Modulhandbuch

Gesamtangebot des Fachbereichs Elektrotechnik

Sommersemester 2013
Inhaltsverzeichnis

1 Module

<table>
<thead>
<tr>
<th>1.1 Advanced Channel Coding</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 Advanced Optoelectronic Communication Systems</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Advanced Topics in Information Theory (ATIT)</td>
<td>10</td>
</tr>
<tr>
<td>1.4 Analog CMOS Circuit Design</td>
<td>13</td>
</tr>
<tr>
<td>1.5 Analoge Schaltungen</td>
<td>15</td>
</tr>
<tr>
<td>1.6 Angewandte Mathematik für Ingenieure</td>
<td>17</td>
</tr>
<tr>
<td>1.7 Applied Information Theory</td>
<td>19</td>
</tr>
<tr>
<td>1.8 Automatisierungstechnik</td>
<td>21</td>
</tr>
<tr>
<td>1.9 Bachelorarbeit</td>
<td>23</td>
</tr>
<tr>
<td>1.10 Bauelemente der Optoelektronik</td>
<td>24</td>
</tr>
<tr>
<td>1.11 Benutzerschnittstellen</td>
<td>26</td>
</tr>
<tr>
<td>1.12 Biosensors</td>
<td>28</td>
</tr>
<tr>
<td>1.13 Channel Coding</td>
<td>30</td>
</tr>
<tr>
<td>1.14 Circuit Design in Nanometer-Scaled CMOS Technologies</td>
<td>32</td>
</tr>
<tr>
<td>1.15 Communication Systems</td>
<td>34</td>
</tr>
<tr>
<td>1.16 Communications Engineering</td>
<td>36</td>
</tr>
<tr>
<td>1.17 Compound Semiconductors</td>
<td>38</td>
</tr>
<tr>
<td>1.18 Compressed Sensing - Effiziente Informationserfassung</td>
<td>40</td>
</tr>
<tr>
<td>1.19 Computational Sensing in Materials Science</td>
<td>43</td>
</tr>
<tr>
<td>1.20 Computer Networks</td>
<td>45</td>
</tr>
<tr>
<td>1.21 Cross-organizational distributed systems and Clouds</td>
<td>47</td>
</tr>
<tr>
<td>1.22 Cultural Crossroads</td>
<td>49</td>
</tr>
<tr>
<td>1.23 Dialogue Systems</td>
<td>50</td>
</tr>
<tr>
<td>1.24 Dialogue Systems</td>
<td>53</td>
</tr>
<tr>
<td>1.25 Digitale Regelungen</td>
<td>55</td>
</tr>
<tr>
<td>1.26 Digitale Regelungen</td>
<td>57</td>
</tr>
<tr>
<td>1.27 Digitale Schaltungen</td>
<td>59</td>
</tr>
<tr>
<td>1.28 Dünnenschichttechnologie</td>
<td>61</td>
</tr>
<tr>
<td>1.29 Einführung in die Energietechnik</td>
<td>63</td>
</tr>
<tr>
<td>1.30 Einführung in die HF-Übertragungstechnik</td>
<td>65</td>
</tr>
<tr>
<td>1.31 Einführung in die Hochfrequenztechnik</td>
<td>67</td>
</tr>
<tr>
<td>1.32 Einführung in die Nachrichtentechnik</td>
<td>70</td>
</tr>
<tr>
<td>1.33 Einführung in die Optoelektronik</td>
<td>73</td>
</tr>
<tr>
<td>1.34 Einführung in die Regelungstechnik</td>
<td>75</td>
</tr>
<tr>
<td>1.35 Einführung in die Werkstoffe</td>
<td>77</td>
</tr>
<tr>
<td>1.36 Electronic System Design using C and SystemC</td>
<td>79</td>
</tr>
<tr>
<td>1.37 Elektrische Antriebe II</td>
<td>81</td>
</tr>
<tr>
<td>1.38 Elektrische Antriebe I</td>
<td>84</td>
</tr>
<tr>
<td>1.39 Elektrische Messtechnik</td>
<td>86</td>
</tr>
<tr>
<td>1.40 Electromagnetic Fields and Waves - Weiterführende Methoden</td>
<td>88</td>
</tr>
<tr>
<td>1.41 Elektromagnetische Felder und Wellen</td>
<td>90</td>
</tr>
<tr>
<td>1.42 Embedded Security - Informationssicherheit in eingebetteten Systemen</td>
<td>92</td>
</tr>
<tr>
<td>1.43 Energiotechnik</td>
<td>95</td>
</tr>
<tr>
<td>1.44 Entwurf integrierter Systemen</td>
<td>97</td>
</tr>
<tr>
<td>1.45 Entwurf und Synthese von Digitalfiltern</td>
<td>99</td>
</tr>
<tr>
<td>1.46 Fahrerassistenzsysteme</td>
<td>101</td>
</tr>
<tr>
<td>1.47 Filter- und Trackingverfahren</td>
<td>103</td>
</tr>
<tr>
<td>1.48 Grenzen der Informationsverarbeitung</td>
<td>105</td>
</tr>
<tr>
<td>1.49 Grundlagen der Elektrotechnik II</td>
<td>107</td>
</tr>
<tr>
<td>1.50 Grundlagen der Elektrotechnik I</td>
<td>109</td>
</tr>
<tr>
<td>1.51 Grundlagen der Halbleiter-Bauelemente</td>
<td>111</td>
</tr>
<tr>
<td>1.52 Grundlagen und Anwendungen optischer Displays</td>
<td>113</td>
</tr>
<tr>
<td>1.53 Grundpraktikum der Elektrotechnik</td>
<td>115</td>
</tr>
<tr>
<td>1.54 Hochfrequenztechnik II</td>
<td>117</td>
</tr>
<tr>
<td>1.55 Identifikation dynamischer Systeme</td>
<td>119</td>
</tr>
<tr>
<td>1.56 Industriepraxis</td>
<td>121</td>
</tr>
<tr>
<td>1.57 Industriepraxis</td>
<td>122</td>
</tr>
<tr>
<td>1.58 Information Theory and Biology</td>
<td>124</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1.121 Theory of Digital Networks</td>
<td>247</td>
</tr>
<tr>
<td>1.122 Videotechnologie</td>
<td>249</td>
</tr>
<tr>
<td>1.123 Werkstoffe der Elektrotechnik</td>
<td>251</td>
</tr>
<tr>
<td>1.124 Werkstoffe der Energietechnik</td>
<td>254</td>
</tr>
</tbody>
</table>
1 Module

1.1 Advanced Channel Coding

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870442</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>4 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Martin Bossert</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Georg Schmidt</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Kommunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Elektrotechnik, M.Sc., Wahlmodul Allgemeine Elektrotechnik
- Informationssystemtechnik, M.Sc., Wahlpflichtmodul
- Communications Technology, M.Sc., Technisches Wahlmodul Communications Engineering

Voraussetzungen (inhaltlich):
Bachelor. Linear Algebra, Probability Theory, Combinatorics, Elementary Galois Theory

Lernziele:
- Acquisition of modern coding schemes, which are currently applied in technical applications or which are considered for future data transmission, data processing, and data storage systems.
- Acquisition of methods for analyzing modern coding schemes.
- To become acquainted with selected methods, problems, questions, and approaches which are currently investigated by the scientific channel coding community.

Inhalt:
The contents of the lecture can be grouped into two blocks: iterative decoding methods and algebraic decoding methods, which are suited for different kinds of applications. Iterative decoding methods are interesting for operating points close to capacity in applications where codes with large block lengths can be applied. In the lecture, two classes of iterative decoding schemes will be considered. The class of Turbo Codes was introduced 1993 by C. Berrou, A. Glavieux and P. Thitimasjshima. A Turbo Code consists of simple parallel concatenated component codes, which can efficiently be decoded by a symbol-by-symbol A Posteriori Probability (s/s APP) decoder. Such an s/s APP decoder is capable of utilizing reliability information from the channel and can compute reliabilities for the code symbols. After formally introducing the concept of reliabilities on the basis of probabilities, the principle of s/s APP decoding will be explained.
Inhalt (Fortsetzung): After this, several tools for analyzing Turbo decoders are considered. Another class of iteratively decodable codes is the class of Low Density Single Parity Check (LDPC) codes. Such codes are either described by sparsely occupied matrices or by bipartite graphs. Both descriptions will be considered, and it will be explained how LDPC codes can be constructed on the basis of these descriptions. After explaining how LDPC codes can be decoded iteratively, tools for analyzing them will be considered. Algebraic decoding of Reed-Solomon (RS) codes is used in many technical data transmission and data storage systems like hard disks, CDs, DVDs, digital video broadcasting, and many other applications. Two types of decoding strategies will be considered: syndrome-based decoding and interpolation-based decoding. Syndrome-based techniques for decoding Reed-Solomon codes are known for more than 30 years, and allow for decoding errors up to half the minimum code distance. Since such methods can be implemented very efficiently, they are applied in many algebraic error correcting schemes. After introducing these classical syndrome-based methods, it will be explained how these techniques may be applied in interleaved Reed-Solomon (IRS) schemes for decoding errors beyond half the minimum code distance. In 1997, M. Sudan proposed a novel algorithm for decoding RS codes, which is based on bivariate polynomial interpolation. This algorithm can also decode errors beyond half the minimum code distance by creating lists of codewords to resolve ambiguous decoding situations. Moreover, derivatives of the Sudan algorithm are capable of using lists of symbols at their inputs. The principles behind such interpolation-based techniques will be considered in the last part of the lecture. It will be explained how the list decoding concept can be used for decoding errors beyond half the minimum code distance, and how the problem of list decoding is solved by the Sudan algorithm and its derivatives.

In the exercise, students have the opportunity to implement selected algorithms from the lecture using MATLAB under guidance of a research assistant.

Topics:
- Iterative Decoding Methods Turbo-Codes
 - A Posteriori Probability (APP) Decoding
 - Intrinsic and Extrinsic Information
 - Statistical Analysis Methods like Monte-Carlo Simulation and Exit-Chart-Analysis
 - Low Density Single Parity Check (LDPC) Codes
 - Matrix and Graph Representation of LDPC Codes
 - Code Construction
 - Iterative Decoding by "Message Passing"
 - Statistical and Graph-Based Analysis Methods like Density Evolution and Stopping Sets
 - Algebraic Decoding Methods Syndrome-Based Techniques
 - Reed-Solomon (RS) Codes
 - Classical Decoding Approaches like the Peterson-Gorenstein-Zierler and Forney Algorithms
 - Interleaved Reed-Solomon (IRS) Codes and Collaborative Decoding
 - Interpolation-Based Techniques
 - Interpretation of the Decoding Problem as a Polynomial Interpolation Problem
 - The Sudan Algorithm and its Derivatives
 - List Decoding Concepts
- Justesen J. and Hoeholdt, T., A Course In Error Correcting Codes, EMS Publishing House, 2004
- Bossert M., Channel Coding for Telecommunications, John Wiley & Sons, 1999
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlage für:</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungen und Lehrformen: | Vorlesung “Advanced Channel Coding”, 2 SWS (V) ()
Übung “Advanced Channel Coding”, 1 SWS (Ü) () |
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 38 h
Vor- und Nachbereitung: 32 h
Selbststudium: 50 h
Summe: 120 h |
| Leistungsnachweis und Prüfungen: | in der Regel mündliche Prüfung, ansonsten schriftliche Prüfung von 120 Minuten Dauer |
| Voraussetzungen (formal): | keine |
| Notenbildung: | Die Modulnote entspricht dem Ergebnis der Prüfung |
1.2 Advanced Optoelectronic Communication Systems

Kürzel / Nummer: 8804870451

Deutscher Titel: -

Leistungspunkte: 6 ECTS

Semesterwochenstunden: 4

Sprache: Englisch

Turnus / Dauer: jedes Wintersemester / 1 Semester

Modulverantwortlicher: Priv.-Doz. Dr.-Ing. Rainer Michalzik

Dozenten: Priv.-Doz. Dr.-Ing. Rainer Michalzik

Einordnung des Moduls in Studiengänge: Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Elektrotechnik, M.Sc., Wahlpflichtmodul Mikroelektronik

Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik

Communications Technology, M.Sc., Technisches Wahlmodul Mikroelektronik

Voraussetzungen (inhaltlich): Einführung in die Optoelektronik / Optoelectronic Communication Technology

Lernziele:
The students should understand the operating principles of modern optical data-and telecommunication systems including key components like specialty optical fibers, wavelength (de-)multiplexers, laser diodes, modulators, optical amplifiers, and advanced photodiodes.

Inhalt:
This module provides an advanced overview over modern optical telecommunication and datacom systems as well as associated optoelectronic devices which form the backbone of the so-called Tera-Era, referring to the Terabits per second flowing through today’s optical fiber strands. Students will be able to understand the operation principles, potentials as well as limitations of various technologies. The module thus serves as a foundation upon which practical or theoretical research work in the Institute of Optoelectronics or later employment in the industry can be built. The following topics are addressed:
- Introduction to optical communication systems
- Multiplexing techniques and high-capacity DWDM systems
- The CWDM approach
- Single-mode fiber types
- Fiber dispersion limitations and dispersion management
- Polarization mode dispersion
- Nonlinear fiber transmission effects
- Optical amplifiers: EDFA, Raman and semiconductor optical amplifiers
- Fiber Bragg gratings
Inhalt (Fortsetzung):
- Devices for optical multiplexing and demultiplexing
- Planar lightwave circuits
- Optical MEMS
- Advanced semiconductor lasers for use in telecommunications: DBR and DFB lasers
- Laser-modulator integrated DWDM sources
- High-power lasers and associated problems
- Vertical-cavity surface-emitting lasers for datacom applications
- Photodetectors: Schottky, MSM, avalanche, and resonant-cavity-enhanced PDs

Literatur:
- A comprehensive English written manuscript is provided

Grundlage für:
keine Angaben

Lehrveranstaltungen und Lehrformen:
Vorlesung “Advanced Optoelectronic Communication Systems”, 3 SWS (V) ()
Übung “Advanced Optoelectronic Communication Systems”, 1 SWS (Ü) ()

Abschätzung des Arbeitsaufwands:
Vor- und Nachbereitung: 64 h
Präsenzzeit: 40 h
Selbststudium: 76 h
Summe: 180 h

Leistungsnachweis und Prüfungen:
Usually oral exam, otherwise written exam of 120 minutes duration

Voraussetzungen (formal):
keine

Notenbildung:
Module mark is identical to exam mark
1.3 Advanced Topics in Information Theory (ATIT)

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8834872077</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Dr.-Ing. Dejan E. Lazich</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr.-Ing. Dejan E. Lazich</td>
</tr>
<tr>
<td>Einordnung des Moduls in Studiengänge:</td>
<td></td>
</tr>
<tr>
<td>Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften</td>
<td></td>
</tr>
<tr>
<td>Elektrotechnik, M.Sc., Wahlmodul</td>
<td></td>
</tr>
<tr>
<td>Communications Technology, M.Sc., Technisches Wahlmodul</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td></td>
</tr>
<tr>
<td>- Bachelor/Vordiplom</td>
<td></td>
</tr>
<tr>
<td>- Knowledge of basic terms in Information Theory preferable but not necessary</td>
<td></td>
</tr>
<tr>
<td>- Mathematical prerequisites: linear algebra, analysis, probability, and combinatorics</td>
<td></td>
</tr>
<tr>
<td>Lernziele:</td>
<td></td>
</tr>
<tr>
<td>- Fundamental topics concerning reliable transmission of information</td>
<td></td>
</tr>
<tr>
<td>- Geometrical representation of communication systems</td>
<td></td>
</tr>
<tr>
<td>- The Channel coding theorem and its generalization</td>
<td></td>
</tr>
<tr>
<td>- Applications of the information theory in another scientific fields</td>
<td></td>
</tr>
<tr>
<td>- Performances limits in communication and computation</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Based on the theory learned in the course Applied Information Theory we will continue to explore some fundamental topics concerning reliable transmission of information and applications of the information theory in another scientific fields. In the first part of this course we will follow Shannon’s ingenious approach for representing any communication system geometrically. Signals and noise are represented by points in high-dimensional spaces. Using advanced geometric reasoning a number of basic results in information and communication theory are deduced with deep understanding of some very complex subjects. In the second part of this course we will discus some successful and controversial applications of information theory in cryptography, physics, biology, as well as at estimations of ultimate limits in computation and communication. The course will cover approximately the following topics:</td>
<td></td>
</tr>
<tr>
<td>- Information as a universal interpretation of Kolmogorov’s mathematical expectation</td>
<td></td>
</tr>
<tr>
<td>- Claude Elwood Shannon, the founding father of Information theory</td>
<td></td>
</tr>
</tbody>
</table>
Inhalt (Fortsetzung):

- Sampling and quantization – basic steps from the real to the digital world
- Geometry of signals and codes
- Optimal error control codes
- Simplex conjecture - strong and week interpretation
- Asymptotic bounds on communications
- The Channel coding theorem – from geometrical point of view
- Error exponent and channel capacity
- Generalized error exponent and channel capacity
- Channel coding theorem and ultimate limits of computation and communication
- Information theory and security
- Information theory and physics
- Information theory and genetics

Literatur:

 Further references and recommended readings:

Grundlage für:

- Master thesis.

Lehrveranstaltungen und Lehrformen:

- Vorlesung “Advanced Topics in Information Theory”, 2 SWS (V) ()
- Übung “Advanced Topics in Information Theory”, 1 SWS (Ü) ()

Abschätzung des Arbeitsaufwands:

- Vor- und Nachbereitung: 45 h
- Präsenzzeit: 60 h
- Selbststudium: 45 h

Summe: 150 h

Leistungsnachweis und Prüfungen:

- Usually oral exam of 30 minutes duration.

Voraussetzungen (formal):

Notenbildung:

- Module mark is identical to exam mark
1.4 Analog CMOS Circuit Design

Kürzel / Nummer: 8804870961

Deutscher Titel: -

Leistungspunkte: 6 ECTS

Semesterwochenstunden: 4

Sprache: Deutsch (SS) Englisch (WS)

Turnus / Dauer: jedes Semester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Maurits Ortmanns

Dozenten: Prof. Dr.-Ing. Maurits Ortmanns

Einordnung des Moduls in Studiengänge:
Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Elektrotechnik, M.Sc., Wahlpflichtmodul Komunikations- und Systemtechnik
Elektrotechnik, M.Sc., Wahlpflichtmodul Mikroelektronik
Elektrotechnik, M.Sc., Wahlpflichtmodul Automatisierungs- und Energietechnik
Informationssystemtechnik, M.Sc., Wahlpflichtmodul (Ing)
Communications Technology, M.Sc., Technisches Wahlmodul Mikroelektronik

Voraussetzungen (inhaltlich): Basic knowledge of semiconductor devices, analog circuits, control theory and signal processing.

Lernziele: This course is intended to provide in depth understanding of CMOS analog circuit and system design. Based on a functional review of the MOS transistor, both the ability to analyze as well as to design CMOS analog circuits will be learned. Not thorough theoretical analysis but more the understanding of analog circuit and system operation is the intention of the course. Accompanying exercises will provide hands on design and simulation experience.

Inhalt:
- Devices and layout in MOS technology
- CMOS transistor as an analog building block
- Small signal equivalent model
- 2nd order and short channel effects
- Basic CMOS analog building blocks: current sources, cascode, common source gain stage
- Differential stage, telescopic amplifier, two-stage amplifier
- Noise and distortion in CMOS analog circuits
- Switched capacitor circuits and filters
- A/D and D/A converter topologies
- Sigma-Delta A/D Converter

Literatur:
- Allen P.E., Holberg, D.R. “CMOS Analog Circuit Design”, Oxford University Press
- Baker, R.J. “CMOS Circuit Design, Layout, and Simulation”, Wiley

Lehrveranstaltungen und Lehrformen: Vorlesung "Analog CMOS Circuit Design”, 3 SWS (V) ()
Übung "Analog CMOS Circuit Design”, 1 SWS (Ü) ()
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 60 h
Vor- und Nachbereitung: 120 h
Summe: 180 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen (formal):</td>
<td>keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Anhand des Klausurergebnisses bzw. der mündlichen Prüfung.</td>
</tr>
</tbody>
</table>
1.5 Analoge Schaltungen

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8204870382</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>4 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Dr.-Ing. Andreas Trasser</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr.-Ing. Andreas Trasser</td>
</tr>
</tbody>
</table>
| Einordnung des Moduls in Studiengänge: | Elektrotechnik, B.Sc., Pflichtmodul
Informationssystemtechnik, B.Sc., Wahlpflichtmodul |
| Voraussetzungen (inhaltlich): | - Integral- und Differentialrechnung
- Inhalte der Vorlesung Grundlagen der Elektrotechnik I (insbes. Komplexe Wechselstromrechnung, Analyse von Gleich- und Wechselstrom-Netzwerken, gesteuerte Quellen, Bipolartransistor) |
| Lernziele: | - Studierende erlernen die Analyse analoger elektronischer Schaltungen, indem sie diese Schaltungen partitionieren und auf die Teilschaltungen die bekannten Regeln der Netzeranalyse anwenden.
- Sie erlernen die Grundregeln der Synthese analoger Schaltungen, indem sie anhand der Analyse von Teilschaltungen deren wesentliche Parameter erkennen und in neuen Kontexten anwenden. |
| Inhalt: | - Lineare und nichtlineare Modellbildung aktiver Bauelemente
- Grundschaltungen aktiver Bauelemente
- Erweiterte Grundschaltungen (z.B. Darlington, Kaskode, Differenzverstärker)
- Arbeitspunkt-Stabilisierung
- Elektronische Strom- und Spannungsquellen
- Grundlagen des Operationsverstärkers (OPV)
- Schaltungen mit OPV |
| Literatur: | - Tietze, U.; Schenk, Ch.: Halbleiterschaltungstechnik. 11. Auflage, Springer Verlag, 1999
- Horowitz, P, Hill, W., The Art of Electronics; Cambridge University Press |
| Grundlage für: | Veranstaltungen des Master-Studiums mit starken analog-elektronischen Inhalten. |
| Lehrveranstaltungen und Lehrformen: | Vorlesung "Analoge Schaltungen", 2 SWS (V) ()
Übung "Analoge Schaltungen", 1,5 SWS (Ü) ()
Labor "Analoge Schaltungen", 0,5 SWS (P) () |
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 48 h
Vor- und Nachbereitung: 72 h
Summe: 120 h |
<p>| Leistungsnachweis und Prüfungen: | in der Regel schriftliche Prüfung von 120 Minuten Dauer, ansonsten mündliche Prüfung. |</p>
<table>
<thead>
<tr>
<th>Voraussetzungen (formal):</th>
<th>keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notenbildung:</td>
<td>Die Modulnote entspricht dem Ergebnis der schriftlichen Prüfung.</td>
</tr>
</tbody>
</table>
1.6 Angewandte Mathematik für Ingenieure

Kürzel / Nummer: 8804870850

Englischer Titel: -

Leistungspunkte: 6 ECTS

Semesterwochenstunden: 4

Sprache: Deutsch

Turnus / Dauer: jedes Wintersemester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Martin Bossert

Dozenten: Prof. Dr. Max Riederle

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlmodul Allgemeine Elektrotechnik

Voraussetzungen (inhaltlich): Mathevorlesungen des Bachelorstudiums

Lernziele:
- Befähigung der Studierenden zum Erarbeiten mathematisch anspruchsvoller Gebiete des Master-Studiums;
- Angleichung der mathematischen Eingangsvoraussetzungen der Master-Studierenden

Inhalt:
Diese Vorlesung versteht sich als Service-Veranstaltung, in der auf im Masterstudium auftretende mathematische Probleme eingegangen wird. Es sollen aber nicht nur Fertigkeiten erworben und trainiert werden, sondern auch das Verständnis für die zugrundeliegende Mathematik gefördert werden. Gemäß dem oben angegebenen Grundverständnis richten sich die genauen Inhalte zum Teil nach den Vertiefungsrichtungen der Hörerinnen und Hörer. Typischerweise werden behandelt:
- Wiederholung und Vertiefung statistischer Themen wie z.B. stochastische Prozesse oder Rayleigh-Verteilung
- Normalformen von Matrizen und ihre Anwendungen in Systemtheorie
- spezielle Funktionen wie z.B. die Besselfunktionen und ihre Anwendungen
- algebraische Strukturen wie z.B. endliche Körper

Die Studierenden können auch selbst Themen vorschlagen, die sich aus mathematischen Problemen in anderen Fächern ergeben.

Literatur:

Grundlage für: keine Angaben
<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen:</th>
<th>Vorlesung "Angewandte Mathematik für Ingenieure", 3 SWS (V) ()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Übung "Angewandte Mathematik für Ingenieure", 1 SWS (Ü) ()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abschätzung des Arbeitsaufwands:</th>
<th>Präsenzzeit: 60 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 60 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 60 h</td>
</tr>
</tbody>
</table>

| Summe: 180 h |

| Leistungsnachweis und Prüfungen: | in der Regel eine schriftliche Prüfung von 180 Minuten Dauer, ansonsten eine mündliche Prüfung |

| Voraussetzungen (formal): | keine |

| Notenbildung: | Die Note entspricht dem Ergebnis der Prüfung |

1.7 Applied Information Theory

Kürzel / Nummer: 8804870422

Deutscher Titel: -

Leistungspunkte: 8 ECTS

Semesterwochenstunden: 6

Sprache: Englisch

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Martin Bossert

Dozenten: Prof. Dr.-Ing. Martin Bossert
Dr.-Ing. Carolin Huppert

Einordnung des Moduls in Studiengänge:

- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlpflichtmodul Automatisierungs- und Energietechnik
- Informationssystemtechnik, M.Sc., Wahlpflichtmodul
- Communications Technology, M.Sc., Technisches Wahlmodul Communications Engineering

Voraussetzungen (inhaltlich): - Bachelor
- Probability theory

Lernziele: The educational objective of this course is a basic understanding of theoretical concepts of information theory in the areas source coding, channel coding, cryptology and multi-user communication. Furthermore, well-known algorithms and their application should be analyzed and evaluated.

Inhalt: Information theory is the basis of modern telecommunication systems. Main topics of information theory are source coding, channel coding, multi-user communication systems, and cryptology. These topics are based on Shannons work on information theory, which allows to describe information with measures like entropy and redundancy. After a short overview of the whole area of information theory, we will consider concepts for statistic modeling of information sources and derive the source coding theorem. Afterwards, important source coding algorithms like Huffman, Tunstall, Lempel-Ziv and Elias-Willems will be described. The second part of the lecture investigates channel coding. Important properties of codes and fundamental decoding strategies will be explained. Moreover, we will introduce possibilities for estimating the error probability and analyze the most important channel models according to the channel capacity introduced by Shannon. The Gaussian channel is very important and therefore described extensively. The third part deals with aspects of multi-user communication systems. We will introduce several models and investigate methods that can achieve the capacity regions. Finally, we will give an introduction on data encryption and secure communication. In the projects several information theoretic topics (e.g., Lempel-Ziv-coding) will be investigated by means of implementation tasks.
Inhalt (Fortsetzung):

Overview: Basics:
- Uncertainty (entropy), mutual information
- Fano’s lemma, data processing inequality
Source Coding:
- Shannon’s source coding theorem
- Coding methods for memoryless sources: Shannon-Fano-, Huffman-, Tunstall, and arithmetic coding
- Coding for sources with memory
 Channel Coding:
 - Concepts of linear binary block codes
 - Shannon’s channel coding theorem
 - Random coding and error exponent
 - MAP and ML decoding
 - Bounds
 - Channels and capacities: Gaussian channel, fading channel
Multi-User Systems:
- Duplex transmission
- MAC channel
- BC channel
- MIMO channel
Cryptography:
- Basics
- IT-security
Projects: Source Coding and Mutual Information

Literatur:
- Cover, Thomas: Elements of Information Theory, Wiley
- Script 2009 (in German)
- Johannesson: Informationstheorie - Grundlagen der (Tele-) Kommunikation, Addison-Wesley

Grundlage für: für Communication Engineering and Wireless

Lehrveranstaltungen und Lehrformen:
Vorlesung “Applied Information Theory”, 3 SWS (V) ()
Übung “Applied Information Theory”, 2 SWS (Ü) ()
Projekt “Applied Information Theory”, 1 SWS (P) ()

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 90 h
- Vor- und Nachbereitung: 90 h
- Selbststudium: 60 h
- Summe: 240 h

Leistungsnachweis und Prüfungen:
- Usually oral exam, otherwise written exam of 120 minutes duration.

Voraussetzungen (formal):
- keine

Notenbildung:
- Module mark is identical to exam mark.

1.8 Automatisierungstechnik

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870406</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Knut Graichen</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Knut Graichen</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Pflichtmodul Automatisierungs- und Energietechnik

Voraussetzungen (inhaltlich):
Grundlagen der digitalen Schaltungstechnik

Lernziele:
- Fähigkeit zur Modellierung und Analyse ereignisdiskreter Systeme
- Fähigkeit zum systematischen Entwurf von Automaten sowie deren Analyse und Verifikation
- Fähigkeit zur Modellierung und Analyse von stochastischen ereignisdiskreten Systemen und Warte-Bedien-Netzwerken
- Fähigkeit zur Simulation und numerischen Untersuchung von deterministischen und stochastischen ereignisdiskreten Systemen
- Fähigkeit zur Anwendung dieser Methoden auf konkrete Aufgabenstellungen der Automatisierungstechnik

Inhalt:
- Grundbegriffe der Automatisierungstechnik und Beispiele ereignisdiskreter Systeme
- Einführung in die Graphentheorie
- Beschreibung und Entwurf deterministischer Automaten
- Kausale und zeitbewertete Petri-Netze
- Zeitdiskrete Markov-Ketten zur Beschreibung stochastischer ereignisdiskreter Systeme
- Warte-Bedien-Systeme und -Netzwerke
- Simulation von deterministischen und stochastischen ereignisdiskreten Systemen

Literatur:
- Litz, L.: Grundlagen der Automatisierungstechnik, Oldenbourg, München, 2005
<table>
<thead>
<tr>
<th>Grundlage für:</th>
<th>keine Angaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltungen</td>
<td>Vorlesung "Automatisierungstechnik", 2 SWS (V) (Pflicht)</td>
</tr>
<tr>
<td>und Lehrformen:</td>
<td>Übung "Automatisierungstechnik", 1 SWS (Ü) (Pflicht)</td>
</tr>
<tr>
<td>Abschätzung des</td>
<td>Präsenzzeit: 45 h</td>
</tr>
<tr>
<td>Arbeitsaufwands:</td>
<td>Vor- und Nachbereitung: 60 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 45 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 150 h</td>
</tr>
<tr>
<td>Leistungsnachweis</td>
<td>I.d.R. schriftliche Prüfung von 120 minütiger Dauer, ansonsten mündliche Prü-</td>
</tr>
<tr>
<td>und Prüfungen:</td>
<td>fung.</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>(formal):</td>
<td>Eine zusätzliche Teilnahme an dem Praktikum Mess- und Automatisierungstechni-</td>
</tr>
<tr>
<td></td>
<td>technik wird empfohlen!</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Anhand des Klausurergebnisses bzw. der mündlichen Prüfung</td>
</tr>
</tbody>
</table>
1.9 Bachelorarbeit

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>ET 8204880000 IST 8234880000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>Bachelor’s Thesis</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>12 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>-</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Semester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns (Studiendekan)</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Erstbetreuer der Bachelorarbeit</td>
</tr>
<tr>
<td>Einordnung des Moduls in Studiengänge:</td>
<td>Elektrotechnik, B.Sc., Abschlussarbeit Bachelorarbeit Informationssystemtechnik, B.Sc., Abschlussarbeit Bachelorarbeit</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Abhängig von der konkreten Themenstellung.</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Abhängig von der konkreten Themenstellung.</td>
</tr>
<tr>
<td>Lehrveranstaltungen und Lehrformen:</td>
<td>Bachelorarbeit Wahl eines geeigneten Themas an einem der Institute der Ingenieurwissenschaften (Dozenten der Ingenieurwissenschaften)</td>
</tr>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>Präsenzzeit: 10 h Summe: 360 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Schriftliche Ausarbeitung und Abschlussvortrag.</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td>keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Die Modulnote wird gemäß Prüfungsordnung gebildet.</td>
</tr>
</tbody>
</table>

1.10 Bauelemente der Optoelektronik

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870452</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>4 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr. Peter Unger</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Peter Unger</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik

Voraussetzungen (inhaltlich):
- Bachelor
- Einführung in die Optoelektronik

Lernziele:
Vertieftes Verständnis in die Physik der Lichterzeugung sowie der Energiegewinnung aus Sonnenlicht

Inhalt:
- Schwarzkoerperstrahlung
- Photometrie
- Technische Leuchtmittel
- Halbleiter
- Leuchtdioden
- Organische-LEDs
- Thermodynamik der Energiegewinnung aus Licht
- Solarzellen-Struktur
- Solarzellen-Fertigung
- Organische-Solarzellen
- Solarthermie

Literatur:

Grundlage für:

<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen:</th>
<th>Vorlesung “Bauelemente der Optoelektronik“, 2 SWS (V) ()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Übung “Bauelemente der Optoelektronik“, 1 SWS (Ü) ()</td>
</tr>
</tbody>
</table>
| Abschätzung des Arbeitsaufwands: | Vor- und Nachbereitung: 45 h
Präsenzzeit: 75 h
Summe: 120 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td>Keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Modulnote ist identisch mit Prüfungsnote</td>
</tr>
</tbody>
</table>
1.11 Benutzerschnittstellen

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8204870396</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Dr. Wolfgang Minker</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Dr. Wolfgang Minker</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Informatik, B.Sc., Schwerpunkt Mensch-Maschine-Interaktion
- Informatik, M.Sc., Kernfach Praktische und Angewandte Informatik
- Medieninformatik, M.Sc., Kernfach Praktische und Angewandte Informatik
- Medieninformatik, B.Sc., Schwerpunkt Mensch-Maschine-Interaktion
- Elektrotechnik, B.Sc., Wahlpflichtmodul
- Informationssystemtechnik, B.Sc., Wahlpflichtmodul

Voraussetzungen (inhaltlich):
keine

Lernziele:
Der Studierende soll durch Teilnahme an der Lehrveranstaltung die folgenden Fähigkeiten erlangen:
- allgemeines Verständnis der Grundbegriffe, der Gestaltungs- und Entwicklungsprinzipien, der technischen Realisierung und Evaluierungverfahren in der Mensch-Computer Interaktion,
- Überblick über den aktuellen Stand der Technik,
- tieferer Einblick in Teilbereiche des Gebietes durch Aufbereitung von wissenschaftlichen Beiträgen.

Durch begleitende Seminarvorträge soll der Studierende die vorlesungsbezogenen Sachverhalte verständlich und kohärent darstellen und diskutieren können.

Inhalt:

1. Einführung. Was ist Interaktion?
2. Gestaltungs- und Entwicklungsprinzipien für interaktive Benutzerschnittstellen
3. Technische Realisierung multimodaler Benutzerschnittstellen
4. Usability und Evaluierung

Literatur:
- Folienkopien
<table>
<thead>
<tr>
<th>Grundlage für:</th>
<th>keine Angaben</th>
</tr>
</thead>
</table>
| Lehrveranstaltungen und Lehrformen: | Vorlesung “Benutzerschnittstellen”, 2 SWS ()
Seminar “Benutzerschnittstellen”, 2 SWS () |
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 60 h
Vor- und Nachbereitung: 70 h
Selbststudium: 50 h
Summe: 180 h |
| Voraussetzungen (formal): | |
| Notenbildung: | Note der Prüfung |
1.12 Biosensors

<table>
<thead>
<tr>
<th>Kürzel / Nummer</th>
<th>8822870903</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>3 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>2</td>
</tr>
<tr>
<td>Sprache</td>
<td>English</td>
</tr>
<tr>
<td>Turnus / Dauer</td>
<td>jedes Semester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Dr.-Ing. Hermann Schumacher</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Dr. Alberto Pasquarelli</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlmodul Allgemeine Elektrotechnik
- Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energiotechnik
- Elektrotechnik, M.Sc., Wahlmodul Mikroelektronik
- Communications Technology, M.Sc., Wahlpflichtmodul Mikroelektronik

Voraussetzungen (inhaltlich):
Basic knowledge of chemistry and biochemistry help understanding the biological part of biosensors.

Lernziele:
The students should become familiar with the principles of operation and techniques used in biosensors. Through regular seminar activity and a few demonstrations they will analyze several examples of biosensing applications, spanning from basic academic research to clinical and industrial scenarios.

Inhalt:
- Introduction to biosensors
- Applications overview
- Detection methods: physical, interfacial, biological
- Biochip technologies: DNA and protein chips, Ion-channel devices, MEA and MTA, Implants
- Extras: invited talk(s), experimental exercise, excursion

Literatur:
- Biosensors, Rai University
- Gizeli E. and Lowe C.R., Biomolecular Sensors, Taylor & Francis, 2002
- Lecture Notes

Grundlage für:
Masters Thesis in the area of biosensors.

Lehrveranstaltungen und Lehrformen:
Vorlesung "Biosensors", lecture with demonstrations and seminars, 2 SWS (V) ()

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 28 h
- Vor- und Nachbereitung: 50 h
- Selbststudium: 12 h

Summe: 90 h

Leistungsnachweis und Prüfungen:
Written examination of 120 min.

Voraussetzungen (formal):
keine
Notenbildung: Module mark is identical to exam mark.
Channel Coding

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870426</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>Kanalcodierung</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>8 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>6</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Martin Bossert</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Martin Bossert</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>Bachelor</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>Understanding the theory and the relevant algorithms of forward error correction and detection for block- and convolutional codes as well as for coded modulation. Understanding and application of decoding concepts for binary and non binary block codes and for convolutional codes. Understanding of the fundamental theory in order to be able to conceive the majority of methods in channel coding which are not explicitly treated in this modul.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Channel coding has become an essential part in communication and storage systems. Block and convolutional codes are used in all digital standards. The aim of channel coding is to protect the information against disturbances during transmission or write/read. Thereby redundancy is added for error correction and for error detection. This course is about the basic methods in channel coding and gives an introduction to the more advanced methods of coded modulation. Lecture topics:</td>
</tr>
<tr>
<td></td>
<td>- Linear block-codes</td>
</tr>
<tr>
<td></td>
<td>- Generator and parity-check matrix</td>
</tr>
<tr>
<td></td>
<td>- Cosets</td>
</tr>
<tr>
<td></td>
<td>- Principles of decoding</td>
</tr>
<tr>
<td></td>
<td>- Hamming codes</td>
</tr>
<tr>
<td></td>
<td>- Bounds for code parameters (Hamming-, Singleton-, Gilbert-Varshamov-Bounds)</td>
</tr>
<tr>
<td></td>
<td>- Trellis representation of block-codes</td>
</tr>
<tr>
<td></td>
<td>- Plotkin construction, Reed-Muller (RM) codes (relationship to binary PN- and Walsh-Hadamard sequences)</td>
</tr>
<tr>
<td></td>
<td>- APP and ML decoding (sequence and symbol based)</td>
</tr>
</tbody>
</table>
Inhalt (Fortsetzung):
- Algebraic coding
 - Prime fields, primitive elements, component- and exponent representation
 - Reed-Solomon (RS) codes as cyclic codes with generator- and check-polynomials
 - Algebraic error and erasure correction with the Euclidean algorithm
 - BCH codes (as subfield subcodes of RS codes)
 - The perfect Golay-code as non-primitive BCH-code
 - Decoding of algebraic codes (key equation, Euclidean- and Berlekamp-Massey algorithm)
- Convolutional codes
 - Algebraic properties
 - State Diagram
 - Trellis representation
 - Error correction capabilities of convolutional codes
 - Viterbi- and BCJR algorithm (flow in graphs)
- Further coding and decoding techniques
 - LDPC codes
 - Permutations-, Majority- and Information-Set decoding
 - Dorsch algorithm (ordered statistics decoding)
 - Parallel (Turbo)- and serial concatenated codes and their iterative decoding
- Introduction to generalized code concatenation and coded modulation
- Project orientated Lab: LDPC, RS decoding, RM-codes

Literatur:
- Martin Bossert: Channel Coding for Telecommunications, Wiley & Sons, 1999

Grundlage für: keine Angaben

Lehrveranstaltungen und Lehrformen:
Vorlesung “Channel Coding”, 3 SWS (V) ()
Übung “Channel Coding”, 2 SWS (Ü) ()
Projekt “Channel Coding”, 1 SWS (P) ()

Abschätzung des Arbeitsaufwands:
Präsenzzeit: 90 h
Vor- und Nachbereitung: 70 h
Selbststudium: 80 h
Summe: 240 h

Leistungsnachweis und Prüfungen:
Usually oral exam, otherwise written exam of 120 minutes duration.

