b and 2b are
only solvable with pool-based merging within a one minute timeout. The required rea-
soning times strongly correlate to the number of processed alternatives for all test cases
of Figure 12.

Advantages of the pool-based merging can also be observed, if Konclude is com-
pared to other reasoning systems. Figure 13 shows a comparison between Konclude,
HermiT, FaCT++, Pellet and RacerPro for the merging test cases, which are analo-
gously conducted to the previous reasoner comparison. Konclude outperforms all other
reasoners for all these test cases. RacerPro can use algebraic methods only for 2b-SHN
and 41_1-ALCQ. However, if these test cases are extended to much greater cardinali-
ties, then RacerPro eventually outperforms the other reasoners.

6 Conclusions

We have presented a range of optimisation techniques that can be used in conjunction
with the very expressive DL SROIQ. The presented dependency management allows
for more informed backjumping, while also supporting the creation of precise cache
unsatisfiability entries. In particular the precise caching approach can reduce the num-
ber of tested non-deterministic branches by up to two orders of magnitude compared
to standard caching techniques. Regarding cardinality constraints, the presented pool-
based merging technique also achieves a significant improvement and a number of test
cases can only be solved with this optimisation within an acceptable time limit. Both
techniques are well-suited for the integration into existing tableau implementations for
SROIQ and play well with other commonly implemented optimisation techniques.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, second edn. (2007)

2. Ding, Y., Haarslev, V.: Tableau caching for description logics with inverse and transitive
roles. In: Proc. 2006 Int. Workshop on Description Logics. pp. 143–149 (2006)

3. Ding, Y., Haarslev, V.: A procedure for description logic ALCFI. In: Proc. 16th Euro-
pean Conf. on Automated Reasoning with Analytic Tableaux and Related Methods (TAB-
LEAUX’07) (2007)

4. Donini, F.M., Massacci, F.: EXPTIME tableaux forALC. J. of Artificial Intelligence 124(1),
87–138 (2000)

5. Faddoul, J., Farsinia, N., Haarslev, V., Möller, R.: A hybrid tableau algorithm forALCQ. In:
Proc. 18th European Conf. on Artificial Intelligence (ECAI’08). pp. 725–726 (2008)

6. Goré, R., Widmann, F.: Sound global state caching for ALC with inverse roles. In: Proc.
18th European Conf. on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX’09). LNCS, vol. 5607, pp. 205–219. Springer (2009)

18

7. Haarslev, V., Hidde, K., Möller, R., Wessel, M.: The RacerPro knowledge representation and
reasoning system. Semantic Web (2012), accepted for publication

8. Haarslev, V., Möller, R.: Consistency testing: The RACE experience. In: Proceedings, Auto-
mated Reasoning with Analytic. pp. 57–61. Springer-Verlag (2000)

9. Haarslev, V., Möller, R.: High performance reasoning with very large knowledge bases: A
practical case study. In: Proc. 17th Int. Joint Conf. on Artificial Intelligence (IJCAI’01). pp.
161–168. Morgan Kaufmann (2001)

10. Haarslev, V., Sebastiani, R., Vescovi, M.: Automated reasoning inALCQ via SMT. In: Proc.
23rd Int. Conf. on Automated Deduction (CADE’11). pp. 283–298. Springer (2011)

11. Hoffmann, J., Koehler, J.: A new method to index and query sets. In: Proc. 16th Int. Conf. on
Artificial Intelligence (IJCAI’99). pp. 462–467. Morgan Kaufmann (1999)

12. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. 10th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR’06). pp. 57–67. AAAI
Press (2006)

13. Horrocks, I., Patel-Schneider, P.F.: DL systems comparison. In: Proc. 1998 Int. Workshop on
Description Logics (DL’98). vol. 11, pp. 55–57 (1998)

14. Horrocks, I., Patel-Schneider, P.F.: Optimizing description logic subsumption. J. of Logic
and Computation 9(3), 267–293 (1999)

15. Liebig, T.: Reasoning with OWL – system support and insights –. Tech. Rep. TR-2006-04,
Ulm University, Ulm, Germany (September 2006)

16. Liebig, T., Luther, M., Noppens, O., Wessel, M.: Owllink. Semantic Web – Interoperability,
Usability, Applicability 2(1), 23–32 (2011)

17. Liebig, T., Steigmiller, A., Noppens, O.: Scalability via parallelization of OWL reasoning.
In: Proc. Workshop on New Forms of Reasoning for the Semantic Web: Scalable & Dynamic
(NeFoRS’10) (2010)

18. OWL Working Group, W.: OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation (27 October 2009), available at http://www.w3.org/TR/
owl2-overview/

19. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soner. J. of Web Semantics 5(2), 51–53 (2007)

20. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description. In: Proc.
3rd Int. Joint Conf. on Automated Reasoning (IJCAR’06). LNCS, vol. 4130, pp. 292–297.
Springer (2006)

21. Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing terminological reasoning for ex-
pressive description logics. J. of Automated Reasoning 39, 277–316 (2007)

19

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich

Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de

Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe

Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Köbler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schöning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Köbler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara,
U. Schöning, R. Silvestri, T. Thierauf
Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Köbler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kühnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntax-directed
semantics

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost
Narrowing

92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any
Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal
Communications Manager

93-02 M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch
The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree
Transducers

94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

94-09 F.W. von Henke, A. Dold, H. Rueß, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars:
Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman,Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algorithms

95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger
kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schulthess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen
Netzen am Beispiel Truck Backer-Upper

95-11 Thomas Beuter, Peter Dadam:
Prinzipien der Replikationskontrolle in verteilten Systemen

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche
mit VSE

96-02 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of
Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am
Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with
Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT–
Ansätzen

96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmuth Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation
Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids

97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow
Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure

97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den
digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
ADEPTflex - Supporting Dynamic Changes of Workflows Without Loosing Control

97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development
environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken

97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem
Provers

97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für
eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information
Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

97-18 Johannes Köbler,Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity
Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde
Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und
Analyse

98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment

98-12 Gerhard Schellhorn
Proving Properties of Directed Graphs: A Problem Set for Automated Theorem
Provers

98-13 Gerhard Schellhorn, Wolfgang Reif
Theorems from Compiler Verification: A Problem Set for Automated Theorem
Provers

98-14 Mohammad Ali Livani
SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN

98-15 Mohammad Ali Livani, Jörg Kaiser
Predictable Atomic Multicast in the Controller Area Network (CAN)

99-01 Susanne Boll, Wolfgang Klas, Utz Westermann
A Comparison of Multimedia Document Models Concerning Advanced Requirements

99-02 Thomas Bauer, Peter Dadam
Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und
Simulation

99-03 Uwe Schöning
On the Complexity of Constraint Satisfaction

99-04 Ercument Canver
Model-Checking zur Analyse von Message Sequence Charts über Statecharts

99-05 Johannes Köbler, Wolfgang Lindner, Rainer Schuler
Derandomizing RP if Boolean Circuits are not Learnable

99-06 Utz Westermann, Wolfgang Klas
Architecture of a DataBlade Module for the Integrated Management of Multimedia
Assets

99-07 Peter Dadam, Manfred Reichert
Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems,
Applications. Paderborn, Germany, October 6, 1999, GI–Workshop Proceedings,
Informatik ’99

99-08 Vikraman Arvind, Johannes Köbler
Graph Isomorphism is Low for ZPPNP and other Lowness results

99-09 Thomas Bauer, Peter Dadam
Efficient Distributed Workflow Management Based on Variable Server Assignments

2000-02 Thomas Bauer, Peter Dadam
Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-
Management-System ADEPT

2000-03 Gregory Baratoff, Christian Toepfer, Heiko Neumann
Combined space-variant maps for optical flow based navigation

2000-04 Wolfgang Gehring
Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)
FM-Tools 2000: The 4th Workshop on Tools for System Design and Verification

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-
Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in
ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and
Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-
Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness
Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein

Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
(Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols)

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules

2004-02 Christian Heinlein
Concept and Implementation of C+++, an Extension of C++ to Support User-Defined
Operator Symbols and Control Structures

2004-03 Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01 Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
19th Workshop on (Constraint) Logic Programming

2005-02 Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03 Walter Guttmann, Markus Maucher
Constrained Ordering

2006-01 Stefan Sarstedt
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02 Alexander Raschke, Ramin Tavakoli Kolagari
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
Systemen

2006-03 Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
Eine qualitative Untersuchung zur Produktlinien-Integration über
Organisationsgrenzen hinweg

2006-04 Thorsten Liebig
Reasoning with OWL - System Support and Insights –

2008-01 H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for graphical display

2008-02 Manfred Reichert, Peter Dadam, Martin Jurisch,l Ulrich Kreher, Kevin Göser,
 Markus Lauer

 Architectural Design of Flexible Process Management Technology

2008-03 Frank Raiser
 Semi-Automatic Generation of CHR Solvers from Global Constraint Automata

2008-04 Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander
Entscheidungsdokumentation bei der Entwicklung innovativer Systeme für
produktlinien-basierte Entwicklungsprozesse

2008-05 Markus Kalb, Claudia Dittrich, Peter Dadam

 Support of Relationships Among Moving Objects on Networks

2008-06 Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)
 WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke

2008-07 M. Maucher, U. Schöning, H.A. Kestler
An empirical assessment of local and population based search methods with different
degrees of pseudorandomness

2008-08 Henning Wunderlich
Covers have structure

2008-09 Karl-Heinz Niggl, Henning Wunderlich
Implicit characterization of FPTIME and NC revisited

2008-10 Henning Wunderlich
On span-Pсс and related classes in structural communication complexity

