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CHAPTER 1

Introduction

Consider the partial differential equation

∂u

∂t
(t, x) = ∆u(t, x) := div gradu(t, x) =

d∑
k=1

∂2u

∂x2
(t, x)

for t ≥ 0 and x ∈ Rd. It models the diffusion of heat or material in a medium – the so-called heat equation. This
equation can be explicitly solved: in fact, it is well-known that for all “reasonable” initial value u0 := u(0, ·)
(e.g., u0 ∈ L1(Rd) or else u0 ∈ C0(Rd) := {v : Rd → C : lim|x|→∞ v(x) = 0} will do)

u(t, x;u0) :=
1

(4πt)
d
2

∫
Rd
e−
‖x−y‖2

4t u0(y)dy, t > 0, x ∈ Rd,

yields a solution, i.e., a function that is once continuously diffeentiable with respect to the variable t and twice
continuously differentiable (and bounded) with respect to the variable x and that satisfies the heat equation
pointwise for all t > 0 (and has a limit for t → 0+ that coincides with the given initial value). Moreover, this
solution is unique, as can be easily seen (cf. [4, Thm. 2.3.10]). Finally, a direct computation shows that u depends
continuously on the initial data, i.e., for all t > 0 and x ∈ Rd

u(t, x; ·) : L1(Rd)→ L1(Rd)
is continuous along with

u(t, x; ·) : C0(Rd)→ C0(Rd).
In fact, the heat equation can be solved for nearly all initial data one may think of.

This is a radically smoothing property of a very special class of partial differential equations. It is more
natural to expect that in order for a partial differential equation to be solvable – hence, in particular, to admits
a solution that is suitably diffentiable – it is necessary that the initial data are just as smooth.

Example 1.1. The prototypical case is that of the (1-dimensional) transport equation

∂u

∂t
(t, x) =

∂u

∂x
(t, x)

for t > 0 and x ∈ (0, 1) with boundary condition

u(t, 0) = 0

for t > 0. Its solution is necessarily given by

u(t, x;u0) =

{
u0(t+ x), t+ x ≤ 1,
0, t+ x > 1.

Hence, one sees that the transport equation is satisfied pointwise by u if and only if u0 is differentiable.

However, even requiring that the initial value is as smooth as the solution should be is possibly not sufficient:
this happens even if one thinks of equations that look just as natural. Take for example the wave equation

∂2u

∂t2
(t, x) = ∆u(t, x)

5



6 CHAPTER 1. INTRODUCTION

or the Schrödinger equation

i
∂u

∂t
(t, x) = ∆u(t, x).

Let p ∈ (1,∞). Then, a classical result obtained by Littman in 1963 (resp., by Hörmander in 1960), generalised
by Hieber in 1991, show that one has a solution (by this we mean an Lp-function that is twice differentiable with
respect to x, at least in a weak sense) only if u0 ∈ Lp(Rd) is at least 2

(
(n − 1)|2−1 − p−1| + 1)-times (resp., at

least 2
(
n|2−1 − p−1|+ 1)-times) differentiable.

This shows that the choice of a right function space is fundamental to ensure existence and uniqueness
of solutions to a given problem. It is therefore useful to proceed to a reformulation of a general initial value
problem. Let us consider again the case of the heat equation. We are looking for solutions, i.e., for functions
u : R+ × Rd 3 (t, x) 7→ C that satisfy the above equation pointwise, including the initial and (possibly) the
boundary conditions. However, this can be rephrased in a different way if we introduce a vector-valued function
U(t) := u(t, ·). In other words, we are looking for a function Banach space, say X, and a differentiable function
U : R+ → X such that U(t) satisfies the differential equation pointwise: this means that U has to be continuously
differentiable with respect to t (its only variable), and smooth enough that it can be differentiated with respect
to x. The decisive point now is to look at the differential expression ∆ as an operator A that maps functions
from Rd to C into functions from Rd to C. We want to incorporate the boundary conditions in the domain
D(A) of A: hence, we are requiring U(t) to be in D(A) for all t. In other words, we have re-written the heat
equation as an abstract Cauchy problem, i.e., an ordinary differential equation with values in a (possibly infinite
dimensional) vector space with an initial condition of the form

(ACP)

{
U ′(t) = AU(t), t ≥ 0,
U(0) = U0 ∈ X.

Definition 1.2. A solution to (ACP ) is a function U ∈ C1(R+;X)∩C(R;D(A)) that satisfies (ACP ) pointwise.

This motivates the following definition, which has been introduced by Jacques Hadamard in 1898.

Definition 1.3. Let X be a Banach space and A a linear operator on X. We call (ACP ) well-posed if each of
the following conditions hold.

• For all U0 ∈ X there exists a solution to (ACP ).
• For all U0 ∈ X there is at most a solution to (ACP ).
• Let (U0n)n∈N be a sequence in X with associated solutions (Un)n∈N of the corresponding (ACP ). Let

additionally U0 ∈ X and U be the associated solution. If (U0n)n∈N converges to U0 in X, then (Un(t))n∈N
converges to U(t) in X for all t ≥ 0.

As a rule of thumb, all “natural” evolution equations are well-posed. However, this does not necessarily
mean that they can be written as abstract Cauchy problems in an obvious way.

Example 1.4. Consider the wave equation

∂2u

∂t2
(t, x) = ∆u(t, x)

for t ≥ 0 and x ∈ Rd. By an easy trick which is already common in the theory of ordinary differential equations,
this equations can be re-written as

U ′(t) =

(
0 I
∆ 0

)
U(t).

We will see that this first order reduction leads to a well-posed abstract Cauchy problem only if the space of
admissible initial conditions is suitably small.

Example 1.5. Sometimes, boundary conditions that are given by further differential equations are considered:
one usually terms them dynamic boundary conditions. In most cases, the right idea is to transform them in an
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abstract Cauchy problem in a product space (that may be particularly involved). For example, consider the heat
equation 

∂u
∂t (t, x) = ∆u(t, x), t ≥ 0, x ∈ Ω,
∂w
∂t (t, z) = −∂w∂n (t, z), t ≥ 0, z ∈ ∂Ω,
w(t, z) = u(t, z), t ≥ 0, z ∈ ∂Ω,

where − ∂
∂n denotes the outer normal derivative. This can be written as

U ′(t) =

(
∆ 0
− ∂
∂n 0

)
U(t),

where

U =

(
u

u|∂Ω

)
.

Observe that a relationship between the coordinates of U is intrinsic in the case of the wave equation (there, the
first coordinate is the time derivative of the second one) but has to be imposed in the case of the heat equation
with dynamic boundary conditions.

Example 1.6. Consider the delayed partial differential equation

∂u

∂t
(t, x) = ∆u(t, x) + u(t− 1, x)

for t ≥ 0 and x ∈ Rd. The variation of u at time t also depends on what has happened to u at time t− 1 (think
of a population model including pregnancy effects). Finding the right framework for such equations was an open
problem for a long time. Finally, it was understood that the above equation cannot be written as an (ACP ) on
a natural function space: indeed, a solution cannot be uniquely determined by a function in C0(Rd), but rather
needs specification of an initial condition in the following form:

u(s, x) = h(s, x),

for s ∈ [−1, 0] and x ∈ Rd. Then, this initial value problem can be written as

U ′(t) = AU(t)

on the Banach space X := C([−1, 0];C0(Rd), where Af = f ′ and the domain of A consists of those continuously
differentiable functions f : [−1, 0]→ C0(Rd) such that

• f(0) ∈ C0(Rd) s.t. ∆f(0) ∈ C0(Rd) and
• f ′(0) = ∆f(0) + f(−1).

Exercise 1.7. Consider the Volterra integro-differential equation

∂u

∂t
(t, x) = ∆u(t, x) +

∫ t

0

a(t− s)∆u(s)ds,

where a : R+ → R is a test function (i.e., a C∞-function with compact support). Show that this equation can be
formally written as an (ACP ) with X = L2(Rd)× L1(R+;L2(Rd)).

Remark 1.8. The notion of abstract Cauchy problem can be generalised in several directions. For example, one
may be interested in considering systems that are governed by physical laws that change in time or depend on the
solution itself, like the heat-like equations

∂u

∂t
(t, x) = div(a(t) gradu)(t, x) :=

d∑
k=1

∂2u

∂x2
(t, x),

or
∂u

∂t
(t, x) = div(b(gradu) gradu)(t, x),



8 CHAPTER 1. INTRODUCTION

for a : R+ → (0,∞) and b : Rd → (0,∞). In many applications there are good reasons to consider such equations,
which are called non-autonomous and non-linear, respectively. However, their analysis is much more delicate
and will not be considered in this course.

Once a partial differential equation has been transformed into a (vector-valued) linear ordinary differential
one, it may be tempting to apply known techniques that are already known from the theory of systems of
(scalar-valued) ordinary differential equations. In particulat, it is known that if a system of ordinary differential
equations can be written as (ACP ) for a certain m×m matrix A, then the solution is given via the exponential
of A, i.e.,

U(t) = etAU0, t ≥ 0,

where

etA =

∞∑
k=0

tkAk

k!
, t ≥ 0.

Computing explicitly the power of a matrix is seldom easy, but several numerical methods have been developed
to help in this task. Moreover, the exponential function is a power series, so that it directly yields approximated
solutions within a desired error range. A similar approach can be used when A is a bounded linear operator on
X.

Proposition 1.9. Let X be a Banach space and A a bounded linear operator on X. Then the solution U to
(ACP ) is given by

U(t) = etAU0, t ≥ 0,

where

(1.1) etA :=

∞∑
k=0

tkAk

k!
, t ≥ 0.

This series converges uniformly in X. Moreover, U(t) = etAU0 is a solution of (ACP ) also for negative t and
in fact for all t ∈ C.

Proof. It suffices to shows that the partial sums

Sm(t) :=

m∑
k=0

tkAk

k!
, t ∈ R.

of the series form a Cauchy sequence (with respect to the operator norm on X): in fact, if m ≥ n, then for all
t ∈ R

‖Sm(t)− Sn(t)‖ =

∥∥∥∥∥
m∑
k=n

tkAk

k!

∥∥∥∥∥ ≤
m∑
k=n

|t|k‖Ak‖
k!

≤
m∑
k=n

|t|k‖A‖k

k!
,

the Cauchy sequence associated to the partial sums of the series for the real number e|t|‖A‖. �

In certain cases, this result is indeed interesting.

Example 1.10. Let X be the Hilbert space of all functions over Zn, i.e., of all sequences with indices in Zn,

X := {x = (xv1...vn) : v1, . . . , vn ∈ Z}.

Each element v of the lattice is considered connected to all those further elements w such that |v − w| = 1. In
this case, we write v ∼ w. We want to model the following process: if a particle is in v, then it has probability
1

2n to reach any w ∼ v. Thus, our diffusion operator can is given by

A : x 7→
∑
v∼w

(xv − xw).
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Show that A is bounded on X. We can see this as a diffusion model on a lattice or, more generally, on a graph.
In this case, v are the nodes of the (infinite) graph and two nodes v, w are adjacent if and only if v ∼ w. What
happens if we delete edges of Zn, i.e., if we consider diffusion on a subgraph of Zn? Is the corresponding (ACP )
well-posed?

Unfortunately, in most cases the above Proposition will not help. The vast majority of interesting evolution
equations are partial differential equations, and in particular they are associated with unbounded operators
and (1.1) does in general not make sense. In fact, every time we take a further power of A, its domain becomes
smaller and smaller – in fact, it can tend to {0}, as we see next.

Exercise 1.11. Let X = L2(0, 1) and A : f 7→ f ′ with domain D(A) = {f ∈ H1(0, 1) : f(0) = 0}. Show that if
etAf converges for all t ∈ R, then f = 0.

Remark 1.12. The above exercise may look like the end of the story, but is not. In fact, the (ACP ) associated
with A on X as in Exercise 1.11 is well-posed, as we have seen in Example 1.1. Setting

U(t) := T (t)U0 =

{
U0(t+ ·), on (0, 1− t),
0, on (1− t, 1),

we obtain a family (T (t))t≥0 that enjoys most of the nice properties of the operator family defined in (1.1). In
particular, T (t) is a bounded linear operators for all t ≥ 0 and it satisfies a certain functional equation that is
typical of the exponential function. Most important, R+ 3 t 7→ T (t)U0 ∈ L2(0, 1) is a mapping that solves the
(ACP ) associated with the operator considered in Exercise 1.11.

We are thus led to the following.

Definition 1.13. Let X be a Banach space. A family (T (t))t≥0 of bounded linear operators on X is called a
strongly-continuous semigroup or C0-semigroup if

(SEMIGR) T (t)T (s) = T (t+ s) for all t, s ≥ 0 and T (0) = Id,

and moreover if the orbit R+ 3 t 7→ T (t)x ∈ X is continuous for all x ∈ X.

Example 1.14. Let X be a Banach space and let (T (t))t≥0 be a C0-semigroup on X. Let λ ∈ C. Then the
family

T̃ (t) := eλtT (t), t ≥ 0,

defines a C0-semigroup on X. In fact, (SEMIGR) is satisfied owing to the elementary properties of the ex-
ponential function, while strong continuity holds since the product of two convergent functions converges to the
product of the two limits. Moreover, it is straightforward to check that A− λ is the generator of (T̃ (t))t≥0.

While the first two conditions in Definition 1.13 are somehow natural, since we want to reproduce the
behaviour of the exponential function, one may be surprised of the weakness of the third condition. If A is a
bounded linear operator, then it follows directly from the proof of Proposition 1.9 that the mapping t 7→ etA is
continuous with respect to the operator norm (we say the semigroup is norm continuous). The following shows
that the converse is also true.

Proposition 1.15. Let X be a Banach space and (T (t))t≥0 be a norm continuous C0-semigroup. Then there
exists a bounded linear operator A on X such that T (t) = etA for all t ≥ 0. Moreover, in this case (T (t))t≥0

extends by continuity to a family (T (t))t∈C that also satisfies the first fwo conditions of Definition 1.13.

Proof. Set

V (t) :=

∫ t

0

T (s)ds, t ≥ 0.
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Now, due to norm continuity these Bochner integrals converge in operator norm, hence define a family of
bounded linear operators (V (t))t≥0. Due to the fundamental theorem of (vector-valued) calculus, the mapping
R+ 3 t 7→ V (t) ∈ L(X) is continuously differentiable and there holds

d

dt
V (t) = T (t), t ≥ 0.

In particular,
d

dt
V (0) = T (0) = Id, t ≥ 0.

Since d
dtV (0) = limt→0+

1
tV (t), this shows that each 1

tV (t) and hence each V (t) is invertible, for t small enough.
Now, take h > 0 small enough that V (h) is indeed invertible. Then

T (t) = V (h)−1V (h)T (t)

= V (h)−1

∫ h

0

T (s)T (t)ds

= V (h)−1

∫ h

0

T (s+ t)ds

= V (h)−1

∫ t+h

t

T (s)ds

= V (h)−1 (V (t+ h)− V (t)) .

Now, t 7→ T (t) is a composition of differentiable functions, hence differentiable itself. More precisely,

d

dt
T (t) = lim

t0→0+

T (t+ t0)− T (t)

t0

= lim
t0→0+

T (t0)− Id

t0
T (t)

=
d

dt
T (0)T (t) =: AT (t)

holds for all t ≥ 0. Since A is the limit (in operator norm!) of the incremental quotient, it is bounded as well.
This concludes the proof. �

Definition 1.16. Let X be a Banach space. A family (T (t))t≥0 of bounded linear operators on X is called a
strongly-continuous group or C0-group if

(GR) T (t)T (s) = T (t+ s) for all t, s ∈ R and T (0) = Id,

and moreover if R+ 3 t 7→ T (t)x ∈ X is continuous for all x ∈ X.

In particular, each operator T (t) of a C0-group is invertible with inverse T (−t). In fact, C0-groups are very
special objects. They often have very good properties, as the following shows.

Definition 1.17. Let X be a Banach space and (T (t))t≥0 a C0-semigroup on X. The generator of (T (t))t≥0 is
the (possibly unbounded) linear operator on X defined by

D(A) :=

{
x ∈ X : lim

t→0+

T (t)x− x
t

exists

}
,

Ax := lim
t→0+

T (t)x− x
t

.

We also say that A generates (T (t))t≥0.
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Exercise 1.18. Let H be a Hilbert space and A be the generator of a C0-semigroup (T (t))t≥0 on H. Define the
adjoint semigroup as the operator family (S(t))t≥0 such that

S(t) := T (t)∗, t ≥ 0.

Show that the adjoint semigroup is a C0-semigroup on H whose generator is A∗.

Exercise 1.19. Show that the generator of the C0-semigroup introduced in Remark 1.12 is the operator introduced
in Example 1.11.

The reason why generators are important is that, just like in the finite dimensional case, the associated
semigroup yields always the solution of an abstract Cauchy problem.

Theorem 1.20. Let X be a Banach space and (T (t))t≥0 be a C0-semigroup on X. Denote by A its generator.
Then the following assertions hold.

(1) There exist constants ω ∈ R and M ≥ 1 such that

‖T (t)‖L(X) ≤Meωt for all t ≥ 0.

In particular, for all t0 > 0 there exists M ≥ 1 such that

‖T (t)‖L(X) ≤M for all t ∈ [0, t0].

(2) If x ∈ D(A), then T (t)x ∈ D(A) for all t ≥ 0 and moreover R+ 3 t 7→ T (t)x ∈ X is continuously
differentiable with

d

dt
T (t)x = T (t)Ax = AT (t)x for all t ≥ 0.

In particular, t 7→ T (t)x is the solution of the abstract Cauchy problem associated with A with initial data x.
(3) If x ∈ X, then for all t ≥ 0 ∫ t

0

T (s)xds ∈ D(A),

so that

T (t)x− x = A

∫ t

0

T (s)xds.

(4) If moreover x ∈ D(A), then for all t ≥ 0

T (t)x− x =

∫ t

0

T (s)Axds

(5) D(A) is dense in X.

Definition 1.21. Under the assumptions and with the notations of Theorem 1.20, the semigroup is called
uniformly bounded if ω = 0, and is called contractive if ω = 0 and additionally M = 1.

Proof. (1) Assume that there exists a sequence (tn)n∈N ⊂ [0,∞) such that limn→∞ tn = 0 but limn→∞ ‖T (tn)‖L(X) =
∞. If follows from the uniform boundedness priciple that also the numerical sequence (‖T (tn)x‖X)n∈N is un-
bounded, in spite of the fact that R+ 3 t 7→ T (t)x ∈ X is continuous at 0.