Voraussetzungen (formal): keine

Notenbildung: Module mark is identical to exam mark.
1.14 Circuit Design in Nanometer-Scaled CMOS Technologies

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804871726</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch (german upon verbal agreement)</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
</tbody>
</table>
| Modulverantwortlicher: | Dr. Jens Anders
Prof. Dr.-Ing. Maurits Ortmanns |
| Dozenten: | Dr. Jens Anders
Prof. Dr.-Ing. Maurits Ortmanns |
| Einordnung des Moduls in Studiengänge: | Elektrotechnik, M.Sc., Wahlmodul Ingenieurwissenschaften
Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik
Elektrotechnik, M.Sc., Wahlmodul Mikroelektronik
Communications Technology, M.Sc., Technisches Wahlmodul Mikroelektronik |
| Voraussetzungen (inhaltlich): | |
| Lernziele: | In this module, the students will come into contact with most modern CMOS technology issues concerning transistor modeling and behaviour, as well as design issues. The students will learn nm-effects of MOS transistors, the design approach in a non-square-law MOS model, and thereafter learn about digital and analog design in sub 100nm CMOS technologies. The course will lead the students to the "real world" of today's MOS technology and design and will also provide an outlook to future, non-planar MOS devices. The lecture is supplemented with a seminar, in which the students will be assigned a modern research topic from the field of nm CMOS, and on which the students will prepare a research overview in a seminar talk. The seminar will take place at the end of the course and is a prerequisite for the exam. |
| Inhalt: | - MOSFET operation and modern CMOS devices
- MOS device models
- Analog Design Styles in deep submicron technologies
- Feedback theory and closed loop feedback simulation
- Advanced differential amplifiers
- References and Power Management
- Analog filters
- Advanced A/D Converter Concepts
- RF CMOS |
| Literatur: | |
| Grundlage für: | Master-Thesis |
| Lehrveranstaltungen und Lehrformen: | Vorlesung “Circuit Design in Nanometer-Scaled CMOS Technologies”, 2 SWS ()
Seminar “Circuit Design in Nanometer-Scaled CMOS Technologies”, 2 SWS () |
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: Lecture: 28 h
Vor- und Nachbereitung: Lecture: 12 h
Selbststudium: Seminar: 40 h
Vor- und Nachbereitung: Seminar (presentation and written documentation): 30 h
Vor- und Nachbereitung: Lecture (exam): 40 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Attendance of the lecture and the seminar (block seminar at the end of the term). Assessment will normally be in the form of an oral exam, or otherwise a written exam of 90 minutes duration. Successful participation in the seminar (seminar attendance certificate) is a requirement for admission to the exam.</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td>Voraussetzung für die Prüfungszulassung ist der Erwerb eines Seminarscheins, welcher die erfolgreiche Teilnahme am Seminar bestätigt.</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Based on the oral/written exam grade</td>
</tr>
</tbody>
</table>
1.15 Communication Systems

Kürzel / Nummer: 8804870434

Deutscher Titel: -

Leistungspunkte: 4 ECTS

Semesterwochenstunden: 3

Sprache: Englisch

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Martin Bossert

Dozenten: Dr. Hans-Joachim Dreßler

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlmodul Kommunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Elektrotechnik, M.Sc., Wahlmodul Allgemeine Elektrotechnik
- Informationssystemtechnik, M.Sc., Wahlmodul
- Communications Technology, M.Sc., Technisches Wahlmodul Communications Engineering

Voraussetzungen (inhaltlich): Bachelor

Lernziele:
- Understanding the characteristics of the mobile radio channel and related transmission techniques,
- network and protocol architecture, basic protocol procedures, physical layer, performance as well as network planning of mobile radio systems
- principles of OFDM based broadband systems.

Inhalt:
Communication systems play a major role in the modern society. Since the 1990ies especially wireless communications is of increasing interest worldwide. For the definition of such systems lots of aspects need to be taken into consideration. Among others frequency band allocation, efficient use of radio and network resources, number of sites required to provide radio coverage, targeted user service characteristics like maximum bit rate and quality and last but not least cost of implementation. After a short presentation of the wireless communications history the characteristics of the terrestrial mobile radio channel are introduced followed by an overview of basic transmission techniques over such channels. The second part deals with the TDMA based GSM standard. The role of the network elements being part of the overall network architecture and the services available to the users are introduced. Mobility and security aspects, protocol architecture, signalling procedures are further topics. Lower layer specification and related performance which form the basis for cell planning are discussed in detail. In the third part the UMTS standard which is based on WCDMA is explained. The presentation follows a similar structure as compared to the GSM presentation which allows comparison of both systems.

Inhalt (Fortsetzung): OFDM is the next topic and it will become evident why it is of special interest in the case of broadband transmission over dispersive multipath channels. Finally a brief look to market figures concludes the course, thereby demonstrating the huge potential behind the mobile radio market.
Literatur:
- Walke: Mobile Radio Networks, John Wiley & Sons, 1999
- Bossert: Channel Coding for Telecommunications, John Wiley & Sons, 1999
- 3GPP Recommendations, http://www.3gpp.org/specs/numbering.htm
- 3GPP Recommendations for UMTS Long Term Evolution (Evolved UTRA aspects), http://www.3gpp.org/ftp/Specs/html-info/36-series.htm
- CPRI (Common Public Radio Interface), http://www.cpri.info

Grundlage für:
keine Angaben

Lehrveranstaltungen und Lehrformen:
- Vorlesung “Communication Systems”, 2 SWS (V)
- Übung “Communication Systems”, 1 SWS (Ü)

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 36 h
- Vor- und Nachbereitung: 46 h
- Selbststudium: 38 h
- Summe: 120 h

Leistungsnachweis und Prüfungen:
- Usually written exam of 120 minutes duration, otherwise oral exam

Voraussetzungen (formal):
keine

Notenbildung:
Module mark is identical to exam mark.
1.16 Communications Engineering

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870421</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>Nachrichtentechnik</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>10 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>8</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Robert Fischer</td>
</tr>
</tbody>
</table>
| Dozenten: | Prof. Dr.-Ing. Robert Fischer
 | Dr. Werner Teich |

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Allgemeine Elektrotechnik
- Elektrotechnik, M.Sc., Pflichtmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Informationssystemtechnik, M.Sc., Wahlpflichtmodul
- Communications Technology, M.Sc., Pflichtmodul

Voraussetzungen (inhaltlich):
Modul: Einführung in die Nachrichtentechnik

Lernziele:
The students gain substantiated knowledge on state-of-the-art digital communication schemes. Various important aspects will be addressed. Thereby, the students will be enabled to analyze and to access digital transmission systems.

Inhalt:
- Introduction
- Equivalent complex baseband
- Fundamentals of digital communications / digital pulse amplitude modulation (PAM)
- Variants of PAM transmission (CAP, MSK, GMSK) / non-coherent transmission
- Signal space representation
- FSK, CPM
- Channel models and digital transmission over dispersive channels
- Orthogonal frequency-division multiplexing
- Multiple-input/multiple-output systems

Literatur:

Grundlage für:
- Multuser Communications and MIMO Systems
- Iterative Methods for Wireless Communications
<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen:</th>
<th>Vorlesung “Communications Engineering”, 4 SWS (V) ()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Übung “Communications Engineering”, 2 SWS (Ü) ()</td>
</tr>
<tr>
<td></td>
<td>Labor “Communications Engineering”, 2 SWS (P) ()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abschätzung des Arbeitsaufwands:</th>
<th>Präsenzzeit: 144 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 100 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 56 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 300 h</td>
</tr>
</tbody>
</table>

| Leistungsnachweis und Prüfungen: | Usually written exam of 120 minutes, otherwise oral exam; successful participation at the lab course is prerequisite for the exam |

Voraussetzungen (formal):

| Notenbildung: | Module mark is identical to exam mark. |

1.17 Compound Semiconductors

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870461</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>Verbindungshalbleiter</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr. Ferdinand Scholz</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Ferdinand Scholz</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften Advanced Materials, M.Sc., Wahlmodul
- Elektrotechnik, M.Sc., Wahlmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Elektrotechnik, M.Sc., Wahlmodul Allgemeine Elektrotechnik
- Communications Technology, M.Sc., Technisches Wahlmodul Mikroelektronik

Voraussetzungen (inhaltlich):
Kenntnisse und Kompetenzen der Module: Grundlagen der Halbleiterphysik

Lernziele:
Die Studierenden sollen nach Abschluss des Moduls die physikalischen Grundlagen von Verbindungshalbleitern und ihre Anwendungsmöglichkeiten verstehen, die wichtigsten Herstellungs- und Charakterisierungsmethoden kennen und aus ihrem Verständnis die wichtigsten Vor- und Nachteile herleiten können sowie die Funktionsweise und den grundsätzlichen Aufbau einiger repräsentativer Baulemente kennen und verstehen.

Inhalt:
- Basics of Semiconductors, Compound Semiconductors
- Bulk crystal growth, liquid phase epitaxy, vapor phase epitaxy, molecular beam epitaxy
- Optical processes, spectroscopic methods
- Electrical characterisation methods
- x-ray diffraction, microscopy methods, other characterisation methods
- Strain in semiconductor structures
- Low-dimensional structures: quantum wells, wires, dots
- Semiconductor Light emitters and Laser Diodes
- Short Wavelength materials: Group III nitrides
- Electronic devices: HEMTs, HBTs
- Solar Cells
Literatur:
- Skript zur Vorlesung
- Ch. Kittel, Einführung in die Festkörperphysik, Oldenbourg-Verlag
- O. Madelung, Grundlagen der Halbleiterphysik, Springer
- S.M. Sze, Physics of Semiconductor Devices, John Wiley
- E. Rosencher, B. Vinter, Optoelectronics, Cambridge University Press 2002
- K.J. Ebeling; Integrierte Optoelektronik; Springer 1989

Grundlage für:
keine Angaben

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen</th>
<th>Vorlesung “Compound Semiconductors”, 3 SWS (V) ()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Übung “Compound Semiconductors”, 1 SWS (Ü) ()</td>
</tr>
</tbody>
</table>

Abschätzung des Arbeitsaufwands:
- Vor- und Nachbereitung: 56 h
- Präsenzzeit: 74 h
- Selbststudium: 50 h
- Summe: 180 h

Leistungsnachweis und Prüfungen:
- Teilnahme an Vorlesungen und Übungen, eigener Fachvortrag, in der Regel mündliche Prüfung, ansonsten schriftliche Prüfung von 120 minütiger Dauer.

Voraussetzungen (formal):

Notenbildung:
- Anhand des Ergebnisses der mündlichen Prüfung bzw. des Klausurergebnisses
1.18 Compressed Sensing - Effiziente Informationserfassung

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804871472</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Dr. Dejan Lazich</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr. Dejan Lazich</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Elektrotechnik, M.Sc., Wahlmodul Allgemeine Elektrotechnik
- Informationssystemtechnik, M.Sc., Wahlmodul

Voraussetzungen (inhaltlich):
Grundkenntnisse in Signalverarbeitung und Systemtheorie

Lernziele:

Inhalt:

Die wichtigsten Themen der Vorlesung umfassen:

- Grundlagen der mehrdimensionalen Euklidischen Geometrie: lineare Räume und Polytope
- Rekapitulation der notwendigen Begriffe aus der linearen Algebra
- Geometrische Interpretation von linearen Gleichungssystemen
- Grundzüge der Funktionalanalysis: Algebraische Strukturen, Lineare Operatoren, Normierte Räume, Banach-Räume, Innerprodukträume, Funktion- und Integraltransformationen
- Rekapitulation der Fourier-Analyse und anderen anwendungswichtigen Integraltransformationen
- Shannon-Nyquist Abtasttheorem
- Allgemeine Abtastung von wert- und zeitkontinuierlichen Signalen
- Compressed Sensing - effiziente Erfassung von wert- und zeitkontinuierlichen (Abtastung mit Kompression) oder zeitdiskreten (nur Kompression) Signalen
- Einfache Erklärung der Prinzipien von Compressed Sensing mittels Begriffen der mehrdimensionalen Euklidischen Geometrie
- Theoretische Grenzen von Compressed Sensing
- Robustheit von Compressed Sensing
- Rekapitulation der Optimierungsmethoden lineare und konvexe Programmierung
- Arten der Rekonstruktion-Algorithmen mit Optimierungsmethoden in Compressed Sensing
- Praktischer Einsatz von Compressed Sensing in Analog/Digital Wandlern
- Praktischer Einsatz von Compressed Sensing in der Bildverarbeitung - Ein-Pixel-Kamera
- Einsatz von Compressed Sensing in der Kanalcodierung
- Compressed Sensing bei DNA-Mikro-Arrays für biologische Experimente
- Perspektiven von Compressed Sensing: Verbindung mit Kolmogorovs Superposition Theorem - Grundlage für effiziente Erfassung von wert- und zeitkontinuierlichen Signalen mit mehr als drei Argumenten
<table>
<thead>
<tr>
<th>Literatur:</th>
<th>Es existiert bis dato noch kein einführendes Lehrbuch oder Skript zum Thema Compressed Sensing. Daher werden, neben die Vorlesungsfolien, Übersichtsartikel empfohlen:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Mehrere Übersichtsartikel aus dem IEEE Signal Processing Magazine (Special Issue on Compressive Sampling), March 2008.</td>
</tr>
<tr>
<td></td>
<td>- Web-Seite für Compressed Sensing: http://dsp.rice.edu/cs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grundlage für:</th>
<th>Master-Arbeit</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen:</th>
<th>Vorlesung "Compressed Sensing - Effiziente Informationserfassung", 2 SWS (V) ()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Übung "Compressed Sensing - Effiziente Informationserfassung", 1 SWS (Ü) ()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abschätzung des Arbeitsaufwands:</th>
<th>Präsenzzeit: 44 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 71 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 35 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 150 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungsnachweis und Prüfungen:</th>
<th>In der Regelmündliche Prüfung von 30 Minuten Dauer</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen (formal):</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notenbildung:</th>
<th>Anhand der Ergebnisse der mündlichen Prüfung</th>
</tr>
</thead>
</table>
1.19 Computational Methods in Materials Science

Kürzel / Nummer: 8804870462

Deutscher Titel: -

Leistungspunkte: 4 ECTS

Semesterwochenstunden: 3

Sprache: English

Turnus / Dauer: jedes Wintersemester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Ulrich Herr

Dozenten: Prof. Dr.-Ing. Ulrich Herr
 Prof. Carl Krill, Ph.D.
 Dr. Ulrich Simon

Einordnung des Moduls in Studiengänge:
Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Advanced Materials, M.Sc., Pflichtmodul,
Elektrotechnik, M.Sc., Wahlmodul Mikroelektronik
Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
Elektrotechnik, M.Sc., Wahlmodul Allgemeine Elektrotechnik

Voraussetzungen (inhaltlich): recommended: Materials Science I and II

Lernziele: Students should
- develop an understanding for the interplay between length/time scales and the computational methods used for simulation in materials science
- gain familiarity with the theoretical underpinnings of the finite element method, the phase field method, molecular dynamics and the Monte Carlo method
- be able to assess the strengths and limitations of each of these simulation methods based on practical experience acquired during computer lab exercises

Inhalt: Introduction
- Modeling in materials science
- Numerical solution of differential equations

Finite element method (FEM)
- Introduction and fundamentals
- Linear variational functions
- Applications in one dimension
- General finite element approach
- Examples

Phase field method – Introduction
- Allen-Cahn model
- Energy functional
- Numerical solution methods
- Application to grain growth
Inhalt (Fortsetzung):

Molecular dynamics – Introduction: statistical mechanics
- Interatomic potentials
- Equations of motion, integration
- Correlation functions
- Examples

Monte Carlo methods – Introduction
- Metropolis Monte Carlo algorithm
- Ising model
- Resident time algorithm, diffusion

Literatur:
- S. E. Koonin, D. C. Meredith: Computational Physics (Addison-Wesley, 1990)
- D. C. Rapaport: The Art of Molecular Dynamics Simulation (Cambridge, 2004)

Lehrveranstaltungen und Lehrformen:

| Vorlesung “Computational Methods in Materials Science”, 2 SWS (Simon, Krill, Herr) |
| Labor “Computational Methods in Materials Science”, 1 SWS (Simon, Krill, Herr) |

Abschätzung des Arbeitsaufwands:

| Präsenzzeit: 45 h |
| Vor- und Nachbereitung: 75 h |
| Summe: 120 h |

Leistungsnachweis und Prüfungen:

Permission to take final examination granted only upon successful participation in computer lab exercises. Written examination of approximately 120 min. duration.

Voraussetzungen (formal):

Notenbildung:

Final grade based on the result of the examination.
1.20 Computer Networks

Kürzel / Nummer: 8822270418

Deutscher Titel: Kommunikationsnetze

Leistungspunkte: 4 ECTS

Semesterwochenstunden: 3

Sprache: Englisch

Turnus / Dauer: Wintersemester / 1 Semester

Modulverantwortlicher: Prof. Dr. Hans Peter Großmann

Dozenten: Prof. Dr. Hans Peter Großmann

Voraussetzungen (inhaltlich): Basic comprehension of electrical engineering and information technology.

Lernziele: The lecture presents the basic concepts of the various protocols used in the area of data transmission, so that after completing the lecture each student should be able to design and build a network on his or her own.

Inhalt: The lecture “Computer Networks” is an introduction to networks used with today’s computers. It deals with the construction, the functionality and the design of local networks. On the basis of the OSI Model as a commonly used layered reference model, network and computer protocols are discussed. Protocols of the lower layer are discussed together with network topologies with respect to their medium access mechanism. Topics of discussion include classic technologies like Ethernet (10Base2, 10Base5, 10BaseT) as well as technologies used by internet service providers, like ATM or Gigabit Ethernet. On OSI Layer 3 and 4 (link and transaction layer), the commonly encountered TCP/IP protocol is introduced and covered in detail. This material leads into a discussion of the most important application protocols, which are based on TCP/IP.

In addition, other specialized networks are presented. These include large carrier networks as well as buses and networks for local multimedia applications and control applications in industry. Another topic of the lecture is the basic design of networks on the hardware as well as on the software level. Topics including “structured wiring”, “interoperability of protocols”, etc., will be discussed.

Seminar

During the seminar component of the lecture, the students will learn how to independently research and organize information on a given topic lying within the scope of the lecture. Each group or student will prepare their material with modern presentation software and then present it to the class. Supervisors are available in advance to provide discussion opportunities and advice.
<table>
<thead>
<tr>
<th>Literatur</th>
<th>Keine Angaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Comer, Douglas E.: Internetworking with TCP/IP. principles, protocols, and architecture; London 1988</td>
<td></td>
</tr>
<tr>
<td>- Sloman, Morris / Kramer, Jeff: Verteilte Systeme und Rechnernetze; München 1989</td>
<td></td>
</tr>
<tr>
<td>- Steinmetz, Ralf: Multimedia-Technologie. Einführung und Grundlagen; 1. Auflage, korrigierter Nachdruck; Berlin/Heidelberg u.a. 1995</td>
<td></td>
</tr>
<tr>
<td>- Stevens, W. Richards: TCP/IP Illustrated, Volume 1. The Protocols; Reading (Massachusetts) 1994</td>
<td></td>
</tr>
<tr>
<td>- Tannenbaum: Computer Networks; Prentice Hall</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grundlage für:</th>
<th>Keine Angaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltungen und Lehrformen:</td>
<td>Keine Angaben</td>
</tr>
<tr>
<td>Vorlesung “Computer Networks”, 2 SWS ()</td>
<td></td>
</tr>
<tr>
<td>Seminar “Computer Networks”, 1 SWS ()</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abschätzung des Arbeitsaufwands:</th>
<th>Präsenzzeit: 45 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 75 h</td>
</tr>
<tr>
<td>Summe: 120 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungsnachweis und Prüfungen:</th>
<th>Keine Angaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen (formal):</td>
<td></td>
</tr>
</tbody>
</table>

| Notenbildung: | Keine Angaben |

1.21 Cross-organizational distributed systems and Clouds

Kürzel / Nummer: 72092

Englischer Titel: Cross-organizational distributed systems and Clouds

Leistungspunkte: 6 ECTS

Semesterwochenstunden: 4

Sprache: englisch

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Stefan Wesner

Dozenten: Prof. Dr.-Ing. Stefan Wesner

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik
- Informationssystemtechnik, M.Sc., Empfohlenes Wahlfach
- Communications Technology, M.Sc., Technisches Wahlfach

Voraussetzungen (inhaltlich):
Basic knowledge of distributed systems and/or communication networks

Lernziele:
After this course students will have an in-depth understanding of the state of the art of crossorganisational and Cloud based systems. Additionally they understand the challenges and solution approaches to deliver Cloud based services from a Data Centre Operator viewpoint as well as how Service Level Agreements support reliable outsourcing. Students will be also able to assess and compare Clouds and local systems from a financial/economic viewpoint.

Inhalt:
In the first part of this course the basics and specific challenges of cross-organisational distributed systems are discussed. Starting from approaches such as Metacomputing and Grid Computing and virtualisation approaches current Cloud based solutions are introduced including the layer model (XaaS). The concept of Service Level Agreements is introduced and how a Data Centre can efficiently deliver Cloud services that are driven by performance and energy indicators. The economic aspects of centralized service provision as well as their impact on networks and the need for including “Network as a Service” concepts are discussed. The course is concluded by selected themes from “Future Clouds” and current developments in commercial and research approaches.

Literatur:
- Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, Cloud Computing: Principles and Paradigms
- Nicholas Carr, The Big Switch: Rewiring the World, from Edison to Google
- Dimitrakos, Martrat, Wesner, Service Oriented Infrastructures and Cloud Service Platforms for the Enterprise: A selection of common capabilities validated in real-life business trials by the BEinGRID consortium

Grundlage für: Masterarbeit
| Lehrveranstaltungen und Lehrformen: | Vorlesung “Cross-organizational distributed systems and Clouds”, 2 SWS ()
Übung “Cross-organizational distributed systems and Clouds”, 1 SWS (Ü) ()
Seminar “Cross-organizational distributed systems and Clouds”, 1 SWS () |
|-------------------------------|---|
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 60 h
Vor- und Nachbereitung: 40 h
Selbststudium: 80 h
Summe: 180 h |
Leistungsnachweis und Prüfungen:	Oral Exam
Voraussetzungen (formal):	
Notenbildung:	Oral Exam
1.22 Cultural Crossroads

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8822271729</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>2 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>2</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Semester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Hermann Schumacher</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr.rer.nat. Katrin Reimer</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>- Basic skills in using presentation software (PowerPoint, Open Office Impress or similar)</td>
</tr>
<tr>
<td></td>
<td>- Good knowledge of English</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>- Students reflect on peculiarities of their home culture and how to present them to peers from other countries. They prepare for working in a multi-cultural environment by engaging in an open discussion about their presentations. Along the way, basic presentation skills are acquired.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>- Preparation of a presentation using guidelines</td>
</tr>
<tr>
<td></td>
<td>- Oral presentation</td>
</tr>
<tr>
<td></td>
<td>- Group discussion on content</td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Grundlage für:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen und Lehrformen:</td>
<td>Seminar“Cultural Crossroads”, 2 SWS (V)</td>
</tr>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>Präsenzzeit: 26 h</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 34 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 60 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Participation in seminar compulsory; seminar presentation (30 min)</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td>keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Not graded (pass/fail)</td>
</tr>
</tbody>
</table>

1.23 Dialogue Systems

Kürzel / Nummer: 8804870423

Englischer Titel: -

Leistungspunkte: 6 ECTS

Semesterwochenstunden: 4

Sprache: deutsch

Turnus / Dauer: jedes Wintersemester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Dr. Wolfgang Minker

Dozenten: Prof. Dr.-Ing. Dr. Wolfgang Minker

Einordnung des Moduls in Studiengänge:
Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Informatik, M.Sc., Vertiefungsfach Mensch-Maschine Dialogsysteme
Informatik, M.Sc., Kernfach Praktische und Angewandte Informatik
Medieninformatik, M.Sc., Kernfach Praktische und Angewandte Informatik
Medieninformatik, M.Sc., Anwendungsfach Dialogsysteme
Medieninformatik, M.Sc., Vertiefungsfach Mensch-Maschine Dialogsysteme
Elektrotechnik, M.Sc., Wahlpflichtmodul Kommunikations- und Systemtechnik
Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
Informationssystemtechnik, M.Sc., Wahlpflichtmodul (Ing/Inf)

Voraussetzungen (inhaltlich):

Lernziele:
Der Studierende soll durch Teilnahme an der Lehrveranstaltung die folgenden Fähigkeiten erlangen:
- Allgemeines theoretisches Verständnis der multimodalen Sprachdialogtechnologie;
- Kenntnis der Grundlagen der Sprachverarbeitung; Verstehen der grundlegenden Probleme der Sprachsynthese, der Spracherkennung, der semantischen Analyse sowie der Dialogmodellierung; Vorstellung einiger ausgewählter Lösungsansätze; Veranschaulichung durch Anwendungen und Produkte;
- Überblick über den aktuellen Stand der Technik;
- Verständnis des interdisziplinären Charakters des Forschungsfeldes;
- Praktische Fertigkeiten durch die Teilnahme an Übungen mit echten Systemkomponenten auf unterschiedlichen Verarbeitungsebenen.

Inhalt:
Inhalt (Fortsetzung):

Themen:

Literatur:

- Folienkopien

Grundlage für: keine Angaben

Lehrveranstaltungen und Lehrformen:

Vorlesung "Dialogue Systems", 2 SWS ()
Labor "Dialogue Systems", 2 SWS ()

Abschätzung des Arbeitsaufwands:

Präsenzzeit: 56 h
Vor- und Nachbereitung: 64 h
Selbststudium: 60 h

Summe: 180 h

<table>
<thead>
<tr>
<th>Voraussetzungen (formal):</th>
<th>Bachelor.</th>
</tr>
</thead>
</table>

Notenbildung: Note der Prüfung
1.24 Dialogue Systems

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870423</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Dr. Wolfgang Minker</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Dr. Wolfgang Minker</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>Bachelor. No prerequisites from other lectures required. Some basic knowledge in digital signal processing, computer science, cybernetics and statistics would be helpful.</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>The student should:</td>
</tr>
<tr>
<td></td>
<td>- achieve a general theoretical knowledge in the domain of multimodal spoken natural language dialogue technology,</td>
</tr>
<tr>
<td></td>
<td>- understand the interdisciplinary character of the field,</td>
</tr>
<tr>
<td></td>
<td>- achieve some practical knowledge through exercises with real systems and their components at different levels of processing.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>The lecture provides an introduction into the area of multimodal spoken natural language dialogue systems. A particular focus is placed on acoustic processing, speech signal analysis, recognition, spoken natural language understanding, dialogue processing and speech synthesis. The topics will be illustrated throughout practical sessions and demonstrations of applications and products. Local companies working in the field of multimodal spoken natural language dialogue systems will provide guest lectures. Topics:</td>
</tr>
<tr>
<td></td>
<td>- Human Communication. Speech communication, structure and properties of speech, speech production, and speech perception.</td>
</tr>
</tbody>
</table>
| Inhalt (Fortsetzung): | - Speech Synthesis. Relationship between phonetics and written language, speech synthesis steps, phonetic inventory, speech signal production, speech synthesis (concatenation), linear prediction, prosody control.
- Speech Recognition. Overview over the most commonly used techniques in speech recognition, such as feature extraction from speech, statistical modelling of speech, search and speaker adaptation techniques.
- Semantic Analysis and Dialogue Modelling. Theory of formal languages, Chomsky hierarchy, word problem, finite automata, parsing, syntactic vs. semantic grammars, rule-based vs. statistical approaches to semantic analysis, dialogue modelling and application control.
| --- | --- |
| Literatur: | - copies of slides
| Grundlage für: | keine Angaben |
| Lehrveranstaltungen und Lehrformen: | Vorlesung "Dialogue Systems", 2 SWS ()
Übung "Dialogue Systems", 2 SWS () |
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 70 h
Vor- und Nachbereitung: 70 h
Selbststudium: 70 h
Summe: 210 h |
| Voraussetzungen (formal): | Voraussetzung für die Prüfungszulassung ist der Erwerb eines Übungsscheins, welcher die erfolgreiche Teilnahme an den Übungen bestätigt. |
| Notenbildung: | an Hand des Prüfungsergebnisses |
1.25 Digitale Regelungen

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870407</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Knut Graichen</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr.techn. Tilman Utz</td>
</tr>
</tbody>
</table>

| Einordnung des Moduls in Studiengänge: | Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
| | Elektrotechnik, M.Sc., Pflichtmodul Automatisierungs- und Energietechnik
| | Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik
| | Informationssystemtechnik, M.Sc., Empfohlenes Wahlfach |

<table>
<thead>
<tr>
<th>Voraussetzungen (inhaltlich):</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Integral- und Differentialrechnung</td>
</tr>
<tr>
<td>- Lineare Differentialgleichungen</td>
</tr>
<tr>
<td>- Grundlagen der Signale und Systeme</td>
</tr>
<tr>
<td>- Laplace-Transformation</td>
</tr>
<tr>
<td>- Vektor- und Matrizenrechnung</td>
</tr>
<tr>
<td>- Beschreibung und Regelung kontinuierlicher linearer Systeme im Frequenzbereich</td>
</tr>
<tr>
<td>- Beschreibung und Regelung kontinuierlicher linearer Systeme im Zeitbereich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Fähigkeit, abgetastete zeitkontinuierliche Systeme mathematisch im Zeitbereich als Differenzengleichungssysteme und im Frequenzbereich als diskrete Übertragungsfunktionen zu beschreiben</td>
</tr>
<tr>
<td>- Fähigkeit, die Lösung linearer zeitdiskreter Systeme zu berechnen und systemtheoretische Eigenschaften wie Stabilität zu überprüfen</td>
</tr>
<tr>
<td>- Fähigkeit, für gegebene lineare zeitdiskrete Systeme Ausgangsregelungen im Frequenzbereich zu entwerfen</td>
</tr>
<tr>
<td>- Fähigkeit, zeitdiskrete Zustandsregler/-beobachter zu entwerfen</td>
</tr>
<tr>
<td>- Fähigkeit, den Einfluss der für die Abtastung getroffenen Idealisierungen zu erkennen und geeignete Maßnahmen für die Realisierung zeitdiskreter dynamischer Systeme zu treffen</td>
</tr>
</tbody>
</table>
Inhalt:
- Beschreibung des idealen Abtastprozesses
- Abtastung zeitkontinuierlicher Systeme
- Linearisierung nichtlinearer Systeme
- Beschreibung des Lösungsverhaltens linearer Abtastsysteme
- Die z-Übertragungsfunktion
- Der diskrete Frequenzgang, Tustin-Transformation und Stabilitätskriterien
- Quasikontinuierlicher Reglerentwurf im Frequenzbereich
- Das Frequenzkennlinienverfahren
- Polvorgabe im Frequenzbereich
- Steuerbarkeit und Beobachtbarkeit
- Zustandsreglerentwurf durch Eigenwertvorgabe
- Optimaler Zustandsregler
- Zustandsbeobachterentwurf
- Realisierung digitaler Regler

Literatur:

Grundlage für: keine Angaben

Lehrveranstaltungen und Lehrformen:
- Vorlesung “Digitale Regelungen”, 2 SWS (V) (Pflicht/Wahl)
- Übung “Digitale Regelungen", 1 SWS (Ü) (Pflicht/Wahl)
- Tutorium “Digitale Regelungen", Tutorium unter Einbeziehung von MatLab, 1 SWS (T) (Pflicht/Wahl)

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 60 h
- Vor- und Nachbereitung: 80 h
- Selbststudium: 40 h
- Summe: 180 h

Leistungsnachweis und Prüfungen:
- In der Regel schriftliche Prüfung von 120 minütiger Dauer, ansonsten mündliche Prüfung.

Voraussetzungen (formal):
- keine

Notenbildung:
- Anhand des Klausurergebnisses bzw. der mündlichen Prüfung

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.26 Digitale Regelungen

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870407</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr.-Ing. Michael Buchholz</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Integral- und Differentialrechnung
- Lineare Differentialgleichungen
- Grundlagen der Signaltheorie
- Vektor- und Matrizenrechnung
- Behandlung linearer Regelungssysteme im Frequenzbereich
- Behandlung linearer Regelungssysteme im Zustandsraum

Voraussetzungen (inhaltlich):
- Fähigkeit, einfache physikalische Anordnungen als lineare zeitdiskrete Systeme im Frequenzbereich zu beschreiben
- Fähigkeit, lineare zeitdiskrete Systeme im Frequenzbereich auf Stabilität und dynamisches Verhalten zu untersuchen
- Fähigkeit, für gegebene lineare zeitdiskrete Systeme klassische Ausgangsregelungen im Frequenzbereich zu entwerfen
- Fähigkeit, lineare zeitdiskrete Systeme im Zustandsraum zu beschreiben und zu analysieren
- Fähigkeit, zeitdiskrete Zustandsregler zu entwerfen
- Fähigkeit, vollständige und reduzierte Beobachter für lineare zeitdiskrete Systeme in Zustandsraumdarstellung zu entwerfen
- Fähigkeit, lineare zeitkontinuierliche Systeme in Zustandsraumdarstellung numerisch auf Digitalrechnern zu simulieren.

Lernziele:
- Beschreibung zeitdiskreter Systeme mit der z-Transformation
- Stabilität zeitdiskreter Systeme
- Strukturen zeitdiskreter Ausgangsregelungen
- Quasikontinuierlicher Entwurf zeitdiskreter Ausgangsregelungen
- Entwurf zeitdiskreter Ausgangsregelungen mit endlicher Einstellzeit
- Wurzelortskurvenverfahren im z-Bereich
- Darstellung zeitdiskreter Systeme im Zustandsraum
- Stabilität, Steuerbarkeit und Beobachtbarkeit
- Analyse linearer zeitdiskreter Systeme im Zustandsraum
- Verfahren zum Entwurf zeitdiskreter Zustandsregler
- Entwurf zeitdiskreter Zustandsbeobachter
- Simulationsverfahren für lineare zeitkontinuierliche Systeme im Zustandsraum

Inhalt:
- Beschreibung zeitdiskreter Systeme mit der z-Transformation
- Stabilität zeitdiskreter Systeme
- Strukturen zeitdiskreter Ausgangsregelungen
- Quasikontinuierlicher Entwurf zeitdiskreter Ausgangsregelungen
- Entwurf zeitdiskreter Ausgangsregelungen mit endlicher Einstellzeit
- Wurzelortskurvenverfahren im z-Bereich
- Darstellung zeitdiskreter Systeme im Zustandsraum
- Stabilität, Steuerbarkeit und Beobachtbarkeit
- Analyse linearer zeitdiskreter Systeme im Zustandsraum
- Verfahren zum Entwurf zeitdiskreter Zustandsregler
- Entwurf zeitdiskreter Zustandsbeobachter
- Simulationsverfahren für lineare zeitkontinuierliche Systeme im Zustandsraum
- Föllinger, O.: Lineare Abtastsysteme . Oldenbourg-Verlag, München, 1990
| Grundlage für: | keine Angaben |
| Lehrveranstaltungen und Lehrformen: | Vorlesung “Digitale Regelungen”, 2 SWS (V) ()
Übung “Digitale Regelungen”, 1 SWS (Ü) ()
Tutorium “Digitale Regelungen”, Tutorium unter Einbeziehung von MatLab, 1 SWS (T) () |
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 60 h
Vor- und Nachbereitung: 80 h
Selbststudium: 40 h
Summe: 180 h |
| Leistungsnachweis und Prüfungen: | In der Regel schriftliche Prüfung von 120 minütiger Dauer, ansonsten mündliche Prüfung. |
| Voraussetzungen (formal): | keine |
| Notenbildung: | Anhand des Klausurergebnisses bzw. der mündlichen Prüfung |

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.27 Digitale Schaltungen

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8204870380</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>4 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>2+1 (V/Ü)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns</td>
</tr>
<tr>
<td>Einordnung des Moduls in Studiengänge:</td>
<td>Elektrotechnik, B.Sc., Pflichtmodul</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>- Keine</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>- Binäre Zahlensysteme, Komplemente und Gray-Code</td>
</tr>
<tr>
<td></td>
<td>- Binäre Arithmetik</td>
</tr>
<tr>
<td></td>
<td>- Transistor als Schaltermodell</td>
</tr>
<tr>
<td></td>
<td>- Gatterlogik, Kombinatorische Logik, Boole'sche Algebra</td>
</tr>
<tr>
<td></td>
<td>- Konjunktive und disjunktive Normalformen</td>
</tr>
<tr>
<td></td>
<td>- Wahrheitstabellen, Logikminimierung, Karnaugh-Diagramm</td>
</tr>
<tr>
<td></td>
<td>- Digitale Rechenwerke: Addierer, Multiplizierer</td>
</tr>
<tr>
<td></td>
<td>- Einführung in VHDL</td>
</tr>
<tr>
<td></td>
<td>- Latches, Flip-Flop, Sequentielle Schaltungen, Register, Zähler, Automaten</td>
</tr>
<tr>
<td></td>
<td>- Grundlagen der Prozessortechnik</td>
</tr>
<tr>
<td></td>
<td>- Mano, M. Morris "Digital Design", Prentice Hall</td>
</tr>
<tr>
<td>Grundlage für:</td>
<td>Entwurf Integrierter Systeme*, Wahlpflichtmodule mit entsprechender Ausrichtung</td>
</tr>
<tr>
<td>Lehrveranstaltungen und Lehrformen:</td>
<td>Vorlesung "Digitale Schaltungen", 2 SWS (V) ()</td>
</tr>
<tr>
<td></td>
<td>Übung "Digitale Schaltungen", 1 SWS (Ü) ()</td>
</tr>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>Präsenzzeit: 45 h</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 75 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 120 h</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td>Keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Anhand des Klausurergebnisses bzw. der mündlichen Prüfung.</td>
</tr>
</tbody>
</table>
1.28 Dünnschichttechnologie

Kürzel / Nummer: 8804870453

Englischer Titel: -

Leistungspunkte: 6 ECTS

Semesterwochenstunden: 4

Sprache: deutsch

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: Prof. Dr. Ulrich Herr

Dozenten: Prof. Dr. Ulrich Herr

Einordnung des Moduls in Studiengänge:
Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Elektrotechnik, M.Sc., Wahlpflichtmodul Mikroelektronik
Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik

Voraussetzungen (inhaltlich): keine Angaben

Inhalt:

1. Herstellung
 - Grundlagen der Vakuumtechnik
 - Elementare Wachstumsprozesse
 - PVD und CVD Techniken

2. Charakterisierung
 - Beugungsverfahren (XRD, TEM)
 - Rasterelektronenmikroskopie (SEM, EDX)
 - Rastersondenmethoden (STM, AFM)
 - Spektroskopische Verfahren
Inhalt (Fortsetzung):

3. Eigenschaften von dünnen Schichten
 - Mechanische Eigenschaften
 - Festigkeit und Haftung
 - Spannungen und Spannungsrelaxation

4. Elektrische und magnetische Eigenschaften
 - Elektrische Leitfähigkeit und Struktur
 - Grundlagen des Magnetismus
 - Magnetooptik

5. Anwendungsbeispiele
 - Speicherschichten (magnetisch/magnetooptisch)
 - Magnetoelektronik: GMR Sensoren, MRAM

Vorlesungsbegleitendes Praktikum: vorgesehen sind 6 Termine zu den Themen
- Herstellung von Dünnsschichten
- Röntgenbeugung an Dünnsschichten
- Rasterelektronenmikroskopie- Rasterkraftmikroskop (AFM/MFM)
- Magnetische Eigenschaften (VSM)

Literatur:
- 17. IFF Ferienkurs "Dünne Schichten und Schichtsysteme", Forschungszentrum Jülich GmbH, Jülich, 1986
- 30. IFF Ferienkurs "Magnetische Schichtsysteme", Forschungszentrum Jülich, 1999

Grundlage für: keine Angaben

Lehrveranstaltungen und Lehrformen:

| Abschätzung des Arbeitsaufwands: | Vorlesung "Dünnsschichttechnologie", 2 SWS ()
| Übung "Dünnsschichttechnologie", 1 SWS ()
| Labor "Dünnsschichttechnologie", 1 SWS ()
| Präsenzzeit: 60 h
| Vor- und Nachbereitung: 70 h
| Selbststudium: 50 h
| Summe: 180 h

Leistungsnachweis und Prüfungen:

Klausur 120 min. oder mündl. Prüfung

Voraussetzungen (formal):

Voraussetzung zur Anmeldung für die Klausur oder Prüfung ist erfolgreiche Teilnahme an Übungen und Praktikum

Notenbildung:

Ergebnis der Klausur oder mündl. Prüfung
1.29 Einführung in die Energietechnik

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8204870389</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td></td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>4 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3,5</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr. Herbert Kabza</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Herbert Kabza</td>
</tr>
</tbody>
</table>
| Voraussetzungen (inhaltlich): | - Integral- und Differentialrechnung, komplexe Zahlen
- Mechanische Kinematik und Dynamik, Wärmelehre
- Knoten- und Maschenanalyse, komplexe Wechselstromrechnung, elektr. und magnet. Feld, Induktion, Maxwell-Gleichungen |
| Lernziele: | Lernziel sind Kenntnisse der wichtigsten Zusammenhänge, Fakten und Komponenten im Bereich Energietechnik. Der Hörer ist fähig zur:
- Beschreibung der Funktionsweise von Wasser- und Windkraftwerken sowie zur Erklärung ihrer wichtigsten Komponenten wie z. B. unterschiedliche Turbinen und ihr Einsatzgebiet
- Lösung einfacher Aufgaben aus dem Bereich der Wind- Wasserkraftnutzung
- Beschreibung der Funktionsweise der verschiedenen thermischen Kraftwerke (Gasturbinen- und Dampfprozess) sowie zur Erklärung ihrer wichtigsten Komponenten
- Lösung einfacher Aufgaben aus dem Bereich der technischen Thermodynamik
- Beschreibung der Funktionsweise der drei wichtigen E-Maschinen (Gleichstrommaschine fremderregt, Nebenschluss, Reihenschluss; Asynchron- und Synchronmaschine) sowie zur Skizzierung ihrer Ersatzschaltbilder und Kennlinien
- Beschreibung der Struktur der verschiedenen Stromversorgungsnetzebenen und Nennung der wesentlichen Betriebsmittel / Komponenten |
| Inhalt: | - In dieser Vorlesung wird ein Überblick über die gesamte Breite der elektrischen Energietechnik gegeben.
- Am Anfang stehen die Entwicklung und der Stand von Energieverbrauch und -angebot sowie die damit verbundenen Konsequenzen und Begrenzungen. |
Inhalt (Fortsetzung):

- Die Grundlagen mechanisch – elektrischer Energiewandlung werden als Basis für die Vorstellung der elektrischen Maschinen (Gleichstrom-, Asynchron- und Synchronmaschine) besprochen, ergänzt um die üblichen Kriterien zur Maschinenauswahl und einigen Hinweisen auf Sonderformen wie Wechselstrom-, Linear- und elektronisch kommutierte Motoren.

