

Ulmer Informatik Berichte | Universität Ulm | Fakultät für Ingenieurwissenschaften und Informatik

A Formal Framework for
Data-Aware Process Interaction Models

David Knuplesch, Rüdiger Pryss, Manfred Reichert

Ulmer Informatik-Berichte
Nr. 2012-06

September 2012

A Formal Framework for
Data-Aware Process Interaction Models

David Knuplesch and Rüdiger Pryss and Manfred Reichert
Institute of Databases and Information Systems

Ulm University, Germany

Email: {david.knuplesch,ruediger.pryss,manfred.reichert}@uni-ulm.de

Abstract

IT support for distributed and collaborative workflows as well as related interactions between business partners are

becoming increasingly important. For modeling such partner interactions as flow of message exchanges, different top-

down approaches, covered under the term interaction modeling, are provided. Like for workflow models, correctness

constitutes a fundamental challenge for interaction models; e.g., to ensure the boundedness and absence of deadlocks

and lifelocks. Due to their distributed execution, in addition, interaction models should be message-deterministic
and realizable, i.e., the same conversation (i.e. sequence of messages) should always lead to the same result, and

it should be ensured that partners always have enough information about the messages they must or may send in a

given context. So far, most existing approaches have addressed correctness of interaction models without explicitly

considering the data exchanged through messages and used for routing decisions. However, data support is crucial

for collaborative workflows and interaction models respectively. This technical report enriches interaction models

with the data perspective. In particular, it defines the behavior of data-aware interaction models based on Data-
Aware Interaction Nets, which use elements of both Interaction Petri Nets and Workflow Nets with Data. Finally,

formal correctness criteria for Data-Aware Interaction Nets are derived, guaranteeing the boundedness and absence

of deadlocks and lifelocks, and ensuring message-determinism as well as realizability.

Index Terms

Business Process Management, Distributed Workflows, Collaborative Workflows, Realizability, Soundness, Interac-

tion Modeling, Data-Aware Process Models, Interaction Nets

I. INTRODUCTION

Workflow management is of utmost importance for companies that want to efficiently handle their workflows as

well as their interactions with partners and customers [1]. Despite the varying issues relevant for the IT support of

distributed and collaborative workflows [2], common aspects to be considered include the support of appropriate

modeling techniques as well as the definition of a formal execution semantics, ensuring proper and correct partner

interactions (i.e., message exchanges).

Workflow management methods and techniques tackling these challenges consider a choreography as a

specification of message exchanges between the partners of a collaborative workflow. Respective approaches provide

a global view on distributed workflows and support partners in correctly defining their private processes (partner
processes for short). The latter can be transformed into distributed, executable workflows. When executing these

workflows, their interplay is coordinated in terms of a conversation (i.e., a sequence of exchanged messages) that

follows the global behavior specified by the choreography.

Currently, there exist two different paradigms for modeling choreographies: interconnection modeling and

interaction modeling. Interconnection modeling uses message exchange as link between partner processes or public

views on them. In particular, this paradigm does not allow modeling the message exchange separately from the

partner processes. Hence, it is considered as a bottom-up approach. Approaches enabling interconnection modeling

include BPMN Collaboration Diagram [3], BPEL4Chor [4], and Compositions of Open Nets [5]. By contrast,

interaction modeling provides a top-down approach. An Interaction Model specifies the flow of message exchanges

without having any knowledge about the partner processes. Moreover, the models of the partner processes are

created taking the interaction model into account. Nevertheless, common interaction models use the same patterns

as workflow models (e.g. parallel and conditional branchings), but instead of tasks they refer to the messages

exchanged. Approaches enabling interaction modeling include iBPMN [6], BPMN Choreography Diagrams [3],

Service Interaction Patterns [7], and WSCDL [8].

This technical report focuses on the correctness of interaction models. Related issues discussed in the literature

include boundedness and absence of deadlocks and lifelocks, as well as the realizability of interaction models

[5], [9]–[11]. Realizability postulates that partners always can compute which messages they must or may send

in a given execution context. Fig. 1 (1) outlines a simple example of a non-realizable choreography with four

partners A,B,C, and D, and two messages m1 and m2. This interaction model specifies that after sending

message m1 from A to B, message m2 must be sent from C to D. Obviously, only A or B knows when

C must send message m2, but C does not have this knowledge. Consequently, this interaction model is not

realizable. A necessary precondition for realizability is message-deterministic behavior, i.e. the same conversation

(i.e. sequence of messages) should always lead to the same result. An example of an interaction model, which

is not message-deterministic, is shown in Fig. 1 (2); this interaction model comprises partners A,B, and C, and

messages m1,m2,m3, and m4. After sending the first message m1, either the upper or the bottom branch shall be

chosen. In any case, the next message m2 must be sent from B to C. Depending on the branch chosen, however,

then C either must send m3 to B or m4 to A. From the perspective of C, it cannot be determined, which of

the two interpretations shall be applied. By contrast, B knows the chosen branch (e.g., the upper one). Hence, C
might send m4 to A, while B waits for m3, or vice versa.

A property similar to realizability is clear termination. It requires that a partner always can compute, whether

he will be sender or receiver of any messages in the sequel. An example of an interaction model, which is not

clearly terminating, is shown in Fig. 1 (3). This interaction model comprises partners A,B, and C, and messages

m1,m2,m3, and m4. After sending the first message m1 from A to B, B can either send message m2 to A or

message m4 to C. When choosing the first option (i.e. B sends m2 to A), A must send m3 to C afterwards.

In turn, when choosing the second option (i.e. B sends m4 to C), the execution is terminated, although A may

still wait for the arrival of message m2. Note, that from the perspective of A nothing has changed since m1 was sent.

A

B

C

D

C

B
A

B

B

C

B

C

C

A

m1 m2

m2 m3

m2 m4

m1

1 2

A

B

B

A

B

C

A

C

m2

m4

m3

m1

3
Sender

Legend:

A

B

m1

Receiver

Message

Message-
flow

Fig. 1. Violating realizability, message-determinism, clear termination [9]

Existing approaches for interaction modeling do not adequately support the data perspective. Either related

execution semantics completely ignore the data perspective or there is a lack of appropriate correctness criteria,

especially if routing decisions are based on message data.

This technical report deals with fundamental correctness issues when making interaction models data-aware.

Section II provides an example from the healthcare domain to emphasize the need of data-awareness in interaction

models. Section II further discusses the challenges to be tackled when considering the data perspective. Section III

then introduces our formal framework for data-aware interaction modeling. First, an interaction meta-model is

provided in terms of the Data-Aware Choreography (DAChor). The behavior of a DAChor is described by a

transformation to Data-Aware Interaction Nets (DAI Nets). These combine Interaction Petri Nets [9] and Workflow

Nets with Data [12]. Based on Data-Aware Interaction Nets, the set of allowed conversations (i.e., message

exchanges) is derived and used to introduce formal correctness criteria for DAI Nets and DAChor respectively. These

criteria guarantee for the boundedness and absence of deadlocks and lifelocks, and ensure message-determinism,

realizability, and clear termination. Section IV discusses related work and Section V concludes with a summary

and outlook.

II. EXAMPLE, CHALLENGES, CONTRIBUTION

This section introduces a simplified real-world scenario, which we elaborated in the context of case studies

conducted in the healthcare domain. These case studies highlighted the relevance of the data perspective in interaction

models. Thus, the scenario we select emphasizes the challenges arising from the support of data-awareness in

interaction models. It describes the transport of a patient to and from a unit performing a Positron Emission

Tomography (PET) scan. A PET scan is a kind of nuclear medicine imaging not performed by the respective

hospital itself in our scenario. Thus, if a PET scan is ordered for a patient, patient transportation to the respective

provider is required. In this context, the hospital must inform the provider of the PET scan about the patient’s

status, such that he can decide on the preparations required. Furthermore, we require a patient to be examined just

before the transport to exclude potential risks (e.g., the patient being in a critical condition).

The scenario involves three partners, i.e., the Hospital responsible for the patient and ordering the PET scan,

the Transportation (Transp.) Provider transporting the patient, and the PET provider performing

the PET scan. The interaction starts with the Hospital requesting the PET scan (Request PET). In the context

of this request, the Hospital informs the PET Provider about the status of the patient. In turn, the PET
provider confirms the time for which the scan is scheduled (Confirm), and then requests the Transp.
Provider to perform the transport (Request Trans.).

● If the patient is in a critical condition, the Transp. Provider requests the Hospital to examine him

to check whether he is transportable (Request Exam.). Based on the Result of this examination, the

Hospital informs the Transp. Provider on whether to continue or abort the interaction.

● If the interaction is continued or the patient is not in a critical condition, Transp. Provider informs

the PET provider after picking up the patient and arriving at the PET unit (Arrival). After the PET

scan is performed, the PET provider requests retransport of the Transp. Provider (Retransport).

Finally, the Transp. Provider informs the Hospital about the return of the patient (Return).

Obviously, properly modeling the interactions of this scenario requires support for routing decisions based on the

data of the messages exchanged. More precisely, in the given scenario, there is a decision referring to data of the

first message exchanged (i.e. whether or not the patient is in a critical condition). Another decision refers to the

message sent by the hospital and indicating whether the request shall be canceled. Hence, we use a notation based

on BPMN 2.0 [3] and iBPMN [9], but enrich it with so-called virtual data objects. We denote this notation as

Data-Aware Choreography (DAChor) and use it to model our scenario in Fig. 2. Virtual data objects have a data

domain and can be used as variables when defining conditions for routing decisions. However, these virtual data

objects are not used for modeling information flow. Thus, the data assignment relation denotes which data of an

interaction is assigned to any virtual data object. Note that such a data assignment relation can only lead from

an interaction to a virtual data object, but not vice versa. Furthermore, an interaction is assigned to a message
class denoting the message type. From the message class, the sender, receivers, and data domain are inherited (e.g.,

boolean). Finally, when executing a choreography, messages of the related message class correspond to interactions.

Having a closer look at our scenario, one can recognize that it neither ensures realizability nor clear termination.

If the Hospital requests canceling the PET scan, the PET provider is not informed accordingly and hence

may still wait for the message; i.e., no clear termination is ensured. However, if Alternative 2 (cf. Fig. 2) is applied,

the PET provider will be informed and clear termination can be ensured. In turn, realizability is violated for the

given interaction model, since Transp. Provider does not know whether the patient is in a critical condition.

Thus, Transp. Provider cannot determine whether an examination must be requested. To ensure realizability,

it is not sufficient to only check whether this information was directly sent to Transp. Provider. Consider

Transp. Provider

Hospital

Request Exam.
{abort, continue}

Hospital

Transp. Provider

Result

PET Provider

Transp. Provider

Retransport

Transp. Provider

PET Provider

Arrival

Transp. Provider

PET Provider

Cancel PET

Status
{uncritical, critical}

{uncritical, critical}

Hospital

PET Provider

Request PET
Date

PET Provider

Transp. Provider

Request Trans.

x

Order
{abort, continue}

x Order=continue

Date

Hospital

PET Provider

Confirmation

x
Return

Transp. Provider

Hospital

Order=abort Date

Hospital

PET Provider

Confirmation

x

x

Date

Hospital,
Transp. Provider

PET Provider

Confirmation+

Status=uncritical

Status=critical

Status=critical

Status=uncritical

Data Domain

Sender

Receivers

Interaction Class

Data Assignment

Interaction

Virtual Data Object

Legend:

Alternative 1

Alternative 2

Name
Data Domain

Fig. 2. Patient transportation scenario as DAChor

Alternative 1, which ensures realizability by also sending the confirmation to Transp. Provider, if the patient

is in a critical condition. Obviously, implicit knowledge of Transp. Provider about the value of virtual data

object Status is sufficient to ensure realizability. This makes the definition of proper correctness criteria for

data-aware interaction models Section III very challenging.