2008-11 M. Maucher, U. Schöning, H.A. Kestler
On the different notions of pseudorandomness

2008-12 Henning Wunderlich
On Toda’s Theorem in structural communication complexity

2008-13 Manfred Reichert, Peter Dadam
Realizing Adaptive Process-aware Information Systems with ADEPT2

2009-01 Peter Dadam, Manfred Reichert
The ADEPT Project: A Decade of Research and Development for Robust and Fexible
Process Support
Challenges and Achievements

2009-02 Peter Dadam, Manfred Reichert, Stefanie Rinderle-Ma, Kevin Göser, Ulrich Kreher,
Martin Jurisch
Von ADEPT zur AristaFlow® BPM Suite – Eine Vision wird Realität “Correctness by
Construction” und flexible, robuste Ausführung von Unternehmensprozessen

2009-03 Alena Hallerbach, Thomas Bauer, Manfred Reichert
Correct Configuration of Process Variants in Provop

2009-04 Martin Bader

On Reversal and Transposition Medians

2009-05 Barbara Weber, Andreas Lanz, Manfred Reichert
Time Patterns for Process-aware Information Systems: A Pattern-based Analysis

2009-06 Stefanie Rinderle-Ma, Manfred Reichert
Adjustment Strategies for Non-Compliant Process Instances

2009-07 H.A. Kestler, B. Lausen, H. Binder H.-P. Klenk. F. Leisch, M. Schmid

Statistical Computing 2009 – Abstracts der 41. Arbeitstagung

2009-08 Ulrich Kreher, Manfred Reichert, Stefanie Rinderle-Ma, Peter Dadam
Effiziente Repräsentation von Vorlagen- und Instanzdaten in Prozess-Management-
Systemen

2009-09 Dammertz, Holger, Alexander Keller, Hendrik P.A. Lensch
Progressive Point-Light-Based Global Illumination

2009-10 Dao Zhou, Christoph Müssel, Ludwig Lausser, Martin Hopfensitz, Michael Kühl,
Hans A. Kestler
Boolean networks for modeling and analysis of gene regulation

2009-11 J. Hanika, H.P.A. Lensch, A. Keller
Two-Level Ray Tracing with Recordering for Highly Complex Scenes

2009-12 Stephan Buchwald, Thomas Bauer, Manfred Reichert
 Durchgängige Modellierung von Geschäftsprozessen durch Einführung eines

Abbildungsmodells: Ansätze, Konzepte, Notationen

2010-01 Hariolf Betz, Frank Raiser, Thom Frühwirth
A Complete and Terminating Execution Model for Constraint Handling Rules

2010-02 Ulrich Kreher, Manfred Reichert

Speichereffiziente Repräsentation instanzspezifischer
Änderungen in Prozess-Management-Systemen

2010-03 Patrick Frey

Case Study: Engine Control Application

2010-04 Matthias Lohrmann und Manfred Reichert

Basic Considerations on Business Process Quality

2010-05 HA Kestler, H Binder, B Lausen, H-P Klenk, M Schmid, F Leisch (eds):

Statistical Computing 2010 - Abstracts der 42. Arbeitstagung

2010-06 Vera Künzle, Barbara Weber, Manfred Reichert

Object-aware Business Processes: Properties, Requirements, Existing Approaches

2011-01 Stephan Buchwald, Thomas Bauer, Manfred Reichert
Flexibilisierung Service-orientierter Architekturen

2011-02 Johannes Hanika, Holger Dammertz, Hendrik Lensch
Edge-Optimized À-Trous Wavelets for Local Contrast Enhancement with Robust
Denoising

2011-03 Stefanie Kaiser, Manfred Reichert

Datenflussvarianten in Prozessmodellen: Szenarien, Herausforderungen, Ansätze

2011-04 Hans A. Kestler, Harald Binder, Matthias Schmid, Friedrich Leisch, Johann M. Kraus

(eds):
Statistical Computing 2011 - Abstracts der 43. Arbeitstagung

2011-05 Vera Künzle, Manfred Reichert

PHILharmonicFlows: Research and Design Methodology

2011-06 David Knuplesch, Manfred Reichert

Ensuring Business Process Compliance Along the Process Life Cycle

2011-07 Marcel Dausend

Towards a UML Profile on Formal Semantics for Modeling Multimodal Interactive
Systems

2011-08 Dominik Gessenharter

Model-Driven Software Development with ACTIVECHARTS - A Case Study

2012-01 Andreas Steigmiller, Thorsten Liebig, Birte Glimm

Extended Caching, Backjumping and Merging for Expressive Description Logics

Ulmer Informatik-Berichte
ISSN 0939-5091

Herausgeber:
Universität Ulm
Fakultät für Ingenieurwissenschaften und Informatik
89069 Ulm

	konclude-uip-2012-01-1.pdf
	Extended Caching, Backjumping and Merging for Expressive Description Logics