- Dann werden die Techniken zur Gewinnung elektrischer Energie besprochen: mittels thermischer Energiewandlung in technischen Kreisprozessen wie in fossilien und nuklearen Kraftwerken einerseits sowie invarianter Wandlungsprozesse aus Wasser und Wind andererseits.

- Dies wird abschließend ergänzt um eine kurze Darstellung der wichtigsten Verfahren zur Nutzung regenerativer Energiequellen: Photovoltaik, Solarthermie, Geothermie, Wellen, Gezeiten.

Literatur:

- H. Kabza: Skript zur Vorlesung Einführung in die Energietechnik, Univ. Ulm
- Dirk Peier: Einführung in die elektrische Energietechnik, A. Hüthig Verlag Heidelberg, 1987 (vergriffen)
- Fritz Fraunberger: Illustrierte Geschichte der Elektrizität, Aulis-Verlag Deubner & Co. KG, Köln, 1985

Abschätzung des Arbeitsaufwands:

<table>
<thead>
<tr>
<th>Präsenzzeit: 45 h</th>
<th>Vor- und Nachbereitung: 40 h</th>
<th>Selbststudium: 35 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe: 120 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Leistungsnachweis und Prüfungen:

In der Regel schriftliche Prüfung von 90 Minuten Dauer, ansonsten mündliche Prüfung.

Voraussetzungen (formal):

Die Modulnote entspricht dem Ergebnis der Prüfung.
1.30 Einführung in die HF-Übertragungstechnik

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>EHFUET / 8234870468</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>Introduction to Information Transmission by RF & Microwave Systems</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Dr.-Ing. Frank Bögelsack</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr.-Ing. Frank Bögelsack</td>
</tr>
<tr>
<td>Einordnung des Moduls in Studiengänge:</td>
<td>Informationssystemtechnik, B.Sc., Pflichtmodul Informatik, M.Sc., Anwendungsfach Elektrotechnik</td>
</tr>
</tbody>
</table>
| Voraussetzungen (inhaltlich): | Kenntnisse und Kompetenzen der Module:
 - Grundlagen der Elektrotechnik I und II
 - Lineare Algebra, Analysis I und II
 - Analoge Schaltungen (insbesondere Vierpolparameter)
 - Signale und Systeme |
| Lernziele: | Die Studierenden sollen nach erfolgreichem Abschluss des Moduls in der Lage sein:
 - grundsätzliche Techniken und Verfahren zur Übertragung von Information über Leitungen und elektromagnetische Wellen im Freiraum zu identifizieren,
 - deren Einflussgrößen auf Hochfrequenz-Übertragungssysteme zu identifizieren,
 - grundlegende Eigenschaften wichtiger Komponenten von Hochfrequenzsystemen zu bewerten,
 - grundlegende Eigenschaften von Hochfrequenz-Übertragungssystemen zu bewerten. |
| Inhalt: | - Übersicht über einige Grundlagen elektromagnetischer Felder
 - Ebene Wellen
 - Wellen auf Leitungen
 - Streuparameter (vereinfacht), einige Leistungsbeziehungen
 - Elektronisches Rauschen
 - Antennen (Begriffe, Typen)
 - Komponenten (Übersicht, ohne detaillierte Ableitung)
 - Modulation
 - Sende-/Empfangssysteme |
<table>
<thead>
<tr>
<th>Literatur:</th>
<th>- Kopien der Folien der Begleitvorlesung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Voges: Hochfrequenztechnik, Band 1, Hüthig Buch Verlag</td>
</tr>
<tr>
<td></td>
<td>- Meinke, Gundlach: Taschenbuch der Hochfrequenztechnik, Springer Verlag</td>
</tr>
<tr>
<td></td>
<td>- Zinke, Brunswick: Lehrbuch der Hochfrequenztechnik, Bd. 1 + 2, Springer Verlag</td>
</tr>
<tr>
<td></td>
<td>- Pehl: Mikrowellentechnik, Band 1 + 2, Hüthig Buch Verlag</td>
</tr>
<tr>
<td>Nachschlagewerke:</td>
<td>- Matthaei, Young, Jones: Microwave Filters, Impedance-Matching Networks, And Coupling Structures. Artech House (Kap. 2)</td>
</tr>
<tr>
<td></td>
<td>- Schiek, Siweris: Rauschen in Hochfrequenzschaltungen, Hüthig Buch Verlag</td>
</tr>
<tr>
<td></td>
<td>- Vendelin, Pavia, Rohde: Microwave Circuit Design. John Wiley & Sons (Kap. 5-8)</td>
</tr>
<tr>
<td>Grundlage für:</td>
<td>keine Angaben</td>
</tr>
<tr>
<td>Lehrveranstaltungen und Lehrformen:</td>
<td>Vorlesung "Einführung in die Hochfrequenzübertragungstechnik", 3 SWS ()</td>
</tr>
<tr>
<td></td>
<td>Übung "Einführung in die Hochfrequenzübertragungstechnik", Vertiefung der Vorlesungsinhalte mittels Bearbeitung theoretischer und praktischer Aufgaben, 1 SWS ()</td>
</tr>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 30 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 90 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 180 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Die Prüfung findet in der Regel als Klausur von 120 min Dauer statt.</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td>Keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Note der Prüfung</td>
</tr>
</tbody>
</table>

1.31 Einführung in die Hochfrequenztechnik

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>EHF / 8204870391</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>Introduction to RF & Microwave Techniques</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>8 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>6</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Wolfgang Menzel</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Wolfgang Menzel, Prof. Dr. Michael Hoffmann</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Vorlesung und Übungen: - Strom- und Spannungswellen auf Leitungen, - Leistungswellen, - Zusammenhang zu Feldwellen, - Skineffekt, - Reflexion von Wellen durch Impedanzen, - Smith-Chart, - Impedanztransformation durch Leitungen und andere Bauelemente, - Reale Bauelemente</td>
</tr>
</tbody>
</table>
Inhalt (Fortsetzung):

- Beschreibung linearer, zeitinvarianter Wellen-N-Tore durch Streuparameter
- Signalfussgraphen
- Übertragungsfunktionen, Leistungsgewinne, lineare Verzerrungen
- Filter, Koppler, Verstärker
- Elektronisches Rauschen
- Grundbegriffe Antennen
- Einführung in Probleme der elektromagnetischen Verträglichkeit

Laborpraktika, 5 zugewiesene Versuche aus den Bereichen:
- Wellen auf Leitungen
- Modulation
- CAD
- Skalare S-Parameter-Messung
- Planare Schaltungen

Literatur:
- Kopien der Folien der Begleitvorlesung

Lehrbücher:
- Hoffmann, M.: Hochfrequenztechnik- Ein systemtheoretischer Zugang, Springer Verlag
- Schwab, A. Elektromagnetische Verträglichkeit, Springer-Verlag, 1990
- Voges: Hochfrequenztechnik, Band 1, Hüthig Buch Verlag

Nachschlagewerke:
- Matthaei, Young, Jones: Microwave Filters, Impedance-Matching Networks, And Coupling Structures. Artech House (Kap. 2)
- Meinke, Gundlach: Taschenbuch der Hochfrequenztechnik, Springer Verlag
- Pehl: Mikrowellentechnik, Band 1 + 2, Hüthig Buch Verlag
- Saad: Microwave Engineers Handbook, Vol. I, II, Artech House (Kap. 1, 2)
- Sander: Microwave Components and Systems. Addison-Wesley Publishing Company
- Schiek, Siweris: Rauschen in Hochfrequenzschaltungen, Hüthig Buch Verlag
- Vendelin, Pavio, Rohde: Microwave Circuit Design. John Wiley & Sons (Kap. 5-8)
- Zinke, Brunswick: Lehrbuch der Hochfrequenztechnik, Bd. 1 + 2, Springer Verlag

Grundlage für:
- Das Modul ist Grundlage für Wahl(pflicht)fächer der entsprechenden Ausrichtungen wie:
 Hochfrequenztechnik II
 Mikrowellensysteme
 Praktikum Mess- und Entwurfsverf. i. d. HF-Technik
 Integrated Microwave Circuits
 Phase-Locked Loops in Communications Engineering
 Numerische Verfahren der Mikrowellentechnik
 Signal Perturbations in Linear and Nonlinear Communication Systems
Lehrveranstaltungen und Lehrformen:

Vorlesung "Einführung in die Hochfrequenztechnik", 2.5 SWS (V) ()
Übung "Einführung in die Hochfrequenztechnik", Vertiefung der Vorlesungsinhalte mittels Bearbeitung theoretischer und praktischer Aufgaben, 1.5 SWS (Ü) ()
Labor "Einführung in die Hochfrequenztechnik", Praktische Versuche zu den Themen Wellen auf Leitungen, Modulation, CAD, Skalare S-Parameter-Messung, Planare Schaltungen, 2 SWS (P) ()

Abschätzung des Arbeitsaufwands:

<table>
<thead>
<tr>
<th>Präsenzzeit: 100 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor- und Nachbereitung: 88 h</td>
</tr>
<tr>
<td>Selbststudium: 52 h</td>
</tr>
<tr>
<td>Summe: 240 h</td>
</tr>
</tbody>
</table>

Leistungsnachweis und Prüfungen:

Teilnahme an Vorlesung und Übung ist dringend empfohlen;
ausreichende Vorbereitung und erfolgreiche Durchführung der Praktikumsversuche ist Zulassungsvoraussetzung zur Prüfung;
Die Prüfung findet in der Regel als Klausur von 120 min Dauer statt.

Voraussetzungen (formal):

Keine

Notenbildung:

Note der Prüfung

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.32 Einführung in die Nachrichtentechnik

Kürzel / Nummer: 8204870392
Englischer Titel: -
Leistungspunkte: 8 ECTS
Semesterwochenstunden: 7
Sprache: Deutsch
Turnus / Dauer: jedes Wintersemester / 1 Semester
Modulverantwortlicher: Prof. Dr.-Ing. Martin Bossert
Dozenten: Prof. Dr.-Ing. Martin Bossert
Prof. Dr.-Ing. Robert Fischer
Dr. Werner Teich

Einordnung des Moduls in Studiengänge: Elektrotechnik, B.Sc., Pflichtmodul
Informationssystemtechnik, B.Sc., Pflichtmodul
Informatik, M.Sc., Anwendungsfach Elektrotechnik

Voraussetzungen (inhaltlich): Module: Signale und Systeme, Angewandte Stochastik I

Lernziele: Erreicht werden soll ein grundlegendes Verständnis für die Prinzipien einer digitalen Nachrichtenübertragung. Als sekundäres Ziel soll daraus die Fähigkeit entwickelt werden, einfache reale Systeme zur digitalen Nachrichtenübertragung verstehen, analysieren und entwerfen zu können.

Kanäle modellieren physikalische Übertragungsbedingungen und stellen damit einen wichtigen Teil dar, um verschiedene Übertragungsverfahren vergleichen zu können. Die Shannonsche Kanalkapazität wird hergeleitet. Sie stellt eine obere Schranke für die Datennrate dar, die über einen gegebenen Kanal übertragen werden kann.
Inhalt (Fortsetzung):

Zur Kanalcodierung werden zunächst elementare Grundlagen beschrieben und dann Shannons Kanalcodiertheorem bewiesen. Danach werden noch zwei konkrete Codeklassen, die Reed-Muller- und die FaltungsCodes, sowie deren Decodierung beschrieben.

Drei Elementare Protokolle zur zuverlässigen Datenübertragung, zum Vielfachzugriff und zum Routing werden mathematisch analysiert. Zum Schluss werden noch Aspekte der Datensicherheit erörtert.

Vorlesung und Übung werden durch das Praktikum „Einführung in die Nachrichtentechnik“ ergänzt. Das Praktikum vertieft dabei den in Vorlesung und Übung behandelten Stoff anhand ausgewählter Themen. Es umfasst die folgenden vier Versuche:

- Messungen an stochasticen Signalen
- Digitale Übertragung mit linearen Modulationsverfahren: Übertragung im Basisband
- Anwendung orthogonalen Signale bei der Nachrichtenübertragung
- Kanalcodierung und Automatic Repeat Request (ARQ)

Literatur:

- Bossert: Kanalcodierung, Teubner Verlag, 1998
- Bossert M., Bossert S., Mathematik der digitalen Medien, VDE Verlag, 2010

Grundlage für:

Master Elektrotechnik Vertiefung Kommunikations-/Systemtechnik Master Informations-Systemtechnik

Lehrveranstaltungen und Lehrformen:

Vorlesung "Einführung in die Nachrichtentechnik", 3 SWS (V) ()
Übung "Einführung in die Nachrichtentechnik", 2 SWS (Ü) ()
Praktikum "Einführung in die Nachrichtentechnik", 2 SWS (T) ()

Abschätzung des Arbeitsaufwands:

Präsenzzeit: 76 h
Vor- und Nachbereitung: 98 h
Selbststudium: 66 h

Summe: 240 h

Leistungsnachweis und Prüfungen:

Teilnahme an Vorlesung und Übung; ausreichende Vorbereitung und erfolgreiche Durchführung der Praktikumsversuche ist Zulassungsvoraussetzung zur Prüfung. Die Prüfung findet in der Regel als Klausur von 120 min Dauer statt, ansonsten mündliche Prüfung

Voraussetzungen (formal):

Keine

Notenbildung:

Anhand des Klausurergebnisses bzw. der mündlichen Prüfung
Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.33 Einführung in die Optoelektronik

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870443</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr. Ferdinand Scholz</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Ferdinand Scholz, Prof. Dr.-Ing. Jürgen Mähnß</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Allgemeine Elektrotechnik
- Elektrotechnik, M.Sc., Pflichtmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik

Voraussetzungen (inhaltlich):
- Bachelor
- Keine Voraussetzungen aus anderen Modulen erforderlich
- Basiswissen über Halbleiterphysik und Halbleiterelemente erleichtert das Verständnis

Lernziele:
Verständnis der Basiskomponenten von Glasfasernetzen und optischen Bussystemen

Inhalt:
Die Vorlesung behandelt die Grundlagen der optischen Datenübertragung, wie sie für das Verständnis von Glasfasernetzen und optischen Bussystemen benötigt werden.

- Ausbreitung geführter optischer Wellen in Glasfasern
- Beeinflussung der Datenimpulse durch Dispersion
- Lichterzeugung in Leuchtdioden
- Funktionsweise von Laserdioden (Kantenemitter, DFB, VCSEL)
- Generation hochfrequenter Datenimpulsfolgen durch Laserdioden
- Detektion und optisch-elektrische Wandlung mit Photodioden
- Bitfehlerraten und Leistungs-Budget in Übertragungssystemen

Literatur:
Ein Vorlesungsmanuskript steht zur Verfügung.

Grundlage für:

Bauelemente der Optoelektronik
Advanced Optoelectronic Communication Systems
Praktikum “Einführung in die Optoelektronik”

| Lehrveranstaltungen und Lehrformen: | Vorlesung “Einführung in die Optoelektronik”, 3 SWS (V) ()
| Übung “Einführung in die Optoelektronik”, 1 SWS (Ü) () |

Abschätzung des Arbeitsaufwands:

| Vor- und Nachbereitung: 56 h |
| Präsenzzeit: 49 h |
| Selbststudium: 75 h |
| Summe: 180 h |

Leistungsnachweis und Prüfungen:

Schriftliche Prüfung von 120 Minuten Dauer, sonst mündliche Prüfung

Voraussetzungen (formal):

Keine

Notenbildung:

Modulnote ist identisch mit Prüfungsnote
Einführung in die Regelungstechnik

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8204870390</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>8 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>6</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr.-Ing. Michael Buchholz</td>
</tr>
<tr>
<td>Einordnung des Moduls in Studiengänge:</td>
<td>Elektrotechnik, B.Sc., Pflichtmodul</td>
</tr>
<tr>
<td></td>
<td>Informationssystemtechnik, B.Sc., Pflichtmodul</td>
</tr>
<tr>
<td></td>
<td>Informatik, M.Sc., Anwendungsfach Elektrotechnik</td>
</tr>
</tbody>
</table>

Voraussetzungen (inhaltlich):	- Integral- und Differentialrechnung
	- Lineare Algebra
	- Integraltransformationen

Lernziele:	- Vermittlung der Methoden zur Analyse und Regelung linearer zeitinvarianter Systeme im Zeit- und Bildbereich.
	- Fähigkeit, einfache physikalische Anordnungen als lineare zeitinvariante Systeme mathematisch und als Blockschaltbild im Frequenzbereich zu beschreiben und in ihrem dynamischen Verhalten zu analysieren.
	- Fähigkeit, für gegebene lineare zeitinvariante Systeme geeignete klassische Regelungen im Frequenzbereich zu entwerfen und diese auf Stabilität und Regelverhalten zu untersuchen.
	- Fähigkeit, lineare dynamische Systeme in Zustandsraumdarstellung zu beschreiben, zu analysieren und einfache Zustandsregler zu entwerfen.

Inhalt:	- Grundbegriffe der Regelungstechnik, das Prinzip der Rückkopplung
	- Lineare Modelle dynamischer Systeme
	- Signalfuss- und Wirkplan
	- Übertragungsglieder und deren Eigenschaften im Zeit- und Frequenzbereich
	- Führungs- und Störgrößenverhalten von Regelkreisen, Störgrößenkompensation
	- Stabilität und Methoden zur Stabilitätsuntersuchung
	- Frequenzkennlinien und Bodediagramm
	- Wurzelortskurvenverfahren
	- Methoden zur Synthese von linearen Regelkreisen im Frequenzbereich
	- Zustandsraumbeschreibung dynamischer Systeme
	- Analyse linearer zeitinvarianter Systeme im Zustandsraum
	- Untersuchung der Steuerbarkeit linearer zeitinvarianter System
	- Zustandsreglerentwurf bei vollständiger Zustandsrückführung
Literatur:

Grundlage für:
Vorlesungen: - Systemtheorie, - Digitale Regelungen, - Nichtlineare Regelungen; Praktika: Praktikum Regelungstechnik

Lehrveranstaltungen
und Lehrformen:
Vorlesung “Einführung in die Regelungstechnik”, 4 SWS (V) ()
Übung “Einführung in die Regelungstechnik”, 1 SWS (Ü) ()
Tutorium “Einführung in die Regelungstechnik”, 1 SWS (T) ()

Abschätzung des
Arbeitsaufwands:
Präsenzzeit: 100 h
Vor- und Nachbereitung: 100 h
Selbststudium: 40 h
Summe: 240 h

Leistungsnachweis
und Prüfungen:
In der Regel schriftliche Prüfung von 120 minütiger Dauer, ansonsten mündliche Prüfung

Voraussetzungen
(formal):
Keine

Notenbildung:
Anhand des Klausurergebnisses bzw. der mündlichen Prüfung.
1.35 Einführung in die Werkstoffe

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8204870385</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>4 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr. Ulrich Herr</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Ulrich Herr</td>
</tr>
<tr>
<td>Einordnung des Moduls in Studiengänge:</td>
<td>Elektrotechnik, B.Sc., Pflichtmodul</td>
</tr>
</tbody>
</table>
| Voraussetzungen (inhaltlich): | - Integral- und Differentialrechnung
- komplexe Zahlen
- Vektorrechnung
- Differentialgleichungen |
| Lernziele: | - Vermittlung von Grundkenntnissen über den Aufbau der Materie
- Verständnis von Werkstoffeigenschaften, insbesondere mechanische, elektrische und magnetische Eigenschaften
- Erlernen verfahrenstechnischer Grundlagen
- Vermittlung von Kompetenzen in der Werkstoffauswahl |
| Inhalt: | - Atombau und Bindung
- Aufbau kristalliner Festkörper
- Defekte und Transportphänomene
- Mechanische, Elektrische und Magnetische Eigenschaften
- Metalle, Halbleitermaterialien und Isolatoren |
| Literatur: | - G. Fasching, Werkstoffe der Elektrotechnik, Springer
- H. Schaumburg, Werkstoffe und Bauelemente der Elektrotechnik, Teubner
- D. Askeland, Materialwissenschaften, Spektrum Verlag
- W. Kowalsky, Dielektrische Werkstoffe der Elektronik und Photonik, Teubner
- W.v. Münch, Werkstoffe der Elektrotechnik, Teubner |
| Grundlage für: | keine Angaben |
| Lehrveranstaltungen und Lehrformen: | Vorlesung „Einführung in die Werkstoffe“, 2 SWS ()
Übung „Einführung in die Werkstoffe“, 1 SWS () |
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 45 h
Vor- und Nachbereitung: 75 h
Summe: 120 h |
| Leistungsnachweis und Prüfungen: | Schriftliche Klausur Dauer 2 Stunden, sonst mündliche Prüfung; erfolgreiche Teilnahme an den Übungen ist Voraussetzung für die Zulassung zur Klausur/Prüfung |
Voraussetzungen (formal):

| Notenbildung: | Ergebnis der Klausur oder mündl. Prüfung |

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.36 Electronic System Design using C and SystemC

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870436</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr. Endric Schubert</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Elektrotechnik, M.Sc., Wahlpflichtmodul Komunikations- und Systemtechnik
Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
Informationssystemtechnik, M.Sc., Wahlpflichtmodul (Ing)
Communications Technology, M.Sc., Technisches Wahlmodul

Voraussetzungen (inhaltlich):
Bachelor

Lernziele:
To teach design and validation of electronic systems using an Electronic System Level modeling methodology. The full syntax of OSCI SystemC is taught from an object oriented software design point of view, together with important Methods of Computation.

Inhalt:
In today's world of short product cycles the design of electronic systems demands concurrent design of the hardware and software components. Over a very short time period SystemC has evolved as the de-facto industry standard for modeling and validating hardware and software components of electronic systems. SystemC builds upon the powerful ANSI C++ computer software language and adds means for modeling concurrency (parallelism), communication mechanisms, reactivity for synchronizing concurrent processing, and a concept of time. Thus SystemC can be seen as a C++ class library plus an event-based simulation kernel. After a refresher of the syntax of ANSI C++ and principles of object-oriented programming, the syntax of SystemC is introduced. Models of Computation are presented that are commonly used to model at various levels of abstraction: Register-Transfer Level, Behavioral Level, Transaction Level, etc. SystemC models may differ in their accuracy in certain aspects: Pin-level accuracy, timing accuracy, structural accuracy, functional accuracy, communication accuracy. The student will learn methods for trading-off fast development of a SystemC model vs. accuracy and simulation speed. Methods for refining models to gain more accuracy in certain areas are shown, together with formal processes that have proven to be efficient. To complement the class many examples of SystemC code will be shown during the lectures. Hands-on exercises will take those examples to the next level of understanding and will enable the student to develop, compile and debug own SystemC models.

Literatur:
- Ellis, Stroustrup, “The Annotated C++ Reference”, Addison-Wesley
- The manual pages for GNU gcc, GNU make, GNU gdb at www.gnu.org
- The SystemC Language Reference Manual (LRM) from the Open SystemC Initiative at www.osci.org
Grundlage für: keine Angaben

| Lehrveranstaltungen und Lehrformen: | Vorlesung “Electronic System Design using C and SystemC”, 2 SWS ()
| | Übung “Electronic System Design using C and SystemC”, 2 SWS () |

Abschätzung des Arbeitsaufwands:

| Präsenzzeit: 56 h | Vor- und Nachbereitung: 80 h |
| Selbststudium: 44 h |

Summe: 180 h

Leistungsnachweis und Prüfungen:

| attendance to lecture and exercises; the examination is normally a written examination taking 120 minutes, otherwise oral exam |

Voraussetzungen (formal):

Notenbildung: mark of examination
1.37 Elektrische Antriebe II

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870413</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3.5</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Jian Xie</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Jian Xie</td>
</tr>
</tbody>
</table>

Voraussetzungen (inhaltlich):
- Integral- und Differentialrechnung; Lösung von Differentialgleichungen; komplexe Zahlen; Matrizen und Vektoren
- Allgemeine Bewegungsgleichungen
- Elektrische und Magnetische Felder, Maxwellsche Gleichungen;
- Berechnung von einfachen Magnetischen Kreisen
- Berechnung von Gleichstrom- und Wechselstromkreisen
- Darstellung und Berechnung von Wechselstromgrößen mit komplexen Zahlen und Zeigern
- Grundkenntnisse über Drehstromtechnik
- Grundkenntnisse über elektronischen Bauelementen und Schaltungen
- Aufbau und Prinzip von Elektromaschinen (Gleichstrom-, Asynchron- und Synchronmaschinen)
- Spannungsgleichungen, Spannungszeigerdiagramme und Drehmoment-Drehzahl-Kennlinien der Elektromaschinen
- Verfahren zur Drehzahlsteuerung der Elektromaschinen
- Prinzip und grundsätzliche Schaltungen von Frequenzumrichtern
- Grundsätzliche Steuer- und Regelungsverfahren für umrichtergespeiste Elektromaschinen
Lernziele:
Der Hörer ist fähig:
- Differentialgleichungen für die Berechnung von dynamischen Vorgängen in Transformatoren aufzustellen
- die Synchronschenkelpolmaschinen mit Spannungsgleichungen, Ersatzschaltbildern und Zeigerdiagrammen zu berechnen und zu analysieren
- Zweiachselentheorie, komplexen Raumzeigerdarstellung, Koordinatensysteme und Koordinatentransformationen zu beschreiben
- Flussverkettungs- und Spannungsgleichungen der Drehstrommaschinen in verschiedenen Koordinatensystemen darzustellen
- Leistungen und Drehmomenten in verschiedenen Koordinationssystemen zu berechnen
- Allgemeine Modelle für Drehstrommaschinen zu beschreiben und anzuwenden
- Dynamische Vorgänge wie Stoßkurzschluss, Anfahren, Zuschalten von Drehstrommaschinen zu analysieren und zu berechnen
- Drehstrommaschinenmodell mit eingeprägten Ständerströmen und feldorientierten Koordinaten zu beschreiben
- Prinzip der Feldorientierten Regelung umrichtergespeister Drehstrommaschinen zu beschreiben
- Prinzip und Aufbau einer permanent erregten Synchronmaschine zu verstehen
- einfache magnetische Kreise mit Permanentmagneten zu berechnen
- den Umrichterbetrieb der Synchronmaschine zu verstehen

Inhalt:
- In dieser Vorlesung wird das dynamische Verhalten elektrischer Antriebssysteme behandelt.
- Am Anfang wird das dynamische Verhalten von Gleichstrommaschinen und Transformatoren behandelt.
- Danach wird das stationäre Betriebsverhalten der Synchronschenkelpolmaschine besprochen und die Zweiachsel-Theorie eingeführt.
- Anschließend wird das allgemeine Maschinenmodell zur Behandlung von dynamischen Betriebsverhalten der Drehstrommaschinen hergeleitet.
- Mit Hilfe davon wird das dynamische Verhalten der Asynchron- und Synchronmaschine diskutiert.
- Ein Schwerpunkt der Vorlesung ist die Feldorientierte Regelung der umrichtergespeisten Drehstrommaschinen.
- Es wird die Berechnung eines einfachen, einen permanentmagnetischen Abschnitt enthaltenden Magnetkreises vorgestellt.
- Der Aufbau der permanent erregten Synchronmaschine wird behandelt.
- Außerdem wird auf den Umrichterbetrieb der Synchronmaschine eingegangen.

Literatur:
- Skript zur Vorlesung „Elektrische Antriebstechnik II“, Univ. Ulm
- Rolf Fischer: Elektrische Maschinen, Carl Hanser Verlag, München, Wien, 1989
- Schröder: Elektrische Antriebe, Springer-Verlag, Berlin Heidelberg and New York 19945
- Werner Nürnberg: Die Asynchronmaschine, Springer-Verlag Berlin Heidelberg New York, 19761

Grundlage für: keine Angaben
Lehrveranstaltungen und Lehrformen:

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung "Elektrische Antriebe II"</td>
<td>2</td>
<td>(V)</td>
</tr>
<tr>
<td>Übung "Elektrische Antriebe II"</td>
<td>1</td>
<td>(Ü)</td>
</tr>
<tr>
<td>Labor "Elektrische Antriebe II"</td>
<td>0.5</td>
<td>(P)</td>
</tr>
</tbody>
</table>

Abschätzung des Arbeitsaufwands:

- Präsenzzeit: 56 h
- Vor- und Nachbereitung: 54 h
- Selbststudium: 40 h

Summe: 150 h

Leistungsnachweis und Prüfungen:

Voraussetzungen (formal):

- Notenbildung: Die Modulnote entspricht dem Ergebnis der Prüfung.
1.38 Elektrische Antriebe I

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870408</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>7 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>5</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Jian Xie</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Jian Xie</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Allgemeine Elektrotechnik
- Elektrotechnik, M.Sc., Pflichtmodul Automatisierungs- und Energietechnik

Voraussetzungen (inhaltlich):
- Integral- und Differentialrechnung; Lösung von Differentialgleichungen, komplexe Zahlen
- Allgemeine Bewegungsgleichungen
- Elektrische und Magnetische Felder, Maxwellsche Gleichungen;
- Berechnung von einfachen Magnetischen Kreisen
- Berechnung von Gleichstrom- und Wechselstromkreisen
- Darstellung und Berechnung von Wechselstromgrößen mit komplexen Zahlen und Zeigern
- Grundkenntnisse über Drehstromtechnik
- Grundkenntnisse über elektronische Bauelemente und Schaltungen

Lernziele:
- Der Hörer ist fähig:
 - das Antriebssystem mit Antriebsmotoren und Arbeitsmaschinen mit Bewegungsgleichungen zu beschreiben
 - Stabilität des Antriebssystems und Arbeitspunkte zu beurteilen
 - Antriebsmotoren und Arbeitsmaschinen zu klassifizieren
 - Einsatzgebiete verschiedener Elektromaschinen zu erläutern
 - Prinzip, Aufbau und Schaltungen von Elektromaschinen (Gleichstrom-, Asynchron-, Synchron- und Kondensatormaschinen) zu beschreiben
 - Elektromaschinen mit den Spannungsgleichungen, Ersatzschaltbildern und Zeigerdiagrammen zu analysieren und zu berechnen
 - Drehmoment-Drehzahl-Kennlinien von Elektronmaschinen zu berechnen und zu analysieren
 - Betriebszustände und Arbeitspunkte von Elektromaschinen zu beschreiben, analysieren und zu berechnen
 - Steuerverfahren und Schaltungen für Drehzahlaussteuerung, Anfahren und Bremsen zu erläutern, analysieren und zu berechnen
 - Prinzip, Schaltungen, Steuerung und Regelung von umrichtergespeisten Elektromaschinen zu beschreiben und zu berechnen
 - einen Heylandkreis zu zeichnen und auszuwerten
Inhalt:
- In dieser Vorlesung wird das stationäre Verhalten elektrischer Antriebssysteme behandelt.
- Am Anfang werden die Bewegungsgleichungen hergeleitet und die Stabilität der Antriebssysteme analysiert.
- Dann werden Spannungsgleichungen, Ersatzschaltbilder und Drehmoment-Drehzahl-Kennlinien von Gleichstrommaschinen, Asynchronmaschinen und Synchronmaschinen hergeleitet.
- Ausgehend hiervon werden Betriebsverhalten, Verfahren zur Drehzahlsteuerung, Bremsung und zum Anfahren der Elektromaschinen behandelt.
- Dabei werden auch Schaltungstypen und Möglichkeiten der Drehzahlsteuerung durch leistungselektronische Frequenzumrichter beschrieben.
- Das Zeichnen und Auswerten von Heylandkreisen wird vorgestellt.
- In der Vorlesung werden außerdem elektrische Kleinmaschinen wie Kondensatormaschinen besprochen.

Literatur:
- Skript zur Vorlesung "Elektrische Antriebstechnik I", Univ. Ulm
- Rolf Fischer: Elektrische Maschinen, Carl Hanser Verlag, München, Wien, 1989
- Schröder: Elektrische Antriebe 1, Springer-Verlag, Berlin Heidelberg and New York 1994

Grundlage für: keine Angaben

Lehrveranstaltungen und Lehrformen:
Vorlesung "Elektrische Antriebe I", 2 SWS (V) ()
Übung "Elektrische Antriebe I", 2 SWS (Ü) ()
Labor "Elektrische Antriebe I", 1 SWS (P) ()

Abschätzung des Arbeitsaufwands:
Präsenzzeit: 80 h
Vor- und Nachbereitung: 80 h
Selbststudium: 50 h
Summe: 210 h

Leistungsnachweis und Prüfungen:
In der Regel schriftliche Prüfung von 120 Minuten Dauer, ansonsten mündliche Prüfung. Erfolgreiches Absolvieren des vorlesungsbegleitenden Praktikums bis zum letzten Tag der Vorlesungszeit des Semesters.

