Classification 2016 - Abstracts of the 5th German-Japanese Symposium

A Fürtber, JM Kraus, HA Kestler (eds)

Ulmer Informatik-Berichte

Nr. 2016-05
September 2016

Supported by

German Classification Society, Japanese Classification Society, German Research Foundation
5th German-Japanese Symposium on Classification 2016

Joint workshop of the

Japanese Classification Society (JCS)
and the
German Classification Society (GfKl)

11.09. - 13.09.2016, Schloss Reisensburg (Günzburg)
Workshop Program

Sunday, September 11, 2016

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:00-17:50</td>
<td>Informal Meeting</td>
</tr>
<tr>
<td>18:00-21:00</td>
<td>Welcome Reception and Get Together</td>
</tr>
</tbody>
</table>

Monday, September 12, 2016

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:50-09:00</td>
<td>Hans Kestler (Ulm) Opening</td>
</tr>
<tr>
<td>09:00-10:15</td>
<td>Chair: B. Lausen</td>
</tr>
<tr>
<td>09:00-09:25</td>
<td>Tadashi Imaizumi (Tokyo) Model Based Clustering for a Sparse Similarity Matrix</td>
</tr>
<tr>
<td>09:50-10:15</td>
<td>Ludwig Lausser (Ulm) Exact relabeling tests for classification</td>
</tr>
<tr>
<td>10:15-10:45</td>
<td>Break</td>
</tr>
<tr>
<td>10:45-12:00</td>
<td>Chair: T. Imaizumi</td>
</tr>
<tr>
<td>10:45-11:10</td>
<td>Berthold Lausen (Essex) Ensemble methods for clustering and classification</td>
</tr>
<tr>
<td>11:10-11:35</td>
<td>Sadaaki Miyamoto (Tsukuba) Ward method applied to non-positive definite matrices with a model of unstrict users</td>
</tr>
<tr>
<td>11:35-12:00</td>
<td>Atsuho Nakayama (Tokyo) Analysis of Trending Topics in Consumer Web Communication Data</td>
</tr>
<tr>
<td>12:00-13:30</td>
<td>Lunch</td>
</tr>
<tr>
<td>13:30-14:20</td>
<td>Chair: C. Weihs</td>
</tr>
<tr>
<td>13:30-13:55</td>
<td>Fumitake Sakaori (Tokyo) Fully Bayesian Soft Impute for Matrix Completion</td>
</tr>
<tr>
<td>13:55-14:20</td>
<td>Johann Kraus (Ulm) Tuning hierarchical clustering with domain knowledge</td>
</tr>
<tr>
<td>14:20-14:50</td>
<td>Break</td>
</tr>
<tr>
<td>14:50-15:40</td>
<td>Chair: A. Wilhelm</td>
</tr>
<tr>
<td>14:50-15:15</td>
<td>Claus Weihs (Dortmund) Classification on Large-Scale Data: Systematic Testing in the many-features case</td>
</tr>
<tr>
<td>15:15-15:40</td>
<td>Yoshiro Yamamoto, Sanetoshi Yamada (Hiratsuka) Visualization of cross tabulation using association plot</td>
</tr>
<tr>
<td>15:40-21:00</td>
<td>Social Program (Ulm) Guided Tour and Dinner</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>09:00-10:15</td>
<td>Chair: J. Kraus</td>
</tr>
<tr>
<td>09:00-09:25</td>
<td>Adalbert Wilhelm (Bremen)</td>
</tr>
<tr>
<td>09:25-09:50</td>
<td>Masahiro Mizuta (Sapporo)</td>
</tr>
<tr>
<td>09:50-10:15</td>
<td>Andreas Geyer-Schulz (Karlsruhe)</td>
</tr>
<tr>
<td>10:15-10:45</td>
<td>Break</td>
</tr>
<tr>
<td>10:45-13:55</td>
<td>Chair: A. Okada</td>
</tr>
<tr>
<td>10:45-11:10</td>
<td>Hans-Hermann Bock (Aachen)</td>
</tr>
<tr>
<td>11:10-11:35</td>
<td>Kei Kurakawa, Yasumasa Baba (Tokyo)</td>
</tr>
<tr>
<td>11:35-12:00</td>
<td>Jun Tsuchida (Kyoto)</td>
</tr>
<tr>
<td>12:00-13:30</td>
<td>Lunch</td>
</tr>
<tr>
<td>13:55-14:20</td>
<td>Hans Kestler (Ulm)</td>
</tr>
<tr>
<td>15:40</td>
<td>Departure</td>
</tr>
</tbody>
</table>
Synopsis

This volume comprises abstracts of talks presented at the 5th German-Japanese Symposium on Classification hosted by the Institute of Medical Systems Biology, Ulm University and the German Classification Society (GfKi) at the Reisensburg Castle in Günzburg 2016. President Prof. Dr. B. Lausen (University of Essex) and 1st Vice President Prof. Dr. H. A. Kestler (Ulm University) of the GfKi as well as President Tadashi Imaizumi (Tama University) and other members of the Japanese Classification Society (JCS) attended the symposium. The conference was supported by the GfKi as well as the German Research Foundation (DFG).

The scientific program of the symposium includes presentations covering a broad range of topics. A special emphasis is laid on research and development of tools, techniques, and strategies that address challenges of data science using computational, mathematical, statistical and data analytical methods for classification.

With half of the participants coming from outside of Germany, the symposium corroborates the spirit of international networks and cooperations.

Selected papers will be published in a special issue of the "Archives of Data Science".

