

Universität Ulm

Besprechung: 19.01.15, 13 Uhr E18, HeHo22 Prof. Dr. A. Dall'Acqua A. Spener WS 14/15

Keine Punkte

Übungen zur Vorlesung Glatte Mannigfaltigkeiten Blatt 10

- **1.** Es sei $\mathbb{RP}^n := \{V \subset \mathbb{R}^{n+1} | V \text{ ist ein eindimensionaler Unterraum}\}.$
 - (i) Definiere für $x, y \in \mathbb{R}^{n+1} \setminus \{0\}$:

$$x \sim y : \iff \exists \lambda \neq 0 \in \mathbb{R} : x = \lambda y.$$

Zeige: Dies ist eine Äquivalenzrelation und es gilt $\mathbb{R}^{n+1}/\sim = \mathbb{RP}^n$.

(ii) Für ein Element $[x] \in \mathbb{RP}^n$ schreiben wir $[(x_1, \dots, x_{n+1})] =: [x_1, \dots, x_{n+1}]$. Ferner definieren wir $U_1, \dots, U_{n+1} \subset \mathbb{RP}^n$ durch

$$U_i := \{ [x_1, \dots, x_{n+1}] \mid x_i \neq 0 \}$$

und

$$\varphi_i: U_i \to \varphi(U_i), [x_1, \dots, x_{n+1}] \mapsto \frac{1}{x_i}(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}).$$

Zeige, dass φ_i wohldefiniert und bijektiv ist.

- (iii) Zeige, dass die Kartenwechsel $\varphi_j \circ \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$ glatte Diffeomorphismen sind und folgere, dass \mathbb{RP}^n eine glatte n-dimensionale Mannigfaltigkeit ist.
- **2.** Klassifiziere mit Hilfe von Aufgabe 1. alle $G_k(\mathbb{R}^n)$ für $1 \leq n \leq 3, 0 \leq k \leq n$.
- **3.** Bonusaufgabe: Ist \mathbb{RP}^1 orientierbar? Was ist mit \mathbb{RP}^2 ?