Voraussetzungen (formal):

Notenbildung: Die Modulnote entspricht dem Ergebnis der Prüfung.
1.39 Elektrische Messtechnik

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8204870397</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>Integral- und Differentialrechnung Grundlagen der Elektrotechnik (Gleich- und Wechselgrößen)</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>Der Hörer ist fähig:</td>
</tr>
<tr>
<td></td>
<td>- Normgerechte Durchführung von Messungen unter Angabe von Fehler- und Genauigkeitsgrenzen</td>
</tr>
<tr>
<td></td>
<td>- Kenntnisse der grundlegenden Methoden und Verfahren der analogen und digitalen elektrischen Messtechnik</td>
</tr>
<tr>
<td></td>
<td>- Fähigkeit, einfache Messsysteme zur Messung elektrischer und nichtelektrischer Größen zu konzipieren und hinsichtlich ihrer zu erwartenden Genauigkeit zu analysieren</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>- Einheitensysteme, SI-Einheiten</td>
</tr>
<tr>
<td></td>
<td>- Klassische Fehlerrechnung</td>
</tr>
<tr>
<td></td>
<td>- Fehlerbetrachtungen nach GUM</td>
</tr>
<tr>
<td></td>
<td>- Differenz und Kompensationsprinzip in der Messtechnik</td>
</tr>
<tr>
<td></td>
<td>- Klassische Messgeräte zur Messung elektrischer Größen</td>
</tr>
<tr>
<td></td>
<td>- Sensoren zur Messung "nichtelektrischer Größen"</td>
</tr>
<tr>
<td></td>
<td>- Messumformer und Messverstärker</td>
</tr>
<tr>
<td></td>
<td>- Messrauschen</td>
</tr>
<tr>
<td></td>
<td>- AD- / DA-Umsetzer</td>
</tr>
<tr>
<td></td>
<td>- Digitale Messtechnik</td>
</tr>
<tr>
<td></td>
<td>- Korrelationsmesstechnik</td>
</tr>
<tr>
<td>Grundlage für:</td>
<td>Vorlesung Messtechnik II</td>
</tr>
<tr>
<td>Lehrveranstaltungen und Lehrformen:</td>
<td>Vorlesung "Elektrische Messtechnik", 2 SWS (V) ()
Übung "Elektrische Messtechnik", 1 SWS (Ü) ()</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>Präsenzzeit: 45 h
Vor- und Nachbereitung: 55 h
Selbststudium: 50 h
Summe: 150 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>In der Regel schriftliche Prüfung von 120 minütiger Dauer, ansonsten mündliche Prüfung</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td></td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Anhand des Klausurergebnisses bzw. der mündlichen Prüfung</td>
</tr>
</tbody>
</table>

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.40 Elektromagnetische Felder und Wellen - Weiterführende Methoden

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>kein Kürzel da keine Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>0 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>1 (V)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Dr.-Ing. Jürgen Mähnß</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr.-Ing. Jürgen Mähnß</td>
</tr>
<tr>
<td>Einordnung des Moduls</td>
<td>Elektrotechnik, B.Sc., Wahlpflichtmodül</td>
</tr>
<tr>
<td>in Studiengänge:</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Lineare Algebra, Analysis I und II</td>
</tr>
<tr>
<td>(inhaltlich):</td>
<td>Grundlagen der Elektrotechnik I–II</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>Ergänzung zu den Methoden der Vorlesung Elektromagnetische Felder und Wellen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Feldlinienberechnung</td>
</tr>
<tr>
<td></td>
<td>Verallgemeinerter Kapazitätsbegriff</td>
</tr>
<tr>
<td></td>
<td>Orthogonalentwicklung in verschiedenen Koordinatensystemen</td>
</tr>
<tr>
<td></td>
<td>Spiegelungsmethode</td>
</tr>
<tr>
<td></td>
<td>Greensche Funktion</td>
</tr>
<tr>
<td></td>
<td>Zweidimensionale Potenzialprobleme</td>
</tr>
<tr>
<td></td>
<td>Wellenausbreitung, Reflexion und Brechung in verlustbehafteten Medien</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Vorlesungsmanuskript</td>
</tr>
<tr>
<td>Grundlage für:</td>
<td>Bauelemente der Optoelektronik</td>
</tr>
<tr>
<td></td>
<td>Advanced Optoelectronic Communication Systems</td>
</tr>
<tr>
<td></td>
<td>Praktikum “Einführung in die Optoelektronik”</td>
</tr>
<tr>
<td></td>
<td>Hochfrequenztechnik</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Übung “Elektromagnetische Felder und Wellen – Weiterführende Methoden”, 1 SWS (V) ()</td>
</tr>
<tr>
<td>und Lehrformen:</td>
<td></td>
</tr>
<tr>
<td>Abschätzung des</td>
<td>Vor- und Nachbereitung: 15 h</td>
</tr>
<tr>
<td>Arbeitsaufwands:</td>
<td>Präsenzzeit: 15 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 30 h</td>
</tr>
<tr>
<td>Leistungsnachweis</td>
<td>entfällt</td>
</tr>
<tr>
<td>und Prüfungen:</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>(formal):</td>
<td></td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>entfällt</td>
</tr>
</tbody>
</table>
1.41 Elektromagnetische Felder und Wellen

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8204870384</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>8 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>8</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr. Peter Unger</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Peter Unger, Dr.-Ing. Jürgen Mähnß</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
Elektrotechnik, B.Sc., Pflichtmodul

Voraussetzungen (inhaltlich):
- Lineare Algebra, Analysis I und II
- Grundlagen der Elektrotechnik I–II

Lernziele:
Vertieftes Verständnis der Elektrodynamik und der dazu notwendigen Mathematik sowie Anwendung der Maxwell-Gleichungen

Inhalt:
- Differenziation von Skalar- und Vektorfeldern, Gaußscher- und Stokesscher Integralsatz
- Coulombsches Gesetz, Elektrostatik
- Elektrostatisches Potenzial, Poisson- und Laplace-Gleichung
- Biot-Savart-Gesetz, Magnetostatik, Durchflutungsgesetz
- Magnetisches Vektorpotenzial, Coulomb-Eichung
- Kontinuitätsgleichung, Induktionsgesetz, Dynamisches Durchflutungsgesetz
- Elektrodynamik, Maxwell-Gleichungen im Vakuum
- Maxwell-Gleichungen in Materie, Grenzflächenbedingungen
- Inhomogene Wellengleichungen, Lorentz-Eichung
- Greensche Funktion, Retradierte und Avancierte Potenziale
- Elektromagnetische Wellen, Transversaler Charakter, Impedanz
- Wellenausbreitung ebener Wellen, Transmission, Reflexion und Brechung

Literatur:
- Vorlesungsmanuskript
- W. Nolting, Elektrodynamik (Grundkurs Theoretische Physik 3), 6. Aufl., Springer-Verlag, Heidelberg 2002
- G. Mrozynski, Elektromagnetische Feldtheorie - Eine Aufgabensammlung, Teubner-Verlag, Stuttgart 2003
- P. Leuchtmann, Einführung in die elektromagnetische Feldtheorie, Pearson Studium, 2005
Grundlage für:
Bauelemente der Optoelektronik
Advanced Optoelectronic Communication Systems
Praktikum “Einführung in die Optoelektronik”
Hochfrequenztechnik

Lehrveranstaltungen und Lehrformen:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Lehrformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung “Elektromagnetische Felder und Wellen”</td>
<td>2 SWS (V)</td>
</tr>
<tr>
<td>Vorlesung “Elektromagnetische Felder und Wellen – Weiterführende Methoden”</td>
<td>1 SWS (V) (optional)</td>
</tr>
<tr>
<td>Übung “Elektromagnetische Felder und Wellen”</td>
<td>2 SWS (Ü)</td>
</tr>
<tr>
<td>Übung “Elektromagnetische Felder und Wellen – Grundlegende Berechnungsverfahren”</td>
<td>1 SWS (Ü) (optional)</td>
</tr>
<tr>
<td>Tutorium “Elektromagnetische Felder und Wellen”</td>
<td>2 SWS (T)</td>
</tr>
</tbody>
</table>

Abschätzung des Arbeitsaufwands:

- Vor- und Nachbereitung: 90 h
- Präsenzzeit: 75 h
- Selbststudium: 75 h
- Summe: 240 h

Leistungsnachweis und Prüfungen:

- Schriftliche Prüfung von 180 Minuten Dauer

Voraussetzungen (formal):

- Keine

Notenbildung:

- Modulnote ist identisch mit Prüfungsnote
<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804871450</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Dr.-Ing. Dejan Lazich</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr.-Ing. Dejan Lazich</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Elektrotechnik, M.Sc., Wahlmodul Allgemeine Elektrotechnik
- Informationssystemtechnik, M.Sc., Wahlmodul

Voraussetzungen (inhaltlich):
- Elektrotechnik/Informatik: Grundkenntnisse in Signalverarbeitung und Systemtheorie sowie in Schaltungs- und Prozessortechnik Mathematik: Grundkenntnisse in algebraischen Strukturen, Wahrscheinlichkeitsrechnung und Statistik

Lernziele:
- Grundkenntnisse über aktuell eingesetzte Kryptomethoden
- Implementierungsaspekte von sicherheitsrelevanten Funktionseinheiten in eingebetteten Systemen
- Systematische Betrachtung von Angriffsmethoden sowie entsprechenden Gegenmaßnahmen
- Sicherheitsüberprüfung und Zertifizierung von sicherheitskritischen Komponenten in eingebetteten Systemen

Inhalt:
- Überblick über kryptografische Protokolle, Techniken und Algorithmen
- Implementierungsformen von kryptografischen Algorithmen
- Arten von Implementierungsattacken und Gegenmaßnahmen
- Seitenkanalangriffe und Gegenmaßnahmen
- Sicherheitsarchitekturen von ICs
- Sicherheitsrelevante Module in ICs
- Zufallszahlengeneratoren und Zufallstests in eingebetteten Systemen
- Arithmetische Module für kryptografische Anwendungen
- Modulare Arithmetik und Arithmetik der Elliptischen Kurven
- Montgomery-Arithmetik
- Speicherung von sicherheitskritischen Daten auf ICs
- Schutz vor unbefugten Manipulation von Firmware und Software in eingebetteten Systemen,
- Zertifizierung von eingebetteten kryptografischen Modulen
- Beispiele für sicherheitsrelevante Anwendungen: Chipkarten, RFID-Systeme, Zugangs- und Bezahlsysteme, Tachometer und Tachografen, Pay-TV-Geräte (Set-Top-Boxen)
- Biometrie und Embedded Security

Literatur:
Es existiert bis dato noch kein einführendes Lehrbuch oder Skript zum Thema Embedded Security. Daher werden ausgewählte Kapitel aus folgenden Büchern empfohlen:
- Cetin Kaya Koc (Editor): "Cryptographic Engineering", Springer 2009, Kapitel 1-6

Als weiterführende Literatur werden die folgenden Bücher empfohlen:
- Mangard, Oswald, Pop: "Power Analysis Attacks", Springer 2007
- Schöning: "Kryptologie-Kompendium", für die Vorlesung Kryptologie, Fakultät für Ingenieurwissenschaften und Informatik, Universität Ulm, Version 2010
- Schmeh: "Kryptographie", dpunkt.verlag, 2006

Grundlage für: Master-Arbeit
<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen:</th>
<th>Vorlesung "Embedded Security - Informationssicherheit in eingebetteten Systemen", 2 SWS (V) ()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Übung "Embedded Security - Informationssicherheit in eingebetteten Systemen", 1 SWS (Ü) ()</td>
</tr>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>Präsentzeit: 44 h</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 71 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 35 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 150 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>In der Regel mündliche Prüfung von 30 Minuten Dauer</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td></td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Anhand der Ergebnisse der mündlichen Prüfung</td>
</tr>
</tbody>
</table>

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.43 Energietechnik

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870409</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>7 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>5</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr. Herbert Kabza</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Herbert Kabza</td>
</tr>
</tbody>
</table>
| Voraussetzungen (inhaltlich): | - Mathematik I, II, III
- Physik I und II
- Grundlagen der Elektrotechnik I, II
- Einführung in die Energietechnik |
| Lernziele: | Der Hörer ist fähig:
- zur Anwendung von einfachen Verfahren der Kosten- und Investitionsrechnung im Bereich der Energiewirtschaft
- zu Beschreibung und Erklärung der wesentlichen Eigenschaften und Funktionen von unterschiedlichen Kernkraftwerks-Konzepten
- zu Berechnungen im Bereich der Leistungs-Frequenz-Regelung: Frequenzverläufe, Defizitleistungen,...
- zu einfacheren Berechnungen im Bereich der Gas- und Dampfkraftwerksprozesse
- zur Anwendung des Verfahrens der symmetrischen Komponenten zur Bestimmung des Verhaltens von Energieübertragungsnetzen bei unsymmetrischer Belastung.
- zur Beschreibung von Aufbau und Funktionsweise von Transformatoren unterschiedlicher Bauformen und zu Berechnungen in diesem Bereich
- zur Berechnung des Verhaltens von Energieübertragungsleitungen |
| Inhalt: | - Grundlagen und einfache Verfahren der Investitions- und Kostenrechnung
- Detaillierte Darstellung von Energieverbrauch, Energieressourcen, Entwicklung des Verbrauchs
- Einführung in die technische Thermodynamik: Struktur und Funktionsweise der Wärmekraftprozesse, Jouleprozess, Clausius-Rankine - Prozess; Aufbau und Funktion der darauf basierenden Kraftwerke
- Struktur und Funktionsweise der Kernenergietechnik und -nutzung: Leichtwasser-, Druckwasser-, Schwerwasserreaktor, Schneller Brüter, Hochtemperaturreaktor, Kernfusion
- Struktur und Funktionsweise der Verbundnetze, Leistungs und Frequenzregelung, elektrische Energieverteilung
- Einführung in die Systemanalyse, Symmetrische Komponenten, Transformatoren, Leistungstheorie |
Literatur:

- H. Kabza, J. Xie: Vorlesungsskript: Energietechnik I, Univ. Ulm
- D. Peier: Einführung in die elektrische Energietechnik, Teubner Heidelberg 1987 (vergriffen)
- G. Herold: Grundlagen der elektrischen Energieversorgung, Teubner 1997

Grundlage für:

keine Angaben

Lehrveranstaltungen und Lehrformen:

<table>
<thead>
<tr>
<th>Lehrveranstaltung und Lehrformen:</th>
<th>Vorlesung “Energietechnik”, 3 SWS (V) ()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Übung “Energietechnik”, 1 SWS (Ü) ()</td>
</tr>
<tr>
<td></td>
<td>Labor “Energietechnik”, 1 SWS (P) ()</td>
</tr>
</tbody>
</table>

Abschätzung des Arbeitsaufwands:

<table>
<thead>
<tr>
<th>Abschätzung des Arbeitsaufwands:</th>
<th>Präsenzzeit: 74 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 86 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 50 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 210 h</td>
</tr>
</tbody>
</table>

Leistungsnachweis und Prüfungen:

In der Regel schriftliche Prüfung von 120 Minuten Dauer, ansonsten mündliche Prüfung. Erfolgreiche Teilnahme an den Praktikumsteilen ist Voraussetzung zur Zulassung zur Prüfung.

Voraussetzungen (formal):

Notenbildung:

Die Modulnote entspricht dem Ergebnis der Prüfung.

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.44 Entwurf integrierter Systeme

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870424</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Albrecht Rothermel</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Albrecht Rothermel</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlpflichtmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlpflichtmodul Automatisierungs- und Energietechnik
- Informationssystemtechnik, M.Sc., Wahlpflichtmodul (ING)

Voraussetzungen (inhaltlich):
Digitale Schaltungen Signalverarbeitung vorteilhaft

Lernziele:
- Die Studenten sollen die Verfahren zur strukturellen Verminderung der Signalverzögerungen verstehen, und damit komplexe Hardware-Systeme für höchste Taktgeschwindigkeiten entwerfen und optimieren können.

Inhalt:
- komplexe Komponenten der digitalen Signalverarbeitung: Schelle Addierer, schnelle Multiplizierer, Dividierer, CORDIC
- Lineare Gleichstromschaltungen
- algorithmische Verfahren: Baumstrukturen, Shift and Add", Redundante Zahlendarstellung, "Carry-Save", "Wallace Tree", "Booth-"Verfahren
- effiziente Taktungs-Verfahren, "Pipelining" und "Cut-Set-"Technik
- effiziente Strukturen für digitale Filter

Literatur:
- High speed CMOS design styles, K. Bernstein, Boston, Kluwer Academic 1998
- Integrierte Digitale Schaltungen MOS/BICMOS, H. Klar, Springer Lehrbuch, Berlin 1993

Grundlage für:
Masterarbeit

Lehrveranstaltungen und Lehrformen:
Vorlesung “Entwurf integrierter Systeme”, 3 SWS (V) ()
Übung “Entwurf integrierter Systeme”, 1 SWS (Ü) ()
Abschätzung des Arbeitsaufwands:
Präsenzzeit: 48 h
Vor- und Nachbereitung: 76 h
Selbststudium: 56 h
Summe: 180 h

Leistungsnachweis und Prüfungen:
Teilnahme an Vorlesungen und Übungen, i.d.R. schriftliche Prüfung von 120 minütiger Dauer, ansonsten mündliche Prüfung.

Voraussetzungen (formal):
keine

Notenbildung:
Anhand des Klausurergebnisses bzw. der mündlichen Prüfung

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.45 Entwurf und Synthese von Digitalfiltern

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804871143</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>4 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Priv.-Doz. Dr. Dietrich Fränken</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Priv.-Doz. Dr. Dietrich Fränken</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlmodul Kommunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Elektrotechnik, M.Sc., Wahlmodul Allgemeine Elektrotechnik
- Informationssystemtechnik, M.Sc., Wahlpflichtmodul (Ing)

Voraussetzungen (inhaltlich):
- Digitale Schaltungen
- Signalverarbeitung vorteilhaft

Lernziele:
Ziel der Veranstaltung ist es, grundlegende Kenntnisse der Auslegung und Implementierung von Filterstrukturen für die digitale Signalverarbeitung zu vermitteln. Studierende sollen mit Signalfussgrapgen umgehen lernen und in die Lage versetzt werden, die für ihre Anwendungen geeigneten Filterstrukturen auszuwählen. Es werden sowohl analytische als auch numerisch-iterative Entwurfsverfahren für Digitalfilter diskutiert.

Inhalt:
- Zielsetzung:
- Anforderungen (Dämpfungsverlauf, Phasenverlauf, Toleranzschema, Stabilität, Aufwand)
- Entwurf und Synthese als Aufgabenstellung
- Berücksichtigung von Wortlängeneffekten (Empfindlichkeit, Stabilität)
- Synthese:
 - Signalfussgraphen
 - Synthese rekursiver Filter: Direktstrukturen, Kaskaden- und Parallelstrukturen, Struktur nach Gray und Marke
 - Wellendigitalfilter, Bedeutung der Passivität, symmetrische verlustfreie Zweitordre
- Entwurf:
 - Charakteristische Funktion
 - Butterworth-Entwurf, Tschebyscheff-Entwurf, Cauer-Entwurf (elliptische Funktionen, Landen-Transformation, Darlington-Algorithmus)
- Entwurf von Hoch- und Bandpässen sowie Bandsperren mit Hilfe von Frequenztransformationen
- Entwurf exakt linearphasiger Filter (Dolph-Tschebyscheff-Tiefpass, Remez-Algorithmus, Notch-Filter)
- Synthese und Entwurf von Filtern mit näherungsweise linearer Phase
- Ausgewählte Filter für Spezialanwendungen
| Grundlage für: | keine Angaben |
| Lehrveranstaltungen und Lehrformen: | Vorlesung "Entwurf und Synthese von Digitalfiltern", 2 SWS (V) ()
| | Übung "Entwurf und Synthese von Digitalfiltern", praktische Übungen unter Nutzung von Matlab, 1 SWS (Ü) () |
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 42 h
| | Vor- und Nachbereitung: 48 h
| | Selbststudium: 30 h
| | Summe: 120 h |
| Leistungsnachweis und Prüfungen: | Teilnahme an Vorlesungen und Übungen, in der Regel schriftliche Prüfung von 120 minütiger Dauer, ansonsten mündliche Prüfung |
| Voraussetzungen (formal): | |
| Notenbildung: | Anhand des Klausurergebnisses bzw. der mündlichen Prüfung |
1.46 Fahrerassistenzsysteme

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8834872067</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>3 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>2</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Empfohlenes Wahlfach Automatisierungs- und Energieotechnik
- Elektrotechnik, M.Sc., Empfohlenes Wahlfach Komunikations- und Systemtechnik
- Informationssystemtechnik, M.Sc., Empfohlenes Wahlfach Ingenieurwissenschaften
- Informatik, M.Sc., Wahlmodul Ingenieurwissenschaften
- Informatik, M.Sc., Vertiefungsfach Eingebettete Systeme
- Medieninformatik, M.Sc., Vertiefungsfach Eingebettete Systeme

Voraussetzungen (inhaltlich):
keine

Lernziele:
Fähigkeit, Fahrerassistenzsysteme auf Komponentenebene systemarchitektonisch beschreiben zu können und verschiedene Sensortechnologien, Signalverarbeitungsmethoden und Funktionsauslegungen vergleichend bewerten zu können. Fähigkeit, Systemgrenzen einschätzen und voraussagen zu können.

Inhalt:
Die Vorlesung vermittelt einen Gesamtüberblick über aktuelle Fahrerassistenzsysteme und dafür notwendige Komponenten, Technologien und Algorithmen. Ferner wird ein Ausblick auf hoch- und vollautomatisierte Fahrzeuge gegeben. Im Detail werden behandelt:
- Übersicht über heute verfügbare Assistenzfunktionen
- Aufbau und Funktion von Radar-, Lidar- und Videosensorik
- Methoden zur Fahrzeugumfeldwahrnehmung einschließlich Objekttracking
- Methoden zur Situationsbewertung
- Klassifikation von Verkehrsteilnehmern
- Lokalisierung und hoch genaue digitale Karten
- Handlungsplanung und Fahrzeugregelung
- Funktionsauslegung und Absicherung
- Herausforderungen für hochautomatisierte Fahrzeuge

Literatur:

Grundlage für:
Masterarbeiten
<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen:</th>
<th>Vorlesung Fahrerassistenzsysteme, 2 SWS (V) ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>Präsenzzeit: 30 h</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 30 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 30 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 90 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td>keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Anhand des Ergebnisses der mündlichen Prüfung</td>
</tr>
</tbody>
</table>

Basierend auf Rev. 965. Letzte Änderung am 03.05.2013 um 13:37 durch ograsl.
1.47 Filter- und Trackingverfahren

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870414</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
</tbody>
</table>
| Voraussetzungen (inhaltlich): | - Lineare Algebra
- Grundlagen der Stochastik
- Behandlung linearer Systeme im Zustandsraum (Vorlesung Systemtheorie) |
| Lernziele: | - Kenntnisse der Theorie zur Schätzung zeitinvarianter und zeitvarianter Parameter.
- Kenntnisse zur dynamischen Modellierung und dynamischen Verfolgung von Objekten aufgrund gestörter Messungen.
- Fähigkeit der Anwendung von Parameterschätzverfahren auf konkrete Fragestellungen.
- Fähigkeit Trackingalgorithmen für einfache Messaufgaben auszulegen und zu bewerten. |
| Inhalt: | - Grundlagen der Schätztheorie (Fisher-Ansatz, Bayes-Ansatz)
- Verfahren zur statischen Parameterschätzung (MAP, ML, LS und MMSE)
- Erwartungstreue und Konsistenz von Schätzverfahren
- Rekursiver Bayes-Schätzer
- Kalman-Filter
- Numerische Probleme der Filterimplementation
- Bewertung der Konsistenz und Güte dynamischer Zustandsschätzer
- Alpha-Beta-Gamma Tracker
- Extended Kalman Filter
- Uncented Kalmanfilter
- Particle-Filter
- Multiple-Model Filter
- Datenassoziation |
| Grundlage für: | keine Angaben |
Lehrveranstaltungen und Lehrformen:

- Vorlesung "Filter- und Trackingverfahren", 2 SWS (V)
- Übung "Filter- und Trackingverfahren", Praktische Übung unter Nutzung von Matlab, 2 SWS (Ü)

Abschätzung des Arbeitsaufwands:

- Präsenzzeit: 66 h
- Vor- und Nachbereitung: 79 h
- Selbststudium: 35 h

Summe: 180 h

Leistungsnachweis und Prüfungen:

- der Regel mündliche Prüfung, ansonsten 120 minütige Klausur

Voraussetzungen (formal):

keine

Notenbildung:

Anhand des Ergebnisses der mündlichen Prüfung bzw. des Klausurergebnisses
1.48 Grenzen der Informationsverarbeitung

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804871520</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Dr.-Ing. Dejan Lazich</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr.-Ing. Dejan Lazich</td>
</tr>
</tbody>
</table>
| Voraussetzungen (inhaltlich): | - Grundkenntnisse in Signalverarbeitung und Systemtheorie sowie in Schaltungs- und Prozessortechnik
- Grundkenntnisse in Wahrscheinlichkeitstheorie und Statistik |
| Lernziele: | - Historischer Überblick der Informationsverarbeitungssysteme und Ausblick in die zukünftige Welt der Nanotechnologien
- Hauptergebnisse der Informationstheorie
- Systematische Betrachtung von Grundtechniken der statistischen Entscheidungstheorie mit Herleitung der asymptotischen Grenzen
- Betrachtung der Informationsverarbeitung als Kommunikationsproblem
- Physikalische und biologische Grenzen der Informationsübermittlung
- Algorithmische Grenzen der Informationsverarbeitung |
| Inhalt: | Diese Vorlesung befasst sich mit der folgenden Hauptfrage:
Inhalt (Fortsetzung):

Die wichtigsten Themen der Vorlesung umfassen:
- Vom Moore'schen Gesetz zum 2020-Gesetz
- Informationsverarbeitung der Zukunft und Nanotechnologien
- Grundlagen der Informationstheorie
- Grundlagen der statistischen Entscheidungstheorie, Bayes'scher Wahrscheinlichkeitsbegriff und die Vertrauensfortpflanzung (Engl.: belief propagation)
- Herleitung der asymptotischen Grenzen in der statistischen Entscheidungstheorie
- Kanalcodierungstheorem, Kanalkapazität, und die Fehlerexponent-Funktion
- Zeitdiskretes Kanalmodell mit Gauß'schem Rauschen (AWGN-Kanalmodell)
- Herleitung der AWGN-Kanalkapazität
- Informationsverarbeitung als Kommunikationsproblem
- Fundamentale Schranke für den minimalen Energieeinsatz bei der Informationsverarbeitung
- Entstehung von Fehlern in informationsverarbeitenden Systemen- thermodynamische Betrachtung
- Physikalische und biologische Grenzen der Informationsübermittlung
- Methoden der Quanteninformationsverarbeitung
- Algorithmische Grenzen der Informationsverarbeitung
- Grundbegriffe der Komplexitätstheorie
- Kolmogorovs Lösung des 13. Hilbert'schen Problems
- Das Superpositionsprinzip und Neurale Netze
- Grenzen der Informationsverarbeitung mit Neuronalen Netzen

Literatur:

Es existiert bis dato noch kein einführendes Lehrbuch oder Skript zum Thema Grenzen der Informationsverarbeitung. Daher werden ausgewählte Kapitel aus folgenden Bücher empfohlen
- Hans H. Diebner (Hrsg.): Studium Generale zur Komplexität", Genista Verlag, Tübingen, 2001

Ausgewählte Artikel zu einzelnen Themen werden auf der Web-Seite der Vorlesung zur Verfügung gestellt.

Grundlage für: Master-Arbeit

Lehrveranstaltungen und Lehrformen:

Vorlesung „Grenzen der Informationsverarbeitung“, 2 SWS (V) ()
Übung „Grenzen der Informationsverarbeitung“, 1 SWS (Ü) ()

Abschätzung des Arbeitsaufwands:

Präsenzzeit: 45 h
Vor- und Nachbereitung: 75 h
Summe: 120 h

Leistungsnachweis und Prüfungen:

der Regel Mündliche Prüfung von 30 Minuten Dauer

Voraussetzungen (formal):

Notenbildung: Anhand der Ergebnisse der mündlichen Prüfung
1.49 Grundlagen der Elektrotechnik II

Kürzel / Nummer: 8204870379

Englischer Titel: Basic Electrical Engineering II

Leistungspunkte: 7 ECTS

Semesterwochenstunden: 7

Sprache: deutsch

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: Prof. Carl Krill, Ph.D.

Dozenten: Prof. Carl Krill, Ph.D.
Mitarbeiter

Einordnung des Moduls in Studiengänge:
Elektrotechnik, B.Sc., Pflichtmodul
Informationssystemtechnik, B.Sc., Pflichtmodul
Informatik, B.Sc., Anwendungsfach Elektrotechnik
Informatik, M.Sc., Anwendungsfach Elektrotechnik
Mathematik, B.Sc., Nebenfach, Elektrotechnik

Voraussetzungen (inhaltslich):
Trigonometrie, eindimensionale Integral- und Differenzialrechnung

Lernziele:
- Erlernen von Berechnungsmethoden der Elektro- und Magnetostatik
- Grundlegendes Verständnis physikalischer Größen zur Beschreibung von elektrischen und magnetischen Feldern sowie der darin gespeicherten Energie
- Entwicklung einer physikalischen Intuition für dynamische, durch elektrische Ströme hervorgerufene Vorgänge in Widerständen, Kondensatoren und Spulen
- Aneignung der Fähigkeit, diese Vorgänge mathematisch mittels der Maxwell'schen Gleichungen zu beschreiben

Inhalt:
1. Elektrische Ladung
2. Elektrische Felder
3. Der Gaußsche Satz
4. Elektrisches Potenzial
5. Kapazität und Dielektrika
6. Elektrischer Strom und Widerstand
7. Magnetfelder
8. Das Amperesche Gesetz
9. Induktion und Induktivität
10. Magnetische Eigenschaften der Materie
11. Die Maxwell'schen Gleichungen

Literatur:
- Skript zur Vorgängervorlesung Allgemeine Elektrotechnik I (wird über das Skriptedruck-System der Fachschaft Elektrotechnik kostenlos zur Verfügung gestellt)

Grundlage für: Elektromagnetische Felder und Wellen
| Lehrveranstaltungen und Lehrformen: | Vorlesung “Grundlagen der Elektrotechnik II” (Krill)
Übung “Grundlagen der Elektrotechnik II” (Mitarbeiter)
Tutorium “Grundlagen der Elektrotechnik II” (studentische Hilfskräfte) |
|---|---|
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 105 h
Vor- und Nachbereitung: 105 h
Summe: 210 h |
| Voraussetzungen (formal): | |
1.50 Grundlagen der Elektrotechnik I

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8204870378</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>7 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>6</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Albrecht Rothermel</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Albrecht Rothermel</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, B.Sc., Pflichtmodul
- Informationssystemtechnik, B.Sc., Pflichtmodul
- Informatik, B.Sc., Anwendungsfach Elektrotechnik
- Informatik, M.Sc., Anwendungsfach Elektrotechnik
- Mathematik, B.Sc., Nebenfach, Elektrotechnik

Voraussetzungen (inhaltlich):
Empfohlen: Anschließende Teilnahme am Grundpraktikum der Elektrotechnik

Lernziele:
- Erlernen von Methoden zur Analyse einfacher linearer und nichtlinearer elektronischer Schaltungen und Netzwerke im Zeitbereich
- Grundlegender Umgang mit Netzwerken
- Beschreibung elektronischer Schaltungen mit komplexen Zahlen

Inhalt:
- Physikalische Größen und Gleichungen
- Lineare Gleichstromschaltungen
- Netzwerke mit harmonischer Erregung
- Komplexe Wechselstromrechnung
- Ortskurven
- Tiefpass - Hochpass (Frequenzgang)
- Mehrphasensysteme
- Schaltvorgänge
- Operationsverstärkerschaltungen

Literatur:
- Möller, F.; Frohne, H.; Löcherer, K.; Müller, H.: Grundlagen der Elektrotechnik
- Unbehauen, R.: Grundlagen der Elektrotechnik 1
- Unbehauen, R.: Grundlagen der Elektrotechnik 2
- Albach, M.: Grundlagen der Elektrotechnik 1
- Albach, M.: Grundlagen der Elektrotechnik 2

Grundlage für:
- alle Fächer der Elektrotechnik

Lehrveranstaltungen und Lehrformen:
- Vorlesung "Grundlagen der Elektrotechnik I", 3 SWS (V) ()
- Übung "Grundlagen der Elektrotechnik I", 2 SWS (Ü) ()
- Tutorium "Grundlagen der Elektrotechnik I", 1 SWS (T) ()

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 90 h
- Vor- und Nachbereitung: 120 h
- Summe: 210 h

109
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen (formal):</td>
<td>keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>ja, Benotung an Hand des Prüfungsergebnisses.</td>
</tr>
</tbody>
</table>
1.51 Grundlagen der Halbleiter-Bauelemente

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8204870383</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>7 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>6</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester /1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Jun.-Prof. Dr.-Ing. Steffen Strehle</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Jun.-Prof. Dr.-Ing. Steffen Strehle</td>
</tr>
<tr>
<td>Einordnung des Moduls in Studiengänge:</td>
<td>Elektrotechnik, B.Sc., Pflichtmodul</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>Inhalte des Physikunterrichts der gymnasialen Sekundarstufe II</td>
</tr>
</tbody>
</table>
| Lernziele: | - Vertiefung des vorhandenen Wissens zur Festkörperphysik mit Schwerpunkt auf halbleitenden Materialien
| | - Verständnis der quantenmechanischen Grundlagen halbleitender Eigenschaften
| | - Entwicklung der Fähigkeit die Funktionsweise und das elektrische Verhalten fundamentaler Halbleiterbauelemente zu verstehen und dieses Wissen auf weitere bzw. komplexere Halbleiter-Bauelemente übertragen zu können |
| Grundlage für: | Veranstaltungen zu Halbleiterbauelementen in Master-Studiengängen |
| Lehrveranstaltungen und Lehrformen: | Vorlesung “Grundlagen der Halbleiter-Bauelemente”, 3 SWS ()
| | Übung “Grundlagen der Halbleiter-Bauelemente”, 2 SWS ()
| | Tutorium “Grundlagen der Halbleiter-Bauelemente”, 1 SWS () |
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 50 h
Vor- und Nachbereitung: 100 h
Selbststudium: 60 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe:</td>
<td>210 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>schriftliche Prüfung von 120 Minuten Dauer</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td></td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Die Modulnote entspricht dem Ergebnis der schriftlichen Prüfung.</td>
</tr>
</tbody>
</table>
1.52 Grundlagen und Anwendungen optischer Displays

Kürzel / Nummer: 8804870454

Englischer Titel: -

Leistungspunkte: 4 ECTS

Semesterwochenstunden: 3

Sprache: Deutsch

Turnus / Dauer: jedes Wintersemester / 1 Semester

Modulverantwortlicher: Prof. Dr. Peter Unger

Dozenten: Prof. Dr. Peter Unger

Einordnung des Moduls in Studiengänge:
Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Elektrotechnik, M.Sc., Wahlpflichtmodul Mikroelektronik
Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik

Voraussetzungen (inhaltlich):
- Bachelor
- Keine Voraussetzungen aus anderen Modulen erforderlich

Lernziele:
Ziel der Vorlesung ist ein praxisnaher Überblick über neuartige Display- Technologien, sie soll das grundlegende Wissen über einen innovativen, zukunftsträchtigen und explodierenden Markt mit neuartigen Anwendungen vermitteln.

Inhalt:
- Visuelle Wahrnehmung
- Kathodenstrahlröhren (CRTs)
- Flüssigkristallanzeigen (LCDs)
- Digital Micromirror Devices (DMDs)
- Feldemissions-Displays
- Plasma-Displays
- Liquid Crystal on Silicon (LCoS) Projektoren
- Displays aus Organischen Leuchtdioden (OLEDs)
- Video-Projektion
- Sereoskopische Darstellung

Literatur:

Grundlage für:

Lehrveranstaltungen und Lehrformen:
Vorlesung “Grundlagen und Anwendungen optischer Displays”, 2 SWS (V) ()
Übung “Grundlagen und Anwendungen optischer Displays”, 1 SWS (Ü) ()
<table>
<thead>
<tr>
<th>Abschätzung des Arbeitsaufwands:</th>
<th>Vor- und Nachbereitung: 45 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Präsenzzeit: 75 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 120 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td>Keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Modulnote ist identisch mit Prüfungsnote</td>
</tr>
</tbody>
</table>

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smosser.
1.53 Grundpraktikum der Elektrotechnik

Kürzel / Nummer: 8204870588

Englischer Titel: -

Leistungspunkte: 3 ECTS

Semesterwochenstunden: 3

Sprache: Deutsch

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Maurits Ortmanns

Dozenten: Prof. Dr.-Ing. Maurits Ortmanns
Dipl.-Phys. Otto Grassl

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, B.Sc., Pflichtmodul
- Informationssystemtechnik, B.Sc., Pflichtmodul
- Mathematik, B.Sc., Nebenfach, Elektrotechnik

Voraussetzungen (inhaltlich):
Besuch der Vorlesung Grundlagen der Elektrotechnik I digitale Schaltungen bzw. äquivalente Vorkenntnisse

Lernziele:
- Umgang mit den wichtigsten elektrischen Messgeräten
- Vertiefung, Erweiterung und Anwendung der Kenntnisse aus der Vorlesung
- Grundlagen der Elektrotechnik I
 - Die Studenten beherrschen die grundlegenden Techniken des Experimentierens, insbesondere die korrekte Erfassung und Analyse von Messdaten
 - können Ihre Ergebnisse schriftlich und grafisch in angemessener Form präsentieren
 - haben gelernt, im Team zu arbeiten

Inhalt:
- Messen mit unterschiedlichen elektrischen Messgeräten und Automatisierung
- Kennenlernen unterschiedlicher Gleich- und Wechselstrom-Grundschaltungen
- Bestimmung von Zweipolparametern
- Umgang mit digitalen Oszilloskopen, Zeit- und Frequenzdarstellung
- Einfache passive Filter, Transformator
- Nichtlineare Bauelemente wie Dioden und Transistoren
- Grundschaltungen mit Operationsverstärkern
- Digitale Logik- und sequentielle Schaltungen

Literatur:
Ist jeweils in den Beschreibungen der einzelnen Versuche angegeben

Grundlage für:
alle Fächer der Elektrotechnik

Lehrveranstaltungen und Lehrformen:
Praktikum “Grundpraktikum der Elektrotechnik”, 3 SWS (P) ()

Abschätzung des Arbeitsaufwands:
Präsenzzeit: 48 h
Vor- und Nachbereitung: 42 h
Summe: 90 h
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen (formal):</td>
<td>Keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>nein. Ausgabe eines Leistungsnachweises bei erfolgreicher Teilnahme.</td>
</tr>
</tbody>
</table>
1.54 Hochfrequenztechnik II

Kürzel / Nummer: 8804870425

Englischer Titel: RF & Microwave Engineering II

Leistungspunkte: 8 ECTS

Semesterwochenstunden: 6

Sprache: deutsch

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Wolfgang Menzel

Dozenten: Prof. Dr.-Ing. Christian Waldschmidt
 Prof. Dr.-Ing. Wolfgang Menzel
 Prof. Dr. Michael Hoffmann

Einordnung des Moduls in Studiengänge: Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
 Elektrotechnik, M.Sc., Wahlpflichtmodul Komunikations- und Systemtechnik
 Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik

Voraussetzungen (inhaltlich): Kenntnisse und Kompetenzen der Module:
- Einführung in die HF-Technik
- Felder und Wellen

Lernziele: Nach erfolgreichem Abschluss können die Studierenden:
- geführte und ungeführte elektromagnetische Feldwellen mathematisch beschreiben
- diese Beschreibung auf einfache Wellenleiter (Rechteck- und Rundhohlleiter, Koaxialleiter u.ä.) und daraus gebildete Bauelemente wie Resonatoren und einfache nichtreziproke Bauelemente anwenden
- grundlegende feldtheoretische Berechnungen von einfachen Antennen durchführen
- Antennentypen klassifizieren und Antennendiagramme interpretieren
- die verschiedenen Feldregionen und Fernfeldeigenschaften von Antennen klassifizieren
- grundlegende Eigenschaften von Mischern und Oszillatoren auch unter Berücksichtigung der dort wichtigen nichtlinearen Eigenschaften der Bauelemente beurteilen
- die grundlegende Wirkungsweise skalarer und vektorieller Netzwerkanalysatoren beherrschen und sie in der Messtechnik anwenden
- die prinzipielle Wirkungsweise von Spektrumanalysatoren analysieren und zur Auswertung gemessener Signalspektren einsetzen

Literatur:
- Kopien der Vorlesungsfolien
- Bachmann, P., Handbuch der Satellitennavigation, Motorbuch-Verl., 1993
- Baur, E., Einführung in die Radartechnik, Teubner, 1985
- Detlefsen, J., Radartechnik: Grundlagen, Bauelemente, Verfahren, Anwendungen, Springer Verlag
- Franceschetti, G., Lanari, R., Synthetic aperture radar processing, CRC Press, 1999
- Huder, B., Einführung in die Radartechnik, Teubner, 1999
- Ludloff, A., Handbuch Radar und Radarsignalverarbeitung, Vieweg, 1993
- Meinke, H., Gundlach, F.W.: Taschenbuch der Hochfrequenztechnik, Springer Verlag
- Matthaei, Young, Jones: Microwave Filters, Impedance-Matching Networks, And Coupling Structures. Artech House
- Pehl: Mikrowellentechnik, Band 1 + 2, Hüthig Buch Verlag
- Sander: Microwave Components and Systems. Addison-Wesley Publishing Company
- Silver, S., Microwave antenna theory and design, Peregrinus, 1986
- Unger, H.-G., Hochfrequenztechnik in Funk und Radar, Teubner, 1994
- Vohwinkel, B., Passive Mikrowellenradiometrie, Vieweg, 1988
- Zinke, O., Brunswick, H.: Lehrbuch der Hochfrequenztechnik, Bd. 1 + 2, Springer Verlag

Grundlage für:
keine Angaben

Lehrveranstaltungen und Lehrformen:
Vorlesung "Hochfrequenztechnik II", 4 SWS ()
Übung "Hochfrequenztechnik II", Vertiefung der Vorlesungsinhalte mittels Bearbeitung theoretischer und praktischer Aufgaben, studentische Referate, 2 SWS ()

Abschätzung des Arbeitsaufwands:
Präsenzzeit: 78 h
Vor- und Nachbereitung: 117 h
Selbststudium: 45 h
Summe: 240 h

Leistungsnachweis und Prüfungen:
Die Prüfung findet in der Regel als mündliche Prüfung statt.