Past Symposia:

- Tokyo 2005
- Berlin 2006
- Karlsruhe 2010
- Kyoto 2012

September 2016

Hans Kestler
Director, Institute of Medical Systems Biology
Ulm University
Contents

Model Based Clustering for a Sparse Similarity Matrix 1
Exact relabeling tests for classification ... 3
Ensemble methods for clustering and classification 4
Ward method applied to non-positive definite matrices with a model of unstrict users ... 5
Analysis of Trending Topics in Consumer Web Communication Data 6
Fully Bayesian Soft Impute for Matrix Completion 7
Tuning hierarchical clustering with domain knowledge 8
Classification on Large-Scale Data: Systematic Testing in the many-features case ... 9
Visualization of cross tabulation using association plot 10
The imbalanced class problem revisited .. 11
Analysis of environmental data with SDA and FDA 12
Do Industrial End-Consumer Product-Configurators Use Rational Pricing? A Case Study ... 13
Interaction-based co-clustering - but which interactions? 14
Tensor based relational learning for the author name disambiguation 15
Majorization algorithm for dominance point model 16
Big Data Clustering: Is Subsampling Better than Fast Pre-clustering? 17
List of technical reports published by the University of Ulm 19
Model Based Clustering for a Sparse Similarity Matrix

Tadashi Imaizumi

When a given (dis)similarity matrix S of $n \times n$, a hierarchical clustering methods is useful for us to understand the relationship of objects in data. However, it is difficult to choose the "proper" clusering results, without prior information of the number of clusters and distance metric between clusters etc. Bock(1996) discussed on probabilistic clustering and Fraley and Raftery(2003) discussed on the model-based cluster analysis. These probabilistic model-based clustering approach will be more appropriate to find the hidden clusters in data matrix of objects \times attributes.

It is also applicable for a similarity matrix after obtaining a dimensional representation of objects(configuration). However this approach is not appropriate one as it consists of two different phases. And how to derive this configuration becomes the key point. We propose a probabilistic model-based clustering approach for a similarity matrix. The normal distribution is assumed to derive a configuration for a fixed number of clusters G.

An object configuration will be obtained by a method of multi-dimensional scaling with a distributional assumption,

$$X_i \sim N(\mu_g, \Sigma_g), i = 1, 2, \cdots, n.$$ \hfill (1)

The covariance matrix of each cluster Σ_g is assumed to be decomposed as

$$\Sigma_g = \lambda_g D_k A_k D_k^T, g = 1, 2, \cdots, G$$ \hfill (2)

where D_k is the orthogonal matrix of eigenvectors. And the similarity s_{ij} between two objects i and j of same cluster are related as the distance between two corresponding points within cluster. And those between two objects of different clusters are related as the distance between two cluster means of each cluster. The configuration is updated with using the estimated covariance matrices. When a given sparse similarity matrix is one of the block-diagonal matrix, then the above procedure works well as the covariance matrix of each cluster will be identified, but, we need to pay attention when similarity matrix is more complex one. In that case, the structure of the covariance matrix will be restricted.

References

1 Tama University 4-1-1 Hijirigaoka, Tama, Tokyo, JAPAN, 206-0022

imaizumi@tama.ac.jp

Akinori Okada1 and Hiroyuki Tsurumi2

When a new brand is introduced into market, the new brand may dominate existing brands and takes a lot of customers away from the existing brands or the new brand may not dominate the other brands and takes only small number of the customers away from the existing brands. A brand switching matrix among existing brands is analyzed by asymmetric multidimensional scaling of Okada & Tsurumi (2014) to derive configuration of existing brands. The analysis represents one configuration along each dimension, where asymmetric relationships among existing brands are represented by the outward tendency and the inward tendency. The outward tendency of a brand represents the tendency of switching from the brand to the other brands, and the inward tendency of a brand represent the tendency of switching from the other brands to the brand. The characteristics of a new brand are compared with those of the existing brands along dimensions, and the location of the new brand in the configuration is determined. The location of the new brand is used to estimate the frequency of brand switching to/from the new brand with existing brands and the market share of the new brand as well. The procedure is applied to frequent shoppers program data analyzed in Okada & Tsurumi (2014).

References

1 Tama University Research Institute, 4-1-1 Hijirigaoka Tama-shi Tokyo Japan 206-0022
2 College of Business Administration, Yokohama National University, 79-4 Tokiwadai, Hodogaya-ku, Yokohama-shi Japan 240-8501

okada@rikkyo.ac.jp, tsurumi@ynu.ac.jp
Exact relabeling tests for classification

Ludwig Lausser, Alexander Groß, Hans A. Kestler

An object can typically be assigned to many different concepts. It is therefore not a sample for one particular class or category. This eclectic character of an object can be a hindrance for the process of supervised learning. Being not aware of the characteristic patterns of a categorization, a classifier might be diverted by the patterns of a different one.

For a chosen classification task, the suitability of a set of samples is therefore not only characterized by the classification accuracy achieved by the corresponding classifier. It is also characterized by the classification accuracy achieved for any other (possibly unknown) classification of the dataset. A relative measure of these two quality scores is needed.

In this work, we propose a relabeling strategy that allows the exhaustive evaluation of all binary labelings in the leave one out cross-validation experiments. The strategy utilizes the characteristics of k-nearest neighbor classifiers and the corresponding graph structures for fast and efficient calculation. It can be applied for the construction of an exact permutation test which relates the classification performance achieved for a chosen categorization to any other categorization. We utilize this strategy in artificial scenarios and the domain of functional genomics.