Hence, there exists M ≥ 1 such that ‖T (s)‖ ≤ M for all s ∈ [0, 1]. In order to prove the general estimate,
we perform a typical trick allowed by the semigroup law: we take t ≥ 0 and split it into its natural part n ∈ N
and its decimal part s ∈ [0, 1), t = s+ n. Then, we estimate via the submoltiplicativity of the norm

‖T (t)‖ = ‖T (s+n)‖ = ‖T (s)T (n)‖ ≤ ‖T (s)‖‖T (n)‖ = ‖T (s)‖‖T (1)n‖ ≤ ‖T (s)‖‖T (1)‖n ≤Mn+1 ≤Men logM ≤Metω,

for all t ≥ 0, where we have set ω := logM , since t ≥ n.
(2) Let x ∈ D(A) and t > 0. We want to show that T (t)x ∈ D(A). In fact,

lim
h→0+

T (h)T (t)x− T (t)x

h
= lim
h→0+

T (t)
T (h)x− x

h
= T (t) lim

h→0+

T (h)x− x
h

= T (t)Ax.
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In particular, this limit exists, which is all we need to show by definition of D(A). Moreover, there also holds

AT (t)x = lim
h→0+

T (h)T (t)x− T (t)x

h
= lim
h→0+

T (h)− Id

h
T (t)x = AT (t)x.

(3) Let x ∈ X and t > 0. Then,

lim
h→0+

T (h)− Id

h

∫ t

0

T (s)xds = lim
h→0

∫ t
0
T (s+ h)xds−

∫ t
0
T (s)xds

h

= lim
h→0+

∫ t+h
h

T (s)xds−
∫ t

0
T (s)xds

h

= lim
h→0+

∫ t+h
t

T (s)xds−
∫ h

0
T (s)xds

h

= lim
h→0+

T (t)
∫ h

0
T (s)xds

h
− lim
h→0

∫ h
0
T (s)xds

h

= T (t)x− x,

hence this limit exists and by definition ∫ t

0

T (s)xds ∈ D(A)

and moreover

A

∫ t

0

T (s)xds = T (t)x− x.

(4) Let x ∈ D(A) and t > 0. Set

fh(s) := T (s)
T (h)x− x

h
, s ∈ [0, t], h > 0,

and

f(s) := T (s)Ax, s ∈ [0, t].

Then each fh : [0, t]→ X is continuous and one has

lim
h→0+

fh = f inC([0, t];X),

since

‖f − fh‖∞ = max
s∈[0,t]

‖T (s)‖L(X)

∥∥∥∥AxT (h)x− x
h

∥∥∥∥
X

= 0,

by (1), and hence

lim
h→0+

T (h)− Id

h

∫ t

0

T (s)xds = lim
h→0+

∫ t

0

T (s)
T (h)x− x

h
ds =

∫ t

0

T (s)Axds.

(5) Let x ∈ X. Then

x = T (0)x = lim
t→0+

1

t

∫ t

0

T (s)xds

by the fundamental theorem of calculus. It follows from (2) that the RHS is the limit of a family of elements in
D(A). This yields the claim. �

Now, observe that to each C0-semigroup corresponds a unique generator, by definition. Moreover, the
generator is never trivial, by Theorem 1.20.(3) below). On the other hand, one can prove that to each generator
corresponds a unique C0-semigroup.
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Lemma 1.22. Let X be a Banach space and A be a linear operator on X. Then there is at most one continuously
differentiable mapping R+ 3 t 7→ T (t) ∈ L(X) (that is, with respect to the operator norm) such that

d

dt
T (t) = AT (t) for all t ≥ 0 and T (0) = Id .

If in particular A is a generator, than the mapping whose existence is stated above is just the generated
C0-semigroup.

Proof. Let (T (t))t≥0 and (S(t))t≥0 two such families and define for a given t ≥ 0

Q(s) := T (s)S(t− s), s ∈ [0, t].

Then Q(·) is continuously differentiable with

dQ

dt
(s) = AT (s)S(t− s) + T (s)(−A)S(t− s) = 0,

hence
T (t) = Q(t) = Q(0) = S(t).

This completes the proof. �

Exercise 1.23. Let (T (t))t≥0 be a C0-semigroup with generator A. A vector x ∈
⋂∞
k=1 is called entire for

(T (t))t≥0 if

etAx :=

∞∑
k=0

tk

k!
Akx

converges for all t ∈ R.

(1) Show that if a vector is entire for (T (t))t≥0, then T (t)x = etAx for all t ≥ 0.
(2) Let (T (t))t∈R be a C0-group on a Banach space X. For a given x ∈ X, set

xn(z) :=

√
n

2π

∫
R
e−

n(t−z)2
2 T (t)xdt, n ∈ N, z ∈ C.

Show that these integrals converge in X (strongly, i.e., for each given x), that each xn is an entire function
(i.e., it is holomorphic over C), that xn(0)→ x in X, and finally that xn(s) = T (s)xn for all n ∈ N and all
s ∈ R. Deduce that R 3 s 7→ T (s)xn ∈ X extends to an entire function.

(3) Conclude that if (T (t))t∈R is a C0-group, then the set of entire vectors is dense in X and T (t)x = etAx for
all t ∈ R and all entire vectors x.





CHAPTER 2

The Spectral Theorem

All in all, we have seen that checking the generator property of a linear operator A is a most efficient way
to discuss well-posedness of (ACP ). When is an operator a generator, then? A general, complete answer is
known (the Theorem of Hille–Yosida, see Chapter 3), but it yields a characterisation which is almost impossible
to check, in many situations. This is why we start with a special case – that of self-adjoint operators – which
is however sufficient in many relevant applications to evolution equations, ranging from the Schrödinger to the
heat equation, from the wave to the Dirac equation.

2.1. Adjoint operators

According to many theoretical physicists, the rule of thumb holds that an (ACP ) is “natural” (a notion that
is as elusive as that of “natural behaviour” of an animal or “natural ingredient” of a dish) if and only if A is
self-adjoint. We will see that for self-adjoint operators it is particularly easy to prove well-posedness of (ACP )
and, in some lucky cases, even give a semi-explicit formula for the solution.

Proposition 2.1. Let H1, H2 be Hilbert spaces and T be a bounded linear operator from H1 to H2. Then there
exists exactly one bounded linear operator T ∗ from H2 to H1 such that

(2.1) (Tx|y)H2
= (x|T ∗y)H1

for all x ∈ H1 and y ∈ H2.

holds. Moreover,

(2.2) ‖T‖ = ‖T ∗‖ and ‖T ∗T‖ = ‖T‖2 for all T ∈ L(H).

Proof. Let y ∈ H2. Then φy : H1 3 x 7→ (Tx|y)H2 ∈ K defines a bounded linear functional, since by
the Cauchy–Schwarz inequality |φy(x)| ≤ ‖T‖‖x‖H1

‖y‖H2
. Therefore, by the Representation Theorem of Riesz–

Fréchet there exists a vector T ∗y ∈ (H1)′ ∼= H1 such that (Tx|y)H2
= 〈φy, x〉 = (x|T ∗y)H1

. This defines an
operator T ∗ : H2 3 y 7→ T ∗y ∈ H1.

To check linearity of T ∗, take y1, y2 ∈ H2 and observe that for all x ∈ H1

(x|T ∗(y1 + y2)− T ∗y1 − T ∗y2)H1
= (x|T ∗(y1 + y2))H2

− (x|T ∗y1)H1
− (x|T ∗y2)H1

= (Tx|y1 + y2)H1
− (Tx|y1)H2

− (Tx|y2)H2
= 0.

Accordingly, T ∗(y1 + y2) − T ∗y1 − T ∗y2 belongs to H⊥ = {0} for all y1, y2. Similarly, take y ∈ H2 and λ ∈ K
and observe that for all x ∈ H1

(x|T ∗(λy)− λT ∗y)H1
= (x|T ∗(λy))H2

− (x|λT ∗y)H1

= (Tx|λy)H1 − λ(Tx|y) = 0,

i.e., T ∗(λy)− λT ∗y belongs to H⊥ = {0} for all y ∈ H2 and all λ ∈ K.
Boundedness of T ∗ follows by boundedness of T , since for all y ∈ H2

‖T ∗y‖H1 ≤ ‖φy‖ ≤ ‖T‖‖y‖H2 .

This shows that ‖T ∗‖ ≤ ‖T‖. Conversely, take x ∈ H1 with ‖x‖H1
≤ 1 and observe that

‖Tx‖2H2
= (Tx|Tx)H2 = (T ∗Tx|x)H1 ≤ ‖T ∗Tx‖H1‖x‖H1 ≤ ‖T ∗T‖ ≤ ‖T ∗‖‖T‖.

15
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Accordingly, ‖T‖2 ≤ ‖T ∗‖‖T‖ and in particular ‖T‖ ≤ ‖T ∗‖.
Finally, for all x ∈ H1 with ‖x‖H1

≤ 1 one sees as above that

‖T ∗Tx‖ ≥ |(T ∗Tx|x)| = (Tx|Tx) = ‖Tx‖2,
and accordingly

‖T‖2 ≤ ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖‖T‖ = ‖T‖2.
This completes the proof. �

Exercise 2.2. Let H1, H2 be Hilbert spaces and T be a bounded linear operator from H1 to H2. Show that
T ∗∗ = T .

Definition 2.3. Let H1, H2 be Hilbert spaces and T ∈ L(H1, H2). The unique operator T ∗ ∈ L(H2, H1) that
satisfies (2.1) is called the adjoint of T .

If H1 = H2 and T ∗ = T , then the operator T is called self-adjoint.

Example 2.4. For any continuous k : [0, 1]× [0, 1]→ R that is symmetric (i.e., such that k(x, y) = k(y, x) for
all x, y ∈ [0, 1]) the Fredholm operator Fk defined by

Fkf(x) :=

∫ 1

0

k(x, y)f(y)dy

is self-adjoint. More generally, for any continuous k : [0, 1]× [0, 1]→ C the adjoint of Fk is given by F ∗k = Fk∗ ,

where k∗ is defined by k∗(x, y) := k(y, x) a.e.

Example 2.5. If H = Cd and A ∈ L(H) = Md(C), then A∗ = AT , where AT denotes the transposed matrix of
A.

Example 2.6. The operator λ := λ Id is self-adjoint for all λ ∈ R. More generally, the adjoint of λ Id is λ Id
for all λ ∈ C.

Exercise 2.7. Let H be a Hilbert space and P ∈ L(H) be a projector, i.e., P 2 = P . Show that P is the
orthogonal projector of H onto some closed subspace if and only if P is self-adjoint. (By definition, P is an
orthogonal projector if and only if its null space and its range are orthogonal to each other).

Definition 2.8. A linear operator U on a Hilbert space H is called unitary if U is invertible and U−1 = U∗. It
is called involutory if U2 = Id. It is called normal if UU∗ = U∗U .

Lemma 2.9. Let H be a Hilbert space and A be a bounded linear operator on H. Then ‖Ax‖ = ‖A∗x‖ for all
x ∈ H if and only if A is normal.

Proof. One has

‖Ax‖2 = (Ax|Ax) = (A∗Ax|x)
!
= (AA∗x|x) = (A∗x|A∗x) = ‖A∗x‖2

if and only if A is normal. �

Exercise 2.10. (1) Show that a unitary operator is necessarily bounded and determine its norm.
(2) Show that if an operator possesses the any two of the properties of being unitary, involutory, self-adjoint,

then it possesses also the third.
(3) Show that if U is a normal operator, then so is U + λ for any λ ∈ C.
(4) Let H be a Hilbert space and E be a closed subspace of H. Show that if U is normal and leaves both E

and E⊥ invariant, then the adjoint of the restriction of U to E agrees with the restriction to E of the adjoint,
and in particular the restriction of U to E is normal.

Definition 2.11. Two linear operators A,B on a Hilbert space H are called unitarily equivalent if there exists
a unitary operator U such that A = U−1BU .
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It is apparent that unitary equivalence is an equivalence relation.
Beside the already discussed vector space structure, the set L(H) of all bounded linear operators on a Hilbert

space H has also other significant properties. In particular, since it is closed under composition of its elements it
qualifies as an algebra. We have seen that L(H) is even closed under a further operation, the so-called involution
A 7→ A∗. This leads us to introduce the following definition, first proposed by Israel Gelfand and Mark Neumark
in 1943.

Definition 2.12. A complex Banach algebra A is a complex algebra endowed with a submultiplicative mapping
‖ · ‖ : A → R, with respect to which A is a complete normed space and such that if A contains a unity I, then
‖I‖ = 1. A mapping ∗ : A 3 A 7→ A∗ ∈ A is called an involution if

A∗∗ = A, (AB)∗ = B∗A∗ and (λA+B)∗ = λA∗ +B∗ for all A,B ∈ A and all λ ∈ C.
A complex Banach algebra endowed with an involution ∗ is called a C∗-algebra if additionally ‖A∗A‖ = ‖A‖2
for all A ∈ A. (We have already shown that L(H) is a C∗-algebra for each Hilbert space H).

In particular, observe that all notions related to adjointness (and in particular those of self-adjoint, unitary
and normal operators) can be naturally defined for elements of a C∗-algebra as well.

Exercise 2.13. Let q : Ξ→ C be a bounded measurable function, where Ξ is a σ-finite measure space. Consider
the linear operator Mq defined by

Mqu := q · u, u ∈ L2(Ξ).

Show that the mapping F : B(R) 3 f 7→ f(Mq) ∈ L(L2(Ξ)) is a ∗-homomorphism, i.e., a mapping such that

F(f · g) = F(f)F(g) and F(f∗) = F(f)∗ for all f, g ∈ B(R).

Remark 2.14. One one hand, self-adjoint (bounded) operators have very special properties. On the other hand,
it is possible to extend to general bounded operators many results that are first proved for self-adjoint operators
by observing that each operator A can be written as

A = S1 + iS2,

where

S1 =
1

2
(A+A∗) and S2 =

1

2i
(A−A∗),

with both S1 and S2 self-adjoint. The operator iS2 is skew-adjoint, i.e., it is self-adjoint after multiplication by
i1. Skew-adjoint operators play an important rôle in the mathematical formulation of quantum mechanics and
will be encountered later in connection with Stone’s Theorem (Theorem 3.11).

As we have already seen, in most cases the partial differential equations we are interested in are not associated
with bounded operators. We therefore generalise the notion of self-adjoint operator as follows.

Definition 2.15. Let H1, H2 be Hilbert spaces and consider the (possibly unbounded) A : H1 ⊃ D(A)→ H2 and
B : H1 ⊃ D(B)→ H2. We say that B contains A and write

A ⊂ B,
if G(A) ⊂ G(B), i.e., if D(A) ⊂ D(B) and Ax = Bx for all x ∈ D(A). The operator B is called the closure of
A, and we write B = A, if it is closed, it contains A and moreover it is contained in any other linear operator
that contains A.

Definition 2.16. Let H be a Hilbert space and A a (possibly unbounded, but densely defined) linear operator on
H. Then the adjoint A∗ of A is the linear operator defined by

D(A∗) := {y ∈ H : ∃z ∈ H : (Ax|y) = (x|z) ∀x ∈ D(A)}
Ay := z.

1 Equivalently (why?), an operator A is skew-adjoint if A + A∗ = 0.
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The operator A is called symmetric if (Ax|y) = (x|Ay) for all x, y ∈ D(A), that is, if A ⊂ A∗, and self-adjoint
if A = A∗.

Exercise 2.17. Let H1, H2, H3 be Hilbert spaces and consider densely defined operartors T : H1 ⊃ D(T )→ H2,
S : H1 ⊃ D(S)→ H2, R : H2 ⊃ D(R)→ H3. Prove the following assertions.

(a) (λT )∗ = λT for all λ ∈ C.
(b) T ∗ + S∗ ⊂ (T + S)∗ if T + S is densely defined, with equality if T, S are bounded.
(c) T ∗R∗ ⊂ (RT )∗, with equality if T, S are bounded.
(d) S∗ ⊂ T ∗ if T ⊂ S.
(e) Ker(λ− T ∗)⊥ = Rg(λ− T ) for all λ ∈ C, provided that H1 = H2.

(f) Ker(T ∗) = (Rg T )⊥ and Rg(T ∗) = (KerT )⊥.

Exercise 2.18. Let H be a Hilbert space and A be an unbounded operator on H. Let B be a bounded self-
adjoint operator on H. Show that A with domain D(A) is self-adjoint if and only if A + B with domain D(A)
is self-adjoint.

Lemma 2.19. Let H1, H2 be Hilbert spaces and A be a bounded linear operator from H1 to H2. Then the
following assertions hold.

(a) A has closed range if and only if A∗ has closed range.
(b) A is an isomorphism if and only if there exists c > 0 such that

‖Ax‖ ≥ c‖x‖ and ‖A∗y‖ ≥ c‖y‖ for all x ∈ H1, y ∈ H2.

Proof. (a) If A∗ has closed range, then Rg(T ∗) = (KerT )⊥ and therefore Rg(T ∗) is an orthogonal subspace,
hence it is closed. Since A is bounded, A∗∗ = A and the same argument yields the converse implication.

(b) If A is an isomorphism, then it is a classical consequence of the open mapping theorem that the former
inequality holds. Furthermore, RgA = H2 �

Exercise 2.20. Let H be a Hilbert space and A a linear symmetric operator on H. Show that

‖(T − λ)x‖2 = ‖(T − Reλ)x‖2 + | Imλ|2‖x‖2

holds for all x ∈ D(A) and all λ ∈ C.

For bounded operators it is clear that symmetry is the same as self-adjointness. In general, however, this is
not true: it may happen that an operator is symmetric but it is “too small” to be self-adjoint, as in the case of
the Laplacian on L2(0, 1) whose domain agrees with the test functions on (0, 1). Let us consider another example
in more detail.

Exercise 2.21. Consider the operators A,B on L2(0, 1) defined by

Af := if ′, f ∈ D(A) = {u ∈ H1(0, 1) : u(0) = 0}
and

Bf := if ′, f ∈ D(B) = {u ∈ H1(0, 1) : u(0) = 0 = u(1)}.
(a) Show that A is self-adjoint.
(b) Show that B is closed and symmetric.
(c) Using the fact that if g ∈ L2(0, 1) is orthogonal to f ′ for all test functions f on (0, 1), then g is constant

a.e., prove that the adjoint of B has domain H1(0, 1). Hence, B is not self-adjoint.
(d) Find (further) self-adjoint operators between B and B∗.

Definition 2.22. Let X be a Banach space and A a (possibly unbounded) linear operator on X. Then A is
called closed if its graph G(A) := {(x,Ax) ∈ D(A)×X} is closed in X ×X, i.e., if

x ∈ D(A) and Ax = y
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whenever
lim
n→∞

xn = x and lim
n→∞

Axn = y

for a sequence (xn)n∈N ⊂ D(A). It is called densely defined if D(A) is dense in X.

Observe that if A is bounded (and in particular D(A) = X), then it is automatically closed. Conversely, if it
is closed and D(A) = X, then A is bounded – this is nothing but the statement of one of the many consequences
of the theorem of Banach–Steinhaus, which we recall next.