Voraussetzungen (formal):

Notenbildung:
Note der Prüfung

Basierend auf Rev. 927. Letzte Änderung am 08.04.2013 um 10:42 durch ograssl.
1.55 Identifikation dynamischer Systeme

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804871405</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr.-Ing. Michael Buchholz</td>
</tr>
<tr>
<td>Einordnung des Moduls in Studiengänge:</td>
<td>Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften</td>
</tr>
<tr>
<td></td>
<td>Elektrotechnik, M.Sc., Wahlpflichtmodul Automatisierungs- und Energietechnik</td>
</tr>
<tr>
<td></td>
<td>Elektrotechnik, M.Sc., Wahlmodul Kommunikations- und Systemtechnik</td>
</tr>
<tr>
<td></td>
<td>Informationssystemtechnik, M.Sc., Wahlpflichtmodul (Ing)</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>keine</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>- Fähigkeit, die Systemidentifikation von anderen Modellierungsarten abzugrenzen</td>
</tr>
<tr>
<td></td>
<td>- Fähigkeit, die Leistungsfähigkeit und die Grenzen von Identifikationsverfahren einzuschätzen</td>
</tr>
<tr>
<td></td>
<td>- Fähigkeit, die Parameter eines Systemmodells aus Messdaten zu identifizieren</td>
</tr>
<tr>
<td></td>
<td>- Fähigkeit, ein Systemmodell aus Messdaten zu identifizieren</td>
</tr>
<tr>
<td></td>
<td>- Fähigkeit, die Verfahren in MATLAB anwenden und umsetzen zu können</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>- Abgrenzung zu anderen Modellierungsverfahren</td>
</tr>
<tr>
<td></td>
<td>- Überblick über übliche Modellformen</td>
</tr>
<tr>
<td></td>
<td>- Wiederholung von Grundbegriffen der Stochastik</td>
</tr>
<tr>
<td></td>
<td>- Methode der kleinsten Fehlerquadrate zur Parameterschätzung</td>
</tr>
<tr>
<td></td>
<td>- Erweiterungen der Methode der kleinsten Fehlerquadrate</td>
</tr>
<tr>
<td></td>
<td>- Rekursive Parameterschätzung</td>
</tr>
<tr>
<td></td>
<td>- Nichtlineare Parameterschätzung</td>
</tr>
<tr>
<td></td>
<td>- Maximum-Likelihood-Methode</td>
</tr>
<tr>
<td></td>
<td>- Systemidentifikation mit verschiedenen Modellansätzen</td>
</tr>
<tr>
<td></td>
<td>- Subspace Identification zur Black-Box-Identifikation</td>
</tr>
<tr>
<td></td>
<td>- Nichtparametrische Systemidentifikation</td>
</tr>
<tr>
<td></td>
<td>- Parametrische Approximation nichtparametrischer Modelle</td>
</tr>
<tr>
<td>Grundlage für:</td>
<td>keine Angaben</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungen und Lehrformen: | Vorlesung "Identifikation dynamischer Systeme", 2 SWS (V) ()
Übung "Identifikation dynamischer Systeme", Praktische Übung, 0.5 SWS (Ü) ()
Tutorium "Identifikation dynamischer Systeme", Tutorium unter Nutzung von MatLab, 0.5 SWS (T) () |
|-------------------------------|--|
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 45 h
Vor- und Nachbereitung: 60 h
Selbststudium: 45 h
Summe: 150 h |
| Leistungsnachweis und Prüfungen: | der Regel mündliche Prüfung, ansonsten 120 minütige schriftliche Prüfung |
| Voraussetzungen (formal): | keine |
| Notenbildung: | Anhand des Ergebnisses der mündlichen Prüfung bzw. des Klausurergebnisses |
Industriepraxis

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>85000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>Industrial Internship</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>9 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>keine Angaben</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Semester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Dr. Wolfgang Minker</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Dr. Wolfgang Minker</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>Approval by the Professional Internship office</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>The Professional Internship aims at gathering subject knowledge and experience in a private company. Furthermore, the Professional Internship conveys insights into workaday life and prepares the student for entering his/her professional career.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>The Professional Internship comprises activities in the engineering field, notably in the area of Electronics Systems Engineering, Information and Communication Technology as well as at the margin between Computer Science and Engineering Sciences.</td>
</tr>
<tr>
<td>Literatur:</td>
<td>keine</td>
</tr>
<tr>
<td>Grundlage für:</td>
<td>keine Angaben</td>
</tr>
<tr>
<td>Lehrveranstaltungen und Lehrformen:</td>
<td>Praktikum External internship in a private company, seminar with presentations. ()</td>
</tr>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>9 weeks of practical activities 10 minutes seminar presentation Participation in two additional seminar meetings Short report 15 pages maximum</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>The Accomplishment of the Professional Internship is certified by a testimonial. Refer to the Professional Internship guidelines for more information.</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td></td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>keine</td>
</tr>
</tbody>
</table>

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.57 Industriepraxis

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8204885000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>Industrial Internship</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>9 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>keine Angaben</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Semester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Dr. Wolfgang Minker</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Dr. Wolfgang Minker</td>
</tr>
<tr>
<td>Einordnung des Moduls in Studiengänge:</td>
<td>Elektrotechnik, B.Sc., Wahlpflichtmodul Informationssystemtechnik, B.Sc., Wahlpflichtmodul</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>Genehmigtes Praktikum durch das Praktikantenamt</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>Das Praktikum dient der Gewinnung von fachrichtungsbezogenen Kenntnissen und Erfahrungen aus der beruflichen Praxis. Darüber hinaus vermittelt die Fachpraxis Einblicke in den beruflichen Alltag und bereitet die Studierenden auf den Berufseinstieg vor.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Die Industriepraxis umfasst ingenieurnahe Tätigkeiten auf dem Gebiet der Elektro- und Informationstechnik sowie im Grenzbereich zwischen Informatik und Elektrotechnik.</td>
</tr>
<tr>
<td>Literatur:</td>
<td>keine</td>
</tr>
<tr>
<td>Grundlage für:</td>
<td>keine Angaben</td>
</tr>
<tr>
<td>Lehrveranstaltungen und Lehrformen:</td>
<td>Praktikum Externes Praktikum, Seminar mit Vorträgen ()</td>
</tr>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>9 Wochen praktische Tätigkeiten, 10-minütiger Vortrag im Seminar, An zwei weiteren Terminen Teilnahme am Seminar, Kurzbericht mit maximal 15 Seiten</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td></td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>keine</td>
</tr>
</tbody>
</table>
1.58 **Information Theory and Biology**

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8834872076</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
</tbody>
</table>
| Modulverantwortlicher: | Prof. Dr.-Ing. Martin Bossert
Dr.-Ing. Steffen Schober |
| Dozenten: | Dr.-Ing. Steffen Schober |
| Einordnung des Moduls in Studiengänge: | Elektrotechnik, M.Sc., Wahlmodul Ingenieurwissenschaften
Informationssystemtechnik, M.Sc., Wahlmodul
Communications Technology, M.Sc., Wahlmodul |
| Voraussetzungen (inhaltlich): | Bachelor, Basic Probability Theory |
| Lernziele: | The educational objective of this course is a basic understanding of theoretical concepts and methods used in information theory and their application to problems in Biology. This includes methods for data analysis, approaches to improve state of the art experimental techniques, and the analysis of (molecular) systems using stochastic models. |
Inhalt: This lecture focuses on models and methods used in information theory and their application to real world problems at the example of molecular biology (but not restricted to). Therefore we study problems from statistics such as to estimate the entropy of discrete distributions, further, compression distances to reveal text similarities (for example between DNA sequences or texts written in English). The design and decoding of short codes and codes capable of correcting Indels (insertion/deletions) is discussed and how to apply it to improve modern experimental techniques (high-throughput sequencing). Further, the analysis of communications systems based on discrete point processes is addressed providing insights into the fundamental limits of information processing in these systems (such as biochemical networks or system communicating via photon counting).

- Fundamentals of information theory
 - Entropy
 - Mutual information
 - Source and channel coding theorem
- Fundamentals of molecular biology
- Information storage in DNA
- Gene expression / regulation
- Estimation of the density of discrete distributions, entropy, and mutual information
- Compression distances for discovering text (DNA) similarities
- Estimation
 * Maximum likelihood and
 * Bayesian techniques
- DNA and RNA sequencing
- DNA Sequencing: Capacity
- RNA Sequencing: Amplification noise and barcoding
- Barcodes for Indel correction
- Stochastic models of biochemical networks
- Gene expression noise
- Noise suppression limits
- Noise sensitivity/stability of input functions

Literatur:
- Coding Theory: Bossert, Channel coding for Telecommunications - Wiley, 1999

Grundlage für: keine Angaben

Lehrveranstaltungen und Lehrformen:
- Vorlesung Information Theory and Biology, 2 SWS (V) ()
- Übung Information Theory and Biology, 1 SWS (Ü) ()
- Projekt Information Theory and Biology, 1 SWS (P) ()

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 40 h
- Vor- und Nachbereitung: 40 h
- Selbststudium: 40 h Projekt30
- Summe: 150 h

Leistungsnachweis und Prüfungen:
- oral exam (english or german)

Voraussetzungen (formal):
- keine

Notenbildung:
- Module mark is identical to exam mark.
1.59 Informations- und Systemtheorie in den Lebenswissenschaften

Kürzel / Nummer: 8204871532

Englischer Titel: -

Leistungspunkte: 6 ECTS

Semesterwochenstunden: 4

Sprache: Deutsch

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Martin Bossert

Dozenten: Prof. Dr.-Ing. Martin Bossert
Dr.-Ing. Steffen Schober

Einordnung des Moduls in Studiengänge: Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften

Voraussetzungen (inhaltlich): Abiturmathematik

Lernziele:
- Erkenntnisgewinn in den Lebenswissenschaften durch mathematische Modelle
- Analyse biologischer Systeme durch Konzepte, Modelle, Theoreme und Verfahren aus der Informations- und Systemtheorie
- Projekt: Anwendung eines Simulationstools zur Analyse eines biologischen Systems

Inhalt:
- Biologische Grundlagen: Die Zelle, DNA/RNA, Transkription/Translation
- Informationsübertragung: Wahrscheinlichkeitstheorie, Nachrichtentechnik, Genetischer Code, Informationsgehalt von Bindestellen
- Informationstheorie und DNA: Stochastische Modelle, Phylogenetische Bäume
 – Projekt: Phylogenese
- Transkriptionsnetzwerke: Systemtheorie, Produktionsrate von mRNA/Proteinen, Basisregelkreise
- Boolische Netzwerke und Funktion: Boolische Funktionen/Netzwerke, Rekonstruktionsalgorithmen Boolischer Netze
 – Projekt: Analyse genregulatorischer Abhängigkeiten

Literatur:
- Frey T., Bossert M., Signal- und Systemtheorie, B.G. Teubner Verlag 2004
- Bossert M., Bossert S., Mathematik der digitalen Medien, VDE Verlag, 2010
- Schöning U., Kestler H., Mathe-Toolbox, Lehmanns Media-Lob, 2010
- Cover T., Thomas J., Elements of Information Theory, Wiley, 2009

Grundlage für: für Systembiologie
| Lehrveranstaltungen und Lehrformen: | Vorlesung "Informations- und Systemtheorie in den Lebenswissenschaften", 2 SWS ()
| | Übung "Informations- und Systemtheorie in den Lebenswissenschaften", 1 SWS ()
| | Projekt "Informations- und Systemtheorie in den Lebenswissenschaften", 1 SWS ()
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 60 h
| | Vor- und Nachbereitung: 120 h
| | Summe: 180 h
| Leistungsnachweis und Prüfungen: | Mündliche Prüfung (30 min)
| Voraussetzungen (formal): | keine
| Notenbildung: | Die Modulnote entspricht dem Ergebnis der Prüfung.

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.60 Integrated Microwave Circuits

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870464</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>4 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Wolfgang Menzel</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Wolfgang Menzel</td>
</tr>
</tbody>
</table>
| Einordnung des Moduls in Studiengänge: | Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik
Elektrotechnik, M.Sc., Wahlmodul Mikroelektronik
Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
Elektrotechnik, M.Sc., Wahlmodul Allgemeine Elektrotechnik
Communications Technology, M.Sc., Technisches Wahlmodul Mikroelektronik |
| Voraussetzungen (inhaltlich): | - physikalische Grundlagen zu elektromagnetischen Feldern
-Kenntnis des Stoffes aus Einführung in die Hochfrequenztechniköder "RF & Microwave Engineering" |
| Inhalt (Fortsetzung): | In der zugehörigen Übung werden Stoffinhalte vertieft und eingeübt. Sie schließt etwa zur Halbzeit die feldtheoretische Berechnung einer einfachen Leitungsstruktur und am Ende einige Schaltungsentwürfe am Rechner ein, die anschließend realisiert und vermessen werden. |
Literatur:
- R. K. Hoffmann: Handbook of Microwave Integrated Circuits, Artech House Microwave Library
- I. Wolff: Einführung in die Mikrostrip-Leitungstechnik, Verlag Henning Wolff, Aachen (leider zur Zeit vergriffen)
- J.R. James, P.S. Hall: Handbook of microstrip antennas, IEE Electromagnetic Waves Series 28, Peregrinus
- Helszjan, J.: Microwave and planar passive circuits and filters, Wiley, 1993

Grundlage für: keine Angaben

Lehrveranstaltungen und Lehrformen:
Vorlesung "Integrated Microwave Circuits", 2 SWS ()
Übung "Integrated Microwave Circuits", Rechenübungen, eine Übung am Rechner (Feldtheorie), sowie ein praktischer Schaltungsentwurf einschließlich Herstellung und messtechnische Überprüfung, 1 SWS ()

Abschätzung des Arbeitsaufwands:
Präsenzzeit: 45 h
Vor- und Nachbereitung: 30 h
Selbststudium: 45 h
Summe: 120 h

Leistungsnachweis und Prüfungen:
in der Regel mündliche Prüfung

Voraussetzungen (formal):

Notenbildung: Note der Prüfung
1.61 Iterative Methods for Wireless Communications

Iterative methods are motivated by considering two classical examples: Newton’s method to find the roots of nonlinear functions and the Jacobi- and Gauss-Seidel method to solve large systems of linear equations. Based on these examples convergence and convergence rates of iterative methods are discussed. The concept of the fix point iteration is used to provide a graphical interpretation of iterative processes. In chapter two the concept of vector-valued transmission is introduced. Based on this, we derive the optimum receiver structure for general linear modulation methods. Besides the optimum vector equalizer also various sub-optimum methods (block linear equalizer, block decision feedback equalizer, multistage detector) are discussed. Furthermore iterative equalizer are introduced and the relation to recurrent neural networks is described. Chapter three first introduces the basic concepts for iterative decoding: maximum a posteriori decoding, probability theory for iterative decoding and Tanner graphs as a means to graphically represent iterative decoding. As applications we consider low density parity check codes and convolutional self-orthogonal codes. In chapter four iterative methods for concatenated systems are considered. This includes a discussion of classical turbo codes as well as receiver concepts based on a joint demapping, equalization and decoding (turbo equalization). As a further example we consider the basic principle of interleave division multiplexing. The iterative methods are analysed using EXIT charts.

Literatur:
- C. Schlegel and A. Grant, “Coordinated Multiuser Communications”, Springer 2006

Grundlage für: keine Angaben
<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen:</th>
<th>Vorlesung “Iterative Methods for Wireless Communications”, 2 SWS (V) ()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Übung “Iterative Methods for Wireless Communications”, 1 SWS (Ü) ()</td>
</tr>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>Präsenzzeit: 45 h</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 75 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 120 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Usually oral exam, otherwise written exam of 90 minutes duration</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td></td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Die Modulnote ergibt sich aus dem Ergebnis der mündlichen Prüfung. Bei einer erfolgreichen Teilnahme am Matlab-Projekt kommt die Regelung für einen Notenbonus zur Anwendung (§ 15 Abs. (5) der Fachspezifischen Studien- und Prüfungsordnung für die Bachelor- und Masterstudiengänge Elektrotechnik und Informationssystemtechnik bzw. § 14 Abs. (2) der Fachspezifischen Studien- und Prüfungsordnung für den Masterstudiengang Communications Technology)</td>
</tr>
</tbody>
</table>

1.62 Kommunikationsnetze

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870418</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>Computer Networks</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>4 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr. Hans Peter Großmann</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Hans Peter Großmann</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>keine</td>
</tr>
</tbody>
</table>
| Inhalt: | - OSI-Modell
- Lokale Netze (Ethernet, FDDI, WLAN ...)
- Passive und aktive Netzkomponenten
- Technologien für Netzprotokolle (Internetprotokollfamilie)
- Routingsprotokolle
- Quality of Service Bereitstellung im Internet; diverse Technologien (DiffServ, IntServ, MPLS)
- Sicherheitsanforderungen bei der Kommunikation (Firewall, NAT, Authentisierung, VPN)
- Spezielle Netze (Feldbusse, Multimediabusse) |
| Literatur: | - Tanenbaum, Andrew S.: Computer Networks
- Comer, Douglas E.: Internetworking with TCP IP
- Stevens Richard: TCP/IP Illustrated
- Steinmetz Ralf: Multimedia Technologie
- RFC’s von www.ietf.org |
| Grundlage für: | keine Angaben |
| Lehrveranstaltungen und Lehrformen: | Vorlesung “Kommunikationsnetze”, 1 SWS ()
Seminar “Kommunikationsnetze”, 2 SWS () |
<table>
<thead>
<tr>
<th>Arbeitstätigkeit</th>
<th>Zeitangabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>26 h</td>
</tr>
<tr>
<td>Vor- und Nachbereitung</td>
<td>52 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>50 h</td>
</tr>
<tr>
<td>Summe</td>
<td>130 h</td>
</tr>
</tbody>
</table>

| Leistungsnachweis und Prüfungen: | Leistungsnachweis für die erfolgreiche Teilnahme am Seminar (Ausarbeitung und Vortrag). Dieser Leistungsnachweis ist Voraussetzung für die benotete Prüfung, die in der Regel mündlich abgehalten wird. |

<table>
<thead>
<tr>
<th>Voraussetzungen (formal):</th>
<th>Note der Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notenbildung:</td>
<td>Note der Prüfung</td>
</tr>
</tbody>
</table>

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.63 Lab - Laboratory Automation

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8822271731</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Dr.-Ing. Andreas Trasser</td>
</tr>
</tbody>
</table>
| Dozenten: | Dr.-Ing. Andreas Trasser
| | Dr. Václav Valenta |
| Einordnung des Moduls in Studiengänge: | Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
| | Communications Technology, M.Sc., Wahlpraktikum Mikroelektronik |
| Voraussetzungen (inhaltlich): | Fundamental knowledge of:
| | - Physics of semiconductor devices
| | - RF engineering and twoport parameters
| | - Programming (structuring problems and implementation in a programming language) |
| Lernziele: | - understand the principles of noise measurements, scattering parameter measurements, and equivalent time sampling oscillography, and be able to perform fundamental measurements
| | - acquire skill to write simple programs to collect data via the GPIB bus and process the data
| | - understand concepts of time-domain reflectometry, be able to perform fundamental measurements, and interpret time-domain reflectograms |
| Inhalt: | Students will get a practical view of special aspects of laboratory characterization techniques, with an application emphasis on the characterization of semiconductor devices. The experiments treat the DC characterization of semiconductor devices using source measure-units and GPIB control, noise parameter measurements, scattering parameter characterization, equivalent-time sampling oscillography, and time-domain reflectometry. |
| Literatur: | Script describing experiments including theoretical background |
| Grundlage für: | Master thesis research involving electrical characterization techniques, especially related to semiconductor devices and active microwave components |
| Lehrveranstaltungen und Lehrformen: | Labor "Laboratory Automation", 4 SWS () |
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 26 h
| | Vor- und Nachbereitung: 124 h
| | Summe: 150 h |
| Leistungsnachweis und Prüfungen: | Oral colloquium at start of each lab exercise (students may be excluded if insufficiently prepared; active participation in experiment; evaluation of written report for each experiment. |
Voraussetzungen (formal):

<table>
<thead>
<tr>
<th>Notenbildung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The course is not graded. Successful completion requires</td>
</tr>
<tr>
<td>Sufficient preparation for each experiment (colloquium at start of each experiment)</td>
</tr>
<tr>
<td>Active participation in each experiment</td>
</tr>
<tr>
<td>Submission and acceptance of report documenting each experiment (1 per group)</td>
</tr>
</tbody>
</table>

1.64 Lab - Microcomputers

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8822272066</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>Praktikum Anwendung von Mikrocomputern</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>english</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Semester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Prof. Dr.-Ing. Stefan Wesner</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Prof. Dr.-Ing. Stefan Wesner</td>
</tr>
<tr>
<td>Einordnung des Moduls in Studiengänge:</td>
<td>Elektrotechnik, B.Sc., Pflichtmodul Ingenieurwissenschaften Informationssystemtechnik, B.Sc., Pflichtmodul Ingenieurwissenschaften Communications Technology, M.Sc., Wahlpraktikum</td>
</tr>
</tbody>
</table>

Voraussetzungen (inhaltlich):	General knowledge of electrical engineering, digital technology, programming.
Lernziele:	Goal is a basic knowledge of using microcontroller based solutions to measure and control in a networked environment.
Inhalt:	Today, the application of microcomputers is widespread. Besides their use in personal computers, microcontrollers are employed to carry out a wide variety of tasks in many electronic devices. The big advantage of microcomputers is their flexible hardware and software-side adaptabilities for specific tasks in data processing, in communications and information technology, or in measurement and control applications.

This lab course introduces the student to various applications of microcomputers and to the challenges faced in realizing those applications. The focus is on embedded systems, different kinds of microcontrollers, sensors and actuators, and on bus communication.

The students work on a common project, to which each team contributes an almost independently working module. The project itself is a sorting facility consisting of 10 motors and about 30 primarily digital sensors, like push-button switches or light barriers. The sorting facility classifies packages of different shapes, colors and heights and sorts them according a user’s request. Finally, a robot takes the sorted packages and stacks them up.

The sorting facility is constructed with Fischertechnik elements. It is provided in a fully operational state, with wired actuators and sensors, but without electric control. The latter must be designed and implemented by the students.
Tasks

Each team receives a module consisting of an actuator, several sensors, a PIC microcontroller, a CAN controller and other electronic parts. With the help of the CAD software EAGLE, a circuit diagram and board layout have to be developed. After assembling the board and testing it, the team programs the microcontroller. Communication between modules and the main control unit is carried out by the field bus Controller Area Network (CAN). To enable user inputs and to display status information, an embedded web-server and a web-client are used. The main control unit and the web-server are on separate boards with high end Infineon C167 microcontrollers and the real-time operating system EUROS.

Literatur: Background information and documentation provided in the course booklet.
1.65 Lab - Optoelectronics

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8822270444</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>English</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr. Peter Unger</td>
</tr>
</tbody>
</table>
| Dozenten: | Prof. Dr. Ferdinand Scholz
| | Prof. Dr. Peter Unger
| | Priv.-Doz. Dr.-Ing. Rainer Michalzik |
| Einordnung des Moduls in Studiengänge: | Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
| | Communications Technology, M.Sc., Wahlpraktikum Mikroelektronik
| | Elektrotechnik, M.Sc., Pflichtmodul Mikroelektronik
| | Elektrotechnik, M.Sc., Wahlmodule Automatisierung- und Energietechnik |
| Voraussetzungen (inhaltlich): | Optical Communications |
| Lernziele: | - Deepening the topics taught in the module Optoelectronic Communication Technology in a practical way.
| | - Gaining hands-on experience with optical fiber components, laser diodes, or photodetectors as well as optical measurement equipment and techniques.
| | - Exercise in teamwork |
| Inhalt: | The laboratory course gives students an excellent opportunity to explore the exciting microworld of laser diodes, optical fibers, photodetectors, and optical transmission systems. Seven half-day experiments are performed, which deal with the following topics:
| | - Optical waveguides
| | - Optical couplers
| | - Photodiodes
| | - Semiconductor lasers
| | - Tunable laser diodes
| | - Optical fiber characterization
| | - Optical data transmission |
| Literatur: | - Manuscript Optoelectronic Communication Technology
| | - For each experiment, a detailed manuscript is provided which describes the theoretical background and guides through the experimental part. Individual literature lists are contained therein. |
| Grundlage für: | - |
| Lehrveranstaltungen und Lehrformen: | Labor “Optoelectronics”, 4 SWS (T) () |
Abschätzung des Arbeitsaufwands:

| Präsenzeit: 28 h | Vor- und Nachbereitung: 84 h |
| Selbststudium: 38 h |
| **Summe: 150 h** |

Leistungsnachweis und Prüfungen:

Certificate after fulfillment of the following criteria: successful participation in all seven experiments, active discussion during the colloquium, preparation and possible correction of the protocols.

Voraussetzungen (formal):

| Notenbildung: | None |

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8822271735</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>English</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Dr.-Ing. Frank Boegelsack</td>
</tr>
</tbody>
</table>
| **Dozenten:** | Dr.-Ing. Frank Boegelsack
 | Prof. Dr.-Ing. Wolfgang Menzel
 | Prof. Dr. Michael Hoffmann |
| **Einordnung des Moduls in Studiengänge:** | Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
 | Communications Technology, M.Sc., Wahlpraktikum |
| **Voraussetzungen (inhaltlich):** | Participation at the lecture “RF & Microwave Engineering”. |
| **Lernziele:** | To get familiar with the most important measurement equipment and methods of the RF & microwave techniques including antenna measurements, electromagnetic compatibility and microwave CAD. |
| **Inhalt:** | - Waves on transmission lines
 | Characterization of unknown complex impedances by determination of the voltages distribution on a TEM transmission line
 | - Modulation
 | Basics of amplitude, frequency, and phase modulation
 | - CAD (Analysis and optimization of linear circuits)
 | Analysis and optimization of passive and active circuits using an up-to-date commercial microwave CAD tool (HPEESOF ADS)
 | - Scalar scattering parameter measurements (coaxial)
 | Introduction to coaxial measurement techniques, filters, impedance transformers
 | - Planar circuits
 | Characterization of glass fiber reinforced Teflon (PTFE) substrates by measurement of planar resonators, 4-port coupler
 | - RF semiconductor devices
 | Introduction to vector network analysis by characterization of active devices (transistors, diodes), small signal equivalent circuits
 | - Electromagnetic Compatibility (EMC)
 | EMC receiver, magnetic field sensors, coupling, equivalent circuits of real reactance and resistive elements
 | - Antenna measurements
 | Measurements of the radiation diagrams of a K-band horn antenna, a parabolic antenna, a phased array antenna are done and a network analyser
<pre><code> | **Literatur:** | - Will be given in the written handouts of each experiment. |
</code></pre>
<table>
<thead>
<tr>
<th>Grundlage für:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltungen und Lehrformen:</td>
<td>Labor “RF Engineering”, 4 SWS (P) ()</td>
</tr>
</tbody>
</table>
| Abschätzung des Arbeitsaufwands: | Vor- und Nachbereitung: 110 h
Präsenzzeit: 40 h
Summe: 150 h |
| Leistungsnachweis und Prüfungen: | Proof of sufficient preparation and successful performance of the lab experiments. No examination. |
| Voraussetzungen (formal): | |
| Notenbildung: | None |
1.67 Lab - Semiconductor Technology

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8822270446</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>English</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Semester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Jun.-Prof. Dr.-Ing. Steffen Strehle</td>
</tr>
</tbody>
</table>
| Dozenten: | Dr. Wolfgang Ebert
Jun.-Prof. Dr.-Ing. Steffen Strehle |
| Einordnung des Moduls in Studiengänge: | Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Communications Technology, M.Sc., Wahlpraktikum Mikroelektronik |
| Voraussetzungen (inhaltlich): | Lecture Semiconductor Technology |
| Lernziele: | The semiconductor-technology lab course gives an insight into basic technological procedures and processes concerning the manufacturing of semiconductor-devices. |
| Inhalt: | Aim of this lab course is the fabrication of field-effect-transistors (GaAs-MESFET’s) and their electrical characterization. The lab course takes place in a cleanroom facility specifically equipped for education.
Main focuses this lab course are:
- deposition of metals by evaporation
- patterning of contacts by optical lithography
- patterning of contacts by wet etching
- manufacturing of ohmic- and Schottky contacts
- electrical characterization of the fabricated devices |
| Grundlage für: | - |
| Lehrveranstaltungen und Lehrformen: | Labor "Semiconductor Technology", 4 SWS () |
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 28 h
Vor- und Nachbereitung: 122 h
Summe: 150 h |
<table>
<thead>
<tr>
<th>Leistungsnachweis und Prüfungen:</th>
<th>Scheinvergabe bei Erfüllung folgender Kriterien: erfolgreiche Teilnahme am Praktikum, aktive Diskussion während des Kolloquiums, Abgabe und evtl. Korrektur der Versuchsprotokolle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen (formal):</td>
<td></td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>None</td>
</tr>
</tbody>
</table>
1.68 Lab - Vector Network Analysis

Kürzel / Nummer: 8804871737

Deutscher Titel: -

Leistungspunkte: 5 ECTS

Semesterwochenstunden: 3

Sprache: Englisch

Turnus / Dauer: jedes Wintersemester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Hermann Schumacher

Dozenten: Prof. Dr.-Ing. Hermann Schumacher
Dr.-Ing. Andreas Trasser
Dr.-Ing. Václav Valenta

Einordnung des Moduls in Studiengänge:
Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Communications Technology, M.Sc., Wahlpraktikum
Informationssystemtechnik, M.Sc., Wahlpraktikum

Voraussetzungen (inhaltlich): Basic knowledge of RF engineering

Lernziele:
- understand fundamental principles of vectorial measurements at radio frequencies
- understand need for calibration and error correction procedures
- be able to perform frequency-dependent small-signal measurements with error correction on passive and active components and subsystems
- be able to perform analysis of fluids using vector network analysis
- appreciate the value of time-domain representation
- perform fault location in transmission lines using time-domain reflectometry

Inhalt:
Vector Network Analyzers (VNAs) are indispensable instruments in every RF laboratory as they provide the most common way to characterize network parameters (e.g. scattering parameters, impedance or admittance parameters, etc.) of electrical networks (power amplifiers, filters and other n-port networks). As a result, understanding the fundamental principles of VNA measurements belongs to the essential knowledge of an RF engineer. The main goal of this laboratory course is to introduce students the fundamental RF VNA measurement techniques, principles, manipulations and measurement procedures. Throughout different measurement exercises, this course will provide students firm grasp and validation of the common theory gained in previous electro-technical courses.

List of experiments:
- R, L, C measurements
- Measurements on a bias tee (RF/DC coupler)
- Measurements on a radio frequency filter
- Measurements on a semiconductor diode
- De-embedding procedures and measurements of FET and BJT transistors in a test fixture
- Measurements on coaxial cables (dielectric constant, length)
- Time domain reflectometry: measurements on passive components, localizations of faults in transmission lines
- Time domain reflectometry: measurements on passive
- Introduction to the time gating as a deembedding technique
<table>
<thead>
<tr>
<th>Literatur:</th>
<th>Scattering parameter tutorial (Prof. Schumacher, provided online); detailed descriptions for each experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlage für:</td>
<td>Master thesis with topics requiring vector network analysis</td>
</tr>
<tr>
<td>Lehrveranstaltungen und Lehrformen:</td>
<td>Labor "Vector Network Analysis", 3 SWS ()</td>
</tr>
</tbody>
</table>
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 29 h
Vor- und Nachbereitung: 121 h
Summe: 150 h |
| Leistungsnachweis und Prüfungen: | keine |
| Voraussetzungen (formal): | keine |
| Notenbildung: | The course is not graded. Successful completion requires (a) Sufficient preparation for each experiment (colloquium at start of each experiment) (b) Active participation in each experiment. (c) Submission and acceptance of report documenting each experiment (1 per group) |

1.69 Laser, Laser-Matter Interactions

Kürzel / Nummer: 8812870455

Deutscher Titel: Laser, Laser-Matter Interactions

Leistungspunkte: 3 ECTS

Semesterwochenstunden: 2

Sprache: englisch

Turnus / Dauer: jedes Wintersemester / 1 Semester

Modulverantwortlicher: PD Dr. Alwin Kienle

Dozenten: PD Dr. Alwin Kienle

Einordnung des Moduls in Studiengänge: Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Advanced Materials, M.Sc., Wahlmodul,
Elektrotechnik, M.Sc., Wahlpflichtmodul Mikroelektronik

Voraussetzungen (inhaltlich): keine

Lernziele: Studierende, die dieses Modul erfolgreich absolviert haben,
- verstehen die Physik und Technik von Lasern
- haben einen breiten Überblick für die verschiedenen Arten von Lasern und deren Anwendungsmöglichkeiten
- verstehen die Wechselwirkungsmechanismen der Laserstrahlung mit Materie
- sind in der Lage, Laser in der Praxis einzusetzen
- können geeignete Laser und Laserparameter für vorgegebene Aufgaben auswählen
- haben ihre Präsentationsfähigkeiten geübt.

Inhalt: In diesem Modul werden folgende fachliche Inhalte vermittelt:
- physikalischer Hintergrund der Erzeugung von Laserstrahlung
- Aufbau von Lasern
- Charakterisierung der Laserstrahlung
- physikalische und technische Eigenschaften von verschiedenen Lasertypen
- optische Eigenschaften von Dielektrika, Halbleitern und Metallen
- Modellbildung zur Reflexion, Absorption und Streuung
- photochemische Effekte
- Laserablation
- Anwendungen von Lasern
Literatur:

Handouts:
- printout of lecture material
- book chapter copies

Reference texts:

a) General

b) Laser physics
- dtv-Atlas zur Atomphysik, dtv, 1980

c) Optical properties of matter and light propagation
- Bergmann, Schaefer: Lehrbuch der Experimentalphysik, Band 3, Optik, de Gruyter, 1993
- Bergmann, Schaefer: Lehrbuch der Experimentalphysik, Band 6, Festkörper, de Gruyter, 1992
- C. F. Bohren, D. R. Huffman: Absorption and Scattering of Light by Small Particles, Wiley, 1983
- Handbook of Chemistry and Physics, CRC, 1986

d) Laser material interactions

Grundlage für: keine Angaben

Lehrveranstaltungen und Lehrformen:

Vorlesung "Laser, Laser-Matter Interactions" (1 SWS)
Seminar "Laser, Laser-Matter Interactions" (1 SWS)

Abschätzung des Arbeitsaufwands:

Präsenzzeit: 30 h
Vor- und Nachbereitung: 60 h
Summe: 90 h

Leistungsnachweis und Prüfungen: keine Angaben

Voraussetzungen (formal): keine

Notenbildung: keine Angaben
1.70 Leistungselektronik

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870410</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr. Herbert Kabza</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Herbert Kabza</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>- Physik I und II - Grundlagen der Elektrotechnik I, II - Einführung in die Energietechnik</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>Der Hörer ist in der Lage zur - Beschreibung / Erklärung der Funktionsweise, der Charakteristika und Einsatzbereiche der unterschiedlichen LE-Bauelemente - Skizziert von Ersatzschaltbildern und Beschreibung der Funktionsweisen der wichtigsten Schaltungen (Mittelpunktsschaltung, Brückenschaltung, 1Q-, 2Q-, 4Q-Steller, U- / I-Umrichter, Pulswechselrichter) - Beschreibung der Grundzüge der wesentlichen Steuerverfahren (Blocksteuerung, Pulsweitenmodulation, Unterschwingungsverfahren, Rechteck- Dreieck- -, Sinus-Dreieck- -, Supersinus-, Raumzeigermodulation) - Erklärung der Bewertungsgrößen Frequenzvielfaches, Modulationsgrad, Spannungsaustragung</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>- Charakteristische Größen: Gleichanteil, Oberschwingungen, (Grund-)Schwingungsgehalt, Klirrfaktor / Total Harmonic Distortion, Halbleitereigenschaften statisch, dynamisch - leistungselektronische Bauelemente:pin-Diode, Transistor, Thyristor, MOSFET, IGBT, Verluste, Kühlnarten, Kommutierung, Zwangskommutierung - Mittelpunktsschaltung, Brückenschaltung - (DC-) Steller: 1Q, 2Q, 4Q-Steller; Steuerverfahren - I-, U-Umrichter, Pulswechselrichter - Modulationsverfahren; feldorientierte Regelung als Anwendung für Pulswechselrichter</td>
</tr>
</tbody>
</table>
Literatur:
- H. Kabza: Skript zur Vorlesung "Leistungselektronik", Univ. Ulm
- K. Hofer: Moderne Leistungselektronik und Antriebe, Berlin, VDE-Verlag, 1995
- R. Lappe u.a.: Handbuch Leistungselektronik, Verlag Technik Berlin 1995
- D. Schröder: Elektrische Antriebe, Band 1 bis 4, Springer Berlin 1994

<table>
<thead>
<tr>
<th>Grundlage für:</th>
<th>keine Angaben</th>
</tr>
</thead>
</table>
| Lehrveranstaltungen und Lehrformen: | Vorlesung "Leistungselektronik", 2 SWS (V) ()
| | Übung "Leistungselektronik", 1 SWS (Ü) ()
| | Labor "Leistungselektronik", 1 SWS (P) ()

<table>
<thead>
<tr>
<th>Abschätzung des Arbeitsaufwands:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 70 h</td>
</tr>
<tr>
<td>Vor- und Nachbereitung: 44 h</td>
</tr>
<tr>
<td>Selbststudium: 36 h</td>
</tr>
<tr>
<td>Summe: 150 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungsnachweis und Prüfungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilnahme an allen Praktikumsversuchen als Prüfungsvoraussetzung. In der Regel schriftliche Prüfung von 120 Minuten Dauer, ansonsten mündliche Prüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen (formal):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erfolgreiche Teilnahme an den Praktikumsteilen ist Voraussetzung für die Zulassung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notenbildung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Modulnote entspricht dem Ergebnis der Prüfung.</td>
</tr>
</tbody>
</table>

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.71 MOS Halbleitertechnik

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870449</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Dr. Wolfgang Ebert</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr. Wolfgang Ebert</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>Grundlagen der Halbleiterbauelemente</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>Verständnis für den Herstellungsprozess, den Aufbau und die Funktionsweise von Si-MOSFET's</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einführung in die grundlegenden Prozesse der Si-Planartechnologie, physikalische Grundlagen des MOSFET, MOSFET als Kleinsignalverstärker, Schalter und Inverter (n-MOS, CMOS)</td>
</tr>
<tr>
<td>Grundlage für:</td>
<td>keine Angaben</td>
</tr>
<tr>
<td>Lehrveranstaltungen und Lehrformen:</td>
<td>Vorlesung "MOS Halbleitertechnik", 2 SWS () Übung "MOS Halbleitertechnik", 2 SWS ()</td>
</tr>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>Präsenzzeit: 60 h Vor- und Nachbereitung: 70 h Selbststudium: 50 h Summe: 180 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>in der Regel mündliche Prüfung, sonst schriftliche Prüfung von 120 Minuten Dauer.</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td></td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Modulnote ist identisch mit Prüfungsnote</td>
</tr>
</tbody>
</table>

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.72 Master’s Thesis

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804880000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>30 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>0</td>
</tr>
<tr>
<td>Sprache:</td>
<td>English</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Semester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns (Dean of Student Affairs)</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Primary supervisor of thesis</td>
</tr>
<tr>
<td>Einordnung des Moduls in Studiengänge:</td>
<td>Communications Technology, M.Sc., Abschlussarbeit Master’s Thesis</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>Desired: specialized elective modules in the scientific area of the thesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition and demonstration of the following competencies:</td>
</tr>
<tr>
<td>- Independent treatment of complex problems, using the skills acquired in the Master’s program as well as established scientific methods and knowledge, within a pre-set time frame</td>
</tr>
<tr>
<td>- Setup of a project plan for the Master’s thesis, including assessment of progress using a continuously updated milestone plan</td>
</tr>
<tr>
<td>- Compilation of a thesis in compliance with the established principles of scientific writing</td>
</tr>
<tr>
<td>- Presentation of scientific results in comprehensible form before an audience of peers, including scientific discussion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>dependent on topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td>dependent on topic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masterarbeit Selection of a suitable topic at one of the institutes of the faculty, or exceptionally also outside of the faculty (requires permission of the Examination Committee); research of scientific literature, design work and/or experimental work dependent on topic; consultation with the guiding assistants and the primary supervisor ()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abschätzung des Arbeitsaufwands:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzeit: 10 h</td>
</tr>
<tr>
<td>Summe: 900 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungsnachweis und Prüfungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written thesis and final presentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen (formal):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Having obtained 80 credits, successful completion of all general and track-specific compulsory modules</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notenbildung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading of results obtained, written thesis, and final presentations by two reviewers in accordance with rules and regulations</td>
</tr>
</tbody>
</table>

1.73 Masterarbeit

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804880000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>Master’s Thesis</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>30 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>0</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch oder englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Semester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns (Studiendekan)</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Erstbetreuer der Masterarbeit</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>Wünschenswert ist es, grundlegende Module aus dem Gebiet der Masterarbeit belegt zu haben.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Abhängig von der konkreten Themenstellung.</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Abhängig von der konkreten Themenstellung.</td>
</tr>
<tr>
<td>Lehrveranstaltungen und Lehrformen:</td>
<td>Masterarbeit Wahl eines geeigneten Themas an einem der Institute der Ingenieurwissenschaften (Dozenten der Ingenieurwissenschaften)</td>
</tr>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>Präsenzzeit: 10 h, Summe: 900 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Schriftliche Ausarbeitung und Abschlussvortrag.</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td>keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Die Modulnote wird gemäß Prüfungsordnung gebildet.</td>
</tr>
</tbody>
</table>

1.74 Materialien für elektronische und magnetische Bauelemente

Kürzel / Nummer: 8804870447

Englischer Titel: Materials for electronic and magnetic devices

Leistungspunkte: 6 ECTS

Semesterwochenstunden: 4

Sprache: deutsch

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: Prof. Carl Krill, Ph.D.