1 Institute of Medical Systems Biology, Ulm University, 89069 Ulm, Germany

ludwig.lausser@uni-ulm.de, alexander.gross@uni-ulm.de, hans.kestler@uni-ulm.de
Ensemble methods for clustering and classification

Berthold Lausen¹, Kaloyan Stoyanov², Luca Citi³, Rolando Medellín¹,², Henrik Nordmark², Aris Perperoglou¹

We review methods to use ensembles of selected classifiers to achieve classification rules with increased accuracy (Gul et al. 2016, Khan et al. 2016). Feature selection methods are often used as preprocessing method. For example after preprocessing microarray data with 500 000 probes and 22125 features (probesets) which represent genes, we use a proposal to improve feature selection of microarray data based on a proportional overlapping score (Mahmoud et al. 2014).

We investigate ensemble methods for cluster analysis. Using ensemble concepts Stoyanov (2015) developed an R package to use hierarchical clustering as preprocessing for k-means clustering. In addition we discuss proposals to use nonparametric and parametric bootstrap resampling and distance based variance estimation (Felsenstein 1985; Lausen & Degens, 1987; Degens, Lausen & Vach 1990) to derive a statistical evaluation of clusters.

References

Gul, A., Perperoglou, A., Khan, Z., Mahmoud, O., Miftahuddin, M., Adler, W., Lausen, B. (2016), Ensemble of a subset of kNN classifiers, Advances in Data Analysis and Classification, online first DOI:10.1007/s11634-015-0227-5

¹ Department Mathematical Sciences, University of Essex, UK
² Profusion Ltd., London, UK
³ School of Computer Science and Electronic Engineering, University of Essex, UK

blausen@essex.ac.uk
Ward method applied to non-positive definite matrices with a model of unstrict users

Sadaaki Miyamoto

It is well-known that the Ward method can only be applied to a set of objects as points in an Euclidean space and not to a general matrix of similarity/dissimilarity. More recently, it has also been proved that the Ward method can be applied to the class of semi-positive definite matrix of similarity by applying the theory of kernels. At the same time, the Ward method cannot be applied to the case of a non-positive definite matrix of similarity which has a negative eigenvalue. In spite of this fact, the aim of this study is to show the possibility to apply the Ward method even to the case of non-positive definite matrices of similarity S with a mild condition of $S(i,i) = 1$ for $i = 1, \ldots, n$ and $S(i,j) \leq S(i,i)$ for all j.

It is of course impossible that the Ward method is rigorously justified in the latter case. Instead, we introduce a model of unstrict users. Probably most researchers will agree that users of agglomerative hierarchical clustering in applications are rather rough or unstrict: they not care much about details of used similarities or very details of the output of dendrograms. Hence we assume a model of an unstrict user as follows: he does not care about the difference of two dissimilarities of $D(i,j)$ and $D'(i,j) = D(i,j) + \text{constant}$ when i and j are different. He does not care about the difference of two dendrograms when they produce the same sequence of the same clusters in the same order, but the merged levels of clusters may be different. We now have the following result:

Let S be a similarity matrix produced from D by a simple transformation of $S = E - D$, assuming $0 \leq D(i,j) \leq 1$. $S' = S + aE$ will be positive-definite for sufficiently large constant a. Then the Ward method can be justified to S'. The Ward method applied to S cannot be justified in the rigorous way, but the algorithm of the Ward method to S still works and the dendrogram applied to S is ‘isomorphic’ to another dendrogram applied to S' in the sense that the two dendrograms will produce the same sequence of the same clusters in the same order, but the merged levels of clusters are different. It is also easy to see that $D'(i,j) = D(i,j) + \text{constant}$.

To summarize, the Ward method can be applied to a non positive-definite S under the assumption of the above model of unstrict users. This result make the applicability of the Ward method much broader, e.g., to the case of network clustering without the use of a particular type of kernels.

Acknowledgment: This study has partly been supported by the Grant-in-Aid for Scientific Research, JSPS, Japan, no.26330270.

1 University of Tsukuba, Japan

miyamoto@risk.tsukuba.ac.jp
Analysis of Trending Topics in Consumer Web Communication Data

Atsuho Nakayama

In this study, we detected trending topics by classifying words into clusters based on the co-occurrence of words in web communications among consumers. We collected web communication data about certain specific themes based on their specific expressions of sentiment or interest. Because of the desire to identify market trends, the analysis of consumer web communication data has received much attention in Japan. To detect topics more easily, we tokenized each web communication data that was written in sentences or sets of words. However, one of the most difficult natural language-processing problems in Japanese is tokenization. This is referred to as the “wakachigaki” problem. In most Western languages, words are delimited by spaces and punctuation. In Japanese, words are not separated by spaces. We used morphological analyses such as tokenization, stemming, and part-of-speech tagging to separate the words. In our study, we used the Japanese morphological analyzer ChaSen to separate words in passages and to distinguish all nouns, verbs, and adjectives. ChaSen (http://chasen.naist.jp/) is a fast, customizable Japanese morphological analyzer that takes the form of a hierarchical structure. It is designed for generic use, and can be applied to a variety of language-processing tasks. The entry × word matrix obtained from the web communication data was sparse and of high dimensionality, so it was necessary to perform a dimensionality reduction analysis. We classified the words extracted from web communication data using non-negative matrix factorization as a dimensionality reduction model (Lee & Seung, 2000).

Acknowledgment: This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 16K00052) from the Japan Society for the Promotion of Science.