Theorem 2.23 (Closed Graph Theorem). Let X,Y be Banach spaces. Then a linear operator A : X → Y with
D(A) = X is bounded if and only if its graph G(A) = {(x,Ax) ∈ X × Y } is closed in X × Y .

Exercise 2.24. Prove the Hellinger–Toeplitz-Theorem:
Let H be a Hilbert space and A : H → H with D(A) = H be symmetric. Then A is bounded.

Exercise 2.25. Let X be a Banach space and A a (possibly unbounded) linear operator on X. Show that A is
closed if and only if the vector space D(A) is complete with respect to the so-called graph norm

‖x‖A := ‖x‖+ ‖Ax‖, x ∈ X.

Lemma 2.26. Let H be a Hilbert space and A a linear, densely defined operator on H. Then A∗ is closed. In
particular, each self-adjoint operator is closed.

Proof. Consider the operator matrix

U :=

(
0 Id
− Id 0

)
,

which is unitary on H ×H. For all x ∈ D(A) and y ∈ D(A∗) one has(
(y,A∗y)|U(x,Ax)

)
=
(

(y,A∗y)|(−Ax, x)
)

= −(y|Ax) + (A∗y, x) = 0,

by definition of A∗. This shows that G(A∗) ⊂ U(G(A))⊥, where G(A) denotes the graph of A. If conversely
(y, z) ∈ U(G(A))⊥, then for all x ∈ D(A) the vectors (y, z) and U(x,Ax) are orthogonal, hence

0 =
(

(y, z)|(−Ax, x)
)

= −(y|Ax) + (z|x),

and therefore (Ax|y) = (x|z), i.e., z = A∗y, (y, z) = (y,A∗y) ∈ G(A∗), and G(A∗) ⊃ U(G(A))⊥.
This concludes the proof, because U(G(A))⊥ is an orthogonal subspace, hence it is closed. �

Usually, checking symmetry of an operator is quite easy, but self-adjointness is much more delicate.

Theorem 2.27. Let H be a Hilbert space and A a linear symmetric operator on H. Then the following assertions
are equivalent.

(i) A is self-adjoint.
(ii) A is closed and both A∗ + i and A∗ − i are injective.

(iii) Both A+ i and A− i are surjective.

We first need to establish the following.

Lemma 2.28. Let H be a Hilbert space and A a linear symmetric operator on H. Then the following assertions
hold.

(a) If λ ∈ C \ R, then A− λ is injective.
(b) If A is closed and λ ∈ C \ R, then A− λ has closed range.
(c) If λ ∈ C \ R and µ ∈ C with µ ∈ BImλ(λ), then Ker(A∗ − µ) and Ker(A∗ − λ)⊥ have trivial intersection.
(d) If A is closed, then the spaces Ker(A∗ − λ) have the same dimension for all λ ∈ C with Imλ > 0, and they

have the same dimension for all λ ∈ C with Imλ < 0.



20 CHAPTER 2. THE SPECTRAL THEOREM

Proof. (a) It follow from Exercise 2.20 that

‖(A− λ)x‖ ≥ | Imλ|‖x‖ for all x ∈ D(A),

hence A− λ is injective.
(b) Let (yn)n∈N ⊂ Rg(A − λ), say yn := (A − λ)xn for some (xn)n∈N ⊂ D(A). Let y ∈ H such that

limn→∞ yn = y. Now, observe that for all n,m ∈ N it follows from (a) that

‖yn − ym‖ = ‖(A− λ)(xn − xm)‖ ≥ | Imλ|‖xn − xm‖,
hence (xn)n∈N is a Cauchy sequence because so is (yn)n∈N. It follows that limn→∞ xn = x for some x ∈ H. But
then closedness of A− λ implies that x ∈ D(A) and Ax− λx = y, i.e., y ∈ Rg(A− λ).

(c) Let x ∈ Ker(A∗ − µ) ∩ Ker(A∗ − λ)⊥, x 6= 0 – hence, we may normalise it. Since x ∈ Ker(A∗ − λ)⊥ =
Rg(A − λ) by Exercise 2.17.(e), there exists y ∈ D(A) with x = Ay − λy. Therefore, since A∗y − µy and
x = Ay − λy are orthogonal, it follows that

0 = (A∗x− µx|y) = (x|Ay − µy) = (x|Ay − λy + (λ− µ)y) = (x|(A− λ)∗(A− λ)x) + (x|(λ− µ)y).

Now, by (2.2) we obtain
0 = ‖x‖2 + (λ− µ)(x|y),

and therefore by the Cauchy–Schwarz inequality and (a)

1 = ‖x‖2 = (µ− λ)(x|y) ≤ |µ− λ|‖y‖ ≤ |µ− λ|
| Imλ|

‖Ay − λy‖ =
|µ− λ|
| Imλ|

‖x‖ < 1.

This contradiction completes the proof.
(d) It follows from (c) that for f λ ∈ C\R and µ ∈ C with µ ∈ BImλ(λ) the dimension of Ker(A∗−λ) is larger

than the dimension of Ker(A∗− µ) (why?). If in particular µ ∈ B 1
2 Imλ(λ), then we also have that λ ∈ BImµ(µ),

and accordingly the dimension of Ker(A∗ − λ) is smaller than the dimension of Ker(A∗ − µ), i.e., the dimension
of each Ker(A∗ − λ) is constant in a suitably small neighbourhood of λ ∈ C \ R. It follows that the dimension
of the spaces Ker(A∗ − λ) is constant in either connected component of C \ R. �

Proof of Theorem 2.27. (i)⇒(ii) Since A is self-adjoint, it is closed by Lemma 2.26 and moreover
Ker(A∗ ± i) = Ker(A± i) = {0} by Lemma 2.28.(a).

(ii)⇒(iii) Both A+i and A−i have closed range by Lemma 2.28.(b), and because Rg(A∗±i)⊥ = Ker(A∓i) =
{0} by Exercise 2.17.(e) and (ii), we deduce that Rg(A∗ ± i) = H.

(iii)⇒(i) Due to symmetry of A we know that A ⊂ A∗, hence it suffices to prove that D(A∗) ⊂ D(A). To this
aim, let y ∈ D(A∗). Due to surjectivity of A− i, there exists x ∈ D(A) ⊂ D(A∗) such that Ax− ix = A∗y − iy.
Since in particular y − x ∈ D(A∗), we see that (A∗ − i)(y − x) = 0. But by assumption Rg(A + i) = H, hence
Ker(A∗ − i) = Rg(A+ i)⊥ = H⊥ = {0}, hence x = y and therefore y ∈ D(A), i.e., D(A∗) ⊂ D(A). �

Exercise 2.29. Let Ξ be a σ-finite measure space and q : Ξ→ C a measurable function. Show that the associated
multiplication operator defined by

D(Mq) := {u ∈ L2(Ξ) : q · u ∈ L2(Ξ)},
Mqu := q · u,

is closed and densely defined in L2(Ξ). Moreover, show that the following assertions are equivalent.

(i) Mq is symmetric.
(ii) Mq is self-adjoint.

(iii) q is real-valued.

More generally, prove that for any measurable q : Ξ→ C the adjoint of Mq is given by M∗q = Mq, with maximal

domain as above, where q is defined by q(x) := q(x) a.e. Finally, show that it is a bounded operator if and only
if q ∈ L∞(Ξ) and in this case

‖Mq‖L(L2) = ‖q‖∞.
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2.2. Spectral theory for unbounded operators

Unlike in the case of bounded linear operators, an unbounded linear operator may be invertible but fail to
have an inverse that is bounded on H.

Definition 2.30. Let X be a Banach space and A a closed linear operator on X. The resolvent set ρ(A) is the
set of all λ ∈ C such that λ−A is invertible with inverse R(λ,A) bounded on X. Its complement σ(A) is called
spectrum of A and the resolvent of A at λ ∈ ρ(A) is the bounded linear operator R(λ,A).

Observe that if X is infinite dimensional, failure of λ−A to be invertible does not imply that the equation
λx = Ax has a nontrivial solution. This motivates the following.

Definition 2.31. Let X be a Banach space and A a closed linear operator on X. The point spectrum of A is
the set σp(A) of all λ ∈ C such that λ−A is not injective. Such λ are called eigenvalues of X.

The approximate point spectrum of A is the set σap(A) of all λ ∈ C such that λ − A is not injective or
Rg(λ−A) is not closed in X. Such λ are called approximate eigenvalues of X.

Exercise 2.32. Work out the details to prove the assertions of Example 2.29 and determine the spectrum of a
multiplication operator Mq. (Hint: Find out under which conditions the formal inverse 1

q of q is well-defined and

gives rise to a bounded operator.)

Exercise 2.33. Let X be a Banach space and A be a closed linear operator on X with nonempty resolvent set.
Let λ0 ∈ ρ(A). Show that

σ(R(λ0, A)) =

{
1

λ0 − λ
: λ ∈ σ(A)

}
.

Exercise 2.34. Consider a σ-finite measure space (Ξ, µ) and define the essential range of a measurable function
q : Ξ→ C by

qess(Ξ) := {z ∈ C : µ({x ∈ Ξ : |q(x)− z| < ε) 6= 0 for all ε > 0}.
Prove the following assertions concerning the multiplication operator Mq.

(1) Mq has bounded inverse if and only if 0 6∈ qess(Ξ), and in this case M−1
q = Mq−1 , where

q−1(x) :=

{ 1
q(x) if q(x) 6= 0,

0 if q(x) = 0.

(2) σ(Mq) = qess(Ξ).

Exercise 2.35. Let X be a Banach space and A a closed linear operator on X. Show that for each λ ∈ C the
following assertion are equivalent:

(i) λ ∈ σap(A).
(ii) There exists a sequence (xn)n∈N ⊂ D(A) such that ‖xn‖X = 1 for all n ∈ N and limn→∞ ‖λxn−Axn‖X = 0.

Exercise 2.36. Let H = `2(Z) and A(xn)n∈Z := (xn+1)n∈Z. Show that A has no eigenvalues but each λ with
|λ| = 1 is an approximate eigenvalue.

In the special case of bounded operators, all spectral notions and results can be formulated in a natural
way in the more general context of C∗-algebras with unity, since this already permits to define the notion of
invertibility. We neglect the obvious details.

Exercise 2.37. Let H be a Hilbert space and A a closed, symmetric operator on H. Define its Cayley transformed
C(A) by

C(A) := (A− i)(A+ i)−1 = (A− i)R(i,−A).

Show that C(A) is an isometry between Rg(A+ i) and Rg(A− i), and that moreover A is self-adjoint if and only
if C(A) is unitary. Conclude that every self-adjoint operator is the Cayley transformed of a uniquely determined
unitary operator.
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Proposition 2.38. Let A be a Banach algebra with unity I. Then the following assertions hold.

(1) If x ∈ A is such that ‖x‖ < 1, then Id−x is invertible and the Neumann series

(Id−x)−1 =

∞∑
n=0

xn

holds.
(2) The spectrum of each x ∈ A is a compact set contained in

{z ∈ C : |z| ≤ ‖x‖}.

Proof. (1) Due to submultiplicativity of the norm and by convergence of the geometric series (in R), one
sees that

(2.3)

∞∑
n=0

‖xn‖ ≤
∞∑
n=0

‖x‖n =
1

1− ‖x‖
.

Since A is a Banach space, each absolutely convergent series is also convergent. This implies convergence of∑m
n=0 x

n =: Sm towards
∑∞
n=0 x

n =: S ∈ A as m→∞. Hence,

Sm(Id−x) = Sm − Smx = Sm − x
m∑
n=0

xn = Sm −
m+1∑
n=1

xn = Sm − (Sm+1 − I) = Id−xm+1

and accordingly

S(Id−x) = lim
m→∞

Sm(Id−x) = Id− lim
m→∞

xm+1 = I,

since limm→∞ ‖xm+1‖ ≤ limm→∞ ‖x‖m+1 = 0 because ‖x‖ < 1. One proves likewise that (Id−x)S = I. We
conclude that (Id−x)−1 = S =

∑∞
n=0 x

n.
(2) In order to see the boundedness of σ(x), observe that for |λ| ≥ ‖x‖ one has

‖ Id−(Id−λ−1x)‖ < 1,

hence by (1) Id−λ−1x and therefore λ− x are invertible, i.e., λ ∈ ρ(x).
Closedness of the spectrum of an element of a C∗-algebra can be proved as in the case of an unbounded

operator, see Proposition below. �

Proposition 2.39. Let X be a Banach space and A a closed linear operator on X. Then σ(A) is a closed set.
In particular, for all µ ∈ ρ(A) and all λ sufficiently close to µ one has the power series expansion

(2.4) R(λ,A) =

∞∑
n=0

(µ− λ)nR(µ,A)n+1.

Moreover, R(·, A) is a holomorphic mapping ρ(A)→ L(X) with

dn

dλn
R(λ,A) = (−1)nn!R(λ,A)n+1, µ ∈ ρ(A).

Finally, the resolvent equation

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A), λ, µ ∈ ρ(A)

holds.

Proof. We prove that the resolvent set is open. To see this, take µ ∈ ρ(A) and observe that for all λ ∈ C
one has

λ−A = λ− µ+ µ−A = (Id +(λ− µ)R(µ,A))(µ−A),

whence

λ ∈ ρ(A) if and only if 1 ∈ ρ((µ− λ)R(µ,A)) :
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but by Proposition 2.38 this is the case if and only if ‖(µ−λ)R(µ,A)‖ < 1, i.e., if and only if ‖R(µ,A)‖−1 > |µ−λ|.
In other words, all λ in a small neighbourhood of µ belong to ρ(A), too.

The claimed expression for the power series expansion of the resolvent follows from the Neumann series
applied to

(λ−A)−1 = (µ−A)−1(Id +(λ− µ)R(µ,A))−1.

The same expression also shows that R(·, A) is complex analytic, the Taylor series being given by (2.4). It
follows in particular that the nth coefficient of the Taylor series

∞∑
n=0

(µ− λ)nR(µ,A)n+1 =

∞∑
n=0

R(µ,A)n+1(−1)n(λ− µ)n,

i.e.
1

n!

dn

dλn
R(·, A)(µ) = R(µ,A)n+1(−1)n.

Finally, in order to prove the resolvent equation observe that

λR(λ,A)−AR(λ,A) = Id,

hence (
λR(λ,A)−AR(λ,A)

)
R(µ,A) = R(µ,A),

and similarly

R(λ,A)
(
µR(µ,A)−AR(µ,A)

)
= R(λ,A),

whence

R(λ,A)−R(µ,A) = R(λ,A)
(
µR(µ,A)−AR(µ,A)

)
−
(
λR(λ,A)−AR(λ,A)

)
R(µ,A)

= µR(λ,A)R(µ,A)−AR(λ,A)R(µ,A)− λR(λ,A)R(µ,A) +AR(λ,A)R(µ,A)

= µR(λ,A)R(µ,A)− λR(λ,A)R(µ,A).

This concludes the proof. �

Exercise 2.40. Let X be a Banach space and B ∈ L(X). Show that for all λ ∈ ρ(A) one has

λ ∈ ρ(A+B) if and only if 1 ∈ ρ(R(λ,A)B) if and only if1 ∈ ρ(BR(λ,A)),

and in this case

R(λ,A+B) = R(1, R(λ,A)B)R(λ,A) = R(λ,A)R(1, BR(λ,A)).

Exercise 2.41. Let H be a Hilbert space and A a linear, closed, symmetric operator on H.
Show that then either the spectrum σ(A) of A is contained in R, or one of the following cases hold.

• σ(A) = C,
• σ(A) = {λ ∈ C : Imλ ≥ 0},
• σ(A) = {λ ∈ C : Imλ ≤ 0}.

Prove that furthermore σ(A) ⊂ R if and only if A is self-adjoint.
Conclude that any linear, closed, symmetric operator whose resolvent set is not disjoint from R is self-adjoint.

Exercise 2.42. Let H be a Hilbert space and A ∈ L(H) such that

|(Ax|x)H | ≥ α‖x‖2 for all x ∈ H
for some α > 0.

(1) Show that ‖Ax‖ ≥ α‖x‖ for all x ∈ H. (Hint: use the Cauchy–Schwarz inequality.)
(2) Show that A is injective and A(H) is closed.

(3) Show that A(H) = H. (Hint: Show that (A(H))⊥ = {0}.)
(4) Conclude that A is an isomorphism.
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Remark 2.43. Observe that the resolvent

(λ− x)−1 =
1

λ
(1− x

λ
)−1 =

∞∑
n=0

xn

λn+1

exists whenever |λ| > ‖x‖, and the general formula for the convergence radius of a power series yields

sup{|λ| ∈ C : λ ∈ σ(A)} = lim
n→∞

‖xn‖ 1
n .

Hence the spectral radius

r(A) := sup{|λ| ∈ R : λ ∈ σ(A)},
which can be defined for all closed operators A, is in fact finite and agrees with

lim
n→∞

‖xn‖ 1
n

for all bounded operators and, more generally, for all elements x of a C∗-algebra.

Exercise 2.44. Let X be a Banach space and A : X ⊃ D(A) → X be a closed operator. Let (λn)n∈N be a
convergent sequence with limn→∞ λn =: λ0. Show that λ0 ∈ σ(A) if and only if limn→∞ ‖R(λn, A)‖ =∞.

2.3. The Spectral Theorem for bounded self-adjoint operators

We are finally in the position to prove the first main result of this chapter.

Theorem 2.45 (Spectral Theorem for bounded self-adjoint operators). Let A be a bounded self-adjoint operator
on a separable Hilbert space H. Then A is unitarily equivalent to a (necessarily bounded) multiplication operator
Mq on L2(Ξ) for some finite measure space Ξ and some measurable function q : Ξ→ R.

This beautiful and natural formulation of the Spectral Theorem is one of the main legacies of Paul Halmos.
The more usual version, which is plagued by obscure notions and technical details both in its statement and its
proof (see e.g. the discussion in [11]), is more common in the mathematical literature and is still, 50 years after
Halmos’ article, the most popular one.

As pointed out in [5], the proof of the Spectral Theorem is elementary as soon as a few slightly more advanced
results are available. We assume that two of them (the Riesz representation theorem for linear functionals on
C(K;R), K a compact set, mapping positive-valued functions into positive numbers; and the Stone–Weierstraß
Theorem on approximation of continuous functions) are already known from a course in real analysis and only
recall the spectral mapping theorem along with the following.

Lemma 2.46. Let A be a C∗-algebra with unity I. Then the spectral radius of each x ∈ A agrees with its norm
whenever x is self-adjoint.

Observe in particular that this implies that the spectrum of a self-adjoint element of a C∗-algebra is always
non-empty.

Proof. We have already seen in Remark 2.43 that r(x) ≤ ‖x‖ for all x ∈ A. For x ∈ A self-adjoint
(x∗x)m = x∗mxm, and therefore

‖x‖2
n

= ‖x∗x‖2
n−1

= ‖(x∗x)2n−1

‖
by definition of C∗-algebra. Thus,

‖x‖2
n

= ‖(x∗)2n−1

x2n−1

‖ = ‖(x2n−1

)∗x2n−1

‖ = ‖x2n−1

‖2.