Dozenten: Prof. Carl Krill, Ph.D.
Prof. Dr.-Ing. Ulrich Herr

Einordnung des Moduls in Studiengänge:

Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Elektrotechnik, M.Sc., Pflichtmodul Mikroelektronik
Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik

Voraussetzungen (inhaltlich):

Einführung in die Werkstoffe

Lernziele:

Inhalt:

– Polymere-Grundlagen
– Organische Halbleiter
– Ausgewählte Anwendungen zu Polymeren
– Keramik-Grundlagen
– Dielektrische Eigenschaften
– Gläser
– Ionenleiter
– Ausgewählte Anwendungen zu Keramiken
– Magnetismus-Grundlagen
– Mikromagnetismus
– Ausgewählte magnetische Bauelemente

Literatur:

- D. Spickermann: Werkstoffe der Elektrotechnik und Elektronik, Schlembach Verlag, 2002
- S. Roth, D. Carroll: One-Dimensional Metals, Wiley-VCH, 2004

Grundlage für: Praktikum - Materialien für elektronische und magnetische Bauelemente

Lehrveranstaltungen und Lehrformen:

Vorlesung "Materialien für elektronische und magnetische Bauelemente", 3 SWS ()
Übung "Materialien für elektronische und magnetische Bauelemente", 1 SWS ()
<table>
<thead>
<tr>
<th>Einsatzung des Arbeitsaufwands:</th>
<th>Präsenzzeit: 60 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor- und Nachbereitung:</td>
<td>120 h</td>
</tr>
<tr>
<td>Summe:</td>
<td>180 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Klausur von 120 min Dauer, sonst mündliche Prüfung.</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td>keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Ergebnis der Klausur bzw. der mündlichen Prüfung.</td>
</tr>
</tbody>
</table>
1.75 Mechanics of Materials

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870947</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>3 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>2</td>
</tr>
<tr>
<td>Sprache:</td>
<td>English</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Carl Krill, Ph.D.</td>
</tr>
</tbody>
</table>
| Dozenten: | Prof. Carl Krill, Ph.D.
 | Priv.-Doz. Dr. J.-H. You |
| Einordnung des Moduls in Studiengänge: | Elektrotechnik, M.Sc., Wahlmodul Ingenieurwissenschaften |
| Voraussetzungen (inhaltlich): | Materials Science I |
| Lernziele: | Introduction into all relevant methods describing mechanical behavior and mechanical properties of materials |
| Lehrveranstaltungen und Lehrformen: | Vorlesung Mechanics of Materials, 2 SWS (Krill) |
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 28 h
 | Vor- und Nachbereitung: 62 h
 | Summe: 90 h |
| Leistungsnachweis und Prüfungen: | |
| Voraussetzungen (formal): | |
| Notenbildung: | |
1.76 Messtechnik II

Kürzel / Nummer: 8804870415

Englischer Titel: -

Leistungspunkte: 5 ECTS

Semesterwochenstunden: 3

Sprache: Deutsch

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Klaus Dietmayer

Dozenten: Prof. Dr.-Ing. Klaus Dietmayer

Voraussetzungen (inhaltlich): Inhalte der LV Elektrische Messtechnik im Bachelorstudium

Lernziele:
- Kenntnis der wichtigsten physikalischen Sensoreffekte und daraus konzipierbarer Sensoren einschließlich Fertigungstechnologien
- Kenntnisse über gängige Sensorprinzipien zur Messung nichtelektrischer Größen sowie deren Eigenschaften
- Fähigkeit geeignete Sensoren für eine Messaufgabe auszuwählen, ein Messsystem bestehend aus Sensor und weiterverarbeitender Messelektronik aufzubauen und hinsichtlich der zu erwartenden Messgenauigkeiten zu analysieren.

Inhalt:
- Sensorsysteme
- Physikalische Effekte für Sensoren
- Sensoren und Systeme zur Messung von
 - Temperatur
 - Kraft- und Drehmoment
 - Druck
 - Beschleunigung
 - Länge, Abstand und Geschwindigkeit
 - Durchfluss
 - Strahlung
- Sensormodellierung
- Statische und dynamische Sensoroptimierung

Literatur:
- Schaumburg, H.: Sensoren (Werkstoffe und Bauelemente der Elektrotechnik 3) Teubner Verlag 1992

Grundlage für: keine Angaben
| Lehrveranstaltungen und Lehrformen: | Vorlesung "Messtechnik II", 2 SWS (V) ()
Übung "Messtechnik II", 1 SWS (Ü) () |
|-----------------------------------|---|
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 45 h
Vor- und Nachbereitung: 60 h
Selbststudium: 45 h
Summe: 150 h |
Leistungsnachweis und Prüfungen:	In der Regel mündliche Prüfung, ansonsten 120 minütige Klausur
Voraussetzungen (formal):	keine
Notenbildung:	Anhand des Ergebnisses der mündlichen Prüfung bzw. des Klausurergebnisses

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.77 Methoden der Optimierung und optimalen Steuerung

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804871404</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Knut Graichen</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Knut Graichen</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Automatisierungs- und Energietechnik
- Informationssystemtechnik, M.Sc., Wahlmodul (Ing)

Voraussetzungen (inhaltlich):
- Inhalte der Vorlesung Einführung in die Regelungstechnik
- Inhalte der Vorlesung Systemtheorie

Lernziele:
- Grundverständnis für statische und dynamische Optimierung
- Kenntnis der verschiedenen Klassen und Formulierungen von statischen/dynamischen Optimierungsproblemen
- Vermittlung der numerischen und mathematischen Verfahren zur Lösung von Optimierungsproblemen
- Anwendung der Matlab Optimization Toolbox
- Anwendung von Optimierungssoftware und der Modellierungssprache AMPL
- Auslegung modellprädiktiver Regler

Inhalt:
- Beispiele der statischen und dynamischen Optimierung
- Grundlagen und -begriffe der Optimierung
- Statische Optimierung ohne/mit Beschränkungen (Optimalitätsbedingungen, numerische Verfahren, etc.)
- Dynamische Optimierung ohne/mit Beschränkungen (Einführung in die Variationsrechnung, Optimalitätsbedingungen, Pontryagin’s Maximumprinzip, etc.)
- Numerische Lösung von dynamischen Optimierungsproblemen (direkte/indirekte Verfahren, Modellierungssprache AMPL)
- Modellprädiktive Regelung

Literatur:
- M. Papageorgiou: Optimierung, 2. Auflage, Oldenbourg, 1996

Grundlage für: keine Angaben

Lehrveranstaltungen und Lehrformen:
- Vorlesung “Methoden der Optimierung und optimalen Steuerung”, 2 SWS (V) ()
- Übung “Methoden der Optimierung und optimalen Steuerung”, Praktische Übung, 1 SWS (Ü) ()
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 45 h
| Vor- und Nachbereitung: 60 h
| Selbststudium: 45 h
| Summe: 150 h |
| Leistungsnachweis und Prüfungen: | In der Regel mündliche Prüfung, ansonsten 120 minütige schriftliche Prüfung. |
| Voraussetzungen (formal): | keine |
| Notenbildung: | Anhand der Ergebnisse der mündlichen Prüfung bzw. Klausur |
1.78 Mikrowellensysteme

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>MW / 8804870427</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>8 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>6</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Wolfgang Menzel</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Wolfgang Menzel, Prof. Dr. Michael Hoffmann</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Kommunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlpflichtmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlpflichtmodul Automatisierungs- und Energietechnik
- Informationssystemtechnik, M.Sc., Wahlpflichtmodul (Ing)

Voraussetzungen (inhaltlich):
- Kenntnisse, Fertigkeiten und Kompetenzen des Moduls
- Einführung in die HF-Technik

Lernziele:
Nach erfolgreichem Abschluss des Moduls können die Studierenden:
- Prinzipien der Hochfrequenztechnik und Mikrowellentechnik zum Entwurf und der messtechnischen Überprüfung von Systemen aus Kommunikations- und Funkmesstechnik anwenden,
- die Vor- und Nachteile unterschiedlicher Sende-Empfangs-Systeme und deren Subsysteme, die Eigenschaften von Sensoren der Funkmesstechnik, sowie unterschiedliche Radiometer- und Radaranwendungen einschätzen.

Inhalt:
Die Vorlesung hat aufbauend auf der Vorlesung "Einführung in die Hochfrequenztechnik" die Anwendungen der Hochfrequenztechnik unter Berücksichtigung der Systemumgebung zum Inhalt.

Die Themen sind im Einzelnen:
- Antennen
- Ausbreitungseigenschaften von Mikrowellen in der Atmosphäre
- Grundlagen der HF- und Mikrowellenkommunikation mit Empfänger- und Signalverarbeitungsarchitektur
- Radiozentrale (Mikrowellenstrahlung, die jeder "warmer" Körper aussendet, kann zur Detektion oder Temperaturmessung genutzt werden)
- Radar mit den verschiedenen Radarverfahren, ihrer Realisierung, ihren Eigenschaften und der benutzten Antennen (CW-, FMCW-, Pulsarad, phasengesteuertes Radar, SAR)
- Navigationssysteme (Flugzeug-Landesysteme wie ILS oder MLS und Systeme zur Positionsbestimmung (GPS, GLONASS))
Literatur:
- Kopien der Vorlesungsschichten der Begleitvorlesung
- Bachmann, P., Handbuch der Satellitennavigation, Motorbuch-Verl., 1993
- Baur, E., Einführung in die Radartechnik, Teubner, 1985
- Detlefsen, J., Radartechnik: Grundlagen, Bauelemente, Verfahren, Anwendungen, Springer Verlag
- Franceschetti, G., Lanari, R., Synthetic aperture radar processing, CRC Press, 1999
- Huder, B., Einführung in die Radartechnik, Teubner, 1999
- Ludloff, A., Handbuch Radar und Radiosignalverarbeitung, Vieweg, 1993
- Silver, S., Microwave antenna theory and design, Peregrinus, 1986
- Unger, H.-G., Hochfrequenztechnik in Funk und Radar, Teubner, 1994
- Vohwinkel, B., Passive Mikrowellenradiometrie, Vieweg, 1988

Grundlage für:
Dieses Modul ist Grundlage für einen Teil der im Institut für Mikrowellentechnik durchgeführten Masterarbeiten

Lehrveranstaltungen und Lehrformen:
- Vorlesung "Mikrowellensysteme", 4 SWS ()
- Übung "Mikrowellensysteme", Vertiefung der Vorlesungsinhalte mittels Bearbeitung theoretischer und praktischer Aufgaben, studentische Referate, 2 SWS ()

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 78 h
- Vor- und Nachbereitung: 117 h
- Selbststudium: 45 h
- Summe: 240 h

Leistungsnachweis und Prüfungen:
Die Prüfung findet in der Regel als mündliche Prüfung statt.

Voraussetzungen (formal):
Keine

Notenbildung:
Note der Prüfung

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.79 Mixed-Signal CMOS Chip Design

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804871045</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>4 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>2.5</td>
</tr>
<tr>
<td>Sprache:</td>
<td>English (german upon verbal agreement)</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns</td>
</tr>
</tbody>
</table>
| Dozenten: | Dr.-Ing. Joachim Becker
| | Prof. Dr.-Ing. Maurits Ortmanns |

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Kommunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlpflichtmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Communications Technology, M.Sc., Technisches Wahlmodul Mikroelektronik

Voraussetzungen (inhaltlich): Basic knowledge of semiconductor devices, analog circuits, control theory and signal processing

Lernziele: This lecture goes along with the analog and digital CMOS circuit design lectures offered by the institute of microelectronics. In contrast to these more theoretical lectures on circuit design techniques, this lecture is focused on the implementation issues of application specific integrated circuits (ASICs). After a comparison between analog and digital circuit simulation techniques, the aspects of actual implementation as microchip hardware are discussed. Layout and verification is covered up to manufacturing and packaging. There is a strong emphasis on the computer aided design (CAD) support and algorithms, which are integral part of todays chip implementation. The exercises will be used to give hands-on experience with industry-standart CAD design tools.

Inhalt:
- analog simulation
- digital simulation
- mixed-signal and co-simulation
- design for reliability
- design for testability
- CMOS layout, floorplanning, standart-cells
- layout parasitic extraction and verification
- packaging and board design

Literatur:
- Baker - CMOS : Circuit design, layout, and simulation
- Razavi - Design of Analog CMOS Integrated Circuits
- Allen, Holberg - CMOS Analog Circuit Designl
- Sedra, Smith - Microelectronic Circuits

Grundlage für: Wahlpflichtmodule mit entsprechender Ausrichtung, Master-Thesis

Lehrveranstaltungen und Lehrformen:
Vorlesung "Mixed-Signal CMOS Circuit Design", 2 SWS (V) ()
Übung "Mixed-Signal CMOS Circuit Design", 0.5 SWS (Ü) ()
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 38 h
Vor- und Nachbereitung: 82 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe:</td>
<td>120 h</td>
</tr>
</tbody>
</table>

|----------------------------------|---|

<table>
<thead>
<tr>
<th>Voraussetzungen (formal):</th>
<th>keine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notenbildung:</th>
<th>Anhand des Ergebnisses der Prüfung</th>
</tr>
</thead>
</table>
1.80 Modellbildung dynamischer Systeme

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804871406</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr.-Ing. Michael Buchholz</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:

Voraussetzungen (inhaltlich):
keine

Lernziele:
- Fähigkeit, die physikalisch-chemische Modellbildung von weiteren Arten der Modellbildung abzugrenzen
- Fähigkeit, die Auswirkung von Vereinfachungen bei der Modellbildung abschätzen zu können
- Fähigkeit, die Modellgleichungen von technischen Systemen abzuleiten und aufzustellen
- Fähigkeit, physikalische Systeme aus verschiedenen Domänen als verallgemeinerte Netzwerke zu modellieren
- Fähigkeit, die Systemmodelle in ihrer Ordnung zu reduzieren

Inhalt:
- Abgrenzung verschiedener Modellierungsverfahren
- Vorgehen bei der rigorosen Modellbildung
- Beschreibung von Systemen durch verallgemeinerte Netzwerke
- Einführung in Kinematik und Kinetik
- Modellbildung nach Newton-Euler
- d'Alembertsches Prinzip
- Lagrangesche Gleichungen
- Hamiltonsches Prinzip
- Hamiltonsche Gleichungen
- Modale Ordnungsreduktion nach Litz

Literatur:
- Pfeiffer, F.: Einführung in die Dynamik. Teubner-Verlag, Stuttgart, 1989
<table>
<thead>
<tr>
<th>Grundlage für:</th>
<th>keine Angaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltungen</td>
<td>Vorlesung "Modellbildung dynamischer Systeme", 2 SWS (V) ()</td>
</tr>
<tr>
<td>und Lehrformen:</td>
<td>Übung "Modellbildung dynamischer Systeme", praktische Übung, 1 SWS (Ü) ()</td>
</tr>
<tr>
<td>Abschätzung des</td>
<td>Präsenzzeit: 45 h</td>
</tr>
<tr>
<td>Arbeitsaufwands:</td>
<td>Vor- und Nachbereitung: 60 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 45 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 150 h</td>
</tr>
<tr>
<td>Leistungsnachweis</td>
<td>In der Regel 120 minütige schriftliche Prüfung, ansonsten mündliche Prüfung</td>
</tr>
<tr>
<td>und Prüfungen:</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>keine</td>
</tr>
<tr>
<td>(formal):</td>
<td></td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Anhand des Klausurergebnisses bzw. des Ergebnisses der mündlichen Prüfung</td>
</tr>
</tbody>
</table>

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.81 Modellbildung dynamischer Systeme

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804871406</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr.-Ing. Michael Buchholz</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Automatisierungs- und Energietechnik
- Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik
- Informationssystemtechnik, M.Sc., Wahlpflichtmodul (Ing)

Voraussetzungen (inhaltlich):
- keine

Lernziele:
- Fähigkeit, die physikalisch-chemische Modellbildung von weiteren Arten der Modellbildung abzugrenzen
- Fähigkeit, die Auswirkung von Vereinfachungen bei der Modellbildung abschätzen zu können
- Fähigkeit, die Modellgleichungen von technischen Systemen abzuleiten und aufzustellen
- Fähigkeit, physikalische Systeme aus verschiedenen Domänen als verallgemeinerte Netzwerke zu modellieren
- Fähigkeit, die Systemmodelle in ihrer Ordnung zu reduzieren

Inhalt:
- Abgrenzung verschiedener Modellierungsverfahren
- Vorgehen bei der rigorosen Modellbildung
- Beschreibung von Systemen durch verallgemeinerte Netzwerke
- Einführung in Kinematik und Kinetik
- Modellbildung nach Newton-Euler
- d’Alembertsches Prinzip
- Lagrangesche Gleichungen
- Hamiltonsches Prinzip
- Hamiltonsche Gleichungen
- Modale Ordnungsreduktion nach Litz
<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Pfeiffer, F.: Einführung in die Dynamik. Teubner-Verlag, Stuttgart, 1989</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grundlage für:</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine Angaben</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung "Modellbildung dynamischer Systeme", 2 SWS (V) ()</td>
</tr>
<tr>
<td>Übung "Modellbildung dynamischer Systeme", praktische Übung, 1 SWS (Ü) ()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abschätzung des Arbeitsaufwands:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 45 h</td>
</tr>
<tr>
<td>Vor- und Nachbereitung: 60 h</td>
</tr>
<tr>
<td>Selbststudium: 45 h</td>
</tr>
<tr>
<td>Summe: 150 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungsnachweis und Prüfungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>In der Regel 120 minütige schriftliche Prüfung, ansonsten mündliche Prüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen (formal):</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notenbildung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhand des Klausurergebnisses bzw. des Ergebnisses der mündlichen Prüfung</td>
</tr>
</tbody>
</table>
1.82 Modern Semiconductor Devices

Kürzel / Nummer: 8804871228

Deutscher Titel: -

Leistungspunkte: 4 ECTS

Semesterwochenstunden: 3

Sprache: Englisch

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Hermann Schumacher

Dozenten: Prof. Dr.-Ing. Hermann Schumacher

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Communications Technology, M.Sc., Pflichtmodul Mikroelektronik

Voraussetzungen (inhaltlich):
- Basic knowledge of solid-state physics: semiconductors; band structure in real and in k-space; drift and diffusive transport

Lernziele:
- Students recognize the fundamental importance of energy band diagrams for the understanding of advanced semiconductor devices.
- By considering relevant transistor structures, they learn how heterostructures and doping variations can be used to modify the distribution and movement of free charge carriers.
- Working from a wireless communications engineering point of view, students are enabled to distinguish the usability of different transistor technologies depending on application.

Inhalt:
- Semiconductor Fundamentals:
 - Energy band diagrams
 - Doping
 - MOS-, pn- and Schottky junctions
 - Semiconductor Heterostructures
 - Electronic semiconductor devices:
 - MOSFET
 - MESFET
 - HEMT
 - BJT
 - HBT
 - Application aspects of semiconductor devices in RF/microwave communications systems:
 - Performance parameters
 - System requirements
 - Economical issues

Literatur:
- Simon Sze, Physics of Semiconductor Devices
- S. Prasad, H. Schumacher, A. Gopinath, High Speed Electronics and Optoelectronics (Chapter 1 and 2)
- Full set of slides, video sequences on e-learning platform
| Grundlage für: | Microfabrication lab (compulsory prerequisite)
Monolithic Microwave ICs in High-Speed Systems (recommended) |
|----------------|---|
| Lehrveranstaltungen und Lehrformen: | Vorlesung “Modern Semiconductor Devices”, 2 SWS ()
Übung “Modern Semiconductor Devices”, 1 SWS ()
Labor “Modern Semiconductor Devices”, 1x2 Stunden (nicht wöchentlich) () |
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 36 h
Vor- und Nachbereitung: 84 h
Summe: 120 h |
| Leistungsnachweis und Prüfungen: | written exam, 2h duration, alternatively oral exam |
| Voraussetzungen (formal): | keine |
| Notenbildung: | Module grade is equal to grade of written exam |

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.83 Monolithic Microwave ICs in High-Speed Systems

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870457</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Hermann Schumacher</td>
</tr>
</tbody>
</table>
| Dozenten: | Prof. Dr.-Ing. Hermann Schumacher
 | Prof. Dr.-Ing. Heinrich Dämbkes |
| Einordnung des Moduls in Studiengänge: | Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
 | Elektrotechnik, M.Sc., Wahlpflichtmodul Mikroelektronik
 | Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
 | Communications Technology, M.Sc., Pflichtmodul Mikroelektronik |
| Voraussetzungen (inhaltlich): | Undergraduate knowledge of analog circuit design and RF engineering principles |
| Lernziele: | - Students recognize the impact of system level requirements on circuit design approaches.
 | - They then recognize important circuit design concepts for high-speed wireless systems, by considering key building blocks and their system-derived specifications.
 | - Fundamental RF engineering concepts are being reinforced through their use in the design examples. |
| Inhalt: | Building blocks of a satellite receiving system and their characteristic specifications.
 | Microwave circuit components:
 | - Passive components and their equivalent circuits
 | - CAD models for III-V FETs, MOSFETs and hetero-bipolar transistors
 | - Transmission lines
 | - Micro-electro-mechanical structures for RF applications
 | - Realization of reactances and impedance converters using transmission lines
 | Circuit realization of building blocks:
 | - Low-noise amplifiers
 | - Active and passive mixers
 | - Microwave oscillators
 | - Wide-band intermediate frequency amplifiers
 | - Multi-functional MMICs
 | - Packaging aspects and high-frequency microsystems |
Literatur:
- D.M. Pozar: Microwave Engineering, Addison-Wesley, 1990
- R.S. Elliott: An Introduction to Guided Waves and Microwave Circuits, Prentice-Hall, 1993
- G. Matthaei, L. Young & E. Jones: Microwave Filters, Impedance-Matching Networks & Coupling Structures, Artech House, 1980
- C.G. Montgomery, R.H. Dicke and E.M. Purcell: Principles of Microwave Circuits (reprint of Radiation Laboratory volume 8), IEEE Press, 1987
- F.E. Gardiol: Introduction to Microwaves, Artech House, 1984
- S. Prasad, H. Schumacher, A. Gopinath, High Speed Electronics and Optoelectronics (Chapter 5)

Grundlage für:
Master thesis on microwave IC design

Lehrveranstaltungen und Lehrformen:
- Vorlesung “Monolithic Microwave ICs in High-Speed Systems”, 2 SWS
- Übung “Monolithic Microwave ICs in High-Speed Systems”, 1 SWS
- Labor “Simulation Lab”, 1 SWS
- Tutorium: Online Tutorials on microwave CAD techniques

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 60 h
- Vor- und Nachbereitung: 120 h
- Summe: 180 h

Leistungsnachweis und Prüfungen:
- Admission to exam requires participation in at least 6 out of 9 exercise sessions (in class and laboratory).
- Oral exam composed of an oral presentation on an MMIC journal paper and a question and answer session (45 minutes)

Voraussetzungen (formal):

Notenbildung:
Grade of module is equal to grade of the oral exam
1.84 Multiuser Communications and MIMO Systems

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8822271727</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td></td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch oder Englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Robert Fischer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Robert Fischer</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Kommunikations- und Systemtechnik
- Informationssystemtechnik, M.Sc., Wahlpflichtmodul (Ing)
- Communications Technology, M.Sc., Technisches Wahlmodul Communications Engineering

Voraussetzungen (inhaltlich):
Module "Einführung in die Nachrichtentechnik und Nachrichtentechnik" und "Signale und Systeme".

Lernziele:
The students acquire fundamental insight into digital transmission systems where a number of users/signals are treated jointly. They will be able to assess the performance of the different approaches and to design systems according to prescribed requirements. The necessary mathematical background will be developed.

Inhalt:
- Introduction into the field of multiuser communications and multiple-input/multiple-output systems. Both, practical transmission schemes, as well as fundamental limits from information theory are covered.
- Introduction
- MIMO Communications
- Introduction to Lattices
- Lattice Decoding and the “Sphere Decoder”
- Equalization via Lattice Reduction
- “Writing on Dirty Paper”
- Multiuser Communications
- Advanced Transmitter-Side Techniques
- Interference Channel
<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
</table>

| Grundlage für: | keine Angaben |
| Lehrveranstaltungen und Lehrformen: |
| Vorlesung "Multiuser Communications and MIMO Systems", 3 SWS (V) () |
| Übung "Multiuser Communications and MIMO Systems", 1 SWS (Ü) () |

| Abschätzung des Arbeitsaufwands: |
| Präsenzzeit: 60 h |
| Vor- und Nachbereitung: 120 h |
| Summe: 180 h |

| Leistungsnachweis und Prüfungen: |
| Usually oral exam, otherwise written exam of 120 minutes duration |

| Voraussetzungen (formal): |
| Notenbildung: |
| Module mark is identical to exam mark |
1.85 Neural Networks and Pattern Classification

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8822270439</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>4 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr.-Ing. Ulrich Kreßel</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Elektrotechnik, M.Sc., Wahlmodul Allgemeine Elektrotechnik
- Informationssystemtechnik, M.Sc., Wahlmodul
- Communications Technology, M.Sc., Technisches Wahlmodul Communications Engineering

Voraussetzungen (inhaltlich):
- Grundlagen der Stochastik
- Grundlagen der Linearen Algebra
- Grundlagen der Digitalen Signalverarbeitung

Lernziele:
- Kenntnisse über statistische Methoden der Musterklassifikation
- Kenntnisse über Funktionsapproximation und Lernen aus Beispielen
- Fähigkeiten die einzelnen Schritte bei der Mustererkennung zu identifizieren: Datenaufnahme, Segmentierung, Merkmalsextraktion, Klassifikation, kontextbasierte Interpretation
- Fähigkeit der Anwendung von verschiedenen Klassifikationsverfahren

Inhalt:
- Einführung und Begriffswelt: Merkmale, Klassen, Lernen, Generalisieren, Funktionsapproximation
- Statistische Entscheidungstheorie: Bayes Klassifikator, Quadratmittelansatz
- Normalverteilungshypothese: Gebietsenteilung, Parameterschätzung
- Polynomklassifikator: Pseudoinverse, High-Order Neural-Net
- Multilayer Perzepton: Modell, Error-Backpropagation
- Multi-Referenzen-Klassifikatoren: Nächster-Nachbar Ansatz, Radial-Basis Funktionen
- Clusteranalyse: Kohonen-Feature-Map, Vektorquantisierung
- Praktische Erfahrungen: Verkehrszeichenerkennung, Ziffernklassifikation

Literatur:

Grundlage für: keine Angaben
Lehrveranstaltungen und Lehrformen:
Vorlesung “Neural Networks and Pattern Classification”, 2 SWS ()
Übung “Neural Networks and Pattern Classification”, 1 SWS ()

Abschätzung des Arbeitsaufwands:
Präsenzzeit: 39 h
Vor- und Nachbereitung: 50 h
Selbststudium: 40 h
Summe: 129 h

Leistungsnachweis und Prüfungen:
In der Regel mündliche Prüfungen

Voraussetzungen (formal):

Notenbildung:
Note der Prüfung
1.86 Nichtlineare Regelungen

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870417</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Knut Graichen</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Knut Graichen</td>
</tr>
<tr>
<td>Einordnung des Moduls in Studiengänge:</td>
<td></td>
</tr>
</tbody>
</table>
 - Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
 - Elektrotechnik, M.Sc., Wahlpflichtmodul Automatisierungs- und Energietechnik
 - Informationssystemtechnik, M.Sc., Wahlmodul |
| Voraussetzungen (inhaltlich): |
 - Inhalte der Vorlesung Systemtheorie
 - Inhalte der Vorlesung Einführung in die Regelungstechnik |
| Lernziele: |
 - Vermittlung der Methoden zur Analyse und Regelung nichtlinearer Systeme im Zeitbereich
 - Fähigkeit, typische physikalische Anordnungen als nichtlineare zeitinvariante Systeme mathematisch zu beschreiben
 - Fähigkeit, gegebene nichtlineare zeitinvariante Systeme auf Stabilität zu untersuchen
 - Fähigkeit, nichtlineare Zustandsregler zu entwerfen
 - Fähigkeit, Computer-Algebra-Programme zur Handhabung nichtlinearer Systeme zu verwenden |
| Inhalt: |
 - Beispiele für nichtlineare physikalische Systeme und nichtlineare Effekte
 - Besonderheiten und Phänomene nichtlinearer Systeme
 - Analyse von nichtlinearen Systemen
 - Stabilität nichtlinearer Systeme (Lyapunov-Stabilität)
 - Lyapunov-basierter Reglerentwurf (Backstepping)
 - Steuerbarkeit und Erreichbarkeit nonlinearer Systeme
 - Zustandsreglerentwurf durch exakte Linearisierung
 - Differenzielle Flachheit
 - Flachheitsbasierte Steuerung und Regelung nichtlinearer Systeme |
<p>| Literatur: |

| Grundlage für: | keine Angaben |</p>
<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen:</th>
<th>Vorlesung "Nichtlineare Regelungen", 2 SWS (V) (Wahlpflicht/Wahl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Übung "Nichtlineare Regelungen", 0.5 SWS (Ü) (Wahlpflicht/Wahl, praktische Übung)</td>
</tr>
<tr>
<td></td>
<td>Tutorium "Nichtlineare Regelungen", 0.5 SWS (T) (Wahlpflicht/Wahl, Tutorium)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abschätzung des Arbeitsaufwands:</th>
<th>Präsenzzeit: 45 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 60 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 45 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 150 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungsnachweis und Prüfungen:</th>
<th>In der Regel mündliche Prüfung, ansonsten 120 minütige Klausur</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen (formal):</th>
<th>Keine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notenbildung:</th>
<th>Anhand der Ergebnisse der mündlichen Prüfung bzw. Klausur</th>
</tr>
</thead>
</table>
1.87 Numerical Methods for Microwave Techniques

Kürzel / Nummer: NVM / 8804871513

Deutscher Titel: Numerische Verfahren der Mikrowellentechnik

Leistungspunkte: 6 ECTS

Semesterwochenstunden: 4

Sprache: englisch

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: Dr.-Ing. Frank Bögelsack

Dozenten: Dr.-Ing. Frank Bögelsack

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Elektrotechnik, M.Sc., Wahlmodul Allgemeine Elektrotechnik
- Communications Technology, M.Sc., Technisches Wahlmodul

Voraussetzungen (inhaltlich):
- Kenntnisse, Fertigkeiten und Kompetenzen der Module:
 - Einführung in die Hochfrequenztechnik
 - RF & Microwave Engineering
 - Elektromagnetische Felder und Wellen

Lernziele: After successful completion of this module, students should be able:
- to assess which numerical method is appropriate for a given theoretical problem
- to name the appropriate mathematical method and to estimate the effort for the respective numerical methods
- to set-up the equations for wave propagation in basic transmission lines for three methods (static FDM, MMT, and SDA) and to write appropriate programs for the calculation of the characteristic parameters

Inhalt:
- Basics of field theory:
 - Maxwell’s equations
 - set-ups of potential functions
 - characteristics of basic transmission lines

Mathematical methods:
- Method of Moments
- Variation Principle
- Perturbation Method
- Solving of linear equations
- Zero searching and optimizers
<table>
<thead>
<tr>
<th>Inhalt (Fortsetzung):</th>
<th>Numerical methods:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Finite Differences</td>
<td>- TLM Method</td>
</tr>
<tr>
<td>- Mode-Matching Technique</td>
<td>- Method of Transversal Resonance</td>
</tr>
<tr>
<td>- Spectral Domain Approach</td>
<td>- Method of Lines</td>
</tr>
</tbody>
</table>

| | - David K. Cheng, Field and Wave Electromagnetics, Addison-Wesley, 1989 |
| | - G. Piefke: Feldtheorie, BI, Mannheim, 1977 |

Grundlage für:	keine Angaben
Lehrveranstaltungen und Lehrformen:	Vorlesung "Numerical Method in Microwave Techniques", 3 SWS (V) ()
	Übung "Numerical Method in Microwave Techniques", Übungen und Programmierung am Computer in C++, 1 SWS (Ü) ()

Abschätzung des Arbeitsaufwands:	Präsenzzeit: 67 h
	Vor- und Nachbereitung: 45 h
	Selbststudium: 68 h
Summe:	180 h

| Leistungsnachweis und Prüfungen: | Die Prüfung findet in der Regel mündlich statt. |

| Voraussetzungen (formal): | Keine |

| Notenbildung: | Note durch Prüfung |
1.88 Optical Communications

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8822271723</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Priv.-Doz. Dr.-Ing. Rainer Michalzik</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Priv.-Doz. Dr.-Ing. Rainer Michalzik</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>Bachelor. No prerequisites from other modules required. Some basic knowledge of semiconductor physics and devices would be helpful.</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>The students should understand the basic operating principles of a digital optical communication system and of the passive and active devices required to build such a system.</td>
</tr>
</tbody>
</table>
| Inhalt: | This module provides a solid basis for understanding fiber-optic data transmission systems. Important components like the silica optical fiber as transmission medium, light emitting diode or laser diode transmitters, optical amplifiers, as well as photodiode receivers are discussed in some detail. The entire system is characterized in terms of its bit error ratio performance and its power budget. The following topics are addressed:
 - Properties of optical communication systems
 - Optical fibers: ray-optical model, step-index and graded-index fibers, wave-optical model, chromatic dispersion
 - Wave propagation in planar waveguides
 - Loss in optical fibers: absorption and scattering
 - Fabrication of fibers
 - Semiconductor materials: crystal lattices, direct and indirect bandgaps, mixed compound semiconductors, absorption and refractive index, emission and absorption
 - Light-emitting diodes for communications
 - Laser diodes
 - Photodiodes
 - Optical communication systems: dense and coarse wavelength division multiplexing (WDM), optical (de-)multiplexing devices, detection sensitivity for digital signals, optical power budgeting
 - Optical fiber amplifier |
| Literatur: | A comprehensive english written manuscript is provided |
| Grundlage für: | Lecture "Advanced Optoelectronic Communication Systems", Laboratory "Optoelectronics" |
| Lehrveranstaltungen und Lehrformen: | Vorlesung “Optical Communications”, 3 SWS ()
 Seminar “Optical Communications”, 1 SWS () |
Abschätzung des Arbeitsaufwands:

<table>
<thead>
<tr>
<th>Vor- und Nachbereitung:</th>
<th>56 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit:</td>
<td>49 h</td>
</tr>
<tr>
<td>Selbststudium:</td>
<td>75 h</td>
</tr>
<tr>
<td>Summe:</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Leistungsnachweis und Prüfungen:

| Usually written exam of 120 minutes duration, otherwise oral exam |

Voraussetzungen (formal):

| Notenbildung: | Module mark is identical to exam mark |

1.89 Optoelectronic Devices

Kürzel / Nummer: 8804872065

Englischer Titel: Optoelectronic Devices

Leistungspunkte: 4 ECTS

Semesterwochenstunden: 3

Sprache: Englisch

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: apl. Prof. Dr.-Ing. habil. Rainer Michalzik

Dozenten: apl. Prof. Dr.-Ing. habil. Rainer Michalzik

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlpflichtmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Informationssystemtechnik, M.Sc., Wahlmodul
- Communications Technology, M.Sc., Wahlmodul

Voraussetzungen (inhaltlich):
- Bachelor
- Einführung in die Optoelektronik oder Optical Communications

Lernziele:
The students should understand advanced topics in semiconductor laser diodes, photodetectors, and optical modulators, predominantly for use in high-speed optical communication systems.

Inhalt:
- Photodetectors: PIN-type, avalanche photodiode (APD), metal-semiconductor-metal (MSM), resonant-cavity-enhanced, waveguide-type, high-speed designs
- Optical modulators: physical effects (plasma, electroabsorption (Franz–Keldysh), quantum-confined Stark (QCSE), electro-optic (Pockels)), phase modulators, Mach–Zehnder interferometer (MZI) modulators, absorption modulators
- Edge-emitting semiconductor lasers: multimode and lateral mode behavior, temperature effects, optical near- and far-fields, frequency modulation, mirror coatings, laser noise, high-power lasers, DBR and DFB lasers for use in telecommunications, tunable laser diodes
- Vertical-cavity surface-emitting lasers: principles and applications
Literatur:
- A comprehensive manuscript is provided

Grundlage für:

<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen:</th>
<th>Vorlesung "Optoelectronic Devices", 3 SWS (V) ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>Vor- und Nachbereitung: 78 h</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 42 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 120 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td>Keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Modulnote ist identisch mit Prüfungsnote</td>
</tr>
</tbody>
</table>

1.90 Phase-Locked Loops in Communications Engineering

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8822270611</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>english</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr. Michael Hoffmann</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr. Michael Hoffmann</td>
</tr>
<tr>
<td>Einordnung des Moduls</td>
<td>Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften</td>
</tr>
<tr>
<td>in Studiengänge:</td>
<td>Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik</td>
</tr>
<tr>
<td></td>
<td>Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik</td>
</tr>
<tr>
<td></td>
<td>Elektrotechnik, M.Sc., Wahlmodul Allgemeine Elektrotechnik</td>
</tr>
<tr>
<td></td>
<td>Communications Technology, M.Sc., Technisches Wahlmodul</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>After successful completion of this module, students should be able:</td>
</tr>
<tr>
<td>(inhaltlich):</td>
<td>- to identify potential applications of phase-locked loops in communications engineering,</td>
</tr>
<tr>
<td></td>
<td>- to analyze, which type of a phase-detector must be chosen for particular applications,</td>
</tr>
<tr>
<td></td>
<td>- to design PLLs of first and second order with a variety of different phase-detector types,</td>
</tr>
<tr>
<td></td>
<td>- and to optimize them with respect to signal-processing and noise-behavior.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>The lecture/seminar begins with the identification of various applications of phase-locked loops in communications engineering. For a rigorous analysis, the re-definition of the term ‘phase’ is then necessary, which also explains the principal non-linearity of phase-detectors. This makes possible the explanation of basics of phase-synchronization, including a description of these loops by their three main subsystems: phase-detectors, filters, and electronically controllable oscillators. These subsystems are described using methods known from signal processing, ending up in non-linear model equations. These might be solved for simple cases at least asymptotically, thus making possible the identification of operating points. The latter will be used to linearize the model equations. These might be solved for the unperturbed case, and for the case where useful signals are perturbed by electronic noise. Finally, the non-linear behavior of phase-locked loops is considered using phase-space trajectories.</td>
</tr>
</tbody>
</table>
Literatur:
- Copies of lecture slides

Grundlage für:

Lehrveranstaltungen und Lehrformen:
Vorlesung "Phase-Locked Loops in Communications Engineering", 3 SWS (V) ()
Übung "Phase-Locked Loops in Communications Engineering", 1 SWS (Ü) ()

Abschätzung des Arbeitsaufwands:
Präsenzzeit: 60 h
Vor- und Nachbereitung: 67 h
Selbststudium: 53 h

Summe: 180 h

Leistungsnachweis und Prüfungen:
Oral examination

Voraussetzungen (formal):
B.Sc. or B.Eng. Electrical and electronics Engineering or similar.

Notenbildung:
Mark of examination
<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870446</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>Semiconductor Technology Lab</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Semester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Dr. Wolfgang Ebert</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr. Wolfgang Ebert</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Pflichtmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Communications Technology, M.Sc., Empfohlenes Wahlfach

Voraussetzungen (inhaltlich):
Vorlesung "MOS-Halbleitertechnik" oder "Modern Semiconductor Devices"

Lernziele:
Durch die Absolvierung des Praktikums erhalten die Teilnehmer sowohl praktische Fähigkeiten, wie
- in einem Reinraum zu arbeiten,
- fotolithographische Strukturierungsprozesse durchzuführen,
- verantwortungsvoll mit komplexen Anlagen umzugehen,
 als auch
- theoretische Kenntnisse über den Aufbau und die Wirkungsweise von Feldeffekttransistoren.

Inhalt:
Ziel des Praktikums ist es, voll funktionstüchtige Feldeffekttransistoren (GaAs-MESFET’s) herzustellen und elektrisch zu charakterisieren. Das Praktikum findet in einem eigens dafür ausgestattetem Reinraum statt und vermittelt deshalb auch wichtige Erkenntnisse über die Tätigkeiten, technischen Anlagen sowie Verhaltensweisen in Reinräumen. Schwerpunkte des Praktikums sind:
- Abscheidung von Metallen im Vakuum
- Strukturierung der Bauelemente mittels optischen Lithographieverfahren im Mikrometerbereich
- Metallätzverfahren
- Herstellung von sperrfreien und sperrenden Kontakten
- Elektrische Charakterisierung der Bauelemente

Literatur:
- H. Beneking: "Halbleitertechnologie", Teubner, Stuttgart
- W. Kellner, H. Kniekamp: "GaAs-Feldeffekttransistoren", Springer

Grundlage für:
Masterarbeit im Bereich Mikrofabrikation

Lehrveranstaltungen und Lehrformen:
Praktikum "Halbleitertechnologie", 4 SWS ()
Abschätzung des Arbeitsaufwands:

<table>
<thead>
<tr>
<th>Präsenzzeit: 35 h</th>
<th>Vor- und Nachbereitung: 115 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe: 150 h</td>
<td></td>
</tr>
</tbody>
</table>

Leistungsnachweis und Prüfungen:

Testat bei Erfüllung folgender Kriterien: erfolgreiche Teilnahme am Praktikum, aktive Diskussion während des Kolloquiums, Abgabe und evtl. Korrektur des Versuchsprotokolls

Voraussetzungen (formal):

Notenbildung: Unbenotete Veranstaltung (Leistungsnachweis)
1.92 Praktikum - Materialien für elektronische und magnetische Bauelemente

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870448</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>Lab - Materials for electronic and magnetic devices</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>4 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Ulrich Herr</td>
</tr>
</tbody>
</table>
| Dozenten: | Prof. Dr.-Ing. Ulrich Herr
Prof. Carl Krill, Ph.D.
Mitarbeiter |

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Pflichtmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik

Voraussetzungen (inhaltlich):
Teilnahme an der Vorlesung Materialien für elektronische und magnetische Bauelemente wird empfohlen.

