Partielle Differenzialgleichungen WS 2010/11Musterlösung zu Blatt 11

1. $iii) \Rightarrow i), ii)$: Sei $y \in A_2$. Dann ist $P_1y = P_1P_2y = P_2P_1y \in A_2$. ii) folgt auf gleiche Weise. $i) \Rightarrow ii)$: Sei $x \in A_1$, also $x = P_1x$. Es gilt:

$$0 \le ||P_1 P_2 x - P_2 x||^2 = \langle P_1 P_2 x - P_2 x, P_1 P_2 x - P_2 x \rangle$$

= $\langle P_1 P_2 x - P_2 P_1 x, P_1 x - P_2 P_1 x \rangle + \langle P_1 P_2 x - P_2 x, P_1 P_2 x - P_1 x \rangle \le 0.$

Also $P_2x = P_1P_2x \in A_1$. Und ebenso $ii) \Rightarrow i$). $i), ii) \Rightarrow iii$) ist falsch. Gegenbeispiel: Sei $A_1 := \{(x, y) \in \mathbb{R}^2 : 0 \le x, y \le 1\}$ und $A_2 := A_1 \cup \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 1 \le y \le 2 - |x|\}$, z := (1, 2). Dann sind i) und ii) erfüllt, aber $P_2P_1z = (1, 1)$ und $P_1P_2z = (1/2, 1)$.

- 2. (a) Jede Konvexkombination von Elementen f und g aus A₁ bzw. A₂ ist mindestens an den Stellen gerade bzw. positv, an denen sowohl f als auch g gerade bzw. positiv sind, also fast überall. Eine Cauchyfolge (fn)n∈N in L²(R) konvergiert fast überall punktweise gegen eine Funktion f ∈ L²(R). Sei nun fn ∈ A₁ bzw. fn ∈ A₂ für alle n ∈ N. Sei Nf die Ausnahmemenge, auf der fn nicht punktweise konvergiert, und seien Nn, n ∈ N, die Mengen, auf denen fn nicht gerade bzw. nicht positiv ist, dann hat N := Nf ∪ (∪n∈NNn) Maß Null und die Grenzfunktion f ist zumindest außerhalb von n gerade bzw. positiv.
 - (b) Sei $f \in L^2(\mathbb{R})$ und $g \in A_1$, o.B.d.A. sei g überall gerade. Dann ist $\int_{\mathbb{R}} (g(x) f(x))^2 dx = \int_0^\infty (g(x) f(x))^2 + (g(x) f(-x))^2 dx$ und der Ausdruck $(g(x) f(x))^2 + (g(x) f(-x))^2$ wird punktweise durch $g = P_{A_1} f(x)$ minimiert. Sei $f \in L^2(\mathbb{R})$ und $g \in A_2$, o.B.d.A. sei g überall positiv. $(g(x) f(x))^2$ wird punktweise durch $g(x) = P_{A_2} f(x)$ minimiert.
- 3. (b) Definiere $y=P_yx$ und z=x-y. Sei $u\in Y$ beliebig. Dann gilt $Re\langle z,u\rangle=Re\langle x-y,(y+u)-y\rangle\leq 0$ und $Re\langle z,u\rangle=Re\langle x-y,y-(y-u)\rangle\geq 0$, also ist $Re\langle z,u\rangle=0$ und ebenso $Im\langle z,u\rangle=Re\langle z,iu\rangle=0$, we shalb $z\in Y^\perp$. Weiter gilt für alle $w\in Y^\perp$: $Re\langle x-z,w-z\rangle=Re(\langle y,w\rangle+\langle y-0,y-x\rangle)\leq 0$, also $z=P_{Y^\perp}x$. Aus x=y'+z' mit $y'\in Y$ und $z'\in Y^\perp$ folgt $0=\|y+z-y'-z'\|^2=\|y-y'\|^2+\|z-z'\|^2$, also Eindeutigkeit.
 - (a) Sei $0 \neq x \in H$ beliebig und $0 \neq a \in Y$. Dann ist $\frac{\|P_Y x\|}{\|x\|} = \frac{\|P_Y x\|}{\|P_Y x + P_{Y^{\perp}} x\|} \leq 1$ und $\frac{\|P_Y a\|}{\|a\|} = 1$, also $\|P_Y\| = 1$. Ferner folgt aus (b) sofort: $P_Y x = 0 \Leftrightarrow x \in Y^{\perp}$.
- 4. Wir suchen eine Lösung der Gestalt v(t)w(x). Nach Einsetzen in die Wärmeleitungsgleichung erhält man die Bedingung $\frac{v_t(t)}{v(t)} = -\mu = \frac{w_{xx}(x)}{w(x)}$, was zu den gewöhnlichen Dfgl. $v_t(t) = -\mu v(t)$ mit allgemeiner Lösung $v(t) = \alpha_\mu e^{-\mu t}$ und $w_{xx} = -\mu w(x)$ mit Randbedingungen w(0) = 0 und -w(l) = w'(l) führt. Nach Aufgabe 4 von Blatt 10 muss $\mu > 0$ sein $(\mu = 0$ liefert die triviale Lösung). D.h. die allgemeine reelle Lösung ist $w(x) = A \sin(\sqrt{\mu}x) + B \cos(\sqrt{\mu}x)$. Aus w(0) = 0 folgt B = 0 und aus -w(l) = w'(l) folgt $-\sin(\sqrt{\mu}l) = \sqrt{\mu}\cos(\sqrt{\mu}l)$, also $-\sqrt{\mu} = \tan(\sqrt{\mu}l)$. Letztere Gleichung hat genau eine Lösung $\sqrt{\mu_k}$ in jedem Intervall $[k(\frac{\pi}{2l}), (k+2)(\frac{\pi}{2l})]$ mit $k \ge 1$ ungerade. D.h. man erhält die Reihendarstellung $\sum_k \alpha_{\mu_k} e^{-\mu_k t} \sin(\sqrt{\mu}x)$.