Before defining correctness criteria for DAChors, their behavior has to be formalized. In [9], Decker et al. define

the behavior of iBPMN choreographies based on their transformation to Interaction Petri Nets (IP Nets). However,

IP Nets are unaware of data. This raises the challenge to first enrich IP Nets as well as their behavior with data,

i.e., to design Data-Aware Interaction Nets (DAI Nets). Following this, an appropriate transformation is presented.

The main contribution of this technical report is to introduce a formal framework for data-aware interaction models

putting emphasis on correctness. Especially, this framework comprises specific correctness criteria for interaction

models (e.g. realizability, clear termination). Note, that the latter exceed traditional correctness and soundness

criteria that are known from workflows and interconnection models [5], [13], [14]. Further contributions include

the introduction of DAChors and DAI Nets as well as the transformation from DAChors to DAI Nets with well

defined behavior.

III. FORMAL FRAMEWORK

This section introduces our formal framework for ensuring correctness of data-aware interaction models. First,

the scope of an interaction model is described as interaction domain and in terms of messages (cf. Def. 1 and

2 in Section III-A). Second, Data-Aware Choreographies (DAChors) are introduced as formal meta-model for

data-aware interaction modeling (cf. Def. 3 in Section III-B). In Section III-D, the semantics of DAChors is

described based on their transformation to Data-Aware Interaction Nets (DAI Nets). DAI Nets combine Interaction
Petri Nets (IP Nets) [9] and Workflow Nets with Data (WFD Nets) [12] (cf. Def. 5 in Section III-C). Their

behavior is described in terms of markings and execution traces (cf. Def. 8–10 in Section III-E). Def. 12 introduces

conversations representing the observable parts of an execution trace (i.e., exchanged messages). Finally, partner
views are defined (cf. Def. 14). Based on traces, conversations, and views, we then introduce correctness criteria
for DAI Nets and DAChors respectively (cf. Def. 11, 13, and 15). Fig. 3 provides an overview of the main

elements of our formal framework and their relations.

fundament of ▼
1

assigned
to ▲

Interaction Domain

Data-Aware
Choreography

Data-Aware
Interaction Net

Place Transition
Option

Silent
Transition

Interaction
Transition

Trace

Message

View

Role

mapped
to ▼

element
of ▲

may
fire ▲

receiver
►

sender
►

view
of ▲

projected
onto ►

Interaction

Conversation

assigned
to ▲

mapped
to ▼

Message
Class

mapped
to ▼

Marking

Determinism

. Message-
Determinism

*

*

*

*

*

*

*

*

** *1

SoundnessSubsequent
Markings .

1

1

*
*

*

Virtual
Data Object

mapped
to ▼

current
value ▲

Data
Domain ◄ has

assigned
to ▲

Virtual
Data Object

Gateway,
Event

assigned
to ▲

* 1

projected
onto ►

*1

Realizability

*

* *

*

**

*

*

1 1

*

*

*

*

1

1

*1

*

*

Clear
Termination

lead
◄ to

source
of ►

takes ▲
1

1

1

1

*

pass by ►

*

Def. 1

Def. 2

Def. 3+4

Def. 8

Def. 9

Def. 10

Def. 5+6

Def. 11

Def. 12

Def. 13

Def. 14

Def. 15

Def. 9

Def. 7

Def. 7

Def. 7

Fig. 3. Overview of our formal framework

A. Interaction Domains and Messages

This section defines the basic elements of data-aware interaction modeling in terms of an interaction domain. The

latter contains roles to differentiate the partners as well as message classes and related data domains. Furthermore,

the notion of message (cf. Def. 1 and 2 and Example 1).

Definition 1 (Interaction Domain).
An interaction domain is a tuple I = (R,D, C, domC , sC , rC , ε), with

● R is a set of roles,
● D is a set of data domains; each D ∈ D represents a finite set of values,
● C is a set of message classes,
● domC ∶ C → D is a function assigning to each message class a data domain,
● sC ∶ C →R assigns the sender to each message class,
● rC ∶ C → 2R assigns the set of receivers to each message class,
● ε is the empty value.

Further, we define ΩI ∶= {ε} ∪ ⋃
D∈D

D as the set of all values.

Based on Def. 1, Def. 2 introduces the notion of message. A message constitutes an instance of a message class.

Furthermore, we introduce several sets of messages.

Definition 2 (Messages).
Let I = (R,D, C, domC , sC , rC , ε) be an interaction domain. Then: A message in I is a tuple μ = (c, x) ∈ C ×ΩI ,
with

● c ∈ C is the corresponding message class, and
● x ∈ domC(c) is the message content transferred.

Furthermore, we define:
● Σc ∶= {(c′, x) ∈ C×ΩI ∣ c′ = c ∧ x∈domC(c′)} as set of all messages corresponding to message class c ∈ C,
● ΣI ∶= ⋃c∈C Σc as set of all messages corresponding to interaction domain I ,
● ΣR→ ∶= {(c, v) ∈ ΣI ∣sC(c) = R} as set of all messages sent by role R ∈ R,
● Σ→R ∶= {(c, v) ∈ ΣI ∣R ∈ rC(c)} as set of all messages received by role R,
● ΣR ∶= ΣR→ ∪Σ→R as set of all messages corresponding to role R, i.e. sent or received by R

Example 1 (Basic Notions).
Consider the interaction model of the patient transportation scenario from Fig. 2. Its interaction domain is
I = (R,D, C, domC , sC , rC , ε) with:

R = {Hospital,PET Provider,Transp. Provider}
D = {Dε = {ε},DStatus = {uncritical, critical},DOrder = {abort, continue},DDate = {1.1.1900, . . . ,31.12.2099}
C = {Request PET,Confirmation,Request Trans.,Request Exam.,Result,Arrival,Retransport,

Return,Confirmation+,Cancel PET}

sC(Request PET) = Hospital rC(Request PET) = {PET provider}
sC(Confirmation) = PET provider rC(Confirmation) = {Hospital}
sC(Request Trans.) = PET provider rC(Request Trans.) = {Transp. Provider}
sC(Request Exam.) = Transp. Provider rC(Request Exam.) = {Hospital}
sC(Result) = Hospital rC(Result) = {Transp. Provider}
sC(Arrival) = Transp. Provider rC(Arrival) = {PET provider}
sC(Retransport) = PET provider rC(Retransport) = {Transp. Provider}
sC(Return) = Transp. Provider rC(Return) = {Hospital}
sC(Confirmation+) = PET provider rC(Confirmation+) = {Hospital,

Transp. Provider}
sC(Cancel PET) = Transp. Provider rC(Cancel PET) = {PET provider}
domC(Request PET) = DStatus domC(Confirmation) = DDate

domC(Request Trans.) = DDate domC(Request Exam.) = Dε

domC(Result) = DOrder domC(Arrival) = Dε

domC(Retransport) = Dε domC(Return) = Dε

domC(Confirmation+) = DDate domC(Cancel PET) = Dε

ΣI = { (Request PET, uncritical), (Request PET, critical), (Result, abort), (Result, continue),
(Request Exam., ε), (Arrival, ε), (Confirmation,1.1.1900), . . . , (Confirmation,31.12.2099),
(Confirmation+,1.1.1900), . . . , (Confirmation+,31.12.2099), (Retransport, ε), (Return, ε),
(Request Trans.,1.1.1900), . . . , (Request Trans.,31.12.2099), (Cancel PET, ε)}

B. Data-Aware Choreography

Based on the interaction domain from Def. 1, we define the notion of data-aware choreography (DAChor).

DAChor enriches BPMN choreography models with virtual data objects, a data assignment relation, and guards.

Definition 3 (Data-Aware Choreography; DAChor).
Let I = (R,D, C, domC , sC , rC , ε) be an interaction domain. Then: A Data-Aware Choreography (DAChor) over
I is a tuple DAC = (N, I,G, es,Ee,G

s
+,G

m
+ ,Gs

d×,G
s
e×,G

m
× , V, class,→,⇢, domV , grd), with

● N is the set of nodes being the disjoint conjunction of the set of interactions I and the set of gateways and
events G. In turn, the latter is the disjoint conjunction of the start event {es}, the set of end events Ee, the set
of AND-splits Gs

+, the set of AND-mergers Gm
+ , the set of data-based XOR-splits Gs

dx, the set of event-based
XOR-splits Gs

ex, and the set of XOR-mergers Gm
x ,

● V is the set of virtual data objects,
● class ∶ I → C assigns a message class to each interaction,
● →⊆ (N −Ee) × (N − {es}) is the interaction flow relation,
● ⇢⊆ I × V is the data assignment relation,
● domV ∶ V → D is a function assigning a domain to each virtual data object,
● grd ∶ (→) → GV is a function assigning a guard to each interaction flow.

The set of guards GV is defined as the set of propositional logic formulas over propositions of the form v = s
or the form v ∈ {s1, s2, . . . , sn}. Thereby, v ∈ V is a virtual data object and s, s1, s2, . . . , sn ∈ domV (v) are values

of the related data domain. If a guard g ∈ GV uses a virtual data object v ∈ V , we denote this as v
∈∼ g. Note that a

guard can be constantly true. In this case, we omit it in the graphical representation of the DAChor (cf. Fig 2).

In the following, we introduce the well-formedness of DAChors. Example 2 then provides a formal description of

our scenario from Fig. 2.

Definition 4 (Well-Formed DAChor).
A DAChor is well-formed, iff the following properties hold:

● the start event, each interaction, and each merge node have exactly one successor, i.e.,
∀n ∈ {es} ∪ I ∪Gm

+ ∪Gm
× ∶ ∣{n′ ∈ N ∣n→ n′}∣ = 1

● each split node has at least one successor, i.e.,
∀gs ∈ Gs

+ ∪Gs
d× ∪Gs

e× ∶ ∣{n ∈ N ∣gs → n}∣ ≥ 1
● each end event, each interaction, and each split node have exactly one predecessor, i.e.,
∀n ∈ Ee ∪ I ∪Gs

+ ∪Gs
d× ∪Gs

e× ∶ ∣{n′ ∈ N ∣n′ → n}∣ = 1
● each merge node has at least one predecessor, i.e.,
∀gm ∈ Gm

+ ∪Gm
× ∶ ∣{n ∈ N ∣n→ gm}∣ ≥ 1

● each event-based XOR-split is solely followed by interactions, i.e.,
∀gse× ∈ Gs

e× ∶ {n ∈ N ∣gse× → n} ⊆ I
● guards of interaction flows are constantly true unless the source of an interaction flow

is a data-based XOR-split, i.e.,
grd ((n1, n2)) ≠ true ⇔ n1 ∈ Gs

d×

● the data of an interaction is solely assigned to variables of the same data domain, i.e.,
∀i ∈ I,∀v ∈ V ∶ i⇢ v ⇒ domC(class(i)) = domV (v).

● there is no cycle solely consisting of gateways, i.e.,
∄g0, g1, . . . gn ∈ G ∶ g0 → g1 → ⋅ ⋅ ⋅ → gn → g0.

Example 2 (DAChor).
Consider the scenario from Fig. 2. Basing its interaction domain I (cf. Example 1) we can describe the given
scenario as DAChor DAC = (N, I,G, es,Ee,G

s
+,G

m
+ ,Gs

d×,G
s
e×,G

m
× , V, class,→,⇢, domV , grd):

I = {i1, . . . , i8},Ee = {e1e, e2e}, V = {Status,Order}
Gs

d× = {gs1d×, g
s2
d×},Gm

× = {gm× },Gs
+ = Gm

+ = Gs
e× = ∅,

⇢= {(i1,Status), (i5,Order)}
→= {(es, i1), (i1, i2), (i2, i3), (i3, gs1d×), (gs1d×, i4), (gs1d×, g

m
×), (i4, i5), (i5, gs2d×), (gs2d×, e

1
e), (gs2d×, g

m
×), (gm× , i6,),

(i6, i7), (i7, i8), (i8, e2e)}

class(i1) = Request PET class(i2) = Confirmation class(i3) = Request Trans.
class(i4) = Request Exam. class(i5) = Result class(i6) = Arrival
class(i7) = Retransport class(i8) = Return

domV (Status) = Dstatus domV (Order) = Dorder

grd ((gs1d×, i4)) = Status = critical grd ((gs1d×, g
m
×)) = Status = uncritical

grd ((gs2d×, e
1
e)) = Order = abort grd ((gs2d×, g

m
×)) = Order = continue

C. Data-Aware Interaction Net

We introduce the notion of Data-Aware Interaction Net (DAI Net). It combines IP Nets [9] and WFD Nets [12]:

Hence, the main elements of a DAI Net are places and transitions. To add data, these elements are enriched with

variables and guards on transitions as known from WFD Nets. Furthermore, DAI Nets allow assigning message

classes to transitions. Like in IP Nets, respective transitions are denoted as interaction transitions. Finally, all other

transitions are called silent transitions.