We conclude that

r(x) = lim
n→∞

‖x2n−1

‖2
1−n

= lim
n→∞

‖x‖2
n−121−n

= ‖x‖.

This concludes the proof. �
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Theorem 2.47 (Spectral mapping theorem, SMT). Let A be a Banach algebra with unity I. Let x ∈ A and let
π be a polynomial with complex coefficients. Then

σ(π(x)) = π(σ(x)) := {π(λ) ∈ C : λ ∈ σ(x)}.

Proof. Let us first show that σ(π(x)) ⊂ π(σ(x)). Take µ ∈ σ(π(x)) and because

π(z)− µ = α

n∏
i=1

(z − λi), z ∈ C,

for some α ∈ C (where n is the degree of π and λ1, . . . , λn its zeroes), one also has

π(x)− µ = α

n∏
i=1

(x− λi).

Hence, if all λi would belong to the resolvent set of x, then π(x) − µ would be invertible, a contradiction.
Accordingly, at least one λj has to belong to the spectrum of x, and then π(λj) − µ = 0, i.e., µ ∈ {π(λ) ∈ C :
λ ∈ σ(A)}.

Conversely, let λ ∈ σ(x) and take π(λ) ∈ C. Take a polynomial π̃ with complex coefficients such that the
polynomial π(·)−π(λ) agrees with π̃(·)(·−λ) – this is surely possible, since λ is a zero if π(·)−π(λ). Accordingly,

π(x)− π(λ) = π̃(x)(x− λ).

We want to show that π(λ) ∈ σ(π(x)). In fact, if π(x)− π(λ) would be invertible, then

Id =
(
π(x)− π(λ)

)−1

π̃(x)(x− λ) = (x− λ)
(
π(x)− π(λ)

)−1

π̃(x),

hence x− λ would be invertible, too – a contradiction. �

Definition 2.48. Let A be a self-adjoint operator on a Hilbert space H. An element x ∈ H is called a cyclic
vector for A if

{π(A)x ∈ H : π is a polynomial with complex coefficients}
is dense in H, i.e., if the space spanned by {Akx : k ∈ N} is dense in H.

Proof of the Spectral Theorem for bounded self-adjoint operators. The proof consists of two
parts: we first prove the assertion in the case that A is self-adjoint and H contains a cyclic vector for A, then
extend it to the case of a self-adjoint operator on a general Hilbert space.

(1) First of all, assume H to contain a cyclic vector x for A. Define a mapping L by setting

L(π) := (π(A)x|x), π polynomial with real coefficients,

and extending by density to a bounded linear functional L : C(σ(A))→ R (linearity of L is clear and boundedness
follows by observing that

|L(π)| = |(π(A)x|x)|
≤ ‖π(A)‖‖x‖2

= r(π(A))‖x‖2

= sup{|λ| ∈ R : λ ∈ σ(π(A))}‖x‖2

= sup{|π(λ)| ∈ R : λ ∈ σ(A)}‖x‖2,

where the last identity follows from the Spectral Mapping Theorem). Now we want to apply the Riesz Repre-
sentation Theorem: to this aim we still have to show positivity of L. In fact, positivity of L(π) is clear if π is
the square of a polynomial π̃ with real coefficients, since then π(A) = π̃(A)2 is self-adjoint and therefore

L(π) = (π̃(A)2x|x) = (π̃(A)x|π̃(A)x) = ‖π̃(A)x‖2.
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If instead f is a general positive-valued function, then we approximate its square root uniformly by a sequence
of polynomials (πn)n∈N with real coefficients (by the Stone–Weierstraß Theorem) and obtain that also

L(f) = limL(π2
n) ≥ 0.

We can finally apply the Riesz Representation Theorem and deduce that L is represented by a finite measure,
i.e., there exists a Borel measure µ on Ξ := σ(A) such that

L(f) =

∫
Ξ

fdµ.

We now introduce a new operator U : L2(Ξ)→ H, letting first

U : L2(Ξ) 3 π̃ 7→ π̃(A)x ∈ H
for all polynomials π̃ with complex coefficients and then extending by density. We can now use the fact that, by
self-adjointness of A, π̃(A), π̃(A)∗ and π̃(A)∗π̃(A) is a polynomial in A. Since

‖π̃‖22 =

∫
Ξ

π̃π̃dµ = L(π̃π̃) = (π̃(A)∗π̃(A)x|x) = (π̃(A)x|π̃(A)x) = ‖π̃(A)x‖2 = ‖Uπ̃‖2,

we see that U is an isometry when restricted to the dense subspace of polynomials with complex coefficients,
hence by density it is an isometry from L2(Ξ) to H. Finally, by assumption x is a cyclic vector for A, hence

RgU = {π̃(A)x ∈ H : π̃ is a polynomial with complex coefficients }
is dense in H; but an isometry has closed range, hence necessarily RgU = H.

We finally show that U−1AU : H → H is a multiplication operator: Let φ be the identity function on σ(A)
and for each polynomial with complex coefficients π̃ set

π̂ := φπ̃ : λ 7→ λπ̃(λ).

We conclude that

U−1AUπ̃ = U−1Aπ̃(A)x = U−1π̂(A)x = U−1Uπ̂ = π̂ = φπ̃

for all polynomials π̃ with complex coefficients, so that

U−1AU = Mφ

by density.
(2) In the general case of a Hilbert space without a cyclic vector for A, we first want to prove that

(2.5) H =
⊕
n

Hn,

where the direct sum is over a countable (possibly finite) family of cyclic subspaces, i.e., of subspaces Hn of H
that are invariant under A and such that each Hn has a cyclic vector for An := A|Hn .

First of all, define H as the set of countable (possibly finite) orthogonal families of cyclic subspaces of H.

Clearly, H is inductively ordered by ⊂, hence if K ⊂ H is a chain2, then K has an upper bound K̃ :=
⋃
K∈KK.

By Zorn’s Lemma, H has (at least) one maximal element K̂, i.e., a countable (possibly finite) orthogonal family
(Hn) of cyclic subspaces of H. It remains to prove that

H =
⊕
n

Hn.

If this would not be the case, there would exist x ∈ H such that x ∈ H⊥n for all n, and accordingly the closure
K of the span of {Akx : k ∈ N} would be orthogonal to all Hn, hence K ⊕

⊕
nHn would be a maximal element

larger than K̂, a contradiction. Summing up, (2.5) is proved, hence
⋃
nHn is total in H and in particular for

2 That is, K1,K2 ∈ K implies that K1 ⊂ K2 or K2 ⊂ K1.
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all x ∈ H there exists a unique sequence (xn) such that x =
∑
n xn and moreover (x|y)H =

∑
n(xn|yn) for all

x, y ∈ H.
Hence, by (1) we deduce that the spectral theorem holds on each Hn, i.e., there exist a Borel measure µn on

Ξn := σ(An), where An := A|Hn , a measurable function φn : Ξn → R and a unitary operator Un : L2(Ξn)→ Hn

such that

U−1
n AnUn = Mφn ,

where each Mφn acts by

(Mφnf)(ξ) = ξf(ξ), ξ ∈ Ξn.

Now, it suffices to consider (Ξ, µ) :=
⊕

n(Ξn, µn), i.e.,

Ξ :=
⋃
n

(Ξn × {n}) =
⋃
n

(σ(An)× {n}) ⊂ R2.

Then (Ξ, µ) is a σ-finite measure space defined as follows: The Borel σ-algebra on Ξ consists of sets of the form⋃
n

On × {n}, On element of the Borel σ-algebra on Ξn,

and µ acts on such sets by

µ(
⋃
n

On × {n}) :=
∑
n

µn(On).

We can finally show the spectral theorem fore general H. Define a function φ : Ξ→ R by φ(ξ, n) = ξ. Then φ is
measurable and bounded and

(Mφf)(ξ, n) = φ(ξ, n)f(ξ, n) = ξf(ξ, n).

Moreover, consider U := diag(Un) : L2(Ξ)→ H defined by

(U−1x)(ξ, n) =
∑
m

(U−1
m xm)(ξ).

This operator is unitary, since

(U−1x|U−1y) =
∑
n

∫
Ξn

(U−1
n yn)(ξ)(U−1

n xn)(ξ)dµn(ξ) =
∑
n

(xn|yn)Hn = (x|y).

It remains to prove that

U−1AU = Mφ :

in fact,

(U−1Af)(ξ, n) = (U−1
n Axn)(ξ) = ξ(U−1xn)(ξ) = φ(ξ, n)(U−1x)(ξ, n), for all x =

∑
n

xn ∈ H =
⊕
n

Hn.

This concludes the proof of the claim in the self-adjoint case. �

Remark 2.49. The above theorem can also be extended to self-adjoint operators on non-separable Hilbert spaces,
but part (2) of the proof is more delicate, since one also needs an argument based on transfinite induction. Since
essentially all Hilbert space that naturally appear in the theory of evolution equations are separable, we omit this
extension.

Exercise 2.50. Use the spectral theorem to prove the following assertion: Let H be a Hilbert space and A be a
self-adjoint operator on H. If σ(A) = {0, 1}, then A is an orthogonal projector.
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2.4. The Spectral Theorem for bounded normal operators

Our aim in this section is to prove that the Spectral Theorem for bounded self-adjoint operators prevails for
operators that are merely normal. The proof of this generalisation requires a number of technical lemmata.

Lemma 2.51. Let H be a Hilbert space and A a bounded linear operator on H. Then the following assertions
hold.

(a) Let λ ∈ C. If λ ∈ σ(A) \ σap(A), then λ ∈ σp(A∗).
(b) If A is normal, then σp(A

∗) = {λ ∈ C : λ ∈ σp(A)}.
(c) If A is normal, then σ(A) = σap(A).

Proof. (a) Assume without loss of generality that 0 = λ ∈ σ(A) \ σap(A), i.e., assume that A is injective

and its range is closed. It follows from Exercise 2.17.(f) applied to A∗ that RgA = RgA = Ker(A∗). Hence,
injectivity of A∗ would imply that A is surjective, a contradiction to the fact that A 6∈ σ(A).

(b) It suffices to observe that for all λ ∈ C one has (T − λ)∗ = A∗ − λ, hence ‖A− λ‖ = ‖A∗ − λ‖.
(c) By definition, σ(A) ⊃ σap(A). Let now λ ∈ σ(A) and assume that λ 6∈ σap(A). Then by (a) λ ∈ σp(A∗),

hence (b) λ ∈ σp(A) ⊂ σap(A), a contradiction. �

Lemma 2.52. Let H be a Hilbert space and A a bounded linear operator on H. Then the following assertions
hold.

(a) Let λ ∈ C and (xn)n∈N ⊂ H. If limn→∞(A− λ)xn = 0, then limn→∞(Ak − λk)xn = 0 for all k ∈ N.
(b) Let B ∈ L(H), λ, µ ∈ C, and (xn)n∈N ⊂ H. If limn→∞(A − λ)xn = 0 and limn→∞(B − µ)xn = 0, then

limn→∞(AkB` − λkµ`)xn = 0 for all k, ` ∈ N.

Proof. (a) The assertion is a direct consequence of the factorisation (Ak − λk) = (Ak−1 + λAk + · · · +
λk−1)(A− λ).

(b) The assertion follows factorising (how?). �

Lemma 2.53. Let H be a Hilbert space and A be a bounded normal operator on H such that 0 ∈ σ(A). Let
ε > 0. Then there exists a closed subspace E ⊂ H, E 6= {0}, such that

• ‖S|E‖ ≤ ε and
• E is left invariant under each B ∈ L(H) that commutes with both A and A∗.

Proof. First of all, observe that the operator A∗A, which is self-adjoint and by assumption agrees with
A∗A, cannot be bijective; since otherwise Ax = 0 and hence A∗Ax = 0 would imply x = 0 for all x ∈ H, i.e., A
would be injective; and similarly for all x ∈ H there would exist y ∈ H with AA∗y = A(A∗y) = x, i.e., A would
be surjective.

The main idea of the proof is that by the spectral theorem for self-adjoint operators A∗A is unitarily
equivalent to a multiplication operator Mq on a space L2(Ξ), hence we can consider φ(A∗A) for any bounded
continuous function φ, which is unitarily equivalent to the multiplication operator Mφ◦q.

Let now f, g : R→ R be continuous functions defined by

• f(x) = f(−x) for all x ∈ R,

• f(x) := 1 for all x ∈ [0, ε
2

2 ],

• f(x) := 2
ε2 ( ε

2

2 − x) + 1 for all x ∈ [ ε
2

2 , ε
2],

• f(x) := 0 for all x ∈ [ε2,∞) (and hence supp(f) ⊂ [−ε2, ε2]),
• g(x) := f(2x) for all x ∈ R.

In particular, observe that supp(g) ⊂ [− ε
2

2 ,
ε2

2 ] = f−1({1}), hence (1−f)(x)g(x) = 0 for all x ∈ R and accordingly

(2.6) (Id−f(A∗A))g(A∗A) = 0.

SinceA∗A is self-adjoint, we can plug it into f , using the Spectral Theorem 2.45, and define E := Ker(Id−f(A∗A)).
To begin with, we check that E is non-trivial. By (2.6) Rg g(A∗A) is contained in Ker(Id−f(A∗A)), i.e., in E,
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hence it suffices to prove that Rg g(A∗A) is non-trivial. For all spectral arguments, and in particular for all our

purposes, we can identify A∗A with Mq: since µ{ξ ∈ Ξ : |q(ξ)| < ε2

4 } = 0 would imply the bijectivity of A∗A, we

necessarily have µ({ξ ∈ Ξ : |q(ξ)| < ε2

4 }) > 0. Since however

{ξ ∈ Ξ : |q(ξ)| < ε2

4
} ⊂ {ξ ∈ Ξ : φ(q(ξ)) = 1}

we deduce that also
µ({ξ ∈ Ξ : φ(q(ξ)) = 1}) > 0,

hence φ ◦ q 6≡ 0, and in particular RgA∗A ≡ RgMφ◦q 6= {0}, as we wanted to show.
Now, observe that for all x ∈ E with ‖x‖ ≤ 1, hence such that f(A∗A)x = x, one has

‖Ax‖2 = (Ax|Ax) = (A∗Ax|x)

= (A∗Af(A∗A)x|x)

≤ ‖A∗Af(A∗A)x‖‖x‖
≤ ‖(id · f)(A∗A)x‖

Lemma 2.46
= sup

λ∈R
{|(id · f)(λ)| : λ ∈ σ(A∗A)}

SMT
= sup

λ∈σ(A∗A)

|λf(λ)|

≤ ε2,

by construction of f .
Finally, let B be a bounded linear operator that commutes with both A and A∗. Then B also commutes

with A∗A and with all of its powers, hence in particular (by the Stone–Weierstraß Theorem) with f(A∗A). Let
now x ∈ E. Then (Id−f(A))x = 0 and therefore

(Id−f(A∗A))Bx = B(Id−f(A∗A))x = 0,

i.e., Bx ∈ E, too. Similarly, B∗ leaves E invariant, which means that for all x ∈ E⊥ and all y ∈ E
(Bx|y) = (x|B∗y) = 0,

i.e., B leaves E⊥ invariant. �

We are finally in the position to prove a kind of Spectral Mapping Theorem for polynomial of two variables,
plus some miscellaneous properties of normal operators that will be essential in the proof of the Spectral Theorem.

Lemma 2.54. Let H be a Hilbert space and A a bounded normal operator on H. Let moreover π : C2 → C be
a polynomial. Then the following assertions hold.

(a) Let (xn)n∈N ⊂ H such that ‖xn‖ = 1 for all n ∈ N. Let λ ∈ C. If limn→∞(A− λ)xn = 0, then also

lim
n→∞

(π(A,A∗)− π(λ, λ∗))xn = 0.

(b) {π(µ, µ) ∈ C : µ ∈ σ(A)} = σ(π(A,A∗)).
(c) ‖A‖ = sup{|λ| : λ ∈ σ(A)}.
(d) ‖π(A,A∗)‖ = sup{|π(z, z)| : z ∈ σ(A)}.
(e) Let π′ : C2 → C be a further polynomial. If π(z, z) = π′(z, z) for all z ∈ σ(A), then π(A,A∗) = π′(A,A∗).

Proof. (a) By assumption, limn→∞ ‖(A∗ − λ)xn‖ = limn→∞ ‖(A− λ)xn‖ = 0. Then the assertion follows

by Lemma 2.52.(b) if p is a monomial, i.e., p(z1, z2) = zk1z
j
2 for some j, k ∈ N and all z1, z2 ∈ C; and by linearity

in the general case.
(b) Let us first prove that {π(µ, µ) ∈ C : µ ∈ σ(A)} ⊂ σ(π(A,A∗)) holds. Let λ ∈ {π(µ, µ) ∈ C : µ ∈

σ(A) = σap(A)}. Take µ ∈ σap(A) such that λ = π(µ, µ). In order to prove that λ ∈ σ(π(A,A∗)), i.e., that
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π(µ, µ) ∈ σap(π(A,A∗)) (why?), we need by Exercise 2.35 to show that there exists a sequence (xn)n∈N ⊂ H
with ‖xn‖ = 1 such that

(2.7) lim
n→∞

‖π(µ, µ)xn − π(A,A∗)xn‖ = 0.

Because µ ∈ σap(A), again by Exercise 2.35 there exists a sequence (xn)n∈N ⊂ H with ‖xn‖ = 1 such that
‖λxn −Axn‖ = 0, and we conclude by (a) that the claimed inclusion holds.

Conversely, let µ ∈ σ(π(A,A∗)). Define B = π(A,A∗) − µ, which is a normal operator with 0 ∈ σ(B).
Moreover, B commutes with both A and A∗. Then by Lemma 2.53 for all n ∈ N there exists a closed subspace
En 6= {0} such that ‖S|En‖ ≤ εn and such that both En and E⊥n are left invariant under A. In particular, the
restriction A|En is a bounded normal operator on En, since

(·|·)H = (·|·)En + (·|·)E⊥n ,
and hence (A|En)∗ = (A∗)|En . Take now some λn ∈ σ(A|En) which, by Lemma 2.51.(c), is also an approximate
eigenvalue. Hence, by Exercise 2.35 there exists a sequence of vectors (xn)n∈N with xn ∈ En and ‖xn‖ = 1 and
such that ‖(A− λn)xn‖ < 1

n . Because λn ∈ σ(A|En) and hence |λn| ≤ ‖A|En‖ ≤ ‖A‖ for all n ∈ N, the sequence
(λn)n∈N is bounded and hence convergent (up to taking a subsequence) towards some λ, which then belongs to
σap(A), too, since for the same sequence (xn)n∈N one has

‖(A− λ)xn‖ ≤ ‖(A− λn)xn‖+ ‖(λn − λ)xn‖ ≤
1

n
+ |λ− λn| → 0.