References

1 Graduate School of Social Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji-shi, Tokyo 192-0397, Japan

atsuho@tmu.ac.jp
Fully Bayesian Soft Impute for Matrix Completion

Fumitake Sakaori¹, Hiroki Kurosawa¹

Matrix completion methods for an incomplete low-rank matrix have been applied in many practical situation such as collaborative filtering, image processing and analysis of gene expression array. Accordingly, various matrix completion methods have been developed and investigated theoretically. The objective of these methods are to complete a incomplete observed matrix under the assumption that the observed matrix are represented as a sum of a low-rank matrix and a noise matrix.

Mazumder et al. (2010) proposed Soft-Impute, a sparse modeling for an incomplete matrix, where the sparsity of singular values of the low rank matrix is achieved by regularizing the nuclear norm of the low rank matrix. Todeschini et al. (2013) proposed an adaptive extension of the Soft-Impute, Hierarchical Adaptive Soft-Impute and gave their bayesian representation. The effectiveness of these methods heavily rely on the choice of tuning parameters.

In this study, we propose a fully bayesian modeling of Soft-Impute which can estimate the tuning parameters simultaneously.

References

¹ Department of Mathematics, Chuo University. 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551 JAPAN

sakaori@math.chuo-u.ac.jp
Tuning hierarchical clustering with domain knowledge

Johann M. Kraus¹ and Hans A. Kestler¹

Cluster analysis presents a variety of tools from the explorative data analysis that are used for predicting an unknown structure hidden in data. Unsupervised cluster methods do not make use of domain knowledge about any possible grouping of the data. However, many partitional cluster algorithms were adapted to additionally make use of available background information either by constraining the search process or by modifying the underlying metric. Limitations in the reproducibility of clustering results in resampling experiments triggered the inclusion of domain knowledge into the hierarchical clustering process, too. Based on our previous work (Kestler et al. 2006, Kraus et al. 2007), we present a general framework for including domain knowledge into a hierarchical clustering process. Our new semi-supervised cluster strategy aims at assessing the reliability of hierarchical clustering. Reliable clusters now can be identified by searching for the most stable partitions under different clustering conditions in resampling experiments.

References

¹ Institute of Medical Systems Biology, Ulm University, 89069 Ulm, Germany

johann.kraus@uni-ulm.de, hans.kestler@uni-ulm.de
Classification on Large-Scale Data: Systematic Testing in the many-features case

Claus Weihs¹, Tobias Kassner¹

In this paper we develop a systematic approach for testing the performance of classical classification methods on Large-Scale Data in the case with many more features than observations. We examine, e.g., the influence of the distance of the classes, of the covariance matrix, of the balance between the classes, and of the true error rate on the performance of the classifiers.

¹ Computational Statistics, Faculty of Statistics, TU Dortmund, 44221 Dortmund, Germany

weihs@statistik.uni-dortmund.de
Visualization of cross tabulation using association plot

Yoshiro Yamamoto¹ and Sanetoshi Yamada²

When comparing the response in a survey or medical treatments by some groups, we make the cross-tabulation tables then visualize them by such like bar plot or mosaic plot. For many questions or treatments, we want to find the item that the reaction of a particular group is different from the others. Association rule analysis are suitable for the kind of analysis. By using the coordinates by biplot of correspondence analysis it is possible to plot the relationship between items (treatments) and groups. In this visualization, correspondence analysis and association rules analysis are complement each other. Yamada and Yamamoto [1] introduce this kind of visualization with interactive by using Shiny. For the medical treatments analysis, it is good to explain with odds ratio. Then we introduce odds ratio criterion to our visualization method. To introduce this criterion, our interactive visualization has a meaningful reference plot.

References

¹ Department of Mathematics, School of Science, Tokai University. 4-1-1 Kitakaname, Hiratsuka, Japan.
² Graduate School of Science and Technology, Tokai University. 4-1-1 Kitakaname, Hiratsuka, Japan.

yama@tokai-u.jp, S.Yamada@star.tokai-u.jp
The imbalanced class problem revisited

Adalbert F.X. Wilhelm

The last decades have seen the invention of a number of modern classification algorithms, such as CART, AdaBoost, support vector machines, and random forests which have shown to result in improved predictions for the expense of diminished interpretability. Imbalanced classes pose a challenge for these data-driven classifiers since the majority class provides more information to fine tune the classifier and equips even naive classifiers with good accuracy performance measures. However, the minority class is typical of higher importance and hence classifiers that yield improved predictions for the minority class are desired. In this presentation, we present an overview on various methods for classifying imbalanced data which each has its own advantages and disadvantages. The evaluation of the algorithms will be illustrated by examples predicting the occurrence of military conflicts.

1 Jacobs University Bremen, Psychology and Methods, Campus Ring 1, 28759 Bremen, Germany

a.wilhelm@jacobs-university.de
Analysis of environmental data with SDA and FDA

Masahiro Mizuta

In our talk, we focus on an environmental dataset. Most of environmental data sets are constructed with location, time, and many factors. We utilize two approaches: Symbolic Data Analysis (SDA) [2] and Functional Data Analysis (FDA) [4]. FDA and SDA are both proposed around 1980’s. They gave us new frameworks for complex structured data.

In FDA, the objects in the data sets are represented by functions or curves. When saying in other words, the individuals which were described as the points in p dimensional space in the frame work of the conventional multivariate analysis, are represented by a set of continuous functions. This representation is good for analysis of transition of the values depended on time.