Definition 5 (Data-Aware Interaction Net; DAI Net).
Let I = (R,D, C, domC , sC , rC , ε) be an interaction domain. Then, a Data-Aware Interaction Net (DAI Net) over
I is a tuple # = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢, domV , grd), where

● P is the set of places; P can be partitioned into the initial place pin, the set of ordinary places Po, and the
set of final places Pfi,

● T is the set of transitions; T can be partitioned into the sets of silent transitions TS and the set of interaction
transitions TI ,

● V is the set of variables,
● class ∶ TI → C is a function assigning a message class to each interaction transition,
● →⊆ ((P − Pfi) × T) ∪ (T × (P − {pin})) is the flow relation,
● ⇢⊆ TI × V is the data assignment relation. It expresses that the data of an interaction transition is assigned

to the related variable,
● domV ∶ V → D is a function assigning a data domain to each variable,
● grd ∶ T → GV is a function assigning a guard to each interaction flow relation.

Further, we define
● Σ# ∶= ⋃i∈TI

Σclass(i) as the set of all messages corresponding to #
● P→t ∶= {p ∈ P ∣p→ t} as the set of all places preceding t
● P←t ∶= {p ∈ P ∣t→ p} as the set of all places succeeding t
● P↮t ∶= {p ∈ P ∣p↛ t ∧ t↛ p} as the set of the faraway places of t

As below Def. 3, the set of guards GV is defined the set of propositional logic formulas over propositions of the

form v = s or the form v ∈ {s1, s2, . . . , sn}. Thereby, v ∈ V is a variable and s, s1, s2, . . . , sn ∈ domV (v) are values

of the related data domain. If a guard g ∈ GV uses a variable v ∈ V , we denote this as v
∈∼ g. Note that a guard can

be constantly true. In this case, we omit it in the graphical representation of the DAI Net (cf. Fig 4).

In the following, we introduce the well-formedness of DAI Nets. Then, we introduce a mapping from DAChor to

DAI Nets and show that this mapping preserves the property of well-formedness.

Definition 6 (Well-Formed DAI Net).
A DAI Net is well-formed, iff the following properties hold:

● each transition has at least one preceding and one succeeding place, i.e.,
∀t ∈ T ∶ ∃p1, p2 ∈ P ∶ p1 → t→ p2

● the content of an interaction transition is solely assigned to variables of the same data domain, i.e.,
∀ti ∈ TI ,∀v ∈ V ∶ ti ⇢ v ⇒ domC(class(ti)) = domV (v).

● there exists no cycle solely consisting of places and silent transitions, i.e.,
∄p0, p1, . . . pn ∈ P, t0, t1, . . . tn ∈ TS ∶ p0 → t0 → p1 → t1 → ⋅ ⋅ ⋅ → pn → tn → p0.

D. Mapping DAChors to DAI Nets

In Section III-C, we introduced DAI Nets to define the behavior of DAChors. Based on this we can now define a

mapping from data-aware choreographies to DAI Nets. This mapping is based on the approach proposed by Decker

et al. [9] who define the behavior of iBPMN Choreographies through their transformation to IP Nets.

Definition 7 (Mapping DAChors to DAI Nets).
Let DAC = (N, I,G, es,Ee,G

s
+,G

m
+ ,Gs

d×,G
s
e×,G

m
× , V, class,→,⇢, domV , grd) be a DAChor (cf. Def. 3). Then,

DAC can be mapped to a DAI Net defined as # ∶= (P, pin, Po, Pfi, T, TS , TI , V, class
′,→′,⇢′, domV , grd

′), with
P ∶= {p(n1,n2)∣(n1, n2) ∈→ ∧ n1 ∉ Gs

e×} interaction flow
pin ∶= p(es,n) ∈ P,whereby es → n ∈ N start event
Pfi ∶= {p(n,ee)∣p(n,ee) ∈ P ∧ ee ∈ Ee} ⊆ P end events
Po ∶= P − ({pin} ∪ Pfi)
T+ ∶= {tg+ ∣g+ ∈ Gs

+ ∪Gm
+ } AND gateways

T s
× ∶= {ts(gs

×
,n)∣gs× ∈ Gs

d × ∧ n ∈ N ∧ gs× → n} data-based XOR-split gateways
Tm

× ∶= {tm(n,gm
×

)∣gm× ∈ Gm
× ∧ n ∈ N ∧ n→ gm× } XOR-merge gateways

TI ∶= {ti∣i ∈ I}, TS ∶= T+ ∪ T s
× ∪ Tm

× , T ∶= TS ∪ TI interactions
class′(ti) ∶= class(i) message class assignment
→′ ∶= {(p(n1,n2), tn2

)∣n1 → n2 ∧ n1 ∉ Gs
e× ∧ n2 ∈ I ∪Gs

+ ∪Gm
+ } interactions/AND-gateways in

∪ {(tn1
, p(n1,n2))∣n1 → n2 ∧ n1 ∈ I ∪Gs

+ ∪Gm
+ } interactions/AND-gateways out

∪ {(p(n1,n2), t
m
(n1,n2))∣n1 → n2 ∧ n2 ∈ Gm

× } XOR-merge in
∪ {(tm(n0,n1), p(n1,n2))∣n0 → n1 → n2 ∧ n1 ∈ Gm

× } XOR-merge out
∪ {(p(n1,n2), t

s
(n2,n3))∣n1 → n2 → n3 ∧ n2 ∈ Gs

d×} data-based XOR-split in
∪ {(ts(n1,n2), p(n1,n2))∣n1 → n2 ∧ n1 ∈ Gs

d×} data-based XOR-split out
∪ {(p(n0,n1), tn2

)∣n0 → n1 → n2 ∧ n1 ∈ Gs
e×} event-based XOR-split

⇢′ ∶= {(ti, v)∣(i, v) ∈⇢} data assignment relation

grd′(t) ∶= { grd ((gs×, n)) , iff t = t(gs
×
,n) ∈ T s

×

true, else
guard assignment

Theorem 1 states that the mapping from DAChors to DAI Nets preserves well-formedness. The application to

our example is shown in Example 3 and Fig. 4.

Theorem 1 (Preservation of Well-Formedness).
Let DAC be a DAChor that is mapped to a DAI Net #. If DAC is well-formed, # is well-formed as well.

We now prove Theorem 1. Our proof consists of three parts that correspond to the three properties of well-

formedness for DAI Nets. First, we prove the first property, i.e., each transition has at least one preceding and one

succeeding place:

Proof 1 (Preservation of Well-Formedness (Property 1)).
Let DAC = (N, I,G, es,Ee,G

s
+,G

m
+ ,Gs

d×,G
s
e×,G

m
× , V, class,→,⇢, domV , grd) be a well-formed DAChor. DAC

is mapped to the DAI Net #. The latter is defined as # ∶= (P, pin, Po, Pfi, T, TS , TI , V, class
′,→′,⇢′, domV , grd

′),
whereby
Case 1: t = tg+ ∈ T+ = {tg+ ∣g+ ∈ Gs

+ ∪Gm
+ }

⇒ ∃n1, n2 ∈ N ∶ n1 → g+ → n2

⇒ ∃p(n1,g+), p(g+,n2) ∈ P ∶ (p(n1,g+), tg+), (tg+, p(g+,n2)) ∈→′

i.e., p(n1,g+) →′ t→′ p(g+,n2).

Case 2: t = ts(gs
×
,n1) ∈ T s

× ∶= {ts(gs
×
,n1)∣gs× ∈ Gs

d × ∧ n1 ∈ N ∧ gs× → n1}
⇒ ∃n2, n1 ∈ N ∶ n2 → gs× → n1

⇒ ∃p(n2,gs
×
), p(gs

×
,n1) ∈ P ∶ (p(n2,gs

×
), t

s
(gs
×
,n1)), (ts(gs

×
,n1), p(gs

×
,n1)) ∈→′

i.e., p(n2,gs
×
) →′ t→′ p(gs

×
,n1)

Case 3: t = tm(n1,gm
×

) ∈ Tm
× ∶= {tm(n1,gm

×
)∣gm× ∈ Gm

× ∧ n1 ∈ N ∧ n1 → gm× }
⇒ ∃n1, n2 ∈ N ∶ n2 → gm× → n1

⇒ ∃p(n1,gm
×

), p(gm
×
,n2) ∈ P ∶ (p(n1,gm

×
), t

m
(n1,gm

×
)), (tm(n1,gm

×
), p(gm

×
,n2)) ∈→′

i.e., p(n1,gm
×

) →′ t→′ p(gm
×
,n2)

Case 4: t = ti ∈ TI ∶= {ti∣i ∈ I}
⇒ ∃n1, n2 ∈ N ∶ n1 → i→ n2

Subcase 4.1: n1 ∈ Gs
e×

⇒ ∃n0 ∈ N −Gs
e× ∶ n0 → n1

⇒ ∃p(n0,n1), p(i,n2) ∶ (p(n0,n1), ti), (ti, p(i,n2)) ∈→′

i.e., p(n0,n1) →′ t→′ p(i,n2)

Subcase 4.2: n1 ∉ Gs
e×

⇒ ∃p(n1,i), p(i,n2) ∶ (p(n1,i), i), (i, p(i,n2)) ∈→′

i.e., p(n1,i) →′ t→′ p(i,n2)

Thus, a transition has at least one preceding and one succeeding place, consequently the first property holds. ◻
Second, we prove that the data of an interaction transition is solely assigned to variables of the same data domain:

Proof 2 (Preservation of Well-Formedness (Property 2)).
Let DAC = (N, I,G, es,Ee,G

s
+,G

m
+ ,Gs

d×,G
s
e×,G

m
× , V, class,→,⇢, domV , grd) be a well-formed DAChor. DAC

is mapped to a DAI Net #. The latter is defined as # ∶= (P, pin, Po, Pfi, T, TS , TI , V, class
′,→′,⇢′, domV , grd

′).
Let ti ∈ TI be an interaction transition and v ∈ V a virtual data object of #. Then:

(ti, v) ∈⇢′ ⇒ (i, v) ∈⇢
⇒ domC(class(ti)) = domC(class(i)) = domV (v)

Thus, data assignments are correct, consequently the second property holds. ◻

Finally, we prove the third property, i.e., there exists no cycle solely consisting of places and silent transitions.

For this purpose, we define a function gate, which assigns to each silent transition in # a gateway in DAC.

Furthermore, we show that the gates of two silent transitions are connected if the silent transitions are connected

by a place in Lemma 1. trans

Definition (Gate of a Silent Transition).
Let DAC = (N, I,G, es,Ee,G

s
+,G

m
+ ,Gs

d×,G
s
e×,G

m
× , V, class,→,⇢, domV , grd) be a well-formed DAChor. DAC

is mapped to a DAI Net # = (P, pin, Po, Pfi, T, TS , TI , V, class
′,→′,⇢′, domV , grd

′). Then:
The function gate ∶ TS → (G −Gs

e×) ∶ ts ↦ gate(ts) assigns to each silent transition its gate, with

gate(ts) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g+, iff t = tg+ ∈ T+ = {tg+ ∣g+ ∈ Gs
+ ∪Gm

+ }
gs×, iff t = ts(gs

×
,n1) ∈ T s

× ∶= {ts(gs
×
,n1)∣gs× ∈ Gs

d × ∧ n1 ∈ N ∧ gs× → n1}
gm× , iff t = tm(n1,gm

×
) ∈ Tm

× ∶= {tm(n1,gm
×

)∣gm× ∈ Gm
× ∧ n1 ∈ N ∧ n1 → gm× }

Lemma 1 (Connected Silent Transitions imply Connected Gateways).
Let DAC = (N, I,G, es,Ee,G

s
+,G

m
+ ,Gs

d×,G
s
e×,G

m
× , V, class,→,⇢, domV , grd) be a well-formed DAChor. DAC

is mapped to a DAI Net # = (P, pin, Po, Pfi, T, TS , TI , V, class
′,→′,⇢′, domV , grd

′).
If there are two silent transitions t1s, t2s ∈ TS that are connected by a place p(n1,n2) ∈ P (cf. Def.7), i.e., t1s →′ p→ t2s.
Then holds gate(t1s) → gate(t2s) holds.

Proof 3 (Connected Silent Transitions imply Connected Gateways (Lemma 1)).
Let DAC = (N, I,G, es,Ee,G

s
+,G

m
+ ,Gs

d×,G
s
e×,G

m
× , V, class,→,⇢, domV , grd) be a (well-formed) DAChor that

is mapped to a DAI Net #, The latter is defined as # = (P, pin, Po, Pfi, T, TS , TI , V, class
′,→′,⇢′, domV , grd

′):

Case 1: t1s = tg+ ∈ T+ and g+ ∶= gate(t1s) =∈ Gs
+ ∪Gm

Subcase 1.1: t2s = tg+
′ ∈ T+ and g+

′ ∶= gate(t2s) ∈ Gs
+ ∪Gm

⇒ (tg+ , p(a,b)), (p(a,b), tg+′) ∈→′ ⇒ a = g+ ∧ b = g+
′ ⇒ g+ → g+

′

Subcase 1.2: t2s = ts(gs
×

′,n2)
′ ∈ T s

× and gs×
′ ∶= gate(t2s) ∈ Gs

d ×
⇒ (tg+ , p(a,b)), (p(a,b), t

s
(gs
×

′,n2)
′) ∈→′ ⇒ a = g+ ∧ b = gs×

′ ⇒ g+ → gs×
′

Subcase 1.2: t2s = tm(n2,gm
×

′)
′ ∈ Tm

× and gm×
′ ∶= gate(t2s) ∈ Gm

×

⇒ (tg+ , p(a,b)), (p(a,b), t
m
(n2,gm

×

′)
′) ∈→′ ⇒ a = g+ = n2 ∧ b = gm×

′ ⇒ g+ → gm×
′

Case 2: t1s = ts(gs
×
,n1) ∈ T s

× and gs× ∶= gate(t2s) ∈ Gs
d ×

Subcase 2.1: t2s = tg+
′ ∈ T+ and g+

′ ∶= gate(t2s) ∈ Gs
+ ∪Gm

⇒ (ts(gs
×
,n1), p(a,b)), (p(a,b), tg+′) ∈→′ ⇒ a = gs× ∧ b = n1 = g+

′ ⇒ gs× → g+
′

Subcase 2.2: t2s = ts(gs
×

′,n2)
′ ∈ T s

× and gs×
′ ∶= gate(t2s) ∈ Gs

d ×
⇒ (ts(gs

×
,n1), p(a,b)), (p(a,b), t

s
(gs
×

′,n2)
′) ∈→′ ⇒ a = gs× ∧ b = n1 = gs×

′ ⇒ gs× → gs×
′

Subcase 2.3: t2s = tm(n2,gm
×

′)
′ ∈ Tm

× and gm×
′ ∶= gate(t2s) ∈ Gm

×

⇒ (ts(gs
×
,n1), p(a,b)), (p(a,b), t

m
(n2,gm

×

′)
′) ∈→′

⇒ a = gs× = n2 ∧ b = n1 = gm×
′ ⇒ gs× → gm×

′

Case 3: t1s = tm(n1,gm
×

) ∈ Tm
× and gm× ∶= gate(t2s) ∈ Gm

×

Subcase 3.1: t2s = tg+
′ ∈ T+ and g+

′ ∶= gate(t2s) ∈ Gs
+ ∪Gm

⇒ (tm(n1,gm
×

), p(a,b)), (p(a,b), tg+′) ∈→′ ⇒ a = gm× ∧ b = g+
′ ⇒ gm× → g+

′

Subcase 3.2: t2s = ts(gs
×

′,n2)
′ ∈ T s

× and gs×
′ ∶= gate(t2s) ∈ Gs

d ×

⇒ (tm(n1,gm
×

), p(a,b)), (p(a,b), t
s
(gs
×

′,n2)
′) ∈→′ ⇒ a = gm× ∧ b = gs×

′ ⇒ gm× → gs×
′

Subcase 3.2: t2s = tm(n2,gm
×

′)
′ ∈ Tm

× and gm×
′ ∶= gate(t2s) ∈ Gm

×

⇒ (tm(n1,gm
×

), p(a,b)), (p(a,b), t
m
(n2,gm

×

′)
′) ∈→′ ⇒ a = gm× = n2 ∧ b = gm×

′ ⇒ gm× → gm×
′

Thus, for all cases gate(t1s) → gate(t2s) holds and Lemma 1 is proven. ◻

We use function gate and Lemma 1 to prove the third property of well-formedness of DAI Nets by contradiction:

Proof 4 (Preservation of Well-Formedness (Property 3)).
Assume property 3 of Theorem 1 is violated. Then: There exists a well-formed DAC =
(N, I,G, es,Ee,G

s
+,G

m
+ ,Gs

d×,G
s
e×,G

m
× , V, class,→,⇢, domV , grd) that is mapped to a non-well-formed DAI Net

#, with # = (P, pin, Po, Pfi, T, TS , TI , V, class
′,→′,⇢′, domV , grd

′):
⇒ ∃p0, p1, . . . pn ∈ P, t0, t1, . . . tn ∈ TS ∶ p0 →′ t0 →′ p1 →′ t1 →′ ⋅ ⋅ ⋅ →′ pn →′ tn →′ p0
⇒ gate(t0) → gate(t1) → ⋅ ⋅ ⋅ → gate(tn) → gate(t0)
⇒ ∃g0 ∶= gate(t0), g1 ∶= gate(t1), . . . gn ∶= gate(tn) ∶ g0 → g1 → ⋅ ⋅ ⋅ → gn → g0

This contradicts our assumption. Thus, the third property holds. ◻

According to Proofs 1-4, the mapping from DAChor to DAI Net (cf. Def. def:mapping) preserves all three

properties of well-formedness . Thus, Theorem 1 holds.

Example 3 (Transformation).
The DAChor DAC = (N, I,G, es,Ee,G

s
+,G

m
+ ,Gs

d×,G
s
e×,G

m
× , V, class,→,⇢, domV , grd) from Example 2 is

mapped to the DAI Net # = (P, pin, Po, Pfi, T, TS , TI , V, class
′,→′,⇢′, domV , grd

′) as follows (cf. Fig. 4):

P = {pin = p(es,i1), p(i1,i2), p(i2,i3), p(i3,gs1
d×

), p(gs1
d×

,i4), p(gs1
d×

,gm
×

), p(i4,i5), p(i5,gs2
d×

), p(gs2
d×

,e1e), p(gs2
d×

,gm
×

),

p(gm
×
,i6,), p(i6,i7), p(i7,i8), p(i8,e2e)}

Pfi = {p(gs2
d×

,e1e), p(i8,e2e)} Po = P − ({pin} ∪ Pfi)
T s

× = {ts
(gs1

d×
,i4)

, ts
(gs1

d×
,gm
×

)
, ts

(gs2
d×

,e1e)
, ts

(gs2
d×

,gm
×

)
} Tm

× = {tm
(gs1

d×
,gm
×

)
, tm

(gs2
d×

,gm
×

)
} T+ = ∅

TS = T+ ∪ T s
× ∪ Tm

× TI = {ti1 , ti2 , . . . , ti8}
V = {Status,Order} ⇢′ = {(ti1 ,Status), (ti5 ,Order)}

→′ = {(p(es,i1), ti1), (p(i1,i2), ti2), (p(i2,i3), ti3), (p(gs1
d×

,i4), ti4), (p(i4,i5), ti5), (p(gm
×
,i6,), ti6), (p(i6,i7), ti7),

(p(i7,i8), ti8), (ti1 , p(i1,i2)), (ti2 , p(i2,i3)), (ti3 , p(i3,gs1
d×

)), (ti4 , p(i4,i5)), (ti5 , p(i5,gs2
d×

)), (ti6 , p(i6,i7)),
(ti7 , p(i7,i8)), (ti8 , p(i8,e2e)), (p(gs1

d×
,gm
×

), t
m
(gs1

d×
,gm
×

)
), (p(gs2

d×
,gm
×

), t
m
(gs2

d×
,gm
×

)
), (tm

(gs1
d×

,gm
×

)
, p(gm

×
,i6,)),

(tm
(gs2

d×
,gm
×

)
, p(gm

×
,i6,)), (p(i3,gs1

d×
), t

s
(gs1

d×
,i4)

), (p(i3,gs1
d×

), t
s
(gs1

d×
,gm
×

)
), (p(i5,gs2

d×
), t

s
(gs2

d×
,e1e)

),
(p(i5,gs2

d×
), t

s
(gs2

d×
,gm
×

)
), (ts

(gs1
d×

,i4)
, p(gs1

d×
,i4)), (ts(gs1

d×
,gm
×

)
, p(gs1

d×
,gm
×

)), (ts(gs2
d×

,e1e)
, p(gs2

d×
,e1e)), (ts(gs2

d×
,gm
×

)
, p(gs2

d×
,gm
×

))}

class′(ti1) = Request PET class′(ti2) = Confirmation class′(ti3) = Request Trans.
class′(ti4) = Request Exam. class′(ti5) = Result class′(ti6) = Arrival
class′(ti7) = Retransport class′(ti8) = Return

domV (Status) = DStatus grd(ts
(gs1

d×
,i4)

) = Status = critical grd (ts
(gs1

d×
,gm
×

)
) = Status = uncritical

domV (Order) = DOrder grd(ts
(gs2

d×
,e1e)

) = Order = abort grd (ts
(gs2

d×
,gm
×

)
) = Order = continue

E. Behavior of DAI Nets

Since DAI Nets are based on both WFD Nets and IP Nets, we use token semantics (i.e., tokens assigned to

places and token changes) to define their behavior. Together with the values of variables, tokens define the marking

Transp. Provider

Hospital

Request Exam.
{abort, continue}

Hospital

Transp. Provider

Result

PET Provider

Transp. Provider

Retransport

Transp. Provider

PET Provider

Arrival

Status
{uncritical, critical}

{uncritical, critical}

Hospital

PET Provider

Request PET
Date

PET Provider

Transp. Provider

Request Trans.

Order
{abort, continue}

Date

Hospital

PET Provider

Confirmation

Date

Hospital

PET Provider

Confirmation

Date

Hospital,
Transp. Provider

PET Provider

Confirmation+

Alternative 1

Status=critical

Status=uncritical Order=continue Order=abort

Return

Transp. Provider

Hospital

Status=uncritical

Status=critical

Transp. Provider

PET Provider

Cancel PET

Alternative 2

Fig. 4. DAI Net derived for the patient transportation scenario

of a DAI Net. Each Interaction Net starts with an initial marking, with exactly one token placed in the initial place

pin and each variable having the empty value ε. A marking is called final, if all tokens belong to final places of

Pfi. A transition t is activated under marking m, iff all directly preceding places of t contain at least one token,

and the guard of t is evaluable and evaluates to true.

Definition 8 (DAI Net Markings and Activated Transitions).
Let # = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢, domV , grd) be a DAI Net. Then: A marking of # is a tuple
m = (⊙, val) with

● ⊙ ∶ P → N0 assigns to each place the number of corresponding tokens,
● val ∶ V → ΩI assigns to each variable its current value; val(v) is either the empty value ε or an element of

the variable’s domain, i.e., val(v) ∈ domV (v) ∪ {ε}.
Additionally, for each DAI Net # we define the

● set of all markings M#, whereby
M# ∶= {m = (⊙, val) ∣ m is a marking of # }

● initial marking min
∶= (⊙in, valin) ∈M#, whereby

⊙in(p) ∶= { 1, if p = pin
0, else

∧ ∀v ∈ V ∶ valin(v) ∶= ε

● set of all final markings F#, whereby
F# ∶= {(⊙, val) ∈M#∣∀p ∈ P ∶ ⊙(p) ≠ 0⇔ p ∈ Pfi}

● transition activation relation ↝⊆ M# × T . m ↝ t denotes that marking m ∈ M# activates transition t ∈ T ,
iff the following conditions hold:

1) ∀p ∈ P→t ∶ ⊙(p) ≥ 1,
2) ∀v ∈∼ grd(t) ∶ val(v) ≠ ε,
3) grd(t) is satisfied for marking m

If a transition is activated, it may fire and lead from the current marking to a subsequent one. More precisely,

one token is taken from each preceding place and one is added to each succeeding place. Silent transitions fire

immediately when they become activated. Activated interaction transitions fire, if and only if a message of the

corresponding message class is sent. In this case, the value of the message is assigned to virtual data objects as

expressed by the data assignment relation. Note that a message can only be sent if an interaction transition of the

related message class is activated and no silent transition is activated (cf. Def. 9).

Definition 9 (Options and Subsequent Markings of DAI Nets).
Let # = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢, domV , grd) be a DAI Net, an m = (⊙, val),m′ = (⊙′, val′) ∈M#

be two related markings. Then:

● O# ∶= TS ∪Σ# is the set of all options on #.
● opt# ∶ M# → 2O# ∶m↦ {o ∈ O#∣∃m′ ∧ m

o→m′} maps each marking m to the options available under m.
● m

o→m′ expresses that m leads to m′ by applying option o ∈ opt#(m) with:

Case 1: o = ts ∈ TS is a silent transition. Then: m
ts→m′ holds, iff each of the following conditions is met:

1) m↝ ts,
2) ∀p ∈ P→ts ∶ ⊙′(p) = ⊙(p) − 1,
3) ∀p ∈ P←ts ∶ ⊙′(p) = ⊙(p) + 1,
4) ∀p ∈ P↮ts ∶ ⊙′(p) = ⊙(p),
5) ∀v ∈ V ∶ val′(v) = val(v).

Case 2: o = μ = (c, x) ∈ Σ# is a message. Then: m
μ→m′ holds, iff the following conditions are met:

1) ∀ts ∈ TS ∶m↝̸ ts,
2) ∃ti ∈ TI ∶m↝ ti ∧ μ ∈ Σclass(ti),
3) ∀p ∈ P→ti ∶ ⊙′(p) = ⊙(p) − 1,
4) ∀p ∈ P←ti ∶ ⊙′(p) = ⊙(p) + 1,
5) ∀p ∈ P↮ti ∶ ⊙′(p) = ⊙(p),
6) ∀v ∈ V with ti ⇢ v ∶ val′(v) = x,
7) ∀v ∈ V with ti ⇢̸ v ∶ val′(v) = val(v).

Based on Def. 9, the following two theorems can be derived.

Theorem 2 (Separation of Options). Let # be a DAI Net. Then: For each marking, the set of options either contains
solely silent transitions or messages or it is empty, i.e.,

∀m ∈ M# ∶ opt#(m) ≠ ∅ ⇒ opt#(m) ⊆ TS ⊕ opt#(m) ⊆ Σ#

Theorem 3 (Termination of final markings). Let # be a DAI Net. Then: For each final marking, the set of options
is empty, i.e.,

∀m ∈ F# ∶ opt#(m) = ∅

We prove Theorem 2 and Theorem 3 by contradiction:

Proof 5 (Separation of Options).
Let # = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢, domV , grd) be a DAI Net. Then: Assume, Theorem 2 is violated
for #:
⇒ ∃m ∈ M# ∶ opt#(m) ≠ ∅ and ∃t0 ∈ TS , μ ∈ Σ# ∶ t0, μ ∈ opt#(m)
⇒ ∃m′ ∈ M# ∶m μ→m′ ⇒ ∀ts ∈ TS ∶m↝̸ ts ⇒ m↝̸ t0
⇒ t0 ∉ opt#(m)

This contradicts our assumption. Thus, Theorem 2 is proven. ◻

Proof 6 (Termination of final markings).
Let # = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢, domV , grd) be a DAI Net. Then: Assume, Theorem 3 is violated
for #:
⇒ ∃m = (⊙, val) ∈ F# ∶ opt#(m) ≠ ∅
⇒ ∃t ∈ T ∶m↝ t ⇒ ∃p ∈ P ∶ ⊙(p) ≥ 1 ∧ p→ t
⇒ p ∉ Pfi ⇒ m ∉ F#

This contradicts our assumption. Thus, Theorem 3 is proven. ◻

Based on Def. 9, we define traces on DAI Nets as sequences of options. To be more precise, a trace corresponds

to a related sequence of markings that starts with the initial marking. If this related sequence of markings ends

with a final marking, we denote the trace as completed.

Definition 10 (Traces, Prefixes, and Extensions).
(A) Let # = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢, domV , grd) be a DAI Net and τ = (τk)k∈[1..n] ∈ O⋆

be a finite
sequence of options (i.e. silent transitions and messages) with length ∣τ ∣ =∶ n ∈ N. Let further m = (mk)k∈[1..n+1] ∈
M⋆

be a finite sequence of markings with length n + 1. Then:

● τ ∼m denotes that τ and m are related sequences, iff ∀l ∈ [1..n] ∶ml
τl→ml+1 and m1 =min

.
● last ∶ M⋆

→M# with (mk)k∈[1..n] ↦mn is a function mapping a sequence of markings to its last marking.
● τ ∈ O⋆

is a trace, iff ∃m ∈ M⋆
and τ ∼m. If last(m) ∈ F#, we denote τ as completed trace.

● T# denotes the set of all traces on #.
● T c

denotes the set of all completed traces on #.

(B) Let L ⊆M⋆ be a set of finite sequences over a set M and let a = (ak)k∈[1..n], b = (bk)k∈[1..l], c = (cm)m∈[1..m] ∈ L
be elements of L, i.e. sequences over M . Then:

● a ⊴ b (a◁ b) denotes a is prefix (real prefix) of b and b an extension (real extension) of a, iff n ≤ l (n < l) and
∀i ∈ [1..n] ∶ ai = bi,

● a + c = b denotes that a is extended by c to b, iff m + n = l, and a is prefix of b, and ∀i ∈ [1..m] ∶ ci = bn+i,
● L⊴b ∶= {a ∈ L∣a ⊴ b} (L◁b ∶= {a ∈ L∣a◁ b}) denotes the subset of L that contains all prefixes (real prefixes) of
b ∈ L, and

● L⊵b ∶= {a ∈ L∣b ⊴ a} (L▷b ∶= {a ∈ L∣b◁a}) denotes the subset of L that contains all extensions (real extensions)
of b ∈ L.

We described the behavior of a DAI Net by means of its traces. We can also use traces to characterize the desired

behavioral properties of DAI Nets. The first one is determinism. It expresses that a trace is unique in terms of its

related markings, i.e., replaying a trace will always lead to the same marking. The second fundamental property is

soundness in terms of boundedness as well as the absence of deadlocks and lifelocks [15].

Definition 11 (Determinism and Soundness).
(A) We call a DAI Net # deterministic, iff for each trace τ on # there exists exactly one related sequence of
markings, i.e., ∀τ ∈ T# ∶ ∣{m ∈ M⋆

#∣m ∼ τ}∣ = 1.

Let # be a deterministic DAI Net. Then:

mark# maps each trace on # to its current marking, i.e. the last marking of the related sequence of markings:
mark# ∶ T# →M# ∶ τ ↦mark#(τ) ∶= last(m), whereby m is defined by τ ∼∶m ∈ M⋆

#.

Since # is deterministic, the definition of m is unique. Thus, mark# is well defined.

(B) We call a deterministic DAI Net # sound, iff the following conditions hold:
● There exist completed traces on #, i.e., T c

≠ ∅,
● Each trace on # is a prefix of a completed trace, i.e., ∀υ ∈ T#∃τ ∈ T c

∶ υ ⊴ τ .
● The set of reachable markings is finite, i.e.,
∣{m ∈ M#∣∃τ ∈ T# ∶ last(τ) =m}∣ ∈ N

Note that the observable behavior of any DAI Net is solely explained through the messages exchanged. Hence,

we must abstract from the silent elements of traces (i.e. silent transitions) and define the observable behavior as a

conversation being the projection of a trace to its messages (i.e., the part of the trace defining its semantic). In the

following, we first introduce projections of sequences.

Definition 12 (Projections and Conversations).
Let A,B be two sets with B ⊆ A, and # = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢, domV , grd) be a DAI Net and
τ ∈ T# be a trace on #. Then:

● ΠB ∶ A⋆ → B⋆ ∶ a↦ ΠB(a) is the projection function that restricts a sequence a ∈ A⋆ to its elements of B,
● η ∈ Σ⋆

denotes a conversation on #, iff it is the projection of a trace on # to its messages, i.e.,
∃(τ) ∈ T# ∶ ΠΣ#

(τ) = η. η denotes a completed conversation on #, iff it is the projection of a completed
trace on #,

● C# denotes the set of all conversations on #,
● Cc

denotes the set of all completed conversations on #,
● con# ∶ T# → C# ∶ τ ↦ con#(τ) ∶= ΠΣ#

(τ) maps each trace to the related conversation.

Example 4 (Traces and Conversations).
Consider the DAI Net # from Example 3. Its set of completed traces T c

consists of traces τ1, τ2, and τ3. Projecting
them to their messages leads to the conversations η1, η2, and η3, which build Cc

#:

τ1 = < (Request PET, uncritical), (Confirmation,_1), (Request Trans.,_1), ts(gs1
d×

,gm
×

), t
m
(gs1

d×
,gm
×

),

(Arrival, ε), (Retransport, ε), (Return, ε) >
τ2 = < (Request PET, critical), (Confirmation,_1), (Request Trans.,_1), ts(gs1

d×
,i4), (Request Exam., ε),

(Result, abort), ts(gs2
d×

,e1e) >
τ3 = < (Request PET, critical), (Confirmation,_1), (Request Trans.,_1), ts(gs1

d×
,i4), (Request Exam., ε),

(Result, continue), ts(gs2
d×

,gm
×

), t
m
(gs2

d×
,gm
×

), (Arrival, ε), (Retransport, ε), (Return, ε) >

η1 = con#(τ1) ∶= ΠΣ#
(τ1) = < (Request PET, uncritical), (Confirmation,_1), (Request Trans.,_1),

(Arrival, ε), (Retransport, ε), (Return, ε) >
η2 = con#(τ2) ∶= ΠΣ#

(τ2) = < (Request PET, critical), (Confirmation,_1), (Request Trans.,_1),
(Request Exam., ε), (Result, abort) >

η3 = con#(τ3) ∶= ΠΣ#
(τ3) = < (Request PET, critical), (Confirmation,_1), (Request Trans.,_1),

(Request Exam., ε), (Result, continue), (Arrival, ε), (Retransport, ε),
(Return, ε) >

As aforementioned, the behavior of silent transitions is not observable. Hence, to ensure compatible behavior of

participating roles, silent transitions must behave deterministically. In other words, it must be possible to determine

the behavior of a DAI Net solely based on the messages exchanged, i.e., message-determinism. First, this requires,

that firing of silent transitions always terminates, i.e., it is impossible to solely execute silent transitions infinitely (cf.

Theorem 4).Second, when silent transitions terminate, the set of activated options may only depend on the messages

exchanged before, i.e., it should be independent from the order in which the silent transitions were fired. 1

Theorem 4 (Termination of silent subtraces). On a well-formed DAI Net #, any trace cannot infinitely be continued
by silent transitions, i.e.

∀τ ∈ T# ∶ ∃N ∈ N such that ∀υ ∈ T ⊵τ
with ∣τ ∣ +N < ∣υ∣ ⇒ con#(τ) ≠ con#(υ).

To proof Theorem 4, we introduce silent ways, which solely consist of places and silent transitions. With the

use of those, we define a ranking function that decreases each time a silent transition is fired.

Definition (Silent Ways).
Let # = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢, domV , grd) be a deterministic and sound DAI Net. Then:

● A silent way ω from a place p ∈ P to a silent transition t ∈ TS is a sequence of alternating places and silent
transitions ω =< p0, t0, p1, t1, . . . , pn, tn >∈ (PTS)⋆ with p = p0 and t = tn, whereby holds p0 → t0 → p1 →
t1 → ⋅ ⋅ ⋅ → pn → tn,

● W# as the set of all silent ways on #, and
● Wp↠t

∶= {< p0, . . . , tn >∈ W#∣p0 = p ∧ tn = t} as the set of all silent ways on # from p ∈ P to t ∈ TS .

Consider that Def. 6 prohibits cycles of silent transitions. Thus, each place and each transition can occur at least

once in a silent way. Consequently, W# is finite. Obviously, the same applies to each Wp↠t
⊆ W#

Lemma 2.
Let # = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢, domV , grd) be a deterministic and sound DAI Net and t, t′ ∈ TS

be silent transitions. Then:

∀p ∈ P→t ∶ ∑
q∈P→t

∣Wq↠t′

∣ ≥ ∣Wp↠t′

∣ ≥ ∑
q∈P←t

∣Wq↠t′

∣

Proof 7.
The right inequality ∣Wp↠t′

∣ ≥ ∑
q∈P←t

∣Wq↠t′

∣ holds because of:

∀q ∈ P←t ∶ p→ t→ q ⇒ ∀q ∈ P←t ∶ ∀ω = < q, t0, p1, t1, . . . pn, t
′ > ∈ Wq↠t′

#

⇒ ∃! ω′ =< p, t, q, t0, p1, t1, . . . pn, t
′ > ∈ Wp↠t′

#

The left inequality ∀p ∈ P→t ∶ ∑
q∈P→t

∣Wq↠t′

∣ ≥ ∣Wp↠t′

∣ holds because of:

p ∈ P→t ⇒ ⋃
q∈P→t

Wq↠t′

⊇ Wp↠t′

#

⇒ ∑
q∈P→t

∣Wq↠t′

∣ ≥ ∣ ⋃
q∈P→t

Wq↠t′

∣ ≥ ∣Wp↠t′

∣

Thus, Lemma 2 is proven. ◻
1For reasons of simplification, we abstract from irrelevant message content in Example 4

Based on Lemma 2 we prove Theorem 4. For this purpose, first, we introduce a transition ranking function ζ that

maps a marking and a silent transition to a natural number. Second, based on ζ, we define a net ranking function

ξ that bases on maps each marking of a # to a natural number. Finally, we show, that ξ is decreased each time

a silent transition fires (cf. Lemma 3). Thus, ξ is an upper bound to the number of steps (i.e., firings of silent

transitions) that can be done in # until the net terminates.

Definition (Ranking Functions). Let # = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢, domV , grd) be a deterministic
and sound DAI Net. Then, the transition ranking function ζ is defined as below:

● ζ# ∶ M# ×TS → N ∶ ((⊙, val), t) ↦ ζ((⊙, val), t) is the transition ranking function that maps a marking and
a silent transition to a natural number, with ζ((⊙, val), t) ∶= ∑

p∈P
⊙(p) ∗ ∣Wp↠t

∣.

● ξ ∶ M# → N ∶ m ↦ ξ(m) is the net ranking function that maps a marking to a natural number, with
ξ(m) ∶= ∑

t∈TS

ζ(m, t).

Lemma 3 (The Rank of a Net Decreases when a Silent Transition Fires).
Let # = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢, domV , grd) be a deterministic and sound DAI Net. Further,
m,m′ ∈ M# be two markings of #, with m = (⊙, val),m′ = (⊙′, val′). Finally, t0 ∈ TS be a silent transition of #

with m
t0→m′. Then:

ξ(m) > ξ(m′)

To prove Lemma 3, we partition ξ based on its definition for each t0 ∈ TS that may be fired:

ξ(m) = ∑
t∈TS

ζ(m, t) = ζ(m, t0) + ∑
t∈TS−{t0}

ζ(m, t)

We consider both parts (i.e. ζ(m, t0) and ∑
t∈TS−{t0}

ζ(m, t)) on its own to show that ξ decreases, whenever a

silent transition t0 is fired.

Lemma 4 (The Rank of a Fired Silent Transition Decreases).
Let # = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢, domV , grd) be a deterministic and sound DAI Net. Further,
m,m′ ∈ M# be two markings of #, with m = (⊙, val),m′ = (⊙′, val′). Finally, t0 ∈ TS be a silent transition of #

with m
t0→m′. Then:

ζ(m, t0) > ζ(m′, t0)

Proof 8 (The Rank of a Fired Silent Transition Decreases (Lemma 4)).

ζ(m, t0) = ∑
p∈P

(⊙(p) ∗ ∣Wp↠t
∣) = ∑

p∈P→t

(⊙(p) ∗ ∣Wp↠t
∣) + ∑

p∈P←t

(⊙(p) ∗ ∣Wp↠t
∣) + ∑

p∈P↮t

(⊙(p) ∗ ∣Wp↠t
∣)

= ∑
p∈P→t

((⊙′(p) + 1) ∗ ∣Wp↠t
∣) + ∑

p∈P←t

(⊙(p) ∗ 0) + ∑
p∈P↮t

(⊙(p) ∗ ∣Wp↠t
∣)

= ∑
p∈P→t

((⊙′(p) + 1) ∗ ∣Wp↠t
∣) + ∑

p∈P←t

(⊙′(p) ∗ 0) + ∑
p∈P↮t

(⊙′(p) ∗ ∣Wp↠t
∣)

= ∑
p∈P→t

(⊙′(p) ∗ ∣Wp↠t
∣) + ∑

p∈P→t

(∣Wp↠t
∣) + ∑

p∈P←t

(⊙′(p) ∗ ∣Wp↠t
∣) + ∑

p∈P↮t

(⊙′(p) ∗ ∣Wp↠t
∣)

> ∑
p∈P→t

(⊙′(p) ∗ ∣Wp↠t
∣) + ∑

p∈P←t

(⊙′(p) ∗ ∣Wp↠t
∣) + ∑

p∈P↮t

(⊙′(p) ∗ ∣Wp↠t
∣)

= ∑
p∈P

(⊙′(p) ∗ ∣Wp↠t
∣) = ζ(m′, t0)

Thus, ζ(m, t0) > ζ(m′, t0) holds and Lemma 4 is proven. ◻

Lemma 5 (The Rank-Sum of all Unfired Silent Transitions does not Increase).
Let # = (P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢, domV , grd) be a deterministic and sound DAI Net. Further,
m,m′ ∈ M# be two markings of #, with m = (⊙, val),m′ = (⊙′, val′). Finally, t0 ∈ TS be a silent transition of #

with m
t0→m′. Then:

∑
t∈TS−{t0}

ζ(m, t) ≥ ∑
t∈TS−{t0}

ζ(m′, t)

Proof 9 (The Rank-Sum of all Unfired Silent Transitions does not Increase (Lemma 5)).

∑
t∈TS−{t0}

ζ(m, t) = ∑
t∈TS−{t0}

⎛
⎝∑p∈P

(⊙(p) ∗ ∣Wp↠t
∣)

⎞
⎠

= ∑
t∈TS−{t0}

⎛
⎝ ∑
p∈P→t

(⊙(p) ∗ ∣Wp↠t
∣) + ∑

p∈P←t

(⊙(p) ∗ ∣Wp↠t
∣) + ∑

p∈P↮t

(⊙(p) ∗ ∣Wp↠t
∣)

⎞
⎠

= ∑
t∈TS−{t0}

⎛
⎝ ∑
p∈P→t

((⊙′(p) + 1) ∗ ∣Wp↠t
∣) + ∑

p∈P←t

((⊙′(p) − 1) ∗ ∣Wp↠t
∣)

+ ∑
p∈P↮t

(⊙(p) ∗ ∣Wp↠t
∣)

⎞
⎠

= ∑
t∈TS−{t0}

⎛
⎝ ∑
p∈P→t

(⊙′(p) ∗ ∣Wp↠t
∣) + ∑

p∈P←t

(⊙′(p) ∗ ∣Wp↠t
∣) + ∑

p∈P↮t

(⊙(p) ∗ ∣Wp↠t
∣)

∑
p∈P→t

(∣Wp↠t
∣) − ∑

p∈P←t

(∣Wp↠t
∣)

⎞
⎠

899:999;
≥0

≥ ∑
t∈TS−{t0}

⎛
⎝ ∑
p∈P→t

(⊙′(p) ∗ ∣Wp↠t
∣) + ∑

p∈P←t

(⊙′(p) ∗ ∣Wp↠t
∣) + ∑

p∈P↮t

(⊙′(p) ∗ ∣Wp↠t
∣)

⎞
⎠

= ∑
t∈TS−{t0}

⎛
⎝∑p∈P

(⊙′(p) ∗ ∣Wp↠t
∣)

⎞
⎠
= ∑

t∈TS−{t0}

ζ(m′, t)

Thus, ∑
t∈TS−{t0}

ζ(m, t) ≥ ∑
t∈TS−{t0}

ζ(m′, t) holds and Lemma 5 is proven. ◻

Having proven that Lemma 4 and Lemma 5 hold, we now can prove Lemma 3:

Proof 10 (The Rank of a Net Decreases when a Silent Transition Fires (Lemma 3)).

ξ(m) = ∑
t∈TS

ζ(m, t) = ζ(m, t0) + ∑
t∈TS−{t0}

ζ(m, t)

> ζ(m′, t0) + ∑
t∈TS−{t0}

ζ(m, t) ≥ ζ(m′, t0) + ∑
t∈TS−{t0}

ζ(m′, t) = ∑
t∈TS

ζ(m′, t) = ξ(m′)

Thus, ξ(m) > ξ(m′) holds and Lemma 3 is proven. ◻

The termination of silent subtraces (i.e, Theorem 4) is a direct consequence of Lemma 3:

Proof 11 (Termination of Silent Subtraces).
From Lemma 3 results:

∀τ ∈ T# ∶ ∃N ∶= ξ(mark#(τ)) ∈ N ∶ ∀υ ∈ T ⊵τ
with

∣τ ∣ +N < ∣υ∣ ⇒ con#(τ) ≠ con#(υ).

Thus, Theorem 4 is proven. ◻

According to Theorem 4, a DAI Net is message-deterministic, if the set of activated messages solely depends on

the messages exchanged before (cf. Def. 13).

Definition 13 (Message-Determinism).
We call a deterministic and sound DAI Net # message-deterministic, iff the same sequence of messages always
activates the same messages, i.e., the set of activated messages solely depends on the messages exchanged before,
i.e.,

∀τ, υ ∈ T# ∶ (opt#(mark#(τ)), opt#(mark#(υ)) ⊆ Σ# ∧ ΠΣ#
(τ) = ΠΣ#

(υ))
⇒ opt#(mark#(τ)) = opt#(mark#(υ))

Let # be a deterministic, sound and message-deterministic DAI Net. Then:

mo# ∶ C# → 2Σ# ∶ η ↦ mo#(η) maps each conversation to the set of messages it activates, with
mo#(η) ∶= opt#(mark#(τ)), τ ∈ O⋆

is defined by η = con#(τ) and opt#(mark#(τ)) ⊆ Σ#.