Lernziele:
Es werden vertiefte Kenntnisse auf dem Gebiet der Materialien für elektronische und magnetische Bauelemente vermittelt. Insbesondere sollen durch eigenständige Durchführung von Versuchen praktische Fertigkeiten vermittelt werden, welche die Grundlage für fortgeschrittene Veranstaltungen im Bereich der Mikroelektronik bilden. Im Rahmen des begleitenden Seminars wird die Aufarbeitung, Darstellung und kritische Diskussion der eigenen Resultate erlernt.

Inhalt:
Es werden Versuche zu ausgewählten Themen der Vorlesung Materialien für elektronische und magnetische Bauelemente angeboten. Insbesondere werden dabei folgende Gebiete abgedeckt:
- Strukturbestimmung
- Mechanische Eigenschaften von Polymeren
- Dielektrische Eigenschaften von Polymeren / Impedanzspektroskopie
- Lambda-Sonde
- Magnetische Eigenschaften von Materialien
- Magnetowiderstands-Sensoren

Die Studenten arbeiten sich anhand von Versuchsankleidungen und Begleitliteratur in das Thema ein und führen anschließend eigenständige Versuche durch. Grundlagen und erzielte Ergebnisse werden in einem begleitenden Seminar vorgestellt und diskutiert.

Literatur:
- Es werden Praktikumsanleitungen zur Versuchsvorbereitung und zum vertiefenden Selbststudium zur Verfügung gestellt.
- Des weiteren wird auch auf die Literatur zur Vorlesung Materialien für elektronische und magnetische Bauelemente verwiesen.

Grundlage für:
Vertiefungsvorlesungen im Master-Bereich Mikroelektronik

Lehrveranstaltungen und Lehrformen:
- Labor "Praktikum - Materialien für elektronische und magnetische Bauelemente" (2 SWS)
- Seminar "Praktikum - Materialien für elektronische und magnetische Bauelemente" (1 SWS)
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 45 h
Vor- und Nachbereitung: 75 h
Summe: 120 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Versuchsprotokolle, Seminarvorträge</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td>keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>bestanden / nicht bestanden</td>
</tr>
<tr>
<td>Kürzel / Nummer:</td>
<td>8204870393</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Englischer Titel:</td>
<td>Microcomputors Lab</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Semester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Prof. Dr.-Ing. Stefan Wesner</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Prof. Dr.-Ing. Stefan Wesner</td>
</tr>
<tr>
<td>Einordnung des Moduls in Studiengänge:</td>
<td>Elektrotechnik, B.Sc., Pflichtmodul Informationssystemtechnik, B.Sc., Pflichtmodul Communications Technology, M.Sc., Wahlmodul</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>- Programmierkenntnisse in einer Programmiersprache, hilfreich sind speziell Kenntnisse in der Programmiersprache "C" - Module "Grundlagen der Elektrotechnik I + II"</td>
</tr>
</tbody>
</table>
| Lernziele: | Das Praktikum Anwendung von Mikrocomputern soll einen Einblick geben in die Einsatzmöglichkeiten von Mikrocomputern und der damit verbundenen Probleme.

Literatur:	- U. Tietze, CH. Schenk: Halbleiter-Schaltungstechnik - Kernighan, Richie: Programmieren in C
Grundlage für:	keine Angaben
Lehrveranstaltungen und Lehrformen:	Praktikum "Praktikum Anwendung von Mikrocomputern", 4 SWS ()
Abschätzung des Arbeitsaufwands:	Präsenzzeit: 60 h Vor- und Nachbereitung: 90 h Summe: 150 h
Voraussetzungen (formal):	
Notenbildung:	keine
Praktikum Mess- und Automatisierungstechnik

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870895</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Automatisierungs- und Energietechnik
- Elektrotechnik, M.Sc., Wahlmodul Kommunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Mikroelektronik
- Informationssystemtechnik, M.Sc., Wahlmodul

Voraussetzungen (inhaltlich):
keine

Lernziele:

Inhalt:
Thematisch sollen Automatisierungslösungen am praktischen Beispiel erarbeitet und kennengelernt werden. Hierzu sind Programmieraufgaben aus den Bereichen Industrierobotersteuerung, SPS, Mikrocontroller sowie Prozessleitsystem zu bearbeiten. Aus dem Themenfeld der Messtechnik sollen beispielhaft die Ultraschallmessung, die Interferometrie sowie die Dehnungsmessung an Versuchsständen praktisch kennengelernt werden.

Literatur:
keine Angaben

Grundlage für:
keine Angaben

Lehrveranstaltungen und Lehrformen:
Praktikum “Mess- und Automatisierungstechnik”, 4 SWS (P)
<table>
<thead>
<tr>
<th>Abschätzung des Aufwands:</th>
<th>Präsenzzeit: 30 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 120 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 150 h</td>
</tr>
</tbody>
</table>

| Voraussetzungen (formal): | keine |

| Notenbildung: | keine; Ausgabe eines Leistungsnachweises bei erfolgreicher Teilnahme. |

Basierend auf Rev. 797. Letzte Änderung am **11.02.2013** um **10:06** durch **smoser**.
1.95 Praktikum Mess- und Entwurfsverfahren in der HF-Technik

Kürzel / Nummer: 8804870612

Englischer Titel: -

Leistungspunkte: 5 ECTS

Semesterwochenstunden: 4

Sprache: deutsch

Turnus / Dauer: jedes Wintersemester / 1 Semester

Modulverantwortlicher: Dr.-Ing. Frank Bögelsack

Dozenten: Prof. Dr. Michael Hoffmann
Prof. Dr.-Ing. Wolfgang Menzel
Dr.-Ing. Frank Bögelsack

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Elektrotechnik, M.Sc., Wahlmodul Allgemeine Elektrotechnik

Voraussetzungen (inhaltlich): Teilnahme am Modul “Einführung in die Hochfrequenztechnik” inkl. dort enthaltenem Praktikum

Lernziele:
- Nach erfolgreicher Durchführung des Praktikums sollen die Studierenden in der Lage sein, die wichtigsten Messgeräte der HF-Technik anzuwenden.
- Antennen zu vermessen.
- Messergebnisse der HF- und Antennentechnik kritisch zu beurteilen.
- diese Ergebnisse in ihrem Bezug zu elektromagnetischer Verträglichkeit einzusortieren.

Inhalt:
- Im Gegensatz zum Pflichtpraktikum im Rahmen des Moduls “Einführung in die HF-Technik” finden diese Praktikumsversuche zum Teil an den Geräten der Abteilung statt, die sonst für die Forschungsaktivitäten der Professoren und akademischen Mitarbeiter und für Studien- und Diplomarbeiten genutzt werden. Die verwendeten Messgeräte sind folglich überwiegend Stand der Technik und werden damit ebenfalls in der Industrie eingesetzt. Im Einzelnen sind dies:

1. Hochfrequenzempfänger
 - Grundtypen von Hochfrequenzempfängern, Probleme im Zusammenhang mit Intermodulation

2. Frequenzsynthese und Synchronisationsverfahren
 - Phasenregelkreise, Fang-, Haltebereich, Costas-Loop, Modulation-Domain- Analysator

3. Rauschmessungen
 - Grundlagen der Rauschmesstechnik, Kalibration, Messungen der Rauschzahlen eines MeSFETs
Inhalt (Fortsetzung):

4. X-Band
 - Einführung in die Hohlleiter-Messtechnik, Zirkulatoren, Filter, Gunn-Oszillator, Mischer

5. HF-Halbleiterbauelemente
 - Einführung in die vektorielle HF-Messtechnik anhand von aktiven Bauelementen. Bestimmung von Kleinsignal-ESB von aktiven Bauelementen (Transistoren, Dioden)

6. Elektromagnetische Verträglichkeit(EMV)
 - EMV-Receiver, Magnetfeldsonden, Verkopplungen, Ersatzschaltbild realer Bauelemente

7. Vektorieller Netzwerkanalysator
 - Kalibrationsmethoden, Kalibrierstandards, Zeitbereichsmessungen, Ga-ting

8. Antennenmessungen
 - Messungen von K-Band-Hornantenne, Parabolantenne, Antennenarrays mit Antennendrehstand und Netzwerkanalysator

Literatur:
 Ist jeweils in den Beschreibungen der einzelnen Versuche angegeben

Grundlage für:
 keine Angaben

Lehrveranstaltungen und Lehrformen:
 Praktikum “Mess- und Entwurfsverfahren in der HF-Technik”, 4 SWS (P)

Abschätzung des Arbeitsaufwands:
 Präsenzzeit: 40 h
 Vor- und Nachbereitung: 125 h
 Selbststudium: 45 h
 Summe: 150 h

Leistungsnachweis und Prüfungen:

Voraussetzungen (formal):

Notenbildung: keine
<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870896</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
</tbody>
</table>
| Einordnung des Moduls in Studiengänge: | Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik
Elektrotechnik, M.Sc., Wahlmodul Mikroelektronik
Elektrotechnik, M.Sc., Wahlpflichtmodul Automatisierungs- und Energietechnik
Informationssystemtechnik, M.Sc., Wahlpflichtmodul |
| Voraussetzungen (inhaltlich): | Beschreibung linearer Systeme und Reglerentwurf im Bildbereich und Zustandsraum gemäß Inhalt der Vorlesungen "Einführung in die Regelungstechnik" (Bachelor) und "Systemtheorie" (Master). |
Thematisch werden die wichtigsten regelungstechnischen Methoden im Frequenzbereich und Zustandsraum am praktischen Beispiel umgesetzt. Neben exemplarischen Aufbauten zur Antriebstechnik (Elektrische Maschinen) werden verfahrenstechnische Grundaufgaben (Füllstandsregelung mit Prozeßleitsystem) behandelt. Des Weiteren wird eine Einführung in wichtige Hilfsmittel (unterstützende Simulations- und Mathematikprogramme mit regelungstechnischen Bibliotheken, analoge Schaltungen) zur Untersuchung dynamischer Systeme und zum Reglerentwurf gegeben.
Im Einzelnen werden folgende Versuche angeboten:
V1) Beobachter- und Reglerentwurf für eine Gleichstrommaschine
V2) Regelung eines inversen Pendels
V3) Schwebender Körper im Magnetfeld
V4) Identifikation eines Hubschraubers
V5) Modellierung
V6) Digitale Regelung
V7) Steuerung und Regelung eines Prozeßmodells mit WINERS (Füllstand)
V8) Entwurf eines Zustandsreglers und eines Beobachters für eine Verladebrücke |
| Literatur: | keine Angaben |
| Grundlage für: | keine Angaben |
| Lehrveranstaltungen und Lehrformen: | Praktikum "Regelungstechnik", 4 SWS (P) () |
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 30 h
Vor- und Nachbereitung: 120 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe: 150 h</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td>keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>keine; Ausgabe eines Leistungsnachweises bei erfolgreicher Teilnahme.</td>
</tr>
</tbody>
</table>
1.97 Praktikum für Informatiker zu Grundlagen der Elektrotechnik

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8207970960</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td></td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>2 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns, Dipl.-Phys. Otto Grassl</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge: Informatik, B.Sc., Anwendungsfach Elektrotechnik

Voraussetzungen (inhaltlich): Empfohlen: Vorangegangener Besuch der Vorlesung Grundlagen der Elektrotechnik I

Lernziele:
- Die Studenten
- kennen den Umgang mit den wichtigsten elektrischen Messgeräten
- beherrschen die grundlegenden Techniken des Experimentierens, insbesondere die korrekte Erfassung und Analyse von Messdaten
- können Ihre Ergebnisse schriftlich und grafisch in angemessener Form präsentieren
- haben gelernt, im Team zu arbeiten

Inhalt:
- Messen mit unterschiedlichen elektrischen Messgeräten
- Kennenlernen unterschiedlicher Gleichstrom-Grundschaltungen
- Bestimmung von Zweipolparametern
- Umgang mit Netzwerkanalysatoren
- einfache Filter
- Umgang mit nichtlinearen Bauelementen
- rundschaltungen bei Operationsverstärkern

Literatur:
- Beschreibungen zu allen Versuchen

Lehrveranstaltungen und Lehrformen: Labor Praktikum für Informatiker zu Grundlagen der Elektrotechnik ()

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 24 h
- Vor- und Nachbereitung: 36 h
- Summe: 60 h

Leistungsnachweis und Prüfungen:
Die Vergabe der Leistungspunkte erfolgt aufgrund der erfolgreichen Teilnahme an 8 Praktikumsversuchen incl. Vor- und Nachbereitung. Ein Praktikumsversuch ist erfolgreich abgeschlossen, sobald dessen Eingangskolloquium bestanden, der Versuch selbst erfolgreich durchgeführt und das schriftlich anzufertigende Versuchsprotokoll testiert ist.

Voraussetzungen (formal):

Notenbildung: Das Modul bleibt unbenotet.
1.98 Project - Analog CMOS Circuit Design

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804871090</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>5</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlpflichtmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Informationssystemtechnik, M.Sc., Wahlpflichtmodul
- Communications Technology, M.Sc., Wahlpraktikum Mikroelektronik

Voraussetzungen (inhaltlich):
- Course and exam in Analog CMOS Circuit Design or proven equivalent knowledge. Written application for the project.

Lernziele:
- In this project, the students will design and layout various analog modules in an advanced sub-micron CMOS technology.
- The combination of the realized modules is integrated into a toplevel design.
- The students will operate the industry standard Cadence Design Environment.
- This course is intended to provide hands-on design experience of modern CMOS analog circuit and systems

Inhalt:
- Yearly design project including
 - Design of Biasing Networks
 - Design of multistage Differential Amplifier
 - Design of bandgap reference circuits
 - Design of high-speed comparators
 - Design of a Switched Capacitor Integrator
 - Design of an Analog-Digital-Converter
 - Design of an optical sensor readout
 - Toplevel design
 - Layout of the modules

Literatur:
- Handouts for the various modules of the project and multimedia learning tool for the design environment
- Allen P.E., Holberg, D.R. “CMOS Analog Circuit Design”, Oxford University Press
- Baker, R.J. “CMOS Circuit Design, Layout, and Simulation”, Wiley
Grundlage für: keine Angaben

<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen:</th>
<th>Projekt “Analog CMOS Circuit Design”, 5 SWS (P) ()</th>
</tr>
</thead>
</table>

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 60 h
- Vor- und Nachbereitung: 120 h
- Summe: 180 h

<table>
<thead>
<tr>
<th>Leistungsnachweis und Prüfungen:</th>
<th>Certificate after fulfilment of the following criteria: Participation in all compulsory classes, successful completion of all given design and layout tasks</th>
</tr>
</thead>
</table>

Voraussetzungen (formal): keine

<table>
<thead>
<tr>
<th>Notenbildung:</th>
<th>n.a.</th>
</tr>
</thead>
</table>
1.99 Project - Design of Integrated Systems

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870428</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>Projekt Entwurf integrierter Systeme</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>5</td>
</tr>
<tr>
<td>Sprache:</td>
<td>English</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns</td>
</tr>
</tbody>
</table>
| Dozenten: | Prof. Dr.-Ing. Maurits Ortmanns
Prof. Dr.-Ing. Joachim Becker |
| Einordnung des Moduls in Studiengänge: | Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Communications Technology, M.Sc., Wahlpraktikum |
| Voraussetzungen (inhaltlich): | Useful previous knowledge |
| | - very good programing skills in one programming language |
| | - background in binary number systems, especially two’s complement (BK2) number system |
| | - representation of fractional numbers with BK2 |
| | - binary addition, binary subtraction, binary multiplication (integer and fractional numbers) |
| | - pipelining |
| | - digital logic gates (transistor level is not required) |
| | - functionality of registers, multiplexers |
| | - functionality of adders, comparators, counters |
| | - basic knowledge of UNIX/Linux commands |
| Lernziele: | The students should understand a simple system specification and transform this specification into a hierarchical model. Furthermore they should learn to write synthesizable VHDL source code for their hierarchical model. They should then simulate their source code, analyse the simulation results and find and correct errors in their code. After the lab, the students should be able to do the complete design flow for a small project starting with the system specification and ending with the hardware realization of the system on an FPGA. Another objective of this course is to do a project in a group with two students. The groups have free time management but all tasks have to be completed at the given deadlines. |
| Inhalt: | - basic knowledge of the hardware description language VHDL
- synthesizable subset of VHDL
- design rules for synthesizable VHDL
- complete design flow from specification to hardware realization |
<p>| | The contents are imparted using a small example project. This project has to be completed by the students by the end of the semester. |
| Literatur: | Documents covering software and VHDL are provided. |
| Grundlage für: | n.a. |</p>
<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen:</th>
<th>Projekt “Design of Integrated Circuits”, 5 SWS (P) ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>Präsenzzeit: 15 h</td>
</tr>
<tr>
<td></td>
<td>Selbstdstudium: 10 h</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 95 h</td>
</tr>
<tr>
<td></td>
<td>Gruppenarbeit: 60 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 180 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Certificate after fulfillment of the following criteria: Participation in all compulsory exercises, successful completion of all given tasks.</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td>none</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>n.a.</td>
</tr>
</tbody>
</table>
1.100 Project - Dialogue Systems

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870435</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>8 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>6</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Semester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Dr. Wolfgang Minker</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Dr. Wolfgang Minker</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Elektrotechnik, M.Sc., Wahlmodul Allgemeine Elektrotechnik
- Informationssystemtechnik, M.Sc., Wahlmodul Communications Technology, M.Sc., Wahlpraktikum Communications Engineering
- Medieninformatik, M.Sc., Anwendungsfach Dialogsysteme

Voraussetzungen (inhaltlich):
Bachelor. No prerequisites from other lectures required. Some programming (C, C++) and operating systems (Unix/Linux) knowledge would be helpful. Due to the limited number of participants, preference is given to students having attended the lectures Automatic Recognition of Speech and Emotion, Natural Language Understanding and Dialogue Modelling, Benutzerschnittstellen or Dialogue Systems. Suitable for students from other university departments.

Lernziele:
The student should achieve an in-depth theoretical and practical knowledge of selected aspects in the domain of multimodal spoken natural language dialogue technology.

Inhalt:
Research in multimodal spoken language dialogue systems is performed on the basis of end-to-end systems including components for acoustic processing, speech signal analysis, recognition, spoken natural language understanding, dialogue processing and speech synthesis. In the framework of this component development several individual topics are proposed as practical studies. They may depend on the current development status of the prototype system demonstrator of the Dialogue Systems Group.

Literatur:

Grundlage für:
keine Angaben
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>Präsenzzeit: 192 h</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 48 h</td>
</tr>
<tr>
<td>Summe:</td>
<td>240 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Certificate after fulfillment of the following criteria: at least three meetings with the supervisor to discuss progress of work; final presentation (demo) and discussion; short description and illustration (max. 10 pages); submission of the final version (hard/software and documentation) of the project to the supervisor.</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td></td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>keine</td>
</tr>
</tbody>
</table>
1.101 Project - Radio Frequency Electronics

Kürzel / Nummer: 8804871563

Deutscher Titel: -

Leistungspunkte: 5 ECTS

Semesterwochenstunden: 3

Sprache: Englisch

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Hermann Schumacher
Dr.-Ing. Andreas Trasser

Dozenten: Prof. Dr.-Ing. Hermann Schumacher

Einordnung des Moduls in Studiengänge: Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Communications Technology, M.Sc., Wahlpraktikum

Voraussetzungen (inhaltlich): Radio Frequency Engineering; recommended additionally: High Frequency Microsystems or Monolithic Microwave ICs in High-Speed Systems

Lernziele:
- Analyse and understand specifications for radio frequency systems and subsystems
- Develop subsystem and circuit concepts in the radio frequency domain
- Understand cost and performance constraints
- Design a radio frequency circuit and construct a working prototype
- Understand and apply simple project management concepts

Inhalt: This project will realize a different radio frequency subsystem each year. The docents will describe a set of requirements, students will then set out to develop a system concept, research suitable off-the-shelf components, perform the complete design, and finally build and characterize a prototype. A written report describing design decisions, all data relevant to replicate the prototype, and characterization results will finalize the project. Docents will act as design consultants; additionally, short lectures will introduce important project management approaches such as Scrum, students will use simple project management techniques during the design and implementation phases.

Literatur:
- M. Hoffmann, Hochfrequenztechnik - ein systemtheoretischer Zugang (in German)
- Lecture notes for RF Engineering
- David Rutledge, The Electronics of Radio
- S. Prasad/H. Schumacher/A. Gopinath, High-Speed Electronics and Optoelectronics (Chapter 5)

Grundlage für: Master thesis with radio frequency electronics content

Lehrveranstaltungen und Lehrformen: Projekt “Radio Frequency Electronics”, Introductory lectures, 1 SWS (V) Projekt “Radio Frequency Electronics”, design consulting sessions; guided design exercises; guided characterization exercises, 2 SWS (P)

Abschätzung des Arbeitsaufwands: Präsenzzeit: 60 h
Vor- und Nachbereitung: 60 h
Selbststudium: 30 h

Summe: 150 h
<table>
<thead>
<tr>
<th>Leistungsnachweis und Prüfungen:</th>
<th>Continuous evaluation of progress during design consulting contact sessions; und Prüfungen written design report, oral presentation of individual work contributions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen (formal):</td>
<td></td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>ungraded course</td>
</tr>
</tbody>
</table>
1.102 Projekt - Entwurf integrierter Systeme

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870428</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>Project - Design of Integrated Circuits</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>5</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns, Prof. Dr.-Ing. Joachim Becker</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlpflichtmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlpflichtmodul Automatisierungs- und Energietechnik
- Informationssystemtechnik, M.Sc., Wahlpflichtmodul (Ing)
- Communications Technology, M.Sc., Wahlmodul

Voraussetzungen (inhaltlich):
- gute Programmierkenntnisse in einer Programmiersprache
- binäre Zahlensysteme, v.a. Zweierkomplement Zahlendarstellung (K2)
- Darstellung von Binärzahlen mit Ziffern vor und nach dem Binärpunkt in K2
- binäre Addition, binäre Subtraktion, binäre Multiplikation
- Pipelining
- Logik-Gatter (Transistorebene ist nicht erforderlich)
- Funktionsweise von Registern, Multiplexern
- Funktionsweise von Addierern, Komparatoren, Zählern
- grundlegende Kenntnisse von UNIX/Linux

Lernziele:

Inhalt:
- Grundlagen der Hardwarebeschreibungssprache VHDL
- Synthetisierbare Untermenge von VHDL
- Designregeln für synthetisierbaren VHDL-Code
- Design-Flow von der Spezifikation bis zur Hardwarerealisierung

Der Inhalt wird anhand eines kleinen praxisrelevanten Beispiels vermittelt. Dieses Beispiel wird in Zweiergruppen im Laufe des Semesters von den Studenten selbständig abgearbeitet.

Literatur:
Unterlagen zu den Programmen und VHDL werden gestellt

Grundlage für:
keine Angaben
<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen:</th>
<th>Projekt "Entwurf Integrierter Systeme", 5 SWS (P) ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>Präsenzzeit: 75 h</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 135 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 210 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Schein wird vergeben für: Teilnahme an Präsenzveranstaltungen, erfolgreiches Beenden aller Aufgabenstellungen.</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td>keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.103 Projekt Autonomes Fahrzeug

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804871092</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Informatik, M.Sc., Projekt
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Automatisierungs- und Energietechnik
- Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Mikroelektronik
- Informationssystemtechnik, M.Sc., Wahlpflichtmodul

Voraussetzungen (inhaltlich):
Kenntnisse der Regelungstechnik in Bildbereich und Zustandsraum, Grundlagen der Messtechnik, Programmierkenntnisse in eine Hochsprache bevorzugt C, C++

Lernziele:
- Realisierung eines größeren Projekts im Team, Projektplanung, Spezifikation, Terminmonitoring, technische Umsetzungsprozesse, Teamarbeit, Präsentation

Inhalt:
Im Rahmen des Projekts wird ein autonomes Modellfahrzeug entwickelt, dass in der Lage ist einen Kurs mit markierter Spur eigenständig abzufahren, Hindernisse zu erkennen und diesen auszuweichen sowie automatisch einzuparken.

Literatur:
keine Angaben

Grundlage für:
keine Angaben

Lehrveranstaltungen und Lehrformen:
Projekt "Autonomes Fahrzeug", 4 SWS (P)

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 60 h
- Vor- und Nachbereitung: 90 h
- Summe: 150 h

Leistungsnachweis und Prüfungen:
Als Leistungsnachweis gilt die regelmäßige Teilnahme an den Projektbesprechungen sowie der Nachweis der Funktion der jeweils im Team übernommenen Teilaufgaben inkl. Abschlusspräsentation.

Voraussetzungen (formal):
keine

Notenbildung:
keine; Ausgabe eines Leistungsnachweises bei erfolgreicher Teilnahme.

1.104 RF & Microwave Communication Systems

Kürzel / Nummer: 8822271724

Deutscher Titel: -

Leistungspunkte: 4 ECTS

Semesterwochenstunden: 3

Sprache: english

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: Prof. Dr. Michael Hoffmann

Dozenten: Prof. Dr. Michael Hoffmann
Prof. Dr.-Ing. Wolfgang Menzel

Voraussetzungen (inhaltlich): module "RF & Microwave Engineering"

Lernziele: After successful completion of this module, students should be able:

- to describe principles of radio communications and of propagation of radio waves,
- to apply methods of RF & Microwave engineering to design and metrologically verify systems used in radio communications.

Inhalt: This lecture introduces students into various aspects of radio communications. Wireless systems are decomposed into subsystems as transmitters, radio channels, and receivers. These systems are systematically analyzed and subdivided into further subsystems. The objective of this lecture is to mediate all necessary tools for successfully analyzing existing radio-communication systems, and for designing new ones. The lecture covers in particular system aspects of:

- signal generation
- frequency conversion
- modulation
- power amplification
- large signal behavior and intermodulation
- antennas
- propagation of radio waves
- power link budgets
- signal perturbations by noise
- fading
- receiver structures
- electromagnetic environmental friendliness
Literatur:
- Copies of lecture slides

Grundlage für:
This module is a prerequisite for the modules:
RF & Microwave communication systems,
lab RF Engineering

Lehrveranstaltungen und Lehrformen:
Vorlesung “RF & Microwave Communication Systems”, 2 SWS ()
Übung “RF & Microwave Communication Systems”, 1 SWS ()

Abschätzung des Arbeitsaufwands:
Präsenzzeit: 45 h
Vor- und Nachbereitung: 45 h
Selbststudium: 30 h
Summe: 120 h

Leistungsnachweis und Prüfungen:
The examination is normally a written examination

Voraussetzungen (formal):
Bachelor Degree in a subject closely related to or similar to Communications Engineering

Notenbildung:
Mark of examination

1.105 RF & Microwave Engineering

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8822271724</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>english</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr. Michael Hoffmann</td>
</tr>
</tbody>
</table>
| Dozenten: | Prof. Dr. Michael Hoffmann
Prof. Dr.-Ing. Wolfgang Menzel |
| Einordnung des Moduls in Studiengänge: | Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Communications Technology, M.Sc., Pflichtmodul |

Voraussetzungen (inhaltlich):

Lernziele:

After successful completion of this module, students should be able:

- to identify and to describe important properties of components used in RF & Microwave Engineering,
- to apply basic methods for analyzing and designing RF & Microwave circuits and systems

Inhalt:

This lecture introduces students into basic linear systems of RF & Microwave applications. Information and power is transported in these systems by means of electromagnetic waves. Consequently, the introduction of mathematical tools to describe waves on lines and their effects to components and systems is the main subject of this lecture. The module covers in particular the following subjects:

- current and voltage waves on (TEM-) lines, power waves,
- relations of these waves to field-waves, skin-effect,
- reflection of waves at line-terminations, Smith-chart,
- impedance transformation by lines and by other components,
- realistic components,
- description of linear time-invariant wave-N-ports by scattering parameters,
- signal flow-graphs,
- transfer functions, various definitions of power gain, linear distortions,
- filters, couplers, amplifiers,
- electronic noise,
- basics of antennas,
- introduction into problems of electromagnetic compatibility.
| Literatur: | - Copies of lecture slides
- Peter A. Rizzi, Microwave Engineering, Passive Circuits. Prentice Hall, Englewood Cliffs, New Jersey, 1988,
- T. S. Saad, Microwave Engineers' Handbook, Vol. I, II. Artech House, 1971,
- G. L. Matthaei, L. Young, E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, And Coupling Structures. Artech House, 1985,

| Grundlage für: | This module is a prerequisite for the modules: RF & Microwave communication systems, lab RF Engineering |

| Lehrveranstaltungen und Lehrformen: | Vorlesung "RF & Microwave Engineering", 3 SWS ()
Übung "RF & Microwave Engineering", 1 SWS () |

| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 60 h
Vor- und Nachbereitung: 60 h
Selbststudium: 60 h
Summe: 180 h |

| Leistungsnachweis und Prüfungen: | The examination is normally a written examination |

| Voraussetzungen (formal): | Bachelor Degree in a subject closely related to or similar to Communications Engineering |

| Notenbildung: | Mark of examination |
1.106 Radio Frequency Power Amplifier Design

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8834872075</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>4 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Hermann Schumacher Dr.-Ing. Christoph Bromberger</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr.-Ing. Christoph Bromberger</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlmodul Ingenieurwissenschaften
- Communications Technology, M.Sc., Wahlmodul
- Informationssystemtechnik, M.Sc., Wahlmodul

Voraussetzungen
- Experience using common RF CAD programs (e.g. ADS) desirable, but not a prerequisite

Lernziele:
- Understand and describe base station architectures and their requirements on power amplifier topologies
- Understand and describe nonlinear properties of semiconductor devices and their impact on power amplifier design
- Be able to design classical and advanced Doherty power amplifiers, starting from measurable quantities
- Be able to design wideband power amplifiers
- Implement and verify PA design using ADS/Momentum
- Describe and utilize fundamental power amplifier measurement techniques

Inhalt:

Literatur:
- Steven Cribbs, Power Amplifiers for wireless Communications

Grundlage für:
- Master thesis with radio frequency electronics content

Lehrveranstaltungen und Lehrformen:
- Projekt"Radio Frequency Electronics", Introductory lectures, 1 SWS (V) Projekt"Radio Frequency Electronics", design consulting sessions; guided design exercises; guided characterization exercises, 2 SWS (P)

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 39 h
- Selbststudium: 25 h
- Vor- und Nachbereitung: 26 h
- Selbststudium: 30 h
- Summe: 120 h

Leistungsnachweis und Prüfungen:

Voraussetzungen (formal):
Notenbildung: Homework (40 Prozent) and Exam (60 Prozent)
1.107 Renewable Energy Use and Distributed Energy Technologies

Kürzel / Nummer: 8804870412

Deutscher Titel: -

Leistungspunkte: 7 ECTS

Semesterwochenstunden: 5

Sprache: Englisch

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: Prof. Dr. Herbert Kabza

Dozenten: Prof. Dr. Herbert Kabza

Einordnung des Moduls in Studiengänge:
Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Elektrotechnik, M.Sc., Wahlpflichtmodul Automatisierungs- und Energietechnik

Voraussetzungen (inhaltlich):
BSc degree

Lernziele:
Students should be able to
- understand and explain the construction and functional mechanisms of hydro-, wind-, solar thermal- and photovoltaic power plants of different kinds and describe and explain their components
- perform simple calculations for the design, component parameters and operation of such power plants
- understand and explain the balance terms “cumulated energy input, energy gain ratio, energy pay-back time” and use them for approximative calculations
- distinguish the different kinds of potentials in the use of regenerative sources with different technologies and give approximative quantities for them
- reproduce approximative quantities of real use
- perform simple calculations in these fields
- describe and explain the reasons for limitations in the use of regenerative sources
- show the technical possibilities for long-distance energy imports from regenerative sources and point out the necessary effort and cost
- describe possible storage technologies together with their problems
- understand and describe structure and functional mechanisms in cogeneration and absorption cooling technologies as well as their advantages / disadvantages

Inhalt:
The course gives an overview on technologies using renewable sources and the concepts of distributed power technologies. At the center of the course is a comparison of various technologies to produce electricity or thermal energy for room heating and warm water production in terms of
- primary energy input
- energy pay-back time and energy gain ratio
- consumption of materials, resources and area
Inhalt (Fortsetzung):

- ecological impact
- economy and cost

To do so the physical fundamentals, the peculiarities and the degree of usage as well as the potential for use of the following technologies are discussed in detail:
- hydro power
- wind power
- photovoltaics
- low-temperature solar thermal power
- high-temperature thermal solar power for electricity generation and thermal processing

Further topics:
- the possibilities and implications of renewable energy imports over long distances like e.g. from North Africa to Europe
- the necessities for storage technologies and the problems associated
cogeneration concepts and absorption cooling

Literatur:

- Schaum’s Outline of Electric Machines & Electromechanics (Paperback) by Syed Nasar, McGraw-Hill
- Timothy J Maloney: Modern Industrial Electronics Prentice-Hall 2001
- Materials on ILIAS E-learning platform

Grundlage für:

keine Angaben

Lehrveranstaltungen und Lehrformen:

Vorlesung “Renewable Energy Use and Distributed Energy Technologies”, 3 SWS (V) ()
Übung “Renewable Energy Use and Distributed Energy Technologies”, 1 SWS (Ü) ()
Labor “Renewable Energy Use and Distributed Energy Technologies”, 1 SWS (P) ()

Abschätzung des Arbeitsaufwands:

Präsenzzeit: 82 h
Vor- und Nachbereitung: 73 h
Selbststudium: 55 h
Summe: 210 h

Leistungsnachweis und Prüfungen:

written examination; successfull participation in the labs is a prerequisite for admission

Voraussetzungen (formal):

Successfull participation in the labs is a prerequisite for admission to written examination.

Notenbildung:

exam result
1.108 Satellite Communications and Navigation

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870441</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>4 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Uwe-Carsten Fiebig</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Uwe-Carsten Fiebig</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Elektrotechnik, M.Sc., Wahlmodul Allgemeine Elektrotechnik
- Informationssystemtechnik, M.Sc., Wahlmodul
- Communications Technology, M.Sc., Technisches Wahlmodul

Voraussetzungen (inhaltlich):
- Einführung in die Nachrichtentechnik

Lernziele:
- Being able to understand SatCom and SatNav system aspects, being able to calculate link budgets

Inhalt:
- The lecture treats communication aspects of modern satellite communications systems and gives an introduction into satellite navigation.
- The topics are:
 - Introduction: History, development and potential of satellite communications
 - Satellite orbits: Kepler’s laws, earth-satellite geometry, types of orbits (GEO, MEO, LEO and others)
 - Launch, orbit installation, space, satellite communications payload
 - Modulation and multiple access for satellite communications, adjacent channel interference, intermodulation, handover, satellite diversity
 - Satellite channel: Frequency bands, atmospheric effects, fade margin design
 - Link budget calculations: Description of all parameters which are required to calculate the signal-to-noise ratio at the receiver; examples of link budgets
 - Mobile satellite communication systems: Iridium, Globalstar
 - Satellite navigation: Principle, navigation equation, error budget, GPS, Galileo

Literatur:
- G. Maral and M. Bousquet: Satellite Communications System, Wiley

Lehrveranstaltungen und Lehrformen:
- Vorlesung “Satellite Communications”, 2 SWS ()
- Übung “Satellite Communications”, 1 SWS ()
Abschätzung des Arbeitsaufwands:

<table>
<thead>
<tr>
<th>Präsenzzeit</th>
<th>36 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor- und Nachbereitung</td>
<td>36 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>48 h</td>
</tr>
</tbody>
</table>

Summe: 120 h

Leistungsnachweis und Prüfungen:

Attendance to lecture and exercises. In general the examination is a written exam with a duration of 90 minutes, otherwise oral exam.

Voraussetzungen (formal):

Notenbildung: Module mark is identical to exam mark.
1.109 Semiconductor Sensors

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870450</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>Halbleitersensoren</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Hermann Schumacher</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Dr. Alberto Pasquarelli</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>Halbleiterbauelemente</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>The students should become familiar with the several physical effects in semiconductors, which can be exploited for sensing physical quantities and convert them into electrical signals. Dimensioning calculations for examples of sensors will be practiced during the exercises.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Semiconductor-based detection methods for: - radiation (ionizing and non-ionizing) - magnetic fields - mechanical forces - temperature Basics on operational amplifiers Basics on MST (micro system technology) Basics on MEMS (micro electro-mechanical systems)</td>
</tr>
<tr>
<td>Grundlage für:</td>
<td>Master thesis in the area of semiconductor sensors.</td>
</tr>
<tr>
<td>Lehrveranstaltungen und Lehrformen:</td>
<td>Vorlesung "Semiconductor Sensors", 2 SWS (V) () Übung "Semiconductor Sensors", 1 SWS (Ü) ()</td>
</tr>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
<td>Präsenzzeit: 45 h Vor- und Nachbereitung: 105 h Summe: 150 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Usually written exam of 120 minutes duration, otherwise oral exam.</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td></td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Module mark is identical to exam mark.</td>
</tr>
</tbody>
</table>
1.110 Signale und Systeme

Kürzel / Nummer: 8204870381

Englischer Titel: -

Leistungspunkte: 8 ECTS

Semesterwochenstunden: 8

Sprache: Deutsch

Turnus / Dauer: jedes Wintersemester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Robert Fischer

Dozenten: Prof. Dr.-Ing. Martin Bossert
 Prof. Dr.-Ing. Robert Fischer

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, B.Sc., Pflichtmodul
- Informationssystemtechnik, B.Sc., Pflichtmodul
- Informatik, B.Sc., Anwendungsfach Elektrotechnik
- Informatik, M.Sc., Anwendungsfach Elektrotechnik
- Mathematik, B.Sc., Nebenfach, Elektrotechnik

Voraussetzungen (inhaltlich):
- Elektrotechnische:
 - Komplexe Wechselstromrechnung
 - Passive Bauelemente (L,R,C)
 - Knoten- und Maschenanalyse
- Mathematische:
 - Partialbruchzerlegung
 - Reihen und Folgen
 - Polynome
 - Residuensatz
 - Komplexe Zahlen
 - Konforme Abbildungen
 - Matrizen, Determinanten, Inversion
 - Differentialgleichungen
 - Kombinatorik

Lernziele:
- Erlernen von Methoden zur Analyse und Synthese von Signalen und Systemen im Zeit- und Frequenzbereich
- Grundlegender Umgang mit Transformationstabellen
- Charakterisierung anhand von Bodediagrammen und Ortskurven
- Beschreibung stochastischer Signale mit Hilfe charakteristischer Werte

Inhalt:
Inhalt (Fortsetzung):

- Diskrete Signale
- Diskrete LTI-Systeme (FIR, IIR)
- z-Transformation
- Stabilität, Pol-Nullstellendiagramme
- Distributionen (Dirac, Sprung, Signum, ...)
- Analoge Signale
- Laplace Transformation
- Fourier Transformation, Diskrete Fouriertransformation, Fourierreihen
- Hilberttransformation
- Zusammenhänge zwischen den Transformationen
- Abtasttheorem
- Kontinuierliche LTI-Systeme (FIR, IIR), Bode-Diagramm und Ortskurven
- Stabilität, Pol-Nullstellendiagramme und Hurwitzpolynome
- Zweipole (RLC-Netzwerke)
- Filter, ideale, Butterworth, Tschebyscheff
- Diskrete Wahrscheinlichkeitstheorie
- Kontinuierliche Wahrscheinlichkeitstheorie
- Stochastische Prozesse, Stationarität, Ergodizität
- LTI-Systeme mit stochastischer Erregung
- Gaussches Rauschen
- Einführung von Entscheidungs- und Schätztheorie, MMSE
- Vertiefung durch einzelne praktische Versuche
- Projektorientiertes Praktikum: Abtastung, Zentraler Grenzwertsatz und stochastische Prozesse, Systemidentifikation

Literatur:

- Frey T., Bossert M., Signal- und Systemtheorie, B.G. Teubner Verlag 2004
- Doetsch G., Anleitung zum praktischen Gebrauch der Laplace- und der z-Transformation, Oldenbourg, München, 1981

Grundlage für:

Nachrichtentechnik, Signalverarbeitung, Regelungstechnik, Hochfrequenztechnik
<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen:</th>
<th>Vorlesung "Signale und Systeme", 3 SWS (V) ()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Übung "Signale und Systeme", 2 SWS (Ü) ()</td>
</tr>
<tr>
<td></td>
<td>Tutorium "Signale und Systeme", 2 SWS (T) ()</td>
</tr>
<tr>
<td></td>
<td>Labor "Signale und Systeme", 1 SWS (L) ()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abschätzung des Arbeitsaufwands:</th>
<th>Präsenzzeit: 120 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 70 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 50 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 240 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungsnachweis und Prüfungen:</th>
<th>in der Regel schriftliche Prüfung von 180 Minuten Dauer, ansonsten mündliche Prüfung</th>
</tr>
</thead>
</table>

| Voraussetzungen (formal): | Keine |

| Notenbildung: | Die Modulnote entspricht dem Ergebnis der Prüfung. |
1.111 Signalverarbeitung

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8204870398</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Albrecht Rothermel</td>
</tr>
</tbody>
</table>
| Dozenten: | Prof. Dr.-Ing. Albrecht Rothermel
Dr. Dietrich Fränken |

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, B.Sc., Wahlpflichtmodul
- Informationssystemtechnik, B.Sc., Wahlpflichtmodul
- Informatik, M.Sc., Anwendungsfach Elektrotechnik

Voraussetzungen (inhaltslich):
- Fourier- und Laplace-Transformationen - Basiswissen Z-Transformation - Algebra

Lernziele:
- Verständnis der Vor- und Nachteile verschiedener Strukturen.
- Synthese: Bestimmung der passenden Hardware-Struktur für eine gegebene Filter-Aufgabe.