By (a) one then has
lim
n→∞

(π(A,A∗)− π(λ, λ∗))xn = 0.

Since moreover

‖(π(A,A∗)− µ)xn‖ <
1

n
for all n ∈ N,

it follows that
lim
n→∞

(µ− π(λ, λ∗))xn = (µ− π(λ, λ∗)) lim
n→∞

xn = 0,

whence µ = π(λ, λ∗), because ‖xn‖ = 1 for all n.
(c) Set π(z1, z2) := z1z2 and therefore π(A,A∗) = AA∗ = A∗A. Then

(sup{|λ| : λ ∈ σ(A)})2 = sup{λλ : λ ∈ σ(A)}
= sup{|π(λ, λ)| : λ ∈ σ(A)}
(b)
= sup{|λ| : λ ∈ σ(π(A,A∗))}
= sup{|λ| : λ ∈ σ(A∗A)}
= ‖A∗A‖ = ‖A‖2,

where the second-to-last identity follows from the self-adjointness of A∗A and Lemma 2.46.
(d) One has

‖π(A,A∗)‖ (c)
= sup{|z| : z ∈ σ(π(A,A∗))} (b)

= sup{|π(z, z)| : z ∈ σ(A)}.
(e) One has for the polynomial π − π′

‖π(A,A∗)− π′(A,A∗)‖ (d)
= sup{|π(z, z)− π′(z, z)| : z ∈ σ(A)}.

This finally concludes the proof. �

We are now in the position to prove the following.

Theorem 2.55 (Spectral Theorem for bounded normal operators). Let A be a bounded normal operator on a
separable Hilbert space H. Then A is unitarily equivalent to a (necessarily bounded) multiplication operator Mq

on L2(Ξ) for some finite measure space Ξ and some measurable function q : Ξ→ C.
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Definition 2.56. Let A be a bounded normal operator on a Hilbert space H. An element x ∈ H is called a
cyclic vector for A if

{π(A,A∗)x ∈ H : π is a polynomial with complex coefficients}
is dense in H, i.e., if the space spanned by {Ak(A∗)jx : k, j ∈ N} is dense in H.

Proof. The proof of the theorem mimicks that of the self-adjoint case, and we will not repeat it entirely.
We will only observe that, after introducing the definition of cyclic vector for a bounded normal operator, all the
ingredients of the proof in the self-adjoint case have been recovered in the normal case in the last few pages. In
fact, both the Stone–Weierstraß Theorem is valid for complex-valued functions, and so is the Riesz Representation
Theorem (for bounded linear functionals on C(K;C) rather than for positive ones on C(K;R)); while both
Lemma 2.46 and the Spectral Mapping Theorem have been extended to the normal case in Lemma 2.54.

To fix the ideas, let A be a bounded normal operator on a Hilbert space H and let

V := {f ∈ C(σ(A)) : ∃πf : C2 → C polynomial s.t. f(z) = πf (z, z) for all z ∈ σ(A)},
where the polynomial is uniquely determined by Lemma 2.54.(e). Then, V is a complex Banach algebra, and
in fact a C∗-algebra with respect to the involution f 7→ f . It plays the rôle that was played by the space of
real polynomials in the proof of the Spectral Theorem for bounded self-adjoint operators, and in particular one
begins by assuming that H contains a cyclic vector x for A and then defines

L(f) := (πf (A,A∗)x|x), f ∈ V,
which can be extended by density (due to the Stone–Weierstraß Theorem) to a bounded linear functional on
C(σ(A)). In fact, it is possible to define

f(A) := πf (A,A∗),

which is a bounded linear operator with

‖f(A)‖ = ‖πf (A,A∗)‖ = sup
z∈σ(A)

|πf (z, z)| = sup
z∈σ(A)

|f(z)|,

by Lemma 2.54.(d): If f(z) = zkzj and therefore f(A) = Ak(A∗)j , then f(z) = zjzk and therefore

f(A) = Aj(A∗)k = f(A)∗ for all f ∈ V.
The remainder of the proof can be repeated verbatim. �

Exercise 2.57. Deduce from the above Spectral Theorem that all bounded normal operators can be (not necessarily
uniquely) factorised as a product of a self-adjoint and a unitary operator.

2.5. The Spectral Theorem for unbounded operators and the functional calculus

The main result of this chapter is an extension of the Spectral Theorem to general, possibly unbounded
selfadjont operators. Again, it is shown that such operators can be identified with multiplication operators.

Unbounded multiplication operators are the handy source for a manifold of examples and counterexamples.
For example, they can be used to prove that each closed subset of C can be the spectrum of a linear operator.

Exercise 2.58. Consider a measure space (Ξ, µ) and define the essential range of a measurable function q : Ξ→
C as

qess(Ξ) := {z ∈ C : µ({ξ ∈ Ξ : |q(ξ)− z| < ε) 6= 0 for all ε > 0}.
Prove the following assertions concerning the multiplication operator Mq.

(1) Mq has bounded inverse if and only if 0 6∈ qess(Ξ), and in this case M−1
q = Mq−1 , where

q−1(x) :=

{ 1
q(ξ) if q(ξ) 6= 0,

0 if q(ξ) = 0.

(2) σ(Mq) = qess(Ξ).
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Theorem 2.59 (Spectral Theorem for unbounded self-adjoint operators). Let A be a (possibly unbounded) self-
adjoint operator on a separable Hilbert space H. Then A is unitarily equivalent to a multiplication operator Mq

on L2(Ξ) for some σ-finite measure space Ξ and some measurable function q : Ξ→ R.

Proof. Let A be a self-adjoint operator. Therefore, by Theorem 2.27 the operators A ± i are invertible
with bounded inverse. First of all, observe that

(2.8) ((A± i)−1)∗ = (A∓ i)−1.

In fact, for all x, y ∈ D(A) one has

((A− i)x|y) = (x|(A+ i)y),

or rather

((A− i)x|(A+ i)−1(A+ i)y) = ((A− i)−1(A− i)x|(A+ i)y).

Setting u := (A− i)x and v := (A− i)y yields

(u|(A+ i)−1v) = ((A− i)−1u|v)

for all u ∈ Rg(A− i) = H and all v ∈ Rg(A+ i) = H, which yields (2.8). Now,

(A+ i)−1((A+ i)−1)∗ = (A+ i)−1(A− i)−1 =
1

2i
((A− i)−1 − (A+ i)−1),

where the last identity follows from the resolvent equation, and similarly

((A+ i)−1)∗(A+ i)−1 = (A− i)−1(A+ i)−1 =
1

−2i
((A+ i)−1 − (A− i)−1),

i.e., the bounded operator (A+i)−1 is normal and, likewise, so is (A−i)−1. Accordingly, by the Spectral Theorem
for bounded normal operators there exists a σ-finite measure space Ξ and a measurable function q : Ξ→ C and
a unitary operator U : L2(Ξ)→ H such that

U−1(A+ i)−1U = Mq.

In particular, the fact that U−1(A + i)−1U and hence Mq is injective yields that q is essentially non-vanishing,
i.e.,

µ({ξ ∈ Ξ : q(ξ) = 0}) = 0.

Define a new measurable function p : Ξ→ C by

(2.9) p(ξ) :=

{ 1
q(ξ) − i if q(ξ) 6= 0,

0 otherwise.

Then by definition p+ i = 1
q . In order to conclude the proof, it suffice to show that

U−1AU = Mp,

with equality of domains, i.e.,

D(A) = {x ∈ H : p · (U−1x) ∈ L2(Ξ)}.
Let us first prove the condition on the domains. In fact, we have that if x ∈ D(A), and letting

y := (A+ i)x,

yields

U−1x = U−1(A+ i)−1y = q · (U−1y) =
1

p+ i
· (U−1y),

whence

p · (U−1x) =
p

p+ i
· (U−1y) ∈ L2(Ξ),

because p
p+i ∈ L

∞(Ξ).
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Let conversely pU−1x ∈ L2(Ξ). Then also (p+ i) · U−1x ∈ L2(Ξ), hence there exists y ∈ H with

U−1y = (p+ i) · U−1x,

hence
U−1(A+ i)−1y = q · U−1y = U−1x,

and we finally obtain
x = (A+ i)−1y ∈ D(A).

Finally, let x ∈ D(A) and let
y := (A+ i)x.

Then

U−1x = U−1(A+ i)−1y = MqU
−1y =

1

p+ i
· U−1y.

It follows that

U−1Ax+ iU−1x = U−1(A+ i)x = U−1y = (p+ i) · U−1x = p · U−1x+ iU−1x,

i.e.,
U−1Ax = p · U−1x.

Finally observe that while it is a priori not clear that (2.9) defines a real-valued function, self-adjointness of the
multiplication operator Mp and Exercise 2.29 yield the claim. �

Remark 2.60. The proof shows that the σ-finite measure space Ξ and the unitary operator U associated with
A are the same as those associated with the normal operator (A+ i)−1 = R(i,−A). By Exercise 2.33 we deduce
that again, like in the bounded case, Ξ is related to the spectrum of A.

In fact, assume H to contain a cyclic vector for A and A to have compact resolvent (this is equivalent to
the fact that D(A) is compactly embedded in H, as is the case, e.g., for differential operators defined on Sobolev
spaces on bounded domains with smooth boundary). Then it is well-known that A has discrete spectrum, i.e.,
σ(A) = σp(A) is a countable set and

Ξ = σ((A+ i)−1) =

{
1

i+ λ
: λ ∈ σp(A)

}
.

Hence, the measurable function p : Ξ → C is in fact a sequence (pn)n∈N, and the functional calculus acts on A
by plugging this sequence in a given function entrywise, i.e.,

f(A) = UM(f(pn))n∈NU
−1.

Remark 2.61. We emphasise that, just like in the finite dimensional case, even if each self-adjoint operator can
be individually diagonalised this is not simultaneously true for families of self-adjoint operators, i.e., there need
not exist a unitary operator U such that each of the self-adjoint operators is equivalent to some multiplication
operators with respect to the same operator U .

What is the spectral theorem good for? The fact of the matter is that a multiplication operator can be
plugged in many functions (of a real variable!) in order to obtain solutions to partial differential equations.

Let Ξ be a σ-finite measure space and q : Ξ → C a measurable function. We define a linear multiplication
operator Mq by

D(Mq) := {u ∈ L2(Ξ) : q · u ∈ L2(Ξ)},
Mqu := q · u.

Such a multiplication operator is always closed and densely defined; by Hölder’s inequality, it is bounded if and
only if q ∈ L∞(Ξ), and in this case ‖Mq‖L(L2(Ξ)) = ‖q‖∞. If Mq is indeed bounded, then it possible to define
f(Mq) for any real analytic function f , just as we have done when we defined the exponential function in Chapter
1.
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We can finally define the functional calculus for a self-adjoint operator, and thus to take advantage of
the spectral theorem. However, we can show that f(Mq) can be given a meaning in a more general context.
Before introducing a functional calculus for multiplication operators, observe that the space B(R) of all bounded
measurable functions over R is a Banach algebra with respect to the sup-norm, and in fact even a C∗-algebra
(why?).

Proposition 2.62. Let f ∈ B(R) and p : Ξ→ C be a measurable function, where Ξ is a σ-finite measure space
Ξ. Then (

f(Mp)u
)
(x) := f(p(x))u(x), u ∈ L2(Ξ), x ∈ Ξ,

i.e.,

f(Mp)u = (f ◦ p)u, u ∈ L2(Ξ).

defines a linear operator on L2(Ξ) which is bounded is additionally f is bounded.

Proof. Linearity of f(Mp) is clear. Its boundedness is a direct consequence of the fact that

‖f(Mp)‖L(L2(Ξ)) = ‖f ◦ p‖∞ ≤ ‖f‖∞.

This is all we need to prove. �

Using the representation of self-adjoint operators as multiplication operators, the following holds. We do not
prove the uniqueness part of its assertion.

Theorem 2.63 (Measurable functional calculus for self-adjoint operators). Let A be a linear self-adjoint operator
on a Hilbert space H. Then there exists exactly one linear mapping, called functional calculus

F : B(R) 3 f 7→ f(A) ∈ L(H)

such that all the following properties hold.

• ‖F(f)‖L(H) ≤ ‖f‖∞ for all f ∈ B(R).
• F(f · g) = F(f)F(g) for all f, g ∈ B(R).
• F(f) = F(f)∗ for all f ∈ B(R).
• If (fn)n∈N ⊂ B(R) such that lim fn = id pointwise and |fn(r)| ≤ |r| for all r ∈ R, then limn→∞ fn(A)x =
Ax for all x ∈ D(A).

• If (fn)n∈N ⊂ B(R) and f ∈ B(R) such that lim fn = f pointwise and ‖fn‖∞ is uniformly bounded, then
limn→∞ fn(A)x = f(A)x for all x ∈ H.

Remark 2.64. The assumption on self-adjointness is essential to guarantee that f(A) defines a bounded linear
operator for all bounded measurable functions f . However, this depends on our construction. It turns out that
there exist several more functional calculi, where the rule of thumb is that the rougher the operator A (and hence
its spectrum), the narrower the choice of functions one can plug A in.

Example 2.65. A self-adjoint operator A on a Hilbert space H is called bounded from above, or semibounded,
if there exists ω ∈ R such that

Re(Au|u)H ≤ ω‖u‖2H , u ∈ D(A).

Show that a self-adjoint operator generates a C0-semigroup of bounded linear operators on H if and only if A
is semibounded.

Now, the idea is that many partial differential equations, even some of those that are not in the form of
(ACP ), can be formally written as a vector-valued ordinary differential equation associated with a linear operator
A: As a rule of thumb, if this ODE admits a solution, then the solution of the partial differential equation is given
by plugging A into the corresponding function. The prototypical case is that of the abstract Cauchy problem
(ACP), which is solved by the C0-semigroup generated by A, formally obtained plugging A into the exponential
function. Several properties of this C0-semigroup can be obtained applying the spectral theorem.
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Exercise 2.66. Let H be a separable Hilbert space and consider a self-adjoint operator A on H such that
(Au|u)H ≤ 0 for all u ∈ D(A). Show that the semigroup (T (t))t≥0 generated by A satisfies

‖AT (t)‖L(H) ≤
1

te
, t > 0.

In particular, T (t) is a bounded linear operator from H to D(A) for all t > 0, and in fact one sees similarly that
T (t) maps H into D(Ak) for arbitrary k. Are you able to find an analogous estimate for

‖tkAkT (t)‖L(H), t > 0?

For a further example, consider the wave equation on an open domain Ω of Rd with Dirichlet boundary
conditions, which can be formally written down as

U ′′(t) = AU(t),

where A is the self-adjoint operator ∆ on L2(Ω). Since the corresponding ODE is solved by

U(t) = cos(t
√
−A)U(0) + (

√
−A)−1 sin(t

√
−A)U ′(0),

it suffices to apply the corresponding formula to the multiplication operator associated with A = ∆ in order to
have a solution formula for the partial differential equation. In the same way we can introduce the solution of the
Schrödinger equation or find the generator of a semigroup (T (t))t≥0 by formally taking its logarithm at t = 1.

Example 2.67. We have already emphasised that an essentially bounded function gives rise to a bounded multi-
plication operator: hence, closed operators associated via the spectral theorem to bounded multiplication operators
are necessarily bounded, hence not very interesting. The relevance of the spectral theorem consists in its assertion
in the unbounded case. Now, observe that the proof of the spectral theorem is in generally not constructive, but
it becomes so if a cyclic vector is known. A fundamental example is the case of the Laplacian on R for which the
spectral theorem yields an explicit representation as the multiplication operator by the function q(x) = x2, x ∈ R,
up to a unitary transformation which is, in fact, the Fourier transfomation (cf. [3, §VI.5] for an extension to a
much more general case).

Remark 2.68. Like in the bounded case, the spectral theorem formulated above can be extended to the class of
normal operators, i.e., of operators that commute with their adjoint. The proof is more technical and there is
no abundance of evolution equations associated with normal operators: we therefore neglect this extension, but
see [5] for a sketch of the general proof and some interesting general considerations about the theorem.

Exercise 2.69. Fill the details in the discussion of Example 2.67, i.e., show directly the self-adjointness of the
Laplacian on Rd.

Exercise 2.70. Let H = L2(0, 1) and consider the operator

D(A) := {u ∈ H1(0, 1) : u(0) = ku(1)},
Au := iu′.

Show that A is self-adjoint for all k ∈ C such that |k| = 1 and conclude that the evolution equation

∂u

∂t
(t, x) +

∂u

∂x
(t, x) = 0, t ∈ R, x ∈ (0, 1),

has a unique solution u for all initial data u0 ∈ D(A), which satisfies ‖u(t)‖L2 = ‖u0‖ for all t ∈ R.

Exercise 2.71. Consider the convection-reaction-diffusion equation

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + k

∂u

∂x
(t, x) + qu(t, x), x ∈ (0, 1), t > 0,

with Dirichlet boundary conditions. Show that the associated operator A is not selfadjoint on L2(0, 1) with the
standard inner product, but prove that it becomes self-adjoint with respect with a suitable, modified inner product
that is equivalent to the original one.
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Remark 2.72. In quantum mechanics there are three fundamental equations, each valid for describing the
evolution of the wavefunction of particular kinds of particles. The wavefunction is by definition a complex-valued
measurable function whose L2-norm over a certain domain yields the probability that the given particle is found in
said domain. All these three equations are partial differential equations on L2-spaces, whose elements (commonly
called spinors in mathematical physics) have a different number of vectors in order to describe properties of
different particles. These three equations3 are the Klein–Gordon equation

∂2u

∂t2
(t, x) = c2∆− m2c4

~2
u(t, x), t ∈ R, x ∈ R3,

on L2(R3;C), valid for pions (like the infamous, hypothetical Higgs boson); the Schrödinger equation

i
∂u

∂t
(t, x) = c2∆− m2c4

~2
u(t, x), t ∈ R, x ∈ R3,

and its vector valued counterpart, the Pauli equation (identical to the Schrödinger equation, besides the fact that
the spinors are vectors in L2(R3;C2) instead of L2(R3;C)), which are valid for general elementary particles, like
electrons, depending of whether they have spin 0 or rather 1

2 ; and the Dirac equation on L2(R3;C4) for Dirac
fermions (i.e., for fermions, like quarks, that do not coincide with their own anti-particle), which we discuss in the
next section. The differential operator appearing on the right of these equations is usually called the Hamiltonian
of the system. The above Hamiltonians are free, in the sense that they describe particles that have no interaction
whatsoever with other particles. While these equations are first defined on the whole space R3, one is usually
interested in the time evolution of wavefunctions in smaller domains and/or that are subject to interactions
with other particles. This is usually modelled by considering a potential, i.e., adding one or more terms to the
free Hamiltonian, usually in form of multiplication operators by an unbounded function. As explained before,
it is fundamental in quantum mechanics not only that these evolution equations are well-posed – which can be
characterised by their being governed by a C0-group, as we will see later – but also that the operators of the group
are unitary, for the reasons explained above. While showing such a behaviour for the equation associated with
the free Hamiltonian is easy, proving this for physically relevant potentials is much more involved. For example,
it was Kato the first who was able to discuss in full generality the simplest model of quantum mechanics, the
Schrödinger equation for the hydrogen atom which is described by a free Hamiltonian perturbed by a multiplication
operator Mq, where q is a Coulomb potential of the form

q(x) :=
1

‖x‖
, x ∈ R3,

(the singularity in 0 represents the atomic nucleus).