In SDA, the targets objects are named as "concepts". The concepts have descriptions, e.g. interval values, distributional values, a set of them and so on. This means that SDA takes advantage of various kinds of descriptions and has the flexibility. We use the environmental data; air dose rates measured every 3 seconds by 32 route buses in Fukushima Prefecture. The records of the data include time, latitude, longitude, and air does rate. Total number of records is 13,508,200. This data set is a kind of big data. We analyze it using FDA, SDA and Mini Data approach [4].

References

Advanced Data Science Lab., Information Initiative Center, Hokkaido University, N11, W6, Kita-ku, Sapporo 060-0811, Japan

mizuta@iic.hokudai.ac.jp

Andreas Geyer-Schulz1, Tino Fuhrmann1, Marvin Schweizer1

In this paper we mine an anonymized open data set with car configuration data provided by TNS Infratest. We follow the a priori segmentation of car configurations by model line and engine type used by the car manufacturer. For all these segments we identify all sets of configurations with the same configuration price. For each segment with the same we compute the attribute lattices of car configurations with the same price. With the help of utility theory we formalize tests of rationality and we identify deviations from rationality in the data set. Finally, we discuss the role of rational pricing strategies in end-consumer car configurators and suggest ways of exploiting deviations from rationality in the customer purchase process.

1 Karlsruhe Institute of Technology, Institute of Information Systems and Marketing, Department of Economics and Business Engineering, 76131 Karlsruhe, Germany

andreas.geyer-schulz@kit.edu
Interaction-based co-clustering - but which interactions?

Hans-Hermann Bock

We consider the problem of clustering simultaneously the rows and columns of a real-valued $I \times J$ data matrix $X = (x_{ij})$ by corresponding row and columns partitions $A = (A_1, ..., A_m)$ and $B = (B_1, ..., B_n)$, respectively, with two given numbers m and n of classes (two-way clustering, bi-clustering, co-clustering). Rows and columns may correspond, e.g., to individuals and variables in a study, or to the categories of two qualitative predictor variables which may affect the target variable x_{ij}. Various methods have been proposed for solving such bi-clustering problems, e.g., by optimizing a clustering criterion, by probabilistic co-clustering modeling, by adapting classical k-means or EM algorithms, or by empirical hierarchical or patchwork approaches. In this paper we concentrate on methods that highlight the interaction structure within or between the 'block clusters' $A_p \times B_q$ in the data matrix. When browsing through the literature, it appears that it is not at all clear which type of 'interaction' to use since there are various possible options, e.g.:

(a) the individual interactions $\gamma_{ij} := x_{ij} - \bar{x}_{.,.} - \bar{x}_{i,.} - \bar{x}_{.,j} + \bar{x}_{.,.}$, i.e., the individual overall deviations from additivity in X

(b) the blockwise interactions $g_{pq} := \bar{x}_{A_p \times B_q} - \bar{x}_{A_p, .} - \bar{x}_{., B_q} + \bar{x}_{.,.}$, i.e., the block-specific deviations from additivity in X

(c) the individual block-specific interactions $s_{ij} := x_{ij} - \bar{x}_{i, B_q} - \bar{x}_{A_p, .} + \bar{x}_{A_p, B_q}$ for $i \in A_p, j \in B_q$, i.e., the individual cluster-specific deviations from additivity in the submatrix $X^{A_p \times B_q} = (x_{ij})_{i \in A_p, j \in B_q}$.

This paper presents various co-clustering approaches dealing with these interactions, discusses the underlying models and bi-clustering structures, and cites possible application fields.

References

1 Institute of Statistics, RWTH Aachen University, 52062 Aachen, Germany

bock@stochastik.rwth-aachen.de
Tensor based relational learning for the author name disambiguation

Kei Kurakawa¹ and Yasumasa Baba²

Relational learning with tensor factorization has been attracting attention as a technique for data mining, data analysis, and data science (Kolda, 2009; Nickel, 2011). We apply tensor factorization techniques for the author name disambiguation that has been one of the most important issues of digital library research (Ferreira 2012).

In our approach, we represent author similarity matrices of bibliographic citation attributes on tensor slices, and apply tensor factorizations such as CP (CANDECOMP / PARAFAC) decomposition and Tucker decomposition to extract latent feature vectors as of author. Then, we cluster the authors represented by the feature vectors with a clustering technique, k-means to identify the group of citations for each author.

We conducted experiment of our approach with bibliographic citation data that we prepared for two author names. To process the data, we used a tensor library, scikit-tensor and a machine learning library, scikit-learn and compared effectiveness of our tensor based model to another model with latent variables, LDA.

References

¹ National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda, Tokyo, 101-8430, Japan
² The Institute of Statistical Mathematics, 10-3 Midoricho, Tachikawa, Tokyo, 190-8562, Japan

kurakawa@nii.ac.jp, baba@ism.ac.jp
Asymmetric multidimensional scaling (AMDS) is a visualization method that can be applied to asymmetric (dis)similarity data. The dominance point model proposed by Okada and Imaizumi (2007) is an AMDS model. This model represents asymmetry between objects as the difference in the distances between objects and a dominance point. One of the advantages of this model is the easy interpretation of asymmetry because the coordinate vectors of dominance points constitute the parameters of asymmetry. One of the disadvantages of this model is that calculation by using this algorithm is time consuming because it is a non-linear optimization algorithm. In this presentation, we introduce a majorization-minimization algorithm for dominance point model. We decompose the objective function of the dominance point model into symmetric and asymmetric parts. We create majorizing functions of the symmetric and asymmetric parts. Then, we create the update formula. Although the majorization-minimization algorithm is an iterative algorithm, we obtain often simply and explicit update formula under each step. Because the update formula of the majorization-minimization algorithm is simple, we could also introduce a majorization-minimization algorithm for the two-mode three-way dominance point model proposed by Okada and Imaizumi (2015) and Okada and Imaizumi (2015).

References

1 Graduate School of Culture and Information Science, Doshisha University, Tatara Miyakodani 1-3, Kyotanabe, Kyoto 610-0394, Japan
2 Department of Culture and Information Science, Doshisha University, Tatara Miyakodani 1-3, Kyotanabe, Kyoto 610-0394, Japan

juntsuchida0328@gmail.com, hyadohis@mail.doshisha.ac.jp
Big Data Clustering: Is Subsampling Better than Fast Pre-clustering?

Hans-Joachim Mucha

Often, Big Data is seen as a synonym for a massive dataset simply within the meaning of a very large number of observations (points) N. In this paper, the focus is on pre-clustering of such Big Data followed by a final clustering. Concretely, we propose a fast data pre-clustering by breaking a cloud of points successively into two clouds at its centroid by a hyperplane. The computational complexity of this iterative binary binning is linear proportional in N. Pre-clustering reduces the number of observations N to a much smaller number of micro-clusters $M << N$, say $M = 1000$. Alternatively, the well-known subsampling technique can be used to select $M << N$ observations randomly. However, if N is very large then the subsampling rate M/N becomes much smaller than the usual rates of 0.5 to 0.95 known from simulation studies. In any case, a final clustering of the M micro-clusters or the M resampled observations, respectively, results in a partition into the desired K clusters, where usually $K << M << N$. By doing so, the computational complexity of the final clustering doesn’t greatly matter with respect to N. Then the question arises: is our proposed fast pre-clustering better than subsampling? To answer this question the results of some simulation studies are presented.

1 Weierstrass Institute for Applied Analysis and Stochastics (WIAS), 10117 Berlin, Germany

mucha@wias-berlin.de
List of technical reports published by the University of Ulm

Some of them are available by FTP from ftp.informatik.uni-ulm.de
Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe
 Instance Complexity
91-02* K. Gladitz, H. Fassbender, H. Vogler
 Compiler-Based Implementation of Syntax-Directed Functional Programming
91-03* Alfons Geser
 Relative Termination
91-04* J. Köbler, U. Schöning, J. Toran
 Graph Isomorphism is low for PP
91-05 Johannes Köbler, Thomas Thierauf
 Complexity Restricted Advice Functions
91-06* Uwe Schöning
 Recent Highlights in Structural Complexity Theory
91-07* F. Green, J. Köbler, J. Toran
 The Power of Middle Bit
91-08* V. Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogawara, U. Schöning, R. Silvestri, T. Thierauf
 Reductions for Sets of Low Information Content
92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
 On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets
92-02* Thomas Noll, Heiko Vogler
 Top-down Parsing with Simultaneous Evaluation of Noncircular Attribute Grammars
92-03 Fakultät für Informatik
 17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen
92-04* V. Arvind, J. Köbler, M. Mundhenk
 Lowness and the Complexity of Sparse and Tally Descriptions
92-05* Johannes Köbler
 Locating P/poly Optimally in the Extended Low Hierarchy
92-06* Armin Kühnemann, Heiko Vogler
 Synthesized and inherited functions - a new computational model for syntax-directed semantics
92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost Narrowing

92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal Communications Manager

The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K. Kuhn, M. Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers
94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree Transducers

94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars: Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem
95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman, Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Independent Massive Parallelization of Divide-And-Conquer Algorithms

95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger kooperierender Assistenzyssysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schulthess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zielloptimierung mit neuronalen Netzen am Beispiel Truck Backer-Upper

95-11 Thomas Beuter, Peter Dadam
Prinzipien der Replikationskontrolle in verteilten Systemen

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche mit VSE

96-02 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

22
96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Managementsysteme am Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT-Ansätzen

96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmuth Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids

97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure
97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
ADEPTflex - Supporting Dynamic Changes of Workflows Without Loosing Control

97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken

97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem Provers

97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

97-18 Johannes Köbler, Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und Analyse
98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C-Code und Statmate/Matlab-Spezifikationen: Ein Experiment

98-12 Gerhard Schellhorn
Proving Properties of Directed Graphs: A Problem Set for Automated Theorem Provers

98-13 Gerhard Schellhorn, Wolfgang Reif
Theorems from Compiler Verification: A Problem Set for Automated Theorem Provers

98-14 Mohammad Ali Livani
SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN

98-15 Mohammad Ali Livani, Jörg Kaiser
Predictable Atomic Multicast in the Controller Area Network (CAN)

99-01 Susanne Boll, Wolfgang Klas, Utz Westermann
A Comparison of Multimedia Document Models Concerning Advanced Requirements

99-02 Thomas Bauer, Peter Dadam
Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und Simulation

99-03 Uwe Schöning
On the Complexity of Constraint Satisfaction

99-04 Ercument Canver
Model-Checking zur Analyse von Message Sequence Charts über Statecharts
99-05 Johannes Köbler, Wolfgang Lindner, Rainer Schuler
Derandomizing RP if Boolean Circuits are not Learnable

99-06 Utz Westermann, Wolfgang Klas
Architecture of a DataBlade Module for the Integrated Management of Multimedia Assets

99-07 Peter Dadam, Manfred Reichert

99-08 Vikraman Arvind, Johannes Köbler
Graph Isomorphism is Low for ZPP^{NP} and other Lowness results

99-09 Thomas Bauer, Peter Dadam
Efficient Distributed Workflow Management Based on Variable Server Assignments

2000-02 Thomas Bauer, Peter Dadam
Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-Management-System ADEPT

2000-03 Gregory Baratoff, Christian Toepfer, Heiko Neumann
Combined space-variant maps for optical flow based navigation

2000-04 Wolfgang Gehring
Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs
2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein
Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values (Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-03</td>
<td>Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)</td>
<td>Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence</td>
</tr>
<tr>
<td>2005-01</td>
<td>Armin Wolf, Thom Frühwirth, Marc Meister (eds.)</td>
<td>19th Workshop on (Constraint) Logic Programming</td>
</tr>
<tr>
<td>2005-02</td>
<td>Wolfgang Lindner (Hg.), Universität Ulm, Christopher Wolf (Hg.) KU Leuven</td>
<td>2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm</td>
</tr>
<tr>
<td>2005-03</td>
<td>Walter Guttmann, Markus Maucher</td>
<td>Constrained Ordering</td>
</tr>
<tr>
<td>2006-01</td>
<td>Stefan Sarstedt</td>
<td>Model-Driven Development with ACTIVECHARTS, Tutorial</td>
</tr>
<tr>
<td>2006-03</td>
<td>Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari</td>
<td>Eine qualitative Untersuchung zur Produktlinien-Integration über Organisationsgrenzen hinweg</td>
</tr>
<tr>
<td>2006-04</td>
<td>Thorsten Liebig</td>
<td>Reasoning with OWL - System Support and Insights –</td>
</tr>
<tr>
<td>2008-01</td>
<td>H.A. Kestler, J. Messner, A. Müller, R. Schuler</td>
<td>On the complexity of intersecting multiple circles for graphical display</td>
</tr>
<tr>
<td>2008-03</td>
<td>Frank Raiser</td>
<td>Semi-Automatic Generation of CHR Solvers from Global Constraint Automata</td>
</tr>
<tr>
<td>2008-04</td>
<td>Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander</td>
<td>Entscheidungs­dokumentation bei der Entwicklung innovativer Systeme für produktlinien-basierte Entwicklungsprozesse</td>
</tr>
<tr>
<td>2008-05</td>
<td>Markus Kalb, Claudia Dittrich, Peter Dadam</td>
<td>Support of Relationships Among Moving Objects on Networks</td>
</tr>
<tr>
<td>2008-06</td>
<td>Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)</td>
<td>WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke</td>
</tr>
</tbody>
</table>
2008-07 M. Maucher, U. Schöning, H.A. Kestler
An empirical assessment of local and population based search methods with different
degrees of pseudorandomness

2008-08 Henning Wunderlich
Covers have structure

2008-09 Karl-Heinz Niggl, Henning Wunderlich
Implicit characterization of FPTIME and NC revisited

2008-10 Henning Wunderlich
On span-P^c and related classes in structural communication complexity

2008-11 M. Maucher, U. Schöning, H.A. Kestler
On the different notions of pseudorandomness

2008-12 Henning Wunderlich
On Toda’s Theorem in structural communication complexity

2008-13 Manfred Reichert, Peter Dadam
Realizing Adaptive Process-aware Information Systems with ADEPT2

2009-01 Peter Dadam, Manfred Reichert
The ADEPT Project: A Decade of Research and Development for Robust and Flexible
Process Support Challenges and Achievements

2009-02 Peter Dadam, Manfred Reichert, Stefanie Rinderle-Ma, Kevin Göser, Ulrich Kreher,
Martin Jurisch
by Construction” und flexible, robuste Ausführung von Unternehmensprozessen

2009-03 Alena Hallerbach, Thomas Bauer, Manfred Reichert
Correct Configuration of Process Variants in Provop

2009-04 Martin Bader
On Reversal and Transposition Medians

2009-05 Barbara Weber, Andreas Lanz, Manfred Reichert
Time Patterns for Process-aware Information Systems: A Pattern-based Analysis

2009-06 Stefanie Rinderle-Ma, Manfred Reichert
Adjustment Strategies for Non-Compliant Process Instances

Statistical Computing 2009 – Abstracts der 41. Arbeitstagung

2009-08 Ulrich Kreher, Manfred Reichert, Stefanie Rinderle-Ma, Peter Dadam
Effiziente Repräsentation von Vorlagen- und Instanzdaten in Prozess-Management-
Systemen

2009-09 Dammertz, Holger, Alexander Keller, Hendrik P.A. Lensch
Progressive Point-Light-Based Global Illumination
2009-10 Dao Zhou, Christoph Müssel, Ludwig Lausser, Martin Hopfensitz, Michael Kühl, Hans A. Kestler
Boolean networks for modeling and analysis of gene regulation

2009-11 J. Hanika, H.P.A. Lensch, A. Keller
Two-Level Ray Tracing with Recordering for Highly Complex Scenes

2009-12 Stephan Buchwald, Thomas Bauer, Manfred Reichert
Durchgängige Modellierung von Geschäftsprozessen durch Einführung eines Abbildungsmodells: Ansätze, Konzepte, Notationen

2010-01 Hariolf Betz, Frank Raiser, Thom Frühwirth
A Complete and Terminating Execution Model for Constraint Handling Rules

2010-02 Ulrich Kreher, Manfred Reichert
Speichereffiziente Repräsentation instanzspezifischer Änderungen in Prozess-Management-Systemen

2010-03 Patrick Frey
Case Study: Engine Control Application

2010-04 Matthias Lohrmann und Manfred Reichert
Basic Considerations on Business Process Quality

2010-06 Vera Künzle, Barbara Weber, Manfred Reichert
Object-aware Business Processes: Properties, Requirements, Existing Approaches

2011-01 Stephan Buchwald, Thomas Bauer, Manfred Reichert
Flexibilisierung Service-orientierter Architekturen

2011-02 Johannes Hanika, Holger Dammertz, Hendrik Lensch
Edge-Optimized À-Trous Wavelets for Local Contrast Enhancement with Robust Denoising

2011-03 Stefanie Kaiser, Manfred Reichert
Datenflussvarianten in Prozessmodellen: Szenarien, Herausforderungen, Ansätze

2011-05 Vera Künzle, Manfred Reichert
PHILharmonicFlows: Research and Design Methodology

2011-06 David Knuplesch, Manfred Reichert
Ensuring Business Process Compliance Along the Process Life Cycle
2011-07 Marcel Dausend
Towards a UML Profile on Formal Semantics for Modeling Multimodal Interactive Systems

2011-08 Dominik Gessenharter
Model-Driven Software Development with ACTIVECHARTS - A Case Study

2012-01 Andreas Steigmiller, Thorsten Liebig, Birte Glimm
Extended Caching, Backjumping and Merging for Expressive Description Logics

2012-02 Hans A. Kestler, Harald Binder, Matthias Schmid, Johann M. Kraus (eds):
Statistical Computing 2012 - Abstracts der 44. Arbeitstagung

2012-03 Felix Schüssel, Frank Honold, Michael Weber
Influencing Factors on Multimodal Interaction at Selection Tasks

2012-04 Jens Kolb, Paul Hübner, Manfred Reichert
Model-Driven User Interface Generation and Adaption in Process-Aware Information Systems

2012-05 Matthias Lohrmann, Manfred Reichert
Formalizing Concepts for Efficacy-aware Business Process Modeling

2012-06 David Knuplesch, Rüdiger Pryss, Manfred Reichert
A Formal Framework for Data-Aware Process Interaction Models

2012-07 Clara Ayora, Victoria Torres, Barbara Weber, Manfred Reichert, Vicente Pelechano
Dealing with Variability in Process-Aware Information Systems: Language Requirements, Features, and Existing Proposals

2013-01 Frank Kargl
Abstract Proceedings of the 7th Workshop on Wireless and Mobile Ad-Hoc Networks (WMAN 2013)

2013-02 Andreas Lanz, Manfred Reichert, Barbara Weber
A Formal Semantics of Time Patterns for Process-aware Information Systems

2013-03 Matthias Lohrmann, Manfred Reichert
Demonstrating the Effectiveness of Process Improvement Patterns with Mining Results

2013-04 Semra Catalkaya, David Knuplesch, Manfred Reichert
Bringing More Semantics to XOR-Split Gateways in Business Process Models Based on Decision Rules

2013-05 David Knuplesch, Manfred Reichert, Linh Thao Ly, Akhil Kumar, Stefanie Rinderle-Ma
On the Formal Semantics of the Extended Compliance Rule Graph

2013-06 Andreas Steigmiller, Birte Glimm, Thorsten Liebig
Nominal Schema Absorption
2013-07 Hans A. Kestler, Matthias Schmid, Florian Schmid, Dr. Markus Maucher, Johann M. Kraus (eds)

2013-08 Daniel Ott, Dr. Alexander Raschke
Evaluating Benefits of Requirement Categorization in Natural Language Specifications for Review Improvements

2013-09 Philip Geiger, Rüdiger Pryss, Marc Schickler, Manfred Reichert
Engineering an Advanced Location-Based Augmented Reality Engine for Smart Mobile Devices

2014-01 Andreas Lanz, Manfred Reichert
Analyzing the Impact of Process Change Operations on Time-Aware Processes

2014-02 Andreas Steigmiller, Birte Glimm, and Thorsten Liebig
Coupling Tableau Algorithms for the DL SROIQ with Completion-based Saturation Procedures

2014-03 Thomas Geier, Felix Richter, Susanne Biundo
Conditioned Belief Propagation Revisited: Extended Version

2014-04 Hans A. Kestler, Matthias Schmid, Ludwig Lausser, Johann M. Kraus (eds)

2014-05 Andreas Lanz, Roberto Posenato, Carlo Combi, Manfred Reichert
Simple Temporal Networks with Partially Shrinkable Uncertainty (Extended Version)

2014-06 David Knuplesch, Manfred Reichert
An Operational Semantics for the Extended Compliance Rule Graph Language

2015-01 Andreas Lanz, Roberto Posenato, Carlo Combi, Manfred Reichert
Controlling Time-Awareness in Modularized Processes (Extended Version)

2015-03 Raphael Frank, Christoph Sommer, Frank Kargl, Stefan Dietzel, Rens W. van der Heijden
Proceedings of the 3rd GI/ITG KuVS Fachgespräch Inter-Vehicle Communication (FG-IVC 2015)

2015-04 Axel Fürstberger, Ludwig Lausser, Johann M. Kraus, Matthias Schmid, Hans A. Kestler (eds)
Statistical Computing 2015 - Abstracts der 47. Arbeitstagung

2016-03 Ping Gong, David Knuplesch, Manfred Reichert
Rule-based Monitoring Framework for Business Process Compliance

2016-04 Axel Fürstberger, Ludwig Lausser, Johann M. Kraus, Matthias Schmid, Hans A. Kestler (eds)

2016-05 Axel Fürstberger, Johann M. Kraus, Hans A. Kestler (eds)
Classification 2016 - Abstracts of the 5th German-Japanese Symposium

32