Since # is message-deterministic, the definition is unique. Thus, mo# is well defined.

Until now, we solely considered DAI Nets and conversations from a global perspective. However, a role solely

knows those messages of a conversation it sends or receives. Thus, in Def. 14 the view of a role on the messages

of a conversation is introduced. Further, for each role the set of activated options is defined.

Definition 14 (Views on Conversations and Options).
Let I = (R,D, C, domC , sC , rC , ε) be an interaction domain and let the tuple # =
(P, pin, Po, Pfi, T, TS , TI , V, class,→,⇢, domV , grd) be a sound, deterministic, and message-deterministic
DAI Net. Let further R ∈ R be a role. Then we can define the following views

● vcR# ∶ C⋆
→ Σ⋆

R ∶ (ηk)k∈[1..n] ↦ vcR#(η) ∶= ΠΣR
(η) maps each conversation on # to the view of R on it,

whereby the view is the projection of the conversation to the messages sent or received by Role R,
● vcR→

∶ C⋆
→ Σ⋆

R ∶ (ηk)k∈[1..n] ↦ vcR→
(η) ∶= ΠΣR→

(η) maps each conversation on # to the projection of the
conversation to the messages sent by Role R,

● voR# ∶ 2Σ# → 2ΣR ∶ M ↦ voR#(M) ∶= M ∩ΣR maps each set of messages to its messages that may be sent or
received by Role R,

● voR→
∶ 2Σ# → 2ΣR→ ∶M ↦ voR→

(M) ∶=M ∩ΣR→ maps each set of messages to its messages that may be sent
by Role R.

Based on Def. 14, we can define realizability. It denotes DAI Nets to be deterministic from the viewpoint of a

role. Further, clear termination is defined, which indicates that a role can determine when it sent or received its

last message.

Definition 15 (Realizability, Clear Termination).
Let # be a deterministic, sound, and message-deterministic DAI Net. Then, for a role R ∈ R:

● # is realizable, iff the messages role R may send solely depend on the messages R has sent and received
before, i.e.,

∀R ∈ R ∶ ∀η, κ ∈ C# ∶ vcR#(η) = vcR#(κ) ⇒ voR→
(mo#(η)) = voR→

(mo#(κ))

● # clearly terminates, iff it solely depends on the messages R has sent and received before whether further
interaction with R will occur, i.e.,

∀R ∈ R ∶ ∀η ∈ Cc
#∄κ ∈ C# ∶ vcR#(η) ◁ vcR#(κ)

An important issue concerns decidability of the introduced properties of DAI Nets and DAChors; i.e., determinism,

soundness, message-determinism, realizability, and clear termination (cf. Def. 11-15). Basically, these properties

are decidable. Due to lack of space, we omit a discussion in this technical report.

IV. RELATED WORK

In the context of workflows [1], [16] and SOA [17], correctness has been discussed for a long time [15].

The approaches presented [12], [18] consider data as well. The two paradigms for modeling choreographies (i.e.

interconnection and interaction models) are compared in [19]. Examples of interconnection models are BPMN 2.0

Collaborations [3] and BPEL4Chor [4]. There are several approaches that discuss the verification classic soundness

criteria (i.e. boundedness, absence of deadlocks, absence and lifelocks) of distributed and collaborative workflows

and service orchestrations [5], [13], [14], [20]–[24]. Some object-aware [25], [26] and data-driven approaches [27],

[28] use data dependencies to interconnect processes and to define process interactions. Examples of interaction

models (i.e., the paradigm we apply) include Service Interaction Patterns [7], WSCDL [8], iBPMN Choreographies

[9], and BPMN 2.0 Choreographies [3]. Our approach has been mainly inspired by [9], which defines the behavior

of iBPMN Choreographies through their transformation to Interaction Petri Nets and further discusses correctness

and realizability. Realizability of interaction models is also discussed in [10], [29]. Furthermore, [11] provides a tool

for checking realizability of BPMN 2.0 Choreographies. However, all these approaches do not explicitly consider

the data exchanged by messages and used for routing decisions.

In [30], [31], state-based conversation protocols are introduced, which are aware of message contents. The

messages (and data) exchanged trigger state transitions. Thus, different data may trigger different transitions.

However, conversation protocols do not support the modeling of parallelism since they are state-based. Furthermore,

realizability of conversation protocols requires that at every state each partner is either able to send or receive a

message or to terminate (autonomy condition). This condition strongly restricts parallelism. For example, consider

a choreography solely consisting of two parallel branches: In the upper branch partner A sends a message m1 to

partner B and partner B sends message m2 to A in the lower branch. Obviously, the autonomy condition is violated

although the choreography is realizable (cf. Def. 15). Hence, conversation protocols do not constitute interaction

models in our point of view. Thus, to our best knowledge the framework presented within this technical report is

the first one that considers realizability and clear termination of data-aware interaction models.

V. SUMMARY AND OUTLOOK

Our vision is to provide sophisticated support for distributed and collaborative workflows. To foster this vision,

we base our work on the analysis of scenarios from different domains. In essence, we learned that data support is

practically relevant for interaction models from a variety of domains.

Further, this technical report introduced a formal framework for data-aware interaction models and described

how correctness can be ensured. The main parts of our framework include DAChors and DAI Nets as well as

the transformation of DAChors to DAI Nets. Further, the behavior of DAI Nets is defined. Other fundamental

contributions are the definitions of correctness criteria for data-aware interaction models. The latter include

message-determinism, realizability, and clear termination. In future work, we will extend our framework to support

asynchronous message exchange and related correctness properties. Finally, we will develop algorithms for efficiently

checking correctness of data-aware interaction models. In this context, we plan to apply abstraction strategies to

large data domains similar to [32].

Considering the data perspective is important but may be not sufficient to enable sophisticated support for

distributed and collaborative workflows. The time perspective [33]–[35] and the resource perspective [36], [37]

should be considered as well in the context of interaction modeling.

However, correctness criteria discussed in this technical report solely address structural and behavioral correctness.

As outlined in [38] semantic correctness (i.e., business process compliance) is challenging for distributed and

collaborative processes as well. Thus, we will try to transfer the results of our previous work about business

process compliance [32], [39]–[41] to distributed and collaborative processes.

Fields of application of our research may be domains with collaborative and heavily interacting processes, e.g.,

healthcare domain [42] and automotive domain [28], [43].

ACKNOWLEDGMENT

This work was done within the research project C3Pro funded by the German Research Foundation (DFG),

Project number: RE 1402/2-1. Parts of this technical report will be published in [44].

REFERENCES

[1] Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems: Challenges, Methods, Technologies. Springer
(2012)

[2] Reichert, M., Bauer, T., Dadam, P.: Enterprise-wide and cross-enterprise workflow management: Challenges and research issues for
adaptive workflows. In: Proc Enterprise-wide and cross-enterprise workflow management. (1999) 55–64

[3] OMG/BPMI: Bpmn version 2.0 (2011)
[4] Decker, G., et al.: Bpel4chor: Extending bpel for modeling choreographies. ICWS 2007 (2007) 296–303
[5] van der Aalst, W.M.P., et al.: Multiparty contracts: Agreeing and implementing interorganizational processes. The Computer Journal

53(1) (2010) 90–106
[6] Decker, G., Barros, A.P.: Interaction modeling using bpmn. In: BPM Workshops. (2007) 208–219
[7] Barros, A., Dumas, M., Ter Hofstede, A.: Service interaction patterns. Business Process Management (2005) 302–318
[8] W3C: Web services choreography description language v1.0 (2005)
[9] Decker, G., Weske, M.: Interaction-centric modeling of process choreographies. Information Systems 36(2) (2011) 292–312

[10] Lohmann, N., Wolf, K.: Realizability is controllability. Web Services and Formal Methods (2010) 110–127
[11] Poizat, P., Salaün, G.: Checking the realizability of BPMN 2.0 choreographies. In: Proc SAC’11. (2011)
[12] Trčka, N., van der Aalst, W.M.P., Sidorova, N.: Data-flow anti-patterns: Discovering data-flow errors in workflows. Proc. CAiSE’09

(2009) 425–439
[13] Yellin, D., Strom, R.: Protocol specifications and component adaptors. ACM TOPLAS 19(2) (1997) 292–333
[14] Rinderle, S., Wombacher, A., Reichert, M.: Evolution of process choreographies in DYCHOR. In: Proc CoopIS’06. (2006) 273–290

[15] van der Aalst, W.M.P.: Verification of workflow nets. Application and Theory of Petri Nets (1997) 407–426
[16] Weske, M.: Workflow management systems: Formal foundation, conceptual design, implementation aspects. Springer (2007)
[17] Erl, T.: Service-oriented architecture: a field guide to integrating XML and web services. Prentice Hall PTR (2004)
[18] Reichert, M., Dadam, P.: ADEPTflex – supporting dynamic changes of workflows without losing control. Intelligent Information

Systems 10(2) (1998) 93–129
[19] Kopp, O., Leymann, F.: Do we need internal behavior in choreography models. In: Proc ZEUS’09. (2009) 2–3
[20] van der Aalst, W.M., Barthelmess, P., Ellis, C., Wainer, J.: Proclets: A framework for lightweight interacting workflow processes.

Cooperative Information Systems 10(04) (2001) 443–481
[21] Foster, H., Uchitel, S., Magee, J., Kramer, J.: An integrated workbench for model-based engineering of service compositions. Services

Computing Transactions on 3(2) (2010) 131–144
[22] Rinderle, S., Wombacher, A., Reichert, M.: On the controlled evolution of process choreographies. In: Proc ICDE’06. (2006) 124
[23] Reichert, M., Bauer, T., Dadam, P.: Flexibility for distributed workflows. In: Handbook of Research on Complex Dynamic Process

Management. BSR, IGI Global (2009) 137–171
[24] Reichert, M., Bauer, T.: Supporting ad-hoc changes in distributed workflow management systems. In: Proc CoopIS’07. (2007) 150–168
[25] Künzle, V., Reichert, M.: Towards object-aware process management systems: Issues, challenges, benefits. Enterprise, Business-Process

and Information Systems Modeling (2009) 197–210
[26] Künzle, V., Reichert, M.: PHILharmonicFlows: towards a framework for object-aware process management. Software Maintenance

and Evolution: Research and Practice 23(4) (2011) 205–244
[27] Müller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of large process structures. In: Proc CoopIS’07. (2007)

131–149
[28] Müller, D., Reichert, M., Herbst, J.: A new paradigm for the enactment and dynamic adaptation of data-driven process structures. In:

Proc CAiSE’08, Springer (2008) 48–63
[29] Decker, G.: Realizability of interaction models. In: Proc ZEUS’09. (2009) 55–60
[30] Fu, X., Bultan, T., Su, J.: Conversation protocols: A formalism for specification and verification of reactive electronic services. In:

Proc CIAA’04. (2004) 188–200
[31] Fu, X., Bultan, T., Su, J.: Realizability of conversation protocols with message contents. Web Services Research 2(4) (2005) 68–93
[32] Knuplesch, D., Ly, L., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On enabling data-aware compliance checking of business process

models. In: Proc ER’10. (2010) 332–346
[33] Lanz, A., Weber, B., Reichert, M.: Time patterns in process-aware information systems - a pattern-based analysis - revised version.

Technical Report UIB-2009, Ulm University, Faculty of Engineering and Computer Sciences (2009)
[34] Lanz, A., Weber, B., Reichert, M.: Workflow time patterns for process-aware information systems. In: Enterprise, Business-Process

and Information Systems Modeling. Springer (2010) 94–107
[35] Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information systems. Requirements Engineering (2012)
[36] Russell, N., van der Aalst, W., Ter Hofstede, A., Edmond, D.: Workflow resource patterns: Identification, representation and tool

support. In: Proc. CAiSE’05. (2005) 11–42
[37] Rinderle-Ma, S., Reichert, M.: Comprehensive life cycle support for access rules in information systems: The ceosis project. Enterprise

Information Systems 3(3) (2009) 219–251
[38] Knuplesch, D., Reichert, M., Mangler, J., Rinderle-Ma, S., Fdhila, W.: Towards compliance of cross-organizational processes and their

changes. In: Proc SBP’12, Springer (2012)
[39] Ly, L., Knuplesch, D., Rinderle-Ma, S., Göser, K., Pfeifer, H., Reichert, M., Dadam, P.: Seaflows toolset–compliance verification made

easy for process-aware information systems. Information Systems Evolution (2011) 76–91
[40] Knuplesch, D., Reichert, M.: Ensuring business process compliance along the process life cycle: David knuplesch; manfred reichert.

Technical Report 2011-06, Ulm University, Faculty of Engineering and Computer Sciences (2011)
[41] Ly, L., Rinderle-Ma, S., Knuplesch, D., Dadam, P.: Monitoring business process compliance using compliance rule graphs. In: Proc

CoopIS’11, Springer (2011) 82–99
[42] Lenz, R., Reichert, M.: It support for healthcare processes–premises, challenges, perspectives. Data & Knowledge Engineering 61(1)

(2007) 39–58
[43] Müller, D., Herbst, J., Hammori, M., Reichert, M.: It support for release management processes in the automotive industry. In: Proc

BPM’06, Springer (2006) 368–377
[44] Knuplesch, D., Pryss, R., Reichert, M.: Data-aware interaction in distributed and collaborative workflows: Modeling, semantics,

correctness. In: ProcCollaborateCom’12 (accepted for publication). (2012) 332–346

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich

Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de

Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe

Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Köbler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schöning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Köbler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara,
U. Schöning, R. Silvestri, T. Thierauf
Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Köbler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kühnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntax-directed
semantics

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost
Narrowing

92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any
Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal
Communications Manager

93-02 M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch
The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree
Transducers

94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

94-09 F.W. von Henke, A. Dold, H. Rueß, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars:
Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman,Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algorithms

95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger
kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schulthess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen
Netzen am Beispiel Truck Backer-Upper

95-11 Thomas Beuter, Peter Dadam:
Prinzipien der Replikationskontrolle in verteilten Systemen

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche
mit VSE

96-02 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of
Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am
Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with
Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT–
Ansätzen

96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmuth Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation
Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids

97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow
Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure

97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den
digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
ADEPTflex - Supporting Dynamic Changes of Workflows Without Loosing Control

97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development
environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken

97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem
Provers

97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für
eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information
Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

97-18 Johannes Köbler,Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity
Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde
Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und
Analyse

98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment

98-12 Gerhard Schellhorn
Proving Properties of Directed Graphs: A Problem Set for Automated Theorem
Provers

98-13 Gerhard Schellhorn, Wolfgang Reif
Theorems from Compiler Verification: A Problem Set for Automated Theorem
Provers

98-14 Mohammad Ali Livani
SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN

98-15 Mohammad Ali Livani, Jörg Kaiser
Predictable Atomic Multicast in the Controller Area Network (CAN)

99-01 Susanne Boll, Wolfgang Klas, Utz Westermann
A Comparison of Multimedia Document Models Concerning Advanced Requirements

99-02 Thomas Bauer, Peter Dadam
Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und
Simulation

99-03 Uwe Schöning
On the Complexity of Constraint Satisfaction

99-04 Ercument Canver
Model-Checking zur Analyse von Message Sequence Charts über Statecharts

99-05 Johannes Köbler, Wolfgang Lindner, Rainer Schuler
Derandomizing RP if Boolean Circuits are not Learnable

99-06 Utz Westermann, Wolfgang Klas
Architecture of a DataBlade Module for the Integrated Management of Multimedia
Assets

99-07 Peter Dadam, Manfred Reichert
Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems,
Applications. Paderborn, Germany, October 6, 1999, GI–Workshop Proceedings,
Informatik ’99

99-08 Vikraman Arvind, Johannes Köbler
Graph Isomorphism is Low for ZPPNP and other Lowness results

99-09 Thomas Bauer, Peter Dadam
Efficient Distributed Workflow Management Based on Variable Server Assignments

2000-02 Thomas Bauer, Peter Dadam
Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-
Management-System ADEPT

2000-03 Gregory Baratoff, Christian Toepfer, Heiko Neumann
Combined space-variant maps for optical flow based navigation

2000-04 Wolfgang Gehring
Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)
FM-Tools 2000: The 4th Workshop on Tools for System Design and Verification

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-
Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in
ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and
Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-
Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness
Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein

Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
(Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols)

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules

2004-02 Christian Heinlein
Concept and Implementation of C+++, an Extension of C++ to Support User-Defined
Operator Symbols and Control Structures

2004-03 Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01 Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
19th Workshop on (Constraint) Logic Programming

2005-02 Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03 Walter Guttmann, Markus Maucher
Constrained Ordering

2006-01 Stefan Sarstedt
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02 Alexander Raschke, Ramin Tavakoli Kolagari
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
Systemen

2006-03 Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
Eine qualitative Untersuchung zur Produktlinien-Integration über
Organisationsgrenzen hinweg

2006-04 Thorsten Liebig
Reasoning with OWL - System Support and Insights –

2008-01 H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for graphical display

2008-02 Manfred Reichert, Peter Dadam, Martin Jurisch,l Ulrich Kreher, Kevin Göser,
 Markus Lauer

 Architectural Design of Flexible Process Management Technology

2008-03 Frank Raiser
 Semi-Automatic Generation of CHR Solvers from Global Constraint Automata

2008-04 Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander
Entscheidungsdokumentation bei der Entwicklung innovativer Systeme für
produktlinien-basierte Entwicklungsprozesse

2008-05 Markus Kalb, Claudia Dittrich, Peter Dadam

 Support of Relationships Among Moving Objects on Networks

2008-06 Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)
 WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke

2008-07 M. Maucher, U. Schöning, H.A. Kestler
An empirical assessment of local and population based search methods with different
degrees of pseudorandomness

2008-08 Henning Wunderlich
Covers have structure

2008-09 Karl-Heinz Niggl, Henning Wunderlich
Implicit characterization of FPTIME and NC revisited

2008-10 Henning Wunderlich
On span-Pсс and related classes in structural communication complexity

2008-11 M. Maucher, U. Schöning, H.A. Kestler
On the different notions of pseudorandomness

2008-12 Henning Wunderlich
On Toda’s Theorem in structural communication complexity

2008-13 Manfred Reichert, Peter Dadam
Realizing Adaptive Process-aware Information Systems with ADEPT2

2009-01 Peter Dadam, Manfred Reichert
The ADEPT Project: A Decade of Research and Development for Robust and Fexible
Process Support
Challenges and Achievements

2009-02 Peter Dadam, Manfred Reichert, Stefanie Rinderle-Ma, Kevin Göser, Ulrich Kreher,
Martin Jurisch
Von ADEPT zur AristaFlow® BPM Suite – Eine Vision wird Realität “Correctness by
Construction” und flexible, robuste Ausführung von Unternehmensprozessen

2009-03 Alena Hallerbach, Thomas Bauer, Manfred Reichert
Correct Configuration of Process Variants in Provop

2009-04 Martin Bader

On Reversal and Transposition Medians

2009-05 Barbara Weber, Andreas Lanz, Manfred Reichert
Time Patterns for Process-aware Information Systems: A Pattern-based Analysis

2009-06 Stefanie Rinderle-Ma, Manfred Reichert
Adjustment Strategies for Non-Compliant Process Instances

2009-07 H.A. Kestler, B. Lausen, H. Binder H.-P. Klenk. F. Leisch, M. Schmid

Statistical Computing 2009 – Abstracts der 41. Arbeitstagung

2009-08 Ulrich Kreher, Manfred Reichert, Stefanie Rinderle-Ma, Peter Dadam
Effiziente Repräsentation von Vorlagen- und Instanzdaten in Prozess-Management-
Systemen

2009-09 Dammertz, Holger, Alexander Keller, Hendrik P.A. Lensch
Progressive Point-Light-Based Global Illumination

2009-10 Dao Zhou, Christoph Müssel, Ludwig Lausser, Martin Hopfensitz, Michael Kühl,
Hans A. Kestler
Boolean networks for modeling and analysis of gene regulation

2009-11 J. Hanika, H.P.A. Lensch, A. Keller
Two-Level Ray Tracing with Recordering for Highly Complex Scenes

2009-12 Stephan Buchwald, Thomas Bauer, Manfred Reichert
 Durchgängige Modellierung von Geschäftsprozessen durch Einführung eines

Abbildungsmodells: Ansätze, Konzepte, Notationen

2010-01 Hariolf Betz, Frank Raiser, Thom Frühwirth
A Complete and Terminating Execution Model for Constraint Handling Rules

2010-02 Ulrich Kreher, Manfred Reichert

Speichereffiziente Repräsentation instanzspezifischer
Änderungen in Prozess-Management-Systemen

2010-03 Patrick Frey

Case Study: Engine Control Application

2010-04 Matthias Lohrmann und Manfred Reichert

Basic Considerations on Business Process Quality

2010-05 HA Kestler, H Binder, B Lausen, H-P Klenk, M Schmid, F Leisch (eds):

Statistical Computing 2010 - Abstracts der 42. Arbeitstagung

2010-06 Vera Künzle, Barbara Weber, Manfred Reichert

Object-aware Business Processes: Properties, Requirements, Existing Approaches

2011-01 Stephan Buchwald, Thomas Bauer, Manfred Reichert
Flexibilisierung Service-orientierter Architekturen

2011-02 Johannes Hanika, Holger Dammertz, Hendrik Lensch
Edge-Optimized À-Trous Wavelets for Local Contrast Enhancement with Robust
Denoising

2011-03 Stefanie Kaiser, Manfred Reichert

Datenflussvarianten in Prozessmodellen: Szenarien, Herausforderungen, Ansätze

2011-04 Hans A. Kestler, Harald Binder, Matthias Schmid, Friedrich Leisch, Johann M. Kraus

(eds):
Statistical Computing 2011 - Abstracts der 43. Arbeitstagung

2011-05 Vera Künzle, Manfred Reichert

PHILharmonicFlows: Research and Design Methodology

2011-06 David Knuplesch, Manfred Reichert

Ensuring Business Process Compliance Along the Process Life Cycle

2011-07 Marcel Dausend

Towards a UML Profile on Formal Semantics for Modeling Multimodal Interactive
Systems

2011-08 Dominik Gessenharter

Model-Driven Software Development with ACTIVECHARTS - A Case Study

2012-01 Andreas Steigmiller, Thorsten Liebig, Birte Glimm

Extended Caching, Backjumping and Merging for Expressive Description Logics

2012-02 Hans A. Kestler, Harald Binder, Matthias Schmid, Johann M. Kraus (eds):

Statistical Computing 2012 - Abstracts der 44. Arbeitstagung

2012-03 Felix Schüssel, Frank Honold, Michael Weber

Influencing Factors on Multimodal Interaction at Selection Tasks

2012-04 Jens Kolb, Paul Hübner, Manfred Reichert

Model-Driven User Interface Generation and Adaption in Process-Aware Information
Systems

2012-05 Matthias Lohrmann, Manfred Reichert

Formalizing Concepts for Efficacy-aware Business Process Modeling*

2012-06 David Knuplesch, Rüdiger Pryss, Manfred Reichert

A Formal Framework for Data-Aware Process Interaction Models

Ulmer Informatik-Berichte
ISSN 0939-5091

Herausgeber:
Universität Ulm
Fakultät für Ingenieurwissenschaften und Informatik
89069 Ulm