Theorem 2.73. Let H be separable Hilbert space and A be a self-adjoint operator. Then the initial value problem
associated with the abstract Schrödinger equation

i
∂U

∂t
(t) = AU(t), t ∈ R,

is well-posed and its solution is given by a C0-group of unitary operators.

In fact, we will see later (Stone’s Theorem) that the converse also holds.

Proof. Up to a unitary transformation, A agrees with a multiplication operator Mp on some Hilbert space
L2(Ξ), for some measurable function p. Hence, the equation is unitarily equivalent to the ordinary (vector-valued)
differential equation

i
∂V

∂t
(t) = MpV (t), t ∈ R,

3 It is interesting to observe that, unlike most other evolution equations of mathematical physics, these equations are not, strictly
speaking, derived by physical considerations but rather introduced axiomatically, based only on an analogy with the Hamiltonian

formulation of classical (i.e., Newtonian) mechanics (this analogy process is usually referred to as “first quantisation”) and on

mathematical properties.
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which is solved by

V (t) := e−itMpV (0), t ∈ R.
Now, we can give this formal expression a precise meaning owing to Theorem 2.63, i.e.,

(e−itMpV (0))(ξ) = e−itp(ξ) · V (0)(ξ), t ∈ R, ξ ∈ Ξ.

Furthermore, by Exercise 2.29

‖e−itMp‖L(L2) = ‖e−itp‖L∞ = 1 for all t ∈ R,

since p is real-valued. �

Exercise 2.74. Also the Klein–Gordon equation is governed by a unitary group. To see this, consider a first-
order reduction similar to that in Example 1.4 and prove self-adjointness of the associated operator matrix in the
Hilbert space H1

en(R3)× L2(R3), where H1
en(R3) is the closure of H1(R3) with respect to

‖|u|‖ := ‖∇u‖, u ∈ H1(R3).

2.6. An application: the Dirac equation

2.6.1. The 3-dimensional Dirac equation. The Dirac equation is formally similar to a Schrödinger
equation, but with a Hamiltonian that is a first-order differential operator on the Hilbert space H = L2(R3;C4).
More precisely, the equation is given by

i~
∂u

∂t
(t, x) =

(
mc2β −i~cσ · ∇
−i~cσ · ∇ −mc2β

)
u(t, x), t ∈ R, x ∈ R3,

where the matrix-vector σ is given by

σ := (σ1, σ2, σ3) :=

((
0 1
1 0

)
,

(
0 i
−i 0

)
,

(
1 0
0 −1

))
and β :=

(
1 0
0 1

)
,

the vector consisting of the so-called Pauli matrices4. The associated abstract Cauchy problem is hence

i
∂U

∂t
(t) = AU(t), t ∈ R,

where A is given by the 4× 4 operator matrix

A :=

(
mc2

~ Id −icσ · ∇
−icσ · ∇ −mc

2

~ Id

)
.

Now, the diagonal block matrices are bounded operators on the space L2(R3;C4), hence by Exercise 2.18 the
operator A is self-adjoint if and only if

A1 :=

(
0 −icσ · ∇

−icσ · ∇ 0

)
is. Moreover, this operator matrix has a special structure: it is unitarily equivalent to the operator matrix

Ã1 :=

(
K 0
0 −K

)
:=

(
−icσ · ∇ 0

0 icσ · ∇

)
via the operator matrix

U :=
1√
2

(
Id Id
Id − Id

)
.

4 The reason why exactly these matrices play such an important rôle in quantum mechanics is that, together with the identity
matrix, they span the space of all 2× 2 Hermitian matrices.
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Now, it is clear that A1 is self-adjoint if and only if its upper-left block is so, i.e., if and only if

K := −icσ · ∇ = −c
(

i ∂
∂x3

i ∂
∂x1

+ ∂
∂x2

i ∂
∂x1
− ∂

∂x2
−i ∂

∂x3

)
is self-adjoint.

Remark 2.75. Observe that the operator A is not bounded below, i.e.,

(2.10) Re(AU,U) ≥ ω‖U‖2, U ∈ D(A),

does not hold for any ω ∈ R. This is why the more common formulation of the spectral theorem (cf. [1, App. B])
cannot be applied in the case of the Dirac equation: this failure of (2.10) is the reason why the spectrum of
A consists of arbitrarily large and arbitrarily small values. Since spectral values have the physical meaning of
critical energies of particles, the existence of negative spectral values (only based on a formal mathematical model)
was quite puzzling, until Richard Feynman proposed an explanation of this fact by describing negative values of
a particle as positive particles of its antiparticle. In this approach, the Dirac equation effectively describes a pair
particle/antiparticle, each corresponding to two components of the 4-spinor, one moving foreward in time, the
other backward.

Theorem 2.76. The operator K is self-adjoint on L2(R3;C2), hence the operator A is self-adjoint on L2(R3;C4).

It is not clear when self-adjointness of this operator has been proved for the first time: the above result may
be due to Kato, whose approach in [6, § V.5.4] is the common one in the later literature. While his proof is
certainly correct, his approach is based on directly diagonalising the operator via the Fourier transform, thus
allowing for a direct application of the functional calculus, without any need to apply the spectral theorem in the
first place: see e.g. [13, Thm. 1.1]. I am not aware of a proof of Theorem 2.76 that uses Theorem 2.27 instead.

2.6.2. The 1-dimensional Dirac equation. Let us now focus on a peculiar case – that of 1-dimensional
Dirac equations. While one can think that the 1-dimensional Dirac equation is simply a special case of the
3-dimensional one, this is not completely true. On one hand, the equation dramatically simplifies (since one
can drop the terms depending on ∂

∂x1
, ∂
∂x2

) and this in turn permits to find simpler matrices that satisfy the
necessary algebraic conditions: in particular, one can now chose the Dirac matrix

σ :=

(
0 i
−i 0

)
.

Therefore, we can consider 2-spinors (instead of 4-spinors like in the 3-dimensional case) and are eventually led
to the equation

i
∂U

∂t
(t) = AU(t), t ∈ R,

where A is given by the 2× 2 operator matrix

(2.11) A :=

(
mc2

~ −ic ∂∂x
−ic ∂∂x −mc

2

~

)
.

Unlike in the 3-dimensional case, self-adjointness of A can be checked directly, applying Theorem 2.27.

Proposition 2.77. The operator A with domain H1(R;C2) in (2.11) is a self-adjoint operator on the Hilbert
space L2(R;C2).

Proof. We can think of A as a bounded perturbation of

A0 :=

(
0 −ic ∂∂x

−ic ∂∂x 0

)
,
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hence by Exercise 2.18 it suffices to check self-adjointness of A0. By Theorem 2.27 we have to check that A0 is
symmetric and that both A0 + i and A0 − i are surjective. Symmetry follows by observing that, by integration
by parts, for all f ∈ D(A)

(A0f |g) = −
∫
R
icf ′2g1dx−

∫
R
icf ′1g2dx

=

∫
R
icf2g′1dx+

∫
R
icf1g′2dx

= −
∫
R
cf2ig′1dx−

∫
R
cf1ig′2dx =

(
f
∣∣A0g

)
.

In order to show that A0± i is surjective, take h = (h1, h2) ∈ L2(R;C2) and observe that finding f ∈ D(A) such
that A0f ± if = h amounts to finding f = (f1, f2) ∈ H1(R;C2) such that{

−icf ′2(x)± if1(x) = h1(x), x ∈ R,
−icf ′1(x)± if2(x) = h2(x), x ∈ R,

or rather {
f ′1(x) = ± 1

cf2(x) + i
ch2(x), x ∈ R,

f ′2(x) = ± 1
cf1(x) + i

ch1(x), x ∈ R,
which is a linear system of ordinary differential equations. We can re-write it as a vector-valued problem

f ′ = Cf + h̃ := ±
(

0 1
c

1
c 0

)
f +

i

c
h

and is hence solved by the variation of parameter formula

f(x) = exCf(0) +

∫ x

0

e(x−y)C h̃(y)dy, x ∈ R.

This concludes the proof. �

Remark 2.78. 1-dimensional Dirac equations are realised, for instance, when the waveguide we are considering
is (almost) 1-dimensional, like in the case of graphene. More precisely, consider a quantum dot, i.e., a (finite)
carbon molecule that looks like a 3-regular tessellation of a small region of the plane (we are neglecting the
boundary effects).

Figure 1. (courtesy of Zheng Yan and Andrew R. Barron)
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For relevant molecules, and in particular for graphene, one has observed that the evolution of such quantum
systems is described by a Dirac equation for an electron moving along the bonds (the atom being its ramification
nodes). If the quantum dot contains m bonds, the relevant Hilbert space is instead L2(0, 1;C2m), and one has
to impose suitable transmission conditions in the nodes. Interestingly enough, such conditions have not been
identified yet: however, an algebraic parametrisation of all transmission conditions leading to a self-adjoint
operator (and hence, by Theorem 2.73, to a C0-group of unitary operators governing the Dirac equation) has
been obtained in [2, §4.1].

Definition 2.79. Let X be a Banach space and (T (t))t≥0 be a C0-semigroup on X. Then (T (t))t≥0 is called
strongly stable if

lim
t→∞

T (t)x = 0 for all x ∈ X.

Proposition 2.80. Let H be a Hilbert space and A be a self-adjoint operator bounded from above. Then the
semigroup generated by A is strongly stable if and only if 0 is not an eigenvalue of A.

Proof. By the Spectral Theorem, A is unitarily equivalent to a multiplication operator Mq on some L2(Ξ)-
space. Since stability is clearly invariant under unitary transformation, it suffices to check under which assump-
tions (etMq )t≥0 is strongly stable, i.e., under which assumptions

lim
t→∞

etMqf = lim
t→∞

etqf = 0 for all f ∈ L2(Ξ).

A necessary condition for stability is hence clearly that the essential range of q is contained in (−∞, 0]; and
moreover 0 is in the essential range of q (i.e., {ξ ∈ Ξ : q(ξ) = 0} has positive measure) if and only if 0 is not an
eigenvalue of Mq and hence of A, since by Exercise 2.34 the spectrum of Mq agrees with the essential range of q
(why does 0 6∈ σp(A) already imply that {ξ ∈ Ξ : q(ξ) = 0} has zero measure?). �



CHAPTER 3

General semigroup theory

What if the operator A that appears in an abstract Cauchy problem is not self-adjoint? Then, we cannot
apply the spectral theorem applied above and we have no hope to define the solution by plugging A into the
exponential function. There exist many interesting examples of non-selfadjoint operators, like the first derivative
that acts on functions on R (which is associated with the transport equation) and the elliptic operators like

A := ∇ · (α∇),

acting on functions on some domain Ω ⊂ Rd, say with Dirichlet boundary conditions, whenever the matrix-
valued coefficient α is such that α(x) is not hermitian for a.e. x ∈ Ω. Moreover, the methods presented in the
previous setting is restricted to abstract Cauchy problems on Hilbert spaces, whereas in many cases the relevant
state space is not L2 but, say, L1 (in fact, the L1-norm is the relevant one for a large class of problems, since it
represents the total heat, mass, population, etc. of a system.

Another, more difficult but more general way to define such a solution, i.e., to check whether A generates a
semigroup, is presented in this chapter.

3.1. Generation results

First of all, we notice the following properties of a semigroup’s generator that complement those in Theo-
rem 1.20.

Lemma 3.1. Let X be a Banach space and let (T (t))t≥0 be a C0-semigroup on X with generator A. Using the
same notations for the constants introduced in Theorem 1.20.(1), the following assertions hold.

(1) A is closed, densely defined and determines (T (t))t≥0 uniquely.
(2) If for some λ ∈ C the Laplace transform of the semigroup exists strongly, i.e., if

∫∞
0
e−λsT (s)xds converges

for all x ∈ X, then λ ∈ ρ(A) and such a Laplace transform coincides with the resolvent operator of A at λ,
i.e., R(λ,A) =

∫∞
0
e−λsT (s)xds.

(3) Conversely, if Reλ > ω, then λ ∈ ρ(A) and the resolvent operator R(λ,A) agrees with
∫∞

0
e−λsT (s)ds.

(4) The so-called Hille–Yosida-estimate

‖R(λ,A)‖ ≤ M

Reλ− ω
holds for all λ ∈ C with Reλ > ω.

The estimate in Theorem 1.20.(1) holds for infinitely many ω, but it is their infimum ( 6= −∞, since M has
to stay ≥ 1) that is relevant. Such an infimum is called growth bound of (T (t))t≥0. One of the most important
features of semigroup theory is that even when it is impossible to find an explicit formula for the solution of
an abstract Cauchy problem, it is sometimes possible to find interesting asymptotic properties of the semigroup
(i.e., long-time behaviour of solutions) by careful investigations of its generator (in particular, of its spectrum).
However, it is in general a very difficult question whether the growth bound is in fact also the minimum, i.e.,
whether it is attained. The main exception is the simple case of ω = 0 (contractive C0-semigroups).

41
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Proof. (1) Let (xn)n∈N ⊂ D(A) such that xn → x and Axn → y for some x, y ∈ X. Then by Theorem 1.20

T (t)xn − xn =

∫ t

0

T (s)Axnds, n ∈ N,

and passing to the limit for n→∞

T (t)x− x =

∫ t

0

T (s)yds.

Now, divide both sides by t and take the limit for t→ 0+: the LHS is just Ax (simply by definition of generator),
and in particular x ∈ D(A), whereas the RHS agrees with T (0)y = y by the fundamental theorem of calculus.

(2) Due to Example 1.14, one can assume that λ = 0 (since we could otherwise repeat the same argument

for the rescaled semigroup (T̃ (t))t≥0 and eventually use the fact that 0 ∈ ρ(λ − A) if and only if λ ∈ ρ(A)).
Therefore

T (h)− Id

h
R(0)x =

T (h)− Id

h

∫ ∞
0

T (s)xds

=
1

h

∫ ∞
0

T (s+ h)xds− 1

h

∫ ∞
0

T (s)xds

=
1

h

∫ ∞
h

T (s)xds− 1

h

∫ ∞
0

T (s)xds

= − 1

h

∫ h

0

T (s)xds.

Hence, letting h → 0+, we obtain that AR(0, A) = − Id (and in particular R(0, A) ⊂ D(A)). Moreover, let
x ∈ D(A). Then

lim
t→∞

∫ ∞
0

T (s)xds = R(0, A)x

as well as

lim
t→∞

A

∫ ∞
0

T (s)xds = lim
t→∞

∫ ∞
0

T (s)Axds = R(0, A)Ax,

by Theorem 1.20.(4). By (2) A is closed, hence R(0)Ax = AR(0)x = −x, hence R(0, A) is the inverse of A, i.e.,
0 ∈ ρ(A) (boundedness of R(0, A) follows from closedness of A).

(3) Let now λ ∈ C such that Reλ > ω. Then the Laplace transform of the semigroup at λ exists, since it
satisfies the estimate

‖
∫ ∞

0

e−λsT (s)ds‖ ≤
∫ ∞

0

e−ReλsMeωsds = M

∫ ∞
0

eω−Reλsds = lim
t→∞

M

∫ t

0

eω−Reλsds =
M

Reλ− ω
.

By (3), one then necessarily has λ ∈ ρ(A) and R(λ,A) agrees with
∫∞

0
e−λsT (s)ds.

(4) The above estimate and the identity of R(λ,A) and
∫∞

0
e−λsT (s)ds yields the claim and concludes the

proof. �

Let us summarise what we already know on generators of C0-semigroups: They are closed, densely defined
linear operators whose resolvent set contains a right half-plane of C and such that the Hille–Yosida-estimate is
satisfied.

The first breakthrough in the theory of semigroups was obtained in 1948, when Einar Hille and Kosaku
Yosida proved independently that the converse also holds. More precisely, the following holds.

Theorem 3.2 (Hille–Yosida 1948). Let X be a Banach space and A be a (possibly unbounded) linear operator
on X. Then the following assertions are equivalent.

(a) A is the generator of a C0-semigroup of contractions.
(b) A is densely defined, closed and moreover λ ∈ ρ(A) and ‖λR(λ,A)‖ ≤ 1 for all real λ > 0.
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Before proving this theorem, we need to show the following results.

Lemma 3.3. Let X be a Banach space and A be a closed, densely defined operator on X. If there exist ω ∈ R
and M ≥ 1 such that

λ ∈ ρ(A) and ‖λR(λ,A)‖ ≤M for all real λ ≥ ω.
Then the following assertions hold.

(1) limλ→∞ λR(λ,A)x = x for all x ∈ X.
(2) limλ→∞ λAR(λ,A)x = Ax for all x ∈ D(A).

Proof. (1) One has that λR(λ,A)y = R(λ,A)Ay+y by definition of resolvent, for all y ∈ D(A). Therefore,

‖λR(λ,A)y − y‖ ≤ ‖R(λ,A)Ay‖ ≤ M

λ
→ 0,

i.e., λR(λ,A)y → y as λ → ∞. Since this holds on the dense subset D(A) of X, it also holds on the whole X,
i.e., one has proved the claimed strong convergence result.

(2) The assertion follows observing that λAR(λ,A)x = λR(λ,A)Ax for all x ∈ D(A) and applying (1) on
Ax ∈ X. �

Lemma 3.4. Let X be a Banach space and (T (t))t≥0 be a family of bounded linear operators on X that satisfies
(SEMIGR). Then the following assertions are equivalent.

(i) The semigroup is strongly continuous.
(ii) The semigroup is strongly continuous at 0+.

(iii) There exist τ > 0 and M ≥ 1, along with D ⊂ X such that D = X, for which ‖T (t)‖ ≤M for all t ∈ [0, δ]
and limt→0 T (t)x = x for all x ∈ D.

Proof. (i) ⇒(iii) is Theorem 1.20.(1).
(iii)⇒(ii) The idea is to prove strong continuity at t = 0+ of the semigroup by proving its strong continuity

with respect to arbitrary sequences that converge to 0+. The equivalence of continuity and sequential continuity
on Banach spaces will do the job.