Inhalt:
- Diskrete Fourier Reihe, DFT, FFT, "leakage"
- Hartley-, Hadamard-, Haar-, Cosine-, Hilbert-Transformationen
- z-Transformation, LTD Grundstrukturen
- "Forward-Euler", "Backward-Euler", Impuls-Invariante und Bilineare Transformationen.
- Linearphasige, Minimalphasige, FIR und IIR Filter.
- Strukturen: Grundstrukturen, Transponierung, Biquad, Kreuzglied.
- Interpolation, Dezimation, Abtastraten-Umsetzung, Polyphasen-Strukturen, einfache Filterbank.

Literatur:
- T. Bose: Digital Signal and Image Processing , John Wiley & Sons

Grundlage für:
keine Angaben

Lehrveranstaltungen und Lehrformen:
Vorlesung "Signalverarbeitung", 3 SWS (V) ()
Übung "Signalverarbeitung", 1 SWS (U) ()
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 60 h
| Vor- und Nachbereitung: 120 h
| Summe: 180 h |
| Voraussetzungen (formal): | keine |
| Notenbildung: | Anhand des Klausurergebnisses bzw. der mündlichen Prüfung |
1.112 Statistical Signal Processing

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804871176</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>4</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch oder Englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Robert Fischer</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Robert Fischer</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>Module “Einführung in die Nachrichtentechnik und Nachrichtentechnik” und “Signale und Systeme”</td>
</tr>
<tr>
<td>Lernziele:</td>
<td>The students will be provided with the background on probability and statistical signal processing with applications to communications</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>This class is a compressed course covering the following subjects:</td>
</tr>
<tr>
<td></td>
<td>- Probability for Electrical Engineering and Computer Science Review of basic probability and random variables; Axioms, basic laws, conditional probability, Bayes rule, independence; probability mass function, cumulative distribution function, probability density; function, joint, marginal and conditional distributions; mean, variance, covariance, correlation; Markov and Chebyshev inequalities; mean-square error estimation; hypothesis testing; Random vectors; Covariance matrix, Gaussian random vectors; laws of large numbers</td>
</tr>
<tr>
<td></td>
<td>- Random processes</td>
</tr>
<tr>
<td></td>
<td>Discrete and continuous random processes, Wiener, Karhunen-Loeve, Neyman-Pearson; IID, Gauss-Markov, random walk; stationarity, autocorrelation function; power spectral density, White noise, bandlimited processes</td>
</tr>
<tr>
<td></td>
<td>- Detection and Estimation Theory</td>
</tr>
<tr>
<td></td>
<td>Sufficient Statistics, Cramer-Rao Bound, Stein’s lemma, parameter estimation and Fisher-Information; hypothesis test; relative entropy; mutual information and MMSE; Filtering Noise</td>
</tr>
</tbody>
</table>
Literatur:

Grundlage für:
keine Angaben

Lehrveranstaltungen und Lehrformen:
- Vorlesung “Statistical Signal Processing”, 3 SWS (V) ()
- Übung “Statistical Signal Processing”, 1 SWS (Ü) ()

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 56 h
- Vor- und Nachbereitung: 66 h
- Selbstdstudium: 58 h
- Summe: 180 h

Leistungsnachweis und Prüfungen:
Usually oral exam, otherwise written exam of 120 minutes duration

Voraussetzungen (formal):

Notenbildung:
Module mark is identical to exam mark

1.113 Stochastik I (Statistik)

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8210570009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td></td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>9 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>6</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Semester / 2 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr. Volker Schmidt</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Alle Dozenten der Stochastik</td>
</tr>
<tr>
<td>Einordnung des Moduls in Studiengänge:</td>
<td>Informatik, M.Sc., Anwendungsfach Mathematik</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>Analysis I, II; Lineare Algebra I</td>
</tr>
</tbody>
</table>
| Inhalt: | - Parametrische Modelle und Grundlagen
- Methoden zur (Punkt-) Schätzung von Parametern
- Güteeigenschaften von Schätzern
- Konfidenzbereiche
- Testen statistischer Hypothesen
- Regressions- und Varianzanalyse |
- G. Casella, R.L. Berger, Statistical Inference, Duxbury
- U. Krengel, Einführung in die Wahrscheinlichkeitstheorie und Statistik, Vieweg |
| Lehrveranstaltungen und Lehrformen: | Vorlesung Stochastik I, 4 SWS ()
Übung Stochastik I, 2 SWS () |
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 90 h
Vor- und Nachbereitung: 180 h
Summe: 270 h |
| Leistungsnachweis und Prüfungen: | Erreichen von 50 Prozent der Punkte in den Übungsaufgaben als Zulasassungsvoraussetzung zur Klausur; Klausur am Ende des Semesters Notenbildung |
| Voraussetzungen (formal): | Keine |
| Notenbildung: | Ergebnis der Modulprüfung |

1.114 Stochastik I (Stochastische Prozesse)

Kürzel / Nummer: 8210570040

Englischer Titel:

Leistungspunkte: 9 ECTS

Semesterwochenstunden: 6

Sprache: Deutsch

Turnus / Dauer: jedes Semester / 2 Semester

Modulverantwortlicher: Prof. Dr. Volker Schmidt

Dozenten: Alle Dozenten der Stochastik

Einordnung des Moduls in Studiengänge: Informatik, M.Sc., Anwendungsfach Mathematik

Voraussetzungen (inhaltlich): Analysis I, II; Lineare Algebra I, Elementare Wahrscheinlichkeitsrechnung und Statistik, Stochastik I

Lernziele: Stochastische Prozesse sind (abzählbare oder überabzählbare) Familien von Zufallsvariablen, die zeitliche Abläufe oder räumliche Strukturen beschreiben können. Die Studierenden sollen in diesem Modul grundlegende Klassen stochastischer Prozesse kennenlernen und dabei insbesondere mit analytischen, geometrischen und asymptotischen Eigenschaften dieser Modelle vertraut gemacht werden, die die Grundlage für statistische Methoden und Simulationsalgorithmen bilden.

Inhalt:
- Bedingte Erwartung und bedingte Wahrscheinlichkeit
- Zeitdiskrete Prozesse (Markow-Ketten, Martingale)
- Zeitkontinuierliche Prozesse (Poisson-Prozess, Brownsche Bewegung)
- Konfidenzbereiche
- Weitere Klassen stochastischer Prozesse; zum Beispiel Zeitreihen, Markow-Prozesse, Punktprozesse, zufällige Felder

Literatur:
- H. Bauer, Wahrscheinlichkeitsheorie, de Gruyter
- S. Resnick, Adventures in Stochastic Processes, Birkhäuser
- A.N. Shiryaev, Probability, Springer

Lehrveranstaltungen und Lehrformen: Vorlesung Stochastik II, 4 SWS ()
Übung Stochastik II, 2 SWS ()

Abschätzung des Arbeitsaufwands: Präsenzzeit: 90 h
Vor- und Nachbereitung: 180 h
Summe: 270 h

Leistungsnachweis und Prüfungen: Erreichen von 50 Prozent der Punkte in den Übungsaufgaben als Zulasassungsvoraussetzung zur Klausur; Klausur am Ende des Semesters Notenbildung

Voraussetzungen (formal): Keine

Notenbildung: Ergebnis der Modulprüfung
1.115 Systemtechnik

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8204870399</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>5</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Jian Xie</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Jian Xie</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, B.Sc., Wahlpflichtmodul
- Informationssystemtechnik, B.Sc., Wahlpflichtmodul
- Informatik, M.Sc., Anwendungsfach Elektrotechnik

Voraussetzungen (inhaltlich):
- Berechnung von Gleichstrom- und Wechselstromkreisen
- Grundkenntnisse über elektronischen Bauelementen und Schaltungen

Lernziele:
Der Hörer ist fähig:
- Grundbegriffe der Systemtechnik wie System, Systemgrenze, Untersystem usw. zu nennen und zu beschreiben
- Denksätze der Systemtechnik wie Systemmodelle und verschiedene Betrachtungsweisen der ST darzustellen und anzuwenden
- verschiedene Vorgehensmodelle der Systemtechnik wie vom Groben zum Detail, Variantenbildung, Phasengliederung, Lösungszyklus und ihre Zusammenhänge zu beschreiben und anzuwenden
- Alternative Vorgehensmodelle wie Wertanalyse, Konstruktionsmethodik nach VDI, die 6-Stufen-Methode, Versionskonzept usw. zu nennen und zu beschreiben
- Betrachtungsweise, Technik und Vorgehensschritte für Situationsanalyse, Zielformulierung, Synthese-Analyse Bewertung und Entscheidung zu beschreiben und anzuwenden
- Aufgaben und Inhalt verschiedener Projektphasen zu nennen und zu beschreiben
- Projektorganisationen zu classifizieren, vergleichen, analysieren und einzusetzen
- Einsatzgebiete verschiedener Projektorganisationen darzustellen
- Gremien und Instanzen eines Projekts zu nennen und zu beschreiben
- Funktionen verschiedener Projektgruppen zu nennen und zu beschreiben
- Anforderungen und Aufgaben eines Projektleiters zu nennen und zu beschreiben
- Hilfsmitteln wie Organigramme, Netzpläne, Ressourcepläne, Fortschrittspläne anzuwenden
Inhalt:
- Ziel der Vorlesung Systemtechnik (ST) ist es, die wichtigsten Denkweisen, Methoden, Verfahren und Hilfsmittel vorzustellen.
- In der ersten Häfte der Vorlesung wird die ST-Philosophie mit Grundbegriffen der ST, Systemdenken und Anwendung des Systemdenkens behandelt.
- Dann werden die Vorgehensmodelle der ST wie Top Down, Variantenbildung, Phasengliederung, Problemlösungszyklus besprochen.
- Anschließend wird Systemgestaltung mit den Verfahren wie Situationsanalyse, Zielformulierung, Synthese-Analyse, Bewertung und Entscheidung diskutiert.
- Schließlich wird das Projektmanager mit den Schwerpunkten wie Projektphasen, Projektorganisationen, Methoden und Hilfsmitteln behandelt.
- In der zweiten Hälfte der Vorlesung wird eine Übung in Gruppen mit bis zu 10 Teilnehmern durchgeführt. Jede Gruppe bekommt die Aufgabe, ein Entwicklungsprojekt zu beginnen.

Literatur:
- Haberfellner/Nagel: Systems Engineering, Verlag Industrielle Organisation Zürich

Grundlage für: keine Angaben

Lehrveranstaltungen und Lehrformen:
- Vorlesung “Systemtechnik”, 2 SWS ()
- Übung “Systemtechnik”, 3 SWS ()

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 75 h
- Vor- und Nachbereitung: 75 h
- Selbststudium: 30 h
- Summe: 180 h

Leistungsnachweis und Prüfungen:

Voraussetzungen (formal):

Notenbildung:
- Die Modulnote entspricht dem Ergebnis der Prüfung.
1.116 Systemtheorie

Kürzel / Nummer: 8804870411

Englischer Titel: -

Leistungspunkte: 7 ECTS

Semesterwochenstunden: 5

Sprache: Deutsch

Turnus / Dauer: jedes Wintersemester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Knut Graichen

Dozenten: Prof. Dr.-Ing. Knut Graichen

Einordnung des Moduls in Studiengänge:
Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Elektrotechnik, M.Sc., Wahlpflichtmodul Allgemeine Elektrotechnik
Elektrotechnik, M.Sc., Pflichtmodul Kommunikations- und Systemtechnik
Elektrotechnik, M.Sc., Pflichtmodul Automatisierungs- und Energietechnik
Informationssystemtechnik, M.Sc., Pflichtmodul

Voraussetzungen (inhaltlich):
- Inhalte der Vorlesung Signale und Systeme (Bachelor)
- Inhalte der Vorlesung Einführung in die Regelungstechnik (Bachelor)
- Lineare Algebra

Lernziele:
- Kenntnis der Methoden zur Beschreibung und Analyse linearer zeitkontinuierlicher Systeme im Zustandsraum
- Fähigkeit, derartige Systeme zu analysieren sowie geeignete Zustandsregler für derartige Systeme mit gewünschtem Stör- bzw. Führungsverhalten zu entwerfen
- Fähigkeit zum Entwurf von Zustandsbeobachtern
- Fähigkeit zum Entwurf von linearen Folgeregelungen

Inhalt:
- Beschreibung linearer zeitkontinuierlicher Systeme im Zustandsraum
- Allgemeine Lösung der Zustandsdifferentialgleichung
- Strukturelle Eigenschaften linearer zeitkontinuierlicher Systeme im Zustandsraum: Stabilität, Steuerbarkeit und Beobachtbarkeit
- Normalformen und Zustandstransformationen
- Generation hochfrequenter Datenimpulsfolgen durch Laserdioden
- Entwurf statischer und dynamischer Vorsteuerungen
- Zustandsreglersynthese für Ein- und Mehrgrößensysteme: Polvorgabe, Ein/Ausgangsentkopplung, Riccati-Regler (LQR)
 - Beobachterentwurf
 - Separationsprinzip
 - Störmodelle und Entwurf von Störbeobachtern
 - lineare asymptotische Folgeregelung durch Ein-/Ausgangsentkopplung
 - Zwei-Freiheitsgrade-Regelung mit linearer flachheitsbasiert der Vorsteuerung
Literatur:
- Unbehauen, H.: Regelungstechnik II. 8 Auflage, Vieweg-Verlag, Braunschweig, 2000
- Föllinger, O.: Regelungstechnik. Hüthig-Verlag, Heidelberg, 1992
- Freund, E.: Regelungssysteme im Zustandsraum I. Oldenbourg-Verlag, München, 1987
- Freund, E.: Regelungssysteme im Zustandsraum II. Oldenbourg-Verlag, München, 1987

Grundlage für:
- Vorlesung Digitale Regelungen
- Vorlesung Nichtlineare Regelungen
- Praktikum Regelungstechnik

Lehrveranstaltungen und Lehrformen:
- Vorlesung “Systemtheorie”, 3 SWS (V) ()
- Übung “Systemtheorie”, 1 SWS (Ü) ()
- Tutorium “Systemtheorie” unter Nutzung von Matlab, 1 SWS (T) ()

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 70 h
- Vor- und Nachbereitung: 100 h
- Selbststudium: 40 h
- Summe: 210 h

Leistungsnachweis und Prüfungen:
- In der Regel 120 minütige Klausur, ansonsten mündliche Prüfung

Voraussetzungen (formal):
- Keine

Notenbildung:
- Anhand des Klausurergebnisses bzw. Ergebnisses der mündlichen Prüfung
1.117 Technical Presentation Skills for Engineers

<table>
<thead>
<tr>
<th>Kürzel / Nummer</th>
<th>8204871452</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>3 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden</td>
<td>2</td>
</tr>
<tr>
<td>Sprache</td>
<td>English</td>
</tr>
<tr>
<td>Turnus / Dauer</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher</td>
<td>Prof. Carl Krill, Ph.D.</td>
</tr>
<tr>
<td>Dozenten</td>
<td>Prof. Carl Krill, Ph.D.</td>
</tr>
<tr>
<td></td>
<td>Colleagues from the Faculty of Engineering and Computer Sciences</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, B.Sc., Additive Schlüsselqualifikation
- Informationssystemtechnik, B.Sc., Additive Schlüsselqualifikation

Voraussetzungen (inhaltlich):
- Working knowledge of English (comprehension and speaking), basic familiarity with presentation software (e.g. PowerPoint or Keynote), basic familiarity with operation of a personal computer (for installation and use of a LaTeX editor and compiler)

Lernziele:
Successful participation in the course should enable students to improve their skills in delivering presentations on technical subjects in oral and written form. The core competencies that will be strengthened include:

(i) proper consideration of the following factors when preparing a presentation:
- the target audience
- the message to be delivered
- the media that will be employed
- one’s personal presentation habits

(ii) appropriate structuring of presentations and reports to incorporate and reflect:
- a succinct, yet intelligible, explanation of the motivation for the project
- implicit acknowledgement of the intrinsic difference between results and their discussion
- a comprehensive discussion of results in light of the project motivation

(iii) responding to questions raised by the audience in an objective and dispassionate manner

(iv) increased familiarity with the English vocabulary of exposition and its appropriate use in a technical context

The document markup and preparation software LaTeX is taught to impart a working knowledge of this state-of-the-art system for typesetting technical documents, particularly those having mathematical content.
Inhalt:

I. Presentation skills:
- Fundamentals of good technical presentations
- Four steps to success
- Oral presentations:
 - general structure
 - mechanics of visual communication
 - mechanics of public speaking
- Written presentations:
 - general types and structure
 - citation of sources
 - Bachelor’s thesis

II. LaTeX:
- Introduction and installation
- Basics
- Typesetting text
- Typesetting math
- Document structures
- Typesetting scientific documents:
 - floating elements
 - cross-referencing
 - literature citation

Literatur:

Lehrveranstaltungen und Lehrformen:

Vorlesung “Technical Presentation Skills for Engineers”, 1 SWS (Krill)
Übung “Technical Presentation Skills for Engineers”, 0.5 SWS (Krill)
Seminar “Technical Presentation Skills for Engineers”, 0.5 SWS

Abschätzung des Arbeitsaufwands:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>30 h</td>
</tr>
<tr>
<td>Vor- und Nachbereitung</td>
<td>60 h</td>
</tr>
<tr>
<td>Summe</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Leistungsnachweis und Prüfungen:

Each student is required to prepare and give an oral presentation 10 min in length on a technical subject; the language of the presentation is English. A passing grade in the course requires earning at least 60 of the 75 possible points by completing exercises (30 points), preparing and giving a seminar talk (30 points) and attending seminars given by other students (15 points). No examination.

Voraussetzungen (formal):

- The course is graded pass/fail.
1.118 Technical Presentation Skills

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8822271730</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutscher Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>2 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>2</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Hermann Schumacher</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Hermann Schumacher</td>
</tr>
<tr>
<td>Einordnung des Moduls in Studiengänge:</td>
<td>Communications Technology, M.Sc., Nichttechnisches Wahlmodul</td>
</tr>
<tr>
<td>Voraussetzungen (inhaltlich):</td>
<td>Grundkenntnisse im Umgang mit Präsentationssoftware Technische Grundkenntnisse 3. Studienjahr oder höher</td>
</tr>
</tbody>
</table>
| Lernziele: | The course enables students to deliver more effective oral and written technical communications by considering
- the target audience
- the message to be delivered
- the media to use and
- their personal presentation behaviour. |
| Inhalt: | - Presentation quality criteria
- Researching a subject
- Structuring oral presentations
- Visual aids preparation
- Multimedia techniques
- Public speaking
- Handling questions and critique
- Written presentations:
 1. Research reports
 2. Journal articles
 3. Theses
- Presenting technical matters on the web
- Seminar trial presentations |
| Literatur: | keine Angaben |
| Grundlage für: | Lehrveranstaltungen und Lehrformen: Vorlesung “Technical Presentation Skills”, 1 SWS ()
Seminar “Technical Presentation Skills”, 1 SWS () |
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 30 h
Vor- und Nachbereitung: 30 h
Summe: 60 h |
Leistungsnachweis und Prüfungen: Teilnahme an den Vorlesungen und Übungen, Öffentlicher Seminarvortrag (ca. 20-30 Minuten)

Voraussetzungen (formal):

<table>
<thead>
<tr>
<th>Notenbildung:</th>
<th>keine</th>
</tr>
</thead>
</table>

1.119 Technische Mechanik

Kürzel / Nummer: 8204870400

Englischer Titel: Mechanics of Materials

Leistungspunkte: 4 ECTS

Semesterwochenstunden: 3

Sprache: deutsch

Turnus / Dauer: jedes Wintersemester / 1 Semester

Modulverantwortlicher: Prof. Carl Krill, Ph.D.

Dozenten: Prof. Carl Krill, Ph.D.
Dr. Kai Brühne

Einordnung des Moduls in Studiengänge: Elektrotechnik, B.Sc., Wahlpflichtmodul

Voraussetzungen (inhaltlich): Trigonometrie, eindimensionale Integral- und Differenzialrechnung, lineare Differenzialgleichungen

Inhalt:

Einführung und Grundbegriffe
Innere Kräfte und Momente
Elastostatik
– Spannung
– Verzerrung
– allgemeine Hooksche Gesetze
Biegung
– Flächenträgheitsmoment
– Berechnung der Biegelinie
Torsion
Zusammengesetzte Beanspruchung
– Hauptachsen und Hauptspannungen
– Mohrscher Spannungskreis
– überlagerte Grundbelastungen
Knickung
Versagenshypothesen und Vergleichsspannungen
<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- B. Assmann: Technische Mechanik, Band 1: Statik, 15. Auflage, Oldenbourg, München, 1999 (s. Lehrbuchsammlung der Universitätsbibliothek)</td>
</tr>
<tr>
<td>- R. C. Hibbeler: Technische Mechanik 1: Statik, 10. Auflage, Pearson Studium, München, 2005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen und Lehrformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung “Technische Mechanik”, 2 SWS (Krill)</td>
</tr>
<tr>
<td>Übung “Technische Mechanik”, 1 SWS (Brühne)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abschätzung des Arbeitsaufwands:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 45 h</td>
</tr>
<tr>
<td>Vor- und Nachbereitung: 75 h</td>
</tr>
<tr>
<td>Summe: 120 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungsnachweis und Prüfungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>In der Regel Klausur von 120 min Dauer, sonst mündliche Prüfung.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen (formal):</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notenbildung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergebnis der Klausur bzw. der mündlichen Prüfung</td>
</tr>
</tbody>
</table>
1.120 Technology for Micro- and Nanostructures

Kürzel / Nummer: 8804870458

Deutscher Titel: -

Leistungspunkte: 4 ECTS

Semesterwochenstunden: 3

Sprache: English

Turnus / Dauer: jedes Wintersemester / 1 Semester

Modulverantwortlicher: Prof. Dr. Peter Unger

Dozenten: Prof. Dr. Peter Unger

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Communications Technology, M.Sc., Pflichtmodul Mikroelektronik

Voraussetzungen (inhaltlich):
- Bachelor
- Vordiplom

Lernziele:
This course on the Technology for Micro- and Nanostructures provides an advanced understanding of the technology for fabricating structures with micron- and nanometer-scale dimensions.

Inhalt:
At the beginning of the course, the basic technological processes for lithography and pattern transfer techniques are discussed. As applications of these technologies, fabrication processes are presented like CMOS and III-V technology, micromechanics, magnetic thin-film heads, flat-panel displays, micro optics, x-ray optics and quantum-effect electronic devices.

The lectures are accompanied by exercises, where important original publications will be discussed and hands-on experiments in the clean room will be performed.

Main Topics:
- Resists
- Optical Lithography
- Electron-Beam Lithography
- X-Ray Lithography
- Wet-Chemical and Dry Etching Techniques
- Film Deposition Processes
- Micromechanics
- Thin-Film Technology
- Nanometer Structures Technology
<table>
<thead>
<tr>
<th>Grundlage für:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltungen und Lehrformen:</td>
</tr>
<tr>
<td>Vorlesung “Technology for Micro- and Nanostructures”, 2 SWS (V) ()</td>
</tr>
<tr>
<td>Übung “Technology for Micro- and Nanostructures”, 1 SWS (Ü) ()</td>
</tr>
<tr>
<td>Abschätzung des Arbeitsaufwands:</td>
</tr>
<tr>
<td>Vor- und Nachbereitung: 45 h</td>
</tr>
<tr>
<td>Präsenzzeit: 75 h</td>
</tr>
<tr>
<td>Summe: 120 h</td>
</tr>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
</tr>
<tr>
<td>Written examination with a duration of 120 minutes, otherwise oral examination.</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
</tr>
<tr>
<td>none</td>
</tr>
<tr>
<td>Notenbildung:</td>
</tr>
<tr>
<td>Module grade is identical with examination result.</td>
</tr>
</tbody>
</table>
1.121 Theory of Digital Networks

Kürzel / Nummer: 8804870429

Deutscher Titel: -

Leistungspunkte: 8 ECTS

Semesterwochenstunden: 6

Sprache: Englisch

Turnus / Dauer: jedes Sommersemester / 1 Semester

Modulverantwortlicher: Prof. Dr.-Ing. Martin Bossert

Dozenten: Prof. Dr.-Ing. Martin Bossert

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Informationstechnik, M.Sc., Pflichtmodul Communications Engineering
- Communications Technology, M.Sc., Pflichtmodul Communications Engineering

Voraussetzungen (inhaltslich): Bachelor

Lernziele:
Understanding and applying mathematical tools for the analysis of functions and protocols, used in digital networks. Understanding of the fundamental theory in order to be able to conceive the majority of protocols in communication systems which are not explicitly treated in this modul.

Inhalt:
The lecture describes and analyzes the basic functions of protocols and explains the most important algorithms and methods, which are used in communication systems. The exercises complement the lecture by applying the theoretic knowledge to special problems. Contents of the lecture:
- Concepts and definitions of digital communication networks
- Data transmission from point-to-point
- Synchronization aspects
- Multi-access protocols
- ALOHA protocols (slotted, unslotted) and collision resolving strategies
- Carrier-Sensing (with and without collision detection)
- Techniques for reliable data transmission (ARQ- and hybrid-ARQ techniques)
- Routing algorithms, flow in graphs, shortest path routing
- Markov-chains
- Queuing theory
- Lossless and lossy queuing systems
- Project orientated lab: ARQ, Markov chains, simulation of queuing systems

Literatur:
- Bossert, M., Breitbach, M., Digitale Netze, Teubner Verlag, 1999
- Bertsekas, D., Gallager, R., Data Networks, Prentice Hall, 1992
- Tanenbaum, A., Computer Networks, Pearson, 2011

Grundlage für: keine Angaben

Lehrveranstaltungen und Lehrformen:
- Vorlesung "Theory of Digital Networks", 3 SWS (V)
- Übung "Theory of Digital Networks", 2 SWS (Ü)
- Projekt "Theory of Digital Networks", 1 SWS (P)
| Abschätzung des Arbeitsaufwands: | Präsenzzeit: 90 h
Vor- und Nachbereitung: 80 h
Selbststudium: 70 h
Summe: 240 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsnachweis und Prüfungen:</td>
<td>Usually written exam of 120 minutes duration, otherwise oral exam.</td>
</tr>
<tr>
<td>Voraussetzungen (formal):</td>
<td>keine</td>
</tr>
<tr>
<td>Notenbildung:</td>
<td>Module mark is identical to exam mark.</td>
</tr>
</tbody>
</table>
1.122 Videotechnologie

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870430</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>4 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Albrecht Rothermel</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Prof. Dr.-Ing. Albrecht Rothermel</td>
</tr>
</tbody>
</table>

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Komunikations- und Systemtechnik
- Elektrotechnik, M.Sc., Wahlmodul Automatisierungs- und Energietechnik
- Informationssystemtechnik, M.Sc., Wahlpflichtmodul (Ing)

Voraussetzungen (inhaltlich):
Signalverarbeitung (Abtastung, DFT, DCT, Filter-Design)

Lernziele:

Inhalt:
- Geschichte der Videosignalverarbeitung
- Abtastung in mehreren Dimensionen
- Halbbildverfahren
- Definitionen zu Lichtstärke und -intensität
- Farbmetriken
- Menschliche Farbwahrnehmung
- Kamera Technologie: CCD und CMOS
- Display-technologie: LCD, Plasma, DMD
- Digitale Video-Signalverarbeitung: Taktsysteme, Contouring, Rauschverhalten von Videosignalen, optimale Tiefpassfilter für Videosignale
- Beispiele: Digitale PLL, Notch-Filter
- Progressive und 100 Hz Umwandlung
- Entropie-, prädiktive-, transformation- und hybrid Codierung
Literatur:
- Digitale Videotechnik, Ulrich Schmidt, Franzis-Verlag, Feldkirch, ISBN 3-7723-5322-3

Grundlage für: Master-Arbeit

Lehrveranstaltungen und Lehrformen:
- Vorlesung "Videotechnologie", 2 SWS (V) ()
- Übung "Videotechnologie", 1 SWS (Ü) ()

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 42 h
- Vor- und Nachbereitung: 78 h
- Summe: 120 h

Leistungsnachweis und Prüfungen:
- Teilnahme an Vorlesungen und Übungen, in der Regel mündliche Prüfung, ansonsten schriftliche Prüfung von 120 minütiger Dauer.

Voraussetzungen (formal):
- Keine

Notenbildung:
- Anhand des Ergebnisses der mündlichen Prüfung bzw. des Klausurergebnisses

Basierend auf Rev. 797. Letzte Änderung am 11.02.2013 um 10:06 durch smoser.
1.123 Werkstoffe der Elektrotechnik

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8804870419</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>7 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>6</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Wintersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr. rer. nat. H.-J. Fecht</td>
</tr>
</tbody>
</table>
| Dozenten: | Prof. Dr. rer. nat. H.-J. Fecht
Dr. Kai Brühne |

Einordnung des Moduls in Studiengänge:
- Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
- Elektrotechnik, M.Sc., Wahlpflichtmodul Mikroelektronik
- Elektrotechnik, M.Sc., Wahlpflichtmodul Automatisierungs- und Energietechnik

Voraussetzungen (inhaltlich):
- Kenntnisse und Kompetenzen der Module:
 - Grundlagen der Elektrotechnik I, II
 - Mathematik I – III (insbesondere Matrizen, Vektoranalyse)
 - Analogle Schaltungen (insbesondere Vierpolparameter)

Lernziele:
Das Verständnis der Grundlagen, welche die Struktur und Eigenschaften der in der Elektrotechnik, Sensorik und Informationstechnik eingesetzten Werkstoffe bestimmen, sowie deren Optimierung für ihre Anwendungen in der Mikroelektronik bis hin zur Nanotechnologie.

Inhalt:
Hier soll ein Überblick über die fachlichen Inhalte gegeben werden. Das grundlegende Verständnis der Herstellung und Struktur von Werkstoffen und die zielgerichtete Optimierung der Eigenschaften und Anwendungen, die Voraussetzung für eine Verbesserung der Einsatzfähigkeit und Zuverlässigkeit von Bauelementen und Devices, vor allem im Hinblick auf eine zunehmende Miniaturisierung sind.

Einführend wird der Festkörper beschrieben. Behandelt werden die Bindungsarten und der Aufbau der Werkstoffe sowie das Modell freier Elektronen im Festkörper und das Bändermodell für Elektronen und Phononen.

Eingebunden in eine allgemeinere Darstellung zur Kontrolle der Mikro- und Nanostruktur, der Phasenstabilität (Phasendiagramme) und Grenzflächenstabilität bei Phasenumwandlungen werden im folgenden die verschiedenen relevanten Eigenschaften beschrieben.

Die elektrischen Eigenschaften des Festkörpers werden diskutiert. Hierzu werden die Gleichstromleitfähigkeit, die Wechselstromleitfähigkeit, thermoelektrische Effekte und Supraleitung erörtert.

Inhalt (Fortsetzung): Weiterhin diskutiert werden die physikalischen Grundlagen und die Anwendung des Magnetismus (Magnetismus im festen Zustand, Dia-, Para, Ferromagnetismus, Anti-Ferromagnetismus.

Die spezifische Wärme, thermische Ausdehnung und thermische Leitfähigkeit gehören zu den thermischen Eigenschaften des Festkörpers, die im folgenden Kapitel besprochen werden.

Anschließend beschäftigt sich die Vorlesung mit der Anwendung der Werkstoffe, besonders im Bereich der Mikroelektronik. Zukünftige und innovative Werkstoffanwendungen (Sensorik, Akustik, Nanotechnologie) bilden den Abschluss.

Beschreibung des Festkörpers:
- Bindungsarten und Aufbau der Werkstoffe
- Atomare Struktur und Defekte
- Modell freier Elektronen im Festkörper
- Bändermodell für Elektronen und Phononen

Elektrische Eigenschaften:
- Gleichstromleitfähigkeit
- Wechselstromleitfähigkeit
- Thermoelektrische Effekte
- Supraleitung

Optische Eigenschaften:
- Optische Konstanten und Metalloptik
- Glasoptik
- Kristalloptik

Magnetische Eigenschaften:
- Physikalische Grundlagen
- Freie Atome und Elektronengas
- Magnetismus im festen Zustand
- Ferromagnetismus
- Antiferromagnetismus usw.

Thermische Eigenschaften:
- Spezifische Wärme
- Thermische Ausdehnung
- Thermische Leitfähigkeit

Materietransport:
- Diffusionsgesetze
- Atomare Mechanismen der Diffusion
- Diffusion in Legierungen
- Elektro- und Thermotransport
- Diffusion in keramischen Stoffen
- Anwendungen (Phasenübergänge, Grenzflächenstabilität)

Anwendungen:
- Dünne Schichten und Mikroelektronik
- Bauelemente und Devices in der Sensorik, Aktorik
- Ausblick in die Problematik der Nanotechnologie

252
Literatur:
- Einführung in die Festkörperphysik, C. Kittel, Oldenbourg 1989
- Werkstoffe für die Elektrotechnik: Mikrophysik, Struktur, Eigenschaften - G. Fasching, Springer 2005
- Metal Based Thin Films for Electronics, K. Wetzig, C.M. Schneider, VCH-Wiley 2003
- Physik der Nanostrukuren, Forschungszentrum Jülich, 1998
- Supraleitung, W. Buckel und R. Kleiner, VCH-Wiley 2004

Grundlage für: keine Angaben

Lehrveranstaltungen und Lehrformen:
- Vorlesung "Werkstoffe der Elektrotechnik", 3 SWS ()
- Übung "Werkstoffe der Elektrotechnik", 1 SWS ()
- Labor "Werkstoffe der Elektrotechnik", 1 SWS ()

Abschätzung des Arbeitsaufwands:
- Präsenzzeit: 68 h
- Vor- und Nachbereitung: 92 h
- Selbststudium: 50 h
- Summe: 210 h

Leistungsnachweis und Prüfungen:
- Mündliche Prüfung zum Abschluss

Voraussetzungen (formal):
siehe § 17 der Allgemeine Bestimmungen zu Studien- und Prüfungsordnungen für das Bachelor- und Masterstudium an der Universität Ulm (Rahmenordnung) vom 20. Februar 2006

Notenbildung: siehe § 17 der Allgemeine Bestimmungen zu Studien- und Prüfungsordnungen für das Bachelor- und Masterstudium an der Universität Ulm (Rahmenordnung) vom 20. Februar 2006
1.124 Werkstoffe der Energietechnik

<table>
<thead>
<tr>
<th>Kürzel / Nummer:</th>
<th>8803271321</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischer Titel:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>3 ECTS</td>
</tr>
<tr>
<td>Semesterwochenstunden:</td>
<td>3</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Turnus / Dauer:</td>
<td>jedes Sommersemester / 1 Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Prof. Dr. rer. nat. H.-J. Fecht</td>
</tr>
</tbody>
</table>
| Dozenten: | Prof. Dr. rer. nat. H.-J. Fecht
Dr. Kai Brühne |
| Einordnung des Moduls in Studiengänge: | Elektrotechnik, M.Sc., Wahlpflichtmodul Ingenieurwissenschaften
Advanced Materials, M.Sc., Wahlpflichtmodul, |
| Voraussetzungen (inhaltlich): | Integral- und Differentialrechnung
Komplexe Zahlen
Vektorrechnung
Differentialgleichungen |
| Lernziele: | Das Verständnis der chemischen und thermodynamischen Grundlagen und der resultierenden physikalischen Eigenschaften neuer Materialien, welche die Struktur und Eigenschaften von Werkstoffen bestimmen, und deren Optimierung für die Anwendung in der Energietechnik (Energiewandlung und -speicherung, Sensorik) bis hin zur Nanotechnologie. |
| Inhalt: | Werkstoffe mit gezielt optimierten Eigenschaften haben eine Querschnittsfunktion und spielen eine entscheidende Rolle in der Technologie, und damit für den ökonomischen Fortschritt unter ökologischen Randbedingungen.

Während in der Vorlesung „Werkstoffe der Elektrotechnik“ im wesentlichen der isotherme Fall behandelt wurde, steht hier verstärkt das thermische Gleichgewicht im Vordergrund. Ausgehend von den strukturellen und thermodynamisch-chemischen Grundlagen werden daher Zustandsänderungen, Phasendiagramme, Phasenübergänge (erster und zweiter Art), sowie die Kinetik von solchen Phasenübergängen behandelt.

Die Stabilität eines Werkstoffes – sowohl mikrostrukturrell als auch in Bezug auf die Zuverlässigkeit eines Bauelementes - hängt weiterhin nicht allein von der Temperatur ab, sondern auch wesentlich von den temperaturgesteuerten Prozessen, wie z. B. Diffusion und Phasenumwandlungen, die mit der Zeit Eigenschaften, beispielsweise Festigkeit, Leitfähigkeit, etc., verändern. Die Mechanismen dieser Prozesse werden diskutiert und an Beispielen verdeutlicht. |

Die Vorlesungsschwerpunkte sind somit:
- Einleitung
- Kristallstrukturen
- Beugung am Kristall
- Energetik, Phononen
- Energetik, Elektronen
- Transporteigenschaften
- Materietransport und Diffusion
- Thermodynamik (reversible, irreversible Prozesse)
- Zustandsänderungen
- Phasendiagramme
- Phasenübergänge (strukturell, magnetisch, elektronisch ...)
- Kinetik und Keimbildung (Herstellung von Clustern und dünnen Schichten)
- Anwendungen in der Sensorik
- Anwendungen in der Energiespeicherung
- Ausblick in die Probleme der Nanotechnologie für die Energietechnik

Literatur:
- Physikalische Chemie, Atkins, VCH-Wiley 1988
- Werkstoffe der Energietechnik, DGM 1999
- H. Schaumburg, Sensoren, Teubner 1992
- Physik der Nanostrukturen, Forschungszentrum Jülich 1998

Grundlage für: keine Angaben

Lehrveranstaltungen und Lehrformen: Vorlesung "Werkstoffe der Energietechnik", 2 SWS ()
Labor "Werkstoffe der Energietechnik", 1 SWS ()

Abschätzung des Arbeitsaufwands: Präsenzzeit: 40 h
Vor- und Nachbereitung: 50 h
Summe: 90 h

Leistungsnachweis und Prüfungen: unbenoteter Leistungsnachweis

Voraussetzungen (formal):

Notenbildung: