

UNIVERSITÄT ULM

Abgabe: Dienstag, 27.06.2017

Prof. Dr. Friedmar Schulz Marius Müller Sommersemester 2017 Punktzahl: 23

Übungen Elemente der Funktionentheorie: Blatt 3

This week, we discovered some unbelievably important concepts: For example series and their convergence behavior, power series and the exponential function as well as the complex logartihm. Another important tool - which we are going to use later - is the Arzéla-Ascoli Theorem.

- **19.** (a) Decide whether or not the given logarithms are well-defined and if so, compute them : (2) $\log i, \log(-1), \log(-1 \sqrt{3}i)$
 - (b) Find all complex numbers $i^{i \log i}$. How many are there ?
 - (c) For the rest of the problem we define: $\sqrt{w} := \exp\left(\frac{1}{2}\log w\right)$ for all $w \in \mathbb{C} \setminus \mathbb{R}_{<0}$. Show that (2) the principal branch or the log satisfies $\sqrt{w} = z_w$, where z_w is the number defined in Problem 10 on Worksheet 1.
 - (d) Show: $\overline{\sqrt{z}} = \sqrt{\overline{z}}$.

(2)

(2)

(5)

(1)

- (e) Find a power series expansion of $f : \mathbb{C} \setminus \mathbb{R}_{\leq 0} \to \mathbb{C}, f(z) := \frac{\sin \sqrt{z}}{\sqrt{z}}$ and show that this series (2) converges indeed on the entire domain of definition. Does the expansion make sense for $z \in \mathbb{R}_{\leq 0}$ as well ?
- (f) Show that $\sin(x+iy) = \sin(x)\cosh(y) + i\sinh(y)\cos(x)$. Conclude that $\sin(x+iy) = 0$ if and (3) only if $x + iy = k\pi$ for some $k \in \mathbb{Z}$. Find all complex roots of $\sinh : \mathbb{C} \to \mathbb{C}$.
- (g) Show that for arbitrary $x \in \mathbb{R}$ and $n \in \mathbb{N}$

$$\cos^{n}(x) = \frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k} \cos((n-2k)x)$$

- **20.** Let $K \subset \mathbb{C}$ be compact (f_n) a sequence of continuous functions defined on K, that converges (4) uniformly to f. Show that in this case, (f_n) is uniformly bounded and equicontinuous.
- **21.** (a) BONUS: Let $(x_n) \subset \mathbb{C}$ be a sequence. Show that $x_n \to x$ in (\mathbb{C}, d) if and only if every sequence (3*) possesses a subsequence, that converges to x. Give an example for a divergent sequence, each subsequence of which possesses a convergent subsequence .
 - (b) BONUS: Let (f_n) be a uniformly bounded and equicontinuous sequence, that converges to $f = (3^*)$ pointwise. Show that f_n converges indeed uniformly to f.
- **22.** Consider the following sequence (f_N) of complex-valued functions

$$f_N(z) = \sum_{n=3}^N \frac{(-1)^n}{n+z}.$$

Show that f_N converges uniformly on $D := \{z \in \mathbb{C} | 1 < |z| < 2\}$. Can the Weierstrass-M-test be applied to the series

$$\sum_{n=3}^{\infty} \frac{(-1)^n}{n+z}?$$