Let (tn)n∈N ⊂ [0,∞) be an arbitrary null sequence and denote by K the set of its values. Then {T (tn) ∈
L(X) : n ∈ N} is the set of values of a continuous function on a compact set, hence it is a bounded set and
moreover by assumption limt→0 T (t)x = x for all x ∈ D, hence in particular its restriction to the discrete set K is
continuous, i.e., K 3 t 7→ T (·)x ∈ X is continuous for all x ∈ D. We conclude from the forthcoming Exercise 3.5
that in fact K 3 t 7→ T (·)x ∈ X is continuous for all x ∈ X, and since (tn)n∈N ⊂ [0,∞) is a null sequence one
has limn→∞ T (tn)x = x, qed.

(ii)⇒(i) As one may expect, the third implication relies on the semigroup law. Let t0 > 0 and take x ∈ X.
We want to prove that limt→t0 T (t)x = T (t0)x. Of course, it suffices to prove right and left continuity at t0. To
begin with, we prove that limt→t0+ T (t)x = T (t0)x: in fact,

‖T (t0 + h)x− T (t0)x‖ ≤ ‖T (t0)‖‖T (h)x− x‖ h→0+−→ 0.

Right continuity is a bit more delicate. First, observe that T (·) is uniformly bounded on [0, t0]1, with just the
same proof as in Theorem 1.20.(1). This actually yields uniform boundedness on some small interval [0, δ]; but
then uniform boundedness on the whole interval [0, t0] is a consequence of the semigroup law: take t ≤ t0 and
pick m ∈ N and δ0 ∈ (0, δ] in such a way that t = mδ0.

‖T (t)‖ = ‖T (mδ0)‖ ≤ ‖T (δ0)‖m ≤ sup
s∈[0,δ

‖T (s)‖m <∞.

Then for all h ∈ (−t0, 0)

‖T (t0 + h)x− T (t0)x‖ ≤ ‖T (t0 + h)‖‖x− T (−h)x‖ h→0+−→ 0,

1 Observe that this is always the case for C0-semigroups, but we are not assuming strong continuity.



44 CHAPTER 3. GENERAL SEMIGROUP THEORY

by uniform boundedness of ‖T (t0 + h)‖. �

Exercise 3.5. Let X be a Banach space and F : K → L(X), where K is a compact subset of R. Prove that the
following assertions are equivalent.

(i) F is strongly continous.
(ii) F is uniformly bounded and there exists D ⊂ X such that D = X and the orbits K 3 t 7→ F (t)x ∈ X are

continuous for all x ∈ D.
(iii) The mapping

K × C 3 (t, x) 7→ F (t)x ∈ X
is (jointly) uniformly continuous for all compact subset C of X.

At least four different proofs of the Hille–Yosida Theorem exist: we will present the most famous and most
constructive one, that due to Yosida.

Proof of the Hille–Yosida Theorem. It has already been proved that A is necessarily densely defined
and closed and that it satisfies the Hille–Yosida-estimate (which is stronger than the claimed one, since by
assumptions we can take ω = 0 and M = 1 when applying Lemma 3.1). To prove the converse inequality,
Yosida’s essential idea was to define a family of bounded operators on X, which hence generate a family of C0-
semigroups that is proved to converge towards a C0-semigroup that is in turn generated by A. One can therefore
look at the Hille–Yosida Theorem as an approximation result for sequences of semigroups, but there is in fact
not much choice about this, since no natural candidate is available as semigroup generated by A.

To begin with, we consider the Yosida approximants, the sequence of bounded linear operators

An := nAR(n,A) = n2R(n,A)− n Id, n ∈ N.

The reason we chose this sequence is that, by Lemma 3.3,

(3.1) lim
n→∞

Anx = Ax for all x ∈ D(A).

Furthermore, observe that the C0-semigroup generated by An (by Proposition 1.9) is contractive, since

‖etAn‖ = ‖etn
2R(n,A)−tn Id‖ = ‖etn

2R(n,A)e−tn‖ = e−tn‖etn
2R(n,A)‖ ≤ e−tnet‖n

2R(n,A)‖ ≤ e−tnetn = 1, t ≥ 0.

In order to show that the sequence (etAnx)n∈N is convergent for all t ≥ 0 and all x ∈ X, it suffices to show
that (etAnx)n∈N is a Cauchy sequence for all t ≥ 0 and all x ∈ D(A). In fact, fix t > 0 and x ∈ D(A) and
consider the function Q defined by

Q : [0, t] 3 s 7→ e(t−s)AmesAn ∈ L(X)

(a similar mapping has been useful in the proof of Lemma 1.22). One then has

etAnx− etAmx = Q(t)x−Q(0)x

=

∫ t

0

d

ds
Q(s)xds

=

∫ t

0

d

ds
e(t−s)AmesAnxds

=

∫ t

0

(
−Ame(t−s)AmesAnx+ e(t−s)AmAne

sAnx
)
ds

=

∫ t

0

e(t−s)AmesAn(An −Am)xds,
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and hence by contractivity of the semigroups

‖etAnx− etAmx‖ ≤
∫ t

0

‖e(t−s)AmesAn(An −Am)x‖ds

≤
∫ t

0

‖(An −Am)x‖ds

= t‖(nAR(n,A)−mAR(m,A))x‖.
Letting n,m → ∞, this expression tends to 0 by Lemma 3.3. Hence, by density of D(A) one deduces that
(etAn)n∈N converges strongly, uniformly in t belonging to compact intervals. Let us call its strong limit T (t), for
t ≥ 0.

Now, since (T (t))t≥0 is the (strong) limit of a sequence of C0-semigroups of contractions, and in particular of
families of contractive operators satisfying the semigroup law (SEMIGR), also (T (t))t≥0 is necessarily a family
of contractive operators that satisfy the semigroup law (SEMIGR). Also observe that because for all x ∈ X the
mapping

[0,∞) 3 t 7→ T (t)x ∈ X
satisfies

‖T (t)x− etAmx‖ = lim
n→∞

‖etAnx− etAmx‖ ≤ lim
n→∞

t‖(nAR(n,A)−mAR(m,A))x‖,

it is uniform limit (for t in compact intervals) of a sequence of continuous functions, it is continuous. Accordingly,
(T (t))t≥0 is strongly continuous by Lemma 3.4.

Summing up, we have introduced a sequence of bounded operators and showed that the semigroups they
generate converge to a C0-semigroup. It remains to prove that the generator of this semigroup is exactly A. To
this aim, we denote by B the generator of (T (t))t≥0 and are going to prove that A = B. First of all, we prove
that A ⊂ B. Take x ∈ D(A): we have already observed that the orbit sequence

[0,∞) 3 t 7→ etAmx ∈ X, m ∈ N,
converges uniformly (for t in compact intervals) to

[0,∞) 3 t 7→ T (t)x ∈ X.
Similarly, the sequence of differentiated orbits

[0,∞) 3 t 7→ etAmAmx ∈ X, m ∈ N,
converges uniformly (for t in compact intervals) to

[0,∞) 3 t 7→ T (t)Ax ∈ X,
by (3.1). Hence, the orbit of (T (t))t≥0 is a function that is uniform limit of differentiable functions [0,∞)→ X,
hence itself differentiable, and in particular its derivative at 0 agrees with the limit of the derivatives of the
approximating orbits, i.e., with

T (0)Ax = Ax.

We conclude that for all x ∈ D(A) the orbit (T (t)x)t≥0 is differentiable at 0 and

Bx =
d

dt
T (t)x|t=0 = Ax,

i.e., D(A) ⊂ D(B) and Ax = Bx.
To prove the converse inclusion let λ > 0, hence in particular λ ∈ ρ(A), so that λ − A : D(A) → X is

bijective. Also λ − B : D(B) → X is a bijection: in fact, since B generates a C0-semigroup of contractions,
the assertion follows from Lemma 3.1.(4). We have already showed (while proving the converse inclusion) that
(λ − A)x = (λ − B)x for all x ∈ D(A): i.e., λ − A is a restriction of λ − B. But if two bijective operators, of
which one is a restriction of the other, coincide on the domain of the smaller one, then they have to coincide as
operators. In fact, if they would not, i.e., if there were x ∈ D(B) \D(A) (we can already rule out the case that
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D(B) ⊂ D(A) but Bx 6= Ax, by the proof of the converse inclusion), then Bx ∈ X and therefore Bx = Ay for
some y ∈ D(A). But since A ⊂ B, one has Bx = By, i.e., (λ − B)x = (λ − B)y and therefore x = y by the
invertibility of λ−B. This is a contradiction to the fact that y ∈ D(A) and x ∈ D(B) \D(A). �

A few years later, it became clear that an ingenious rescaling argument allows for a generalisation of the Hille–
Yosida theorem to the general, non-contractive case. We present the statement but omit the rather technical
proof, cf. [3, II.3.8].

Theorem 3.6 (Hille–Yosida Theorem (general case)). Let X be a Banach space and A be a densely defined,
closed linear operator on X such that λ ∈ ρ(A) for all real λ > ω. Then the following assertions are equivalent.

(a) A is the generator of a C0-semigroup (T (t))t≥0 such that ‖T (t)‖ ≤Meωt for all t ≥ 0.

(b) A is densely defined, closed and moreover λ ∈ ρ(A) and
∥∥∥(λ− ω)R(λ,A)

)n∥∥∥ ≤M for all real λ > ω and all

n ∈ N.
(c) A is densely defined, closed and moreover λ ∈ ρ(A) and ‖R(λ,A)‖ ≤ M

Re(λ−ω) for all real λ > ω.

We only mention the following step in the proof of the above theorem.

Exercise 3.7. Let X be a Banach space and let (T (t))t≥0 be a uniformly bounded C0-semigroup on X. Then

‖|x|‖ := sup
t≥0
‖T (t)x‖, x ∈ X,

defines a norm on X that is equivalent to the original one, and with respect to which (T (t))t≥0 becomes contractive.

Remark 3.8. Hille’s approach is also remarkable, in particular because it paved the road to the nonlinear
extension of the semigroup theory. His idea was to use another approximation scheme, namely the so-called
backward Euler scheme, which amounts to discretise the evolution equation by fixing t ≥ h > 0 and imposing
that A satisfies a difference equation of the form

S(t)x− S(t− h)x

h

!
= AS(t)x,

for some operator family (S(t))t≥0. This yields

S(t)
!
= (I − hA)−1S(t− h).

For h := t
n we obtain

S(t)
!
=

(
I − t

n
A

)−1

S

(
n− 1

n
t

)
.

Repeating the same procedure for the term S
(
n−1
n t
)

yields

S(t− h)x− S(t− 2h)x

h

!
= AS(t)x,

whence

S(t− h)
!
= (I − hA)−1S(t− 2h),

and chosing again h := t
n we obtain

S

(
n− 1

n
t

)
!
=

(
I − t

n
A

)−1

S

(
n− 2

n
t

)
,

hence

S(t)
!
=

(
I − t

n
A

)−2

S

(
n− 2

n
t

)
.
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and proceding recursively we arrive at

S(t)
!
=

(
I − t

n
A

)1−n

S

(
t

n

)
,

and finally at

S(t)
!
=

(
I − t

n
A

)−n
=: Zn(t).

At this stage, this is still merely an Ansatz. Hille’s proof consistend in showing that in fact Zn(t) is for all t ≥ 0
and all n ∈ N a contractive operator that converges strongly to a C0-semigroup whose generator is A. Summing
up, he proved that

(3.2) T (t)x = lim
n→∞

(
I − t

n
A

)−n
x = lim

n→∞

n

t
R
(n
t
,A
)n

x, x ∈ X.

Theorem 3.9 (Lumer–Phillips 1961). Let H be a Hilbert space and A be a (possibly unbounded) linear operator
on X. Then the following assertions are equivalent.

(a) A is the generator of a C0-semigroup of contractions.
(b) A is dissipative, i.e.,

Re(x|Ax)H ≤ 0 for all x ∈ D(A)

holds, and (λ−A) is surjective for all λ > 0.

Proof. We only have to prove that dissipativity is equivalent to the Hille–Yosida condition. Take λ > 0.
Squaring the Hille–Yosida condition yields for all λ > 0 and all y ∈ X

λ2‖R(λ,A)y‖2 ≤ ‖y‖2,

or rather for x := R(λ,A)y

λ2‖x‖2 ≤ ‖λx−Ax‖2 = (λx−Ax|λx−Ax)H

= λ2‖x‖2 − 2λRe (x|Ax)H + ‖Ax‖2,

i.e., validity of

2Re (x|Ax)H ≤
1

λ
‖Ax‖2, x ∈ D(A),

for all λ > 0 is equivalent to the Hille–Yosida condition.
Hence, if the Hille–Yosida condition holds, dissipativity can be checked letting λ → ∞. If conversely

dissipativity holds, then

2Re (x|Ax) ≤ 0 ≤ 1

λ
‖Ax‖2, x ∈ D(A),

i.e., the Hille–Yosida condition is also checked repeating the above arguments. �

Remark 3.10. The Lumer–Phillips Theorem can be extended to general Banach spaces X by replacing the inner
product of H with the duality between X and X ′; and x ∈ X by all elements of the duality set j(x) := {x′ ∈ X ′ :
‖x′‖2X = ‖x′‖2X′ = 〈x, x′〉}, i.e., the Lumer–Phillips condition becomes

Re 〈x,Ax〉 ≤ 0 for all x ∈ D(A) and all x′ ∈ j(x).

Such a set is nonempty by the Hahn–Banach Theorem (why?) for all x ∈ X – and a singleton if X is reflexive.
We refer to [3, §II.3.b] for the proof, which is longer and more technical than in the Hilbert space case.

We have already seen that C0-(semi)groups of unitary operators are particularly important for application
in quantum mechanics.
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Theorem 3.11 (Stone 1932). Let A be a densely defined operator on a Hilbert space H. Then iA is the generator
of a C0-group of unitary operators, i.e., the abstract Schrödinger equation (2.10) is well-posed, if and only if A
is self-adjoint.

Proof. Sufficiency has been proved in Theorem 2.73. In order to see that self-adjointness of A is also
necessary, denote by T (t))t∈R the C0-group generated by iA. Since each T (t) is unitary,

T (t)∗ = T (t)−1 = T (−t)

by the semigroup law, which by Exercise 1.18 means that (iA)∗ = ıA∗ = −iA∗ is the generator of the C0-
group (T (t)∗)t∈R = (T (−t))t∈R. On the other hand, a direct computation shows that −iA is the generator of
(T (−t))t∈R, hence −iA∗ = −iA. Accordingly, A = A∗. �

3.2. Long-time results for C0-semigroups

While the Hille–Yosida theorem in its general version is a fundamental tool for the proofs of abstract gener-
ation results, it relies on a countable family of estimates which, in general, can only be checked in very special
cases. One is – of course – the contractive case. Another one has been found in 1999 by Gomilko.

Theorem 3.12 (Gomilko 1999). Let X be a Banach space and A be a densely defined, closed operator on X.
Assume that λ ∈ ρ(A) for all real λ > 0 and that moreover the Gomilko condition

δ

∫
δ+iR

|
〈
R(λ,A)2x, y

〉
|dλ ≤M,

holds for all δ > 0, x ∈ X and y ∈ X ′ and some M that can depend on x, y but not on δ. Then A is the generator
of a C0-semigroup (T (t))t≥0 such that

‖T (t)‖ ≤ Me

2π
, t ≥ 0.

(Here 〈·, ·〉 denotes the duality between X and X ′).

Proof. First of all, observe that the Gomilko conditions is effectively a condition on the integrability of the
derivative of the resolvent operator, due to the well-known relation

d

dλ
R(λ,A) = −R(λ,A)2, λ ∈ ρ(A).

Take δ > 0, which we will fix later. It is well-known that the resolvent operator is holomorphic (hence weakly
holomorphic) in the resolvent set, and moreover the Gomilko condition implies integrability of the complex
function

λ 7→
〈
R2(λ+ δ, A)x, y

〉
on the axis δ + iR and in fact on the whole halfplane {z ∈ C : Rez ≥ 0}, for all given x ∈ X and y ∈ X ′.
Therefore, it is possible to apply Cauchy’s integral formula and obtain for all x ∈ X and all y ∈ X ′〈

R2(µ,A)x, y
〉

=
1

2πi

∫
δ+iR

〈
R2(λ,A)x, y

〉
µ− λ

dλ, µ > 0, δ ∈ (0, µ),

or rather, as already observed,〈
d

dλ
R(µ,A)x, y

〉
=

1

2πi

∫
δ+iR

d

dλ
〈R(λ,A)x, y〉 dλ

λ− µ
, µ > 0, δ ∈ (0, µ),

and in fact, by a well-known formula in function theory, for all k ∈ N〈
dk

dλk
R(µ,A)x, y

〉
=

1

2πik

∫
δ+iR

d

dλ
〈R(λ,A)x, y〉 dλ

(λ− µ)k
, µ > 0, δ ∈ (0, µ).
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This was the main idea in the proof; the remainder mostly consists of convenient estimating. In fact, for all
µ > 0 and all δ ∈ (0, µ)∣∣∣∣〈 dk

dλk
R(µ,A)x, y

〉∣∣∣∣ ≤ 1

2πk

∫
δ+iR

∣∣∣∣ ddλ 〈R(µ,A)x, y〉
∣∣∣∣ dλ

|λ− µ|k

≤ 1

2πk(µ− δ)k

∫
δ+iR

∣∣∣∣ ddλ 〈R(λ,A)x, y〉
∣∣∣∣ dλ

≤ M

2πkδ(µ− δ)k
,

where we have used the fact that µ− δ ≤ |µ− λ| for all λ ∈ δ + iR. Since δ is still arbitrary, we can let δ = µ
k+1

and deduce ∣∣∣∣〈 dk

dλk
R(µ,A)x, y

〉∣∣∣∣ ≤ M

2π µk
k+1 (µ− µ

k+1 )k

=
M

2π µk
k+1µ

k(1− 1
k+1 )k

=
M

2πµk+1 k
k+1 ( k

k+1 )k

=
M

2πµk+1( k
k+1 )k+1

=
M

2πµk+1(1− 1
k+1 )k+1

=
M

2πµk+1

(
1− 1

k + 1

)−(k+1)

≤ Me

2πµk+1
.

by monotony of the above sequence that converges to e. In other words∣∣〈µk+1R(µ,A)k+1x, y
〉∣∣ ≤ Me

2π
for all x ∈ X, y ∈ X ′,

and hence by the uniform boundedness principle

(3.3)
∥∥µk+1R(µ,A)k+1

∥∥ ≤ Me

2π
for all k = 1, 2, . . . .

By the general Hille–Yosida Theorem, it is sufficient to check that this estimate holds also for k = 0. We make
again use of (3.2) in order to obtain for all µ1, µ2 and all x ∈ X

(3.4) R(µ1, A)x−R(µ2, A)x =

∫ µ1

µ2

d

dλ
R(λ,A)xdλ =

∫ µ2

µ1

R(λ,A)2xdλ,

whence

‖R(µ1, A)x−R(µ2, A)x‖ ≤
∫ µ2

µ1

‖R(λ,A)2x‖dλ ≤ Me

2π

∫ µ2

µ1

1

λ2
‖x‖dλ =

Me

2π

(
1

µ1
− 1

µ2

)
‖x‖

for all x ∈ X, which tends to 0 as µ1, µ2 → ∞. Hence, by the Cauchy criterium we deduce that for all x ∈ X
R(µ,A)x converges as µ→∞, and we denote by Rx this limit.

Let us show that Rx = 0 for all x ∈ X. In fact, if x ∈ D(A), then R(λ,A)x = R(λ,A)2(λ−A)x, so that

‖Rx‖ = lim
λ→∞

‖R(λ,A)x‖ ≤ lim
λ→∞

Me

2π

1

λ2
‖(λ−A)x‖ ≤ lim

λ→∞

Me

2π

1

λ2
(λ‖x‖+ ‖Ax‖) = 0.
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Now, letting µ2 →∞ in (3.4) we deduce that

R(µ1, A)x = lim
µ2→∞

R(µ1, A)x−R(µ2, A)x =

∫ ∞
µ1

R(λ,A)2xdλ,

and therefore

‖R(µ1, A)x‖ ≤
∫ µ1

∞
‖R(λ,A)2x‖dλ ≤

∫ ∞
µ1

Me

2πλ2
‖x‖dλ =

Me

2πµ1
‖x‖,

i.e.,

‖λR(λ,A)‖ ≤ Me

2π
.

This is the sought-after Hille–Yosida estimate for k = 0, and we have hence concluded the proof. �

Proposition 3.13. Let X be a reflexive Banach space. Then to each uniformly bounded C0-semigroup (T (t))t≥0

on X we can associate a generalised limit, i.e., a bounded linear operator P := LIMt→∞T (t) such that

(1) LIMt→∞T (t) = limt→∞ T (t) for all weakly convergent C0-semigroups;
(2) LIMt→∞(T +S)(t) = LIMt→∞T (t) + LIMt→∞S(t) for all uniformly bounded C0-semigroups (T (t))t≥0,

(S(t))t≥0;
(3) LIMt→∞T (t+ s) = LIMt→∞T (t) for all uniformly bounded C0-semigroups (T (t))t≥0.
(4) lim inft→∞〈T (t)x, x′〉 ≤ LIMt→∞〈〈T (t)x, x′〉 ≤ lim supt→∞〈T (t)x, x′〉 for all uniformly bounded C0-

semigroups (T (t))t≥0 and all x ∈ X, x′ ∈ X ′.

Proof. Observe that L∞(R+, X) is a Banach space. Hence, it is possible to define a Banach limit on
L∞(R+, X) by considering the real-valued mappings

R+ 3 t 7→ 〈T (t)x, x′〉 ∈ C, x ∈ X, x′ ∈ X ′,
cf. [7, § 4.2]. For fixed x ∈ X this defines a functional on X ′, i.e., LIMt→∞T (t)x is an element of X ′′ = X. �

Of course, being based on the Hahn–Banach theorem the Banach limit of a bounded semigroup is useful
only at a theoretical level: one usually desires more (and more constructive) information.

Definition 3.14. Let X be a Banach space and (T (t))t≥0 a C0-semigroup on X. Define

C(r)x :=
1

r

∫ r

0

T (s)x, x ∈ X, r > 0.

These operators are called Cesaro means of (T (t))t≥0.

The idea is that while a C0-semigroup may be oscillating even very fast, averaging it over time may “reg-
ularise” its behaviour and show a convergence pattern. This is related to old ideas in thermodynamics and
statistical mechanics (think of the properties of a Brownian motion).

To begin with, we recall a result which is a consequence of an extension of the Spectral mapping theorem
to the case of arbitrary generators of semigroups: this is a wide topic and we will not go into details and refer
to [3, Cor. IV.3.8] instead.

Lemma 3.15. Let X be a Banach space and (T (t))t≥0 a C0-semigroup on X with generator A. Consider
the fixed space

fix(T (t))t≥0 := {x ∈ X : T (t)x = x for all t ≥ 0}
of (T (t))t≥0. Then

KerA = fix(T (t))t≥0.

We are ready to state some elementary properties of the Cesaro means.

Lemma 3.16. Let X be a Banach space and (T (t))t≥0 a C0-semigroup on X with generator A. Then the
following assertions hold.
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(a) For all r > 0 and all x ∈ X the vector C(r)x belongs to the closed convex hull of the orbit of x, i.e., of
{T (t)x : t ≥ 0}.

(b) For all r, t > 0 one has

C(r)(Id− T (t)) = (Id− T (t))C(r) =
1

r
(Id− T (r))

∫ t

0

T (s)ds.

(c) Assume that limr→∞ ‖T (r)‖ = 0. Then limr→∞ C(r)x ∈ fix(T (t))t≥0, whenever such a limit exits.

Proof. In order to show (a), observe that this is just the vector-valued analogon of a classical property of
Riemann integrals (it is essentially the integral version of the mean value theorem) and can be proved likewise;
while (b) follows from (SEMIGR).

In order to prove (c), let y := limr→∞ C(r)x. We have to show that T (t)y = y, i.e., that (Id − T (t))y = 0
for all t ≥ 0. One has for all (fixed) t ≥ 0

(Id− T (t))y = lim
r→∞

(Id− T (t))C(r)x

= lim
r→∞

1

r
(Id− T (r))

∫ t

0

T (s)xds

= lim
r→∞

1

r

∫ t

0

T (s)xds− lim
r→∞

1

r
T (r)

∫ t

0

T (s)xds,

whence

‖(Id− T (t))y‖ ≤ lim
r→∞

1

r

∥∥∥∥∫ t

0

T (s)xds

∥∥∥∥− lim
r→∞

‖T (r)‖
r

∥∥∥∥∫ t

0

T (s)xds

∥∥∥∥ = 0,

i.e,

(Id− T (t))y = lim
r→∞

(Id− T (t))C(r)x = 0,(3.5)

as we wanted to prove. �

Definition 3.17. Let X be a Banach space and (T (t))t≥0 a C0-semigroup on X. Then (T (t))t≥0 is called mean
ergodic if the Cesaro means C(r)x converge as r →∞ for all x ∈ X, and in this case the operator

P : X 3 x 7→ lim
r→∞

C(r)x ∈ X

is called mean ergodic projector of the semigroup.

Lemma 3.18. Let X be a Banach space and (T (t))t≥0 a mean ergodic C0-semigroup on X. If limr→∞ ‖T (r)‖ =
0, then the mean ergodic projector is an orthogonal projector that commutes with each operator of the semigroup.
Its range is KerA and its null space is RgA.

Proof. Let t ≥ 0. One has

P − T (t)P = lim
r→∞

(Id− T (t)C(r) = 0,

by Lemma 3.16.(b) and in particular by 3.5, and therefore also

P − PT (t) = lim
r→∞

C(r)(Id− T (t)) = 0.

Accordingly, for all r > 0

P = T (r) = PC(r),

and hence

P = lim
r→∞

PC(r) = P 2,

by definition. Accordingly, P is a projector. Its range is KerA by Lemma 3.16.(c). In order to show that P is
an orthogonal projector, it suffices to show that its null space is orthogonal to fix(T (t))t≥0.
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In fact, observe that by Lemma 3.16.(b) each orbit of (Id − T (t))t≥0 is contained in the null space of P ,
hence also the span of all orbits of (Id − T (t))t≥0, and (due to closedness of KerP ) also the closure O of such
a span, i.e., O ⊂ KerP . We are going to show that the set O actually agrees with KerP , thus concluding the
proof.

Assume to this aim that KerP 6⊂ O, i.e., assume that there exists z ∈ KerP \ O. By the Hahn–Banach
Theorem there exists some functional x′ that separates O (and in particular the set of all elements of orbits of
(Id− T (t))t≥0, i.e., of all vectors of the form x− T (t)x, for some x ∈ X and some t ≥ 0) from {z}.

However, if 〈x− T (t)x, x′〉 = 0 for all x ∈ X and all t ≥ 0, then

0 = 〈x− T (t)x, x′〉 = 〈x, x′ − T (t)∗x′〉, x ∈ X, t ≥ 0,

hence x′ = T (t)∗x′ for all t ≥ 0, i.e., x′ is a fixed point of (T (t)∗)t≥0, where T ∗ denotes the Banach space adjoint
of an operator T . Accordingly,

〈x, x′〉 = 〈x, T (t)∗x′〉 = 〈T (t)x, x′〉, x ∈ X, t ≥ 0,

hence in particular

〈x, x′〉 =
1

r

∫ r

0

〈T (s)x, x′〉ds = 〈C(r)x, x′〉, x ∈ X, r ≥ 0.

Thus, in particular 〈x, x′〉 = 0 for all x ∈ KerP , i.e., for all x such that Px = limr→∞ C(r)x = 0 – and in
particular for x = z. This yields a contradiction. �

Proposition 3.19. Let X be a Banach space and (T (t))t≥0 a uniformly bounded C0-semigroup on X with
generator A. Denote by (C(r))r≥0 the associated Cesaro means. Then the following assertions are equivalent.

(i) (T (t))t≥0 is mean ergodic (i.e., (C(r))r≥0 converges strongly).
(ii) (C(r))r≥0 converges weakly.

(iii) For each x ∈ X there is a monotone increasing unbounded sequence (rn)n∈N such that (C(rn)x)n∈N has a
weak accumulation point.

(iv) For each x ∈ X the closed convex hull of the orbit {T (t)x : t ≥ 0} is not disjoint from the fixed space of
(T (t))t≥0.

(v) The fixed space of (T (t))t≥0 separates the fixed space of the dual semigroup (T (t)∗)t≥0, i.e, for any two
different x′, y′ ∈ KerA∗ there exist x ∈ KerA such that 〈x, x′〉 6= 〈x, y′〉.

In the proof we will need the following elementary fact.

Lemma 3.20. Let X be a Banach space. Then all convex closed subsets of X are also weakly closed.

Proof. Let A be a convex closed subset of X. For any x ∈ X \A there is, by the Hahn–Banach Theorem,
some φx ∈ X ′ that separates A and {x}, say, such that φx(A) ≤ 0 and φ(x) > 0, i.e., there is a weakly closed
set φ−1

x (∞, 0] such that A ⊂ Cx but x 6∈ Cx. Then

A =
⋂

x∈X\A

φ−1
x (∞, 0]

is weakly closed. �

Proof of Proposition 3.19. The implications (i)⇒(ii)⇒(iii) are obvious.
To prove (iii)⇒(iv), let x ∈ X. Take a monotone unbounded sequence (rn)n∈N as in (ii) and take some y

that is element of the weak closure of {C(rn)x : n ≥ m} for all m ∈ N. Due to weak-continuity of the semigroup,
we also have that, for all t ≥ 0, y − T (t)y is element of the weak closure of

{(Id− T (t))C(rn)x : n ≥ m} =

{
1

rn
(Id− T (t))

∫ t

0

T (s)xds : n ≥ m
}
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(the equality being valid due to Lemma 3.16) and hence in the ball with center 0 and radius

1

rm
(tM + tM2)‖x‖,

for all m ∈ N (here we have denoted by M the uniform bound {T (t)x : t ≥ 0}). In other words,

‖y − T (t)y‖ ≤ 1

rm
(tM + tM2)‖x‖ for all m ∈ N,

for a divergent sequence (rm)m∈N, i.e., y = T (t)y. We have proved that y belongs to the fixed space of (T (t))t≥0:
It remains to observe that because by Lemma 3.16.(a) C(rn)x belongs to the closed convex hull of {T (t)x : t ≥ 0},
which (as a convex set) is therefore also weakly closed, by Lemma 3.20. Hence, also each element of the weak
closure of {C(rn)x : n ≥ m} for all m ∈ N (and in particular y) are element of this weakly closed set.

In order to show that (v) holds, take two different vectors x′, y′ ∈ KerA′ and let x0 be a vector in X that
separates them. In order to find a vector in KerA that also separates them, observe that by (iv) we can take
z that is both in the closed convex hull of the orbit {T (t)x0 : t ≥ 0} and in KerA. Since x′, y′ are in the fixed
space of (T (t)∗)t≥0, one has

〈T (t)x0, x
′〉 = 〈x0, T (t)∗x′〉 = 〈x0, x

′〉 for all t ≥ 0,

and similarly 〈T (t)x0, y
′〉 = 〈x0, y

′〉 for all t ≥ 0, and hence x′, y′ are constant also on the closed convex hull of
the orbit {T (t)x0 : t ≥ 0}, and in particular 〈z, x′〉 = 〈x0, x

′〉 and 〈z, y′〉 = 〈x0, y
′〉, hence z ∈ KernA separates

x′, y′ because so does x0.
Finally, let us show that (v)⇒(i). First, observe that the Cesaro means C(r)y converge as r →∞ both for

y in the fixed space of (T (t))t≥0 (of course) and for y in some orbit, i.e., for y of the form y = x− T (t)x, t ≥ 0,
x ∈ X, since by Lemma 3.16.(b)

lim
r→∞

‖C(r)(x− T (t)x)‖ ≤ lim
r→∞

1

r
‖(Id− T (t))‖

∫ t

0

‖T (s)x‖ds = 0,

by boundedness of (T (t))t≥0. hence the Cesaro means C(r)y converge as r → ∞ for all y ∈ X0, where X0 is
the direct sum of the fixed space of (T (t))t≥0 and of the span of the set of all orbits of (Id− T (t))t≥0. Now, we
are going to prove that X0 is dense in X: this will yield that, by density, the Cesaro means C(r)y converge as
r →∞ for all y ∈ X, i.e., that (T (t))t≥0 is mean ergodic.

To proved the claimed density result, take x′ ∈ X ′ such that

〈x, x′〉 = 0 for all x ∈ X0.

If we can prove that then x′ = 0, then the assertion follows. In fact, it suffices to observe that because

0 = 〈x− T (t)x, x′〉 = 〈x, (Id− T (t)∗)x′〉 for all x ∈ X, t ≥ 0,

x′ belongs to the fixed space of (T (t)∗)t≥0. Now, by assumption the fixed space of (T (t))t≥0 separates the fixed
space of (T (t)∗)t≥0, and in particular x′ from the functional of constant value 0: if there would hold x′ 6= 0, then
there should exist x in the fixed space of (T (t))t≥0 such that 〈x, x′〉 6= 〈x, 0〉 = 0. But this is impossible, because
the fixed space of (T (t))t≥0 is contained in X0, which in turn is contained in the null space of x′ by assumption.
This concludes the proof. �

Corollary 3.21. Let X be a reflexive Banach space and (T (t))t≥0 a uniformly bounded C0-semigroup on X.
Then (T (t))t≥0 is mean ergodic.

Proof. By the Banach–Alaoglu Theorem, the bounded set {T (t) ∈ L(X) : t ≥ 0} is relatively compact in
the weak operator topology. Now, it suffices to observe that condition (iii) in Theorem 3.19 is satisfied. �
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Exercise 3.22. Let α > 0. Show that a C0-semigroup (T (t))t≥0 on a Banach space X is α-periodic, i.e.,

T (t+ α) = T (t) for all t ≥ 0,

provided that each eigenvalue of its generator A is contained in the set 2πi
α Z and the correspondent eigenvectors

are total in X, i.e., their span is dense in X. (Hint: Take x 6= 0, t and n such that 2πin
α ∈ σp(A), consider the

function Q : s 7→ e
2πin
α (t−s)T (s)x and use an argument similar to that used to prove Lemma 1.22.)

Exercise 3.23. Let X be a Banach space and (T (t))t≥0 be a C0-semigroup on X with generator A. Show that
if λ ∈ σp(A), then etλ ∈ σp(T (t)). (Hint: Show that the semigroup rescaled by λ is constant.)

Semigroup theory is not convenient for applications that require an exact knowledge of solutions to evolution
equations. Instead, one of its main features is the possibility of investigating several qualitative properties of
solutions, like convergence to stationary solutions or invariance of relevant subsets of the state space X.

Proposition 3.24. Let X be a Banach space and (T (t))t≥0 be a C0-semigroup of contractions on X with
generator A. Let C be a closed conves subset of X. Then T (t)C ⊂ C for all t ≥ 0 if and only if λR(λ,A)C ⊂ C
for all real λ > ω.

While we only state and prove this theorem in the contractive case, but refer to [8] for an extension to the
general case.

Proof. Let T (t)C ⊂ C for all t ≥ 0. Let λ > 0 and x ∈ X. By Lemma 3.1 one has

λR(λ,A)x =

∫ ∞
0

λe−λsT (s)xds.

If λR(λ,A)C 6⊂ C, then by the Hahn–Banach theorem C and λR(λ,A)C can be separated, i.e., there exist α ∈ R
and a functional φ ∈ X ′ such that

Re 〈λR(λ,A)x, φ〉 > α ≥ Re 〈y, φ〉 for all y ∈ C.
Taking in particular y := T (t)x we obtain

Re 〈λR(λ,A)x, φ〉 > α =

∫ ∞
0

λe−λsxds

≥ Re

〈∫ ∞
0

λe−λsT (t)x, φ

〉
≥ Re 〈λR(λ,A)x, φ〉 .

Conversely, let λ > ω. If λR(λ,A)C ⊂ C, then λnR(λ,A)nC ⊂ C for all n ∈ N, and by (3.2) we obtain that also

T (t)x = lim
n→∞

n

t
R
(n
t
,A
)n

x ∈ C,

due to closedness of C. �

Exercise 3.25. Let H1, H2 be Hilbert spaces and T be a bounded linear operator from H1 to H2.

(1) Show that the graph of T , i.e., {(f, g) ∈ H1 ×H2 : Tf = g} is a closed subspace of H1 ×H2.
(2) Prove that the subspace of H1×H2 orthogonal to the graph of T is given by {(f, g) ∈ H1×H2 : f = −T ∗g}.
(3) Show that both I + TT ∗ and I + T ∗T are invertible.
(4) Conclude that the orthogonal projector of H1 ×H2 onto the graph of T is given2 by the operator matrix(

(I + T ∗T )−1 T ∗(I + TT ∗)−1

T (I + T ∗T )−1 Id−(I + TT ∗)−1

)
.

2This has been first obtained in 1950 by mathematician, quantum physicist and early computer scientist John von Neumann
([10]) and can be even generalised to the case of an unbounded linear operator O, under the sole assumption that the graph of O
be closed.
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Exercise 3.26. Let H be a Hilbert space and (T (t))t≥0 be a C0-semigroup on H with generator A and associated
sesquilinear form (a, V ). Let S be a further bounded linear operator on H. Show that T (t) commutes with S for
each t ≥ 0 if and only if the semigroup (

T (t) 0
0 T (t)

)
, t ≥ 0,

leaves the graph of S invariant. Deduce from Exercise 3.25 a criterion on A for commutation of T (t) and S.
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