

Universität Ulm

Abgabe und Besprechung: 09.02.16, 16 Uhr H12 Dr. F. Stoffers A. Spener WS 15/16

 $10 + 12^*$ Punkte

Übungen zur Vorlesung Analysis III

Blatt 08

Hinweis: Zum Bestehen der Vorleistung müssen insgesamt 75 Punkte erreicht werden.

- **32.** Es seien $a < b \in \mathbb{R}$. Finde eine vollständige Orthonormalfolge auf $L^2([a,b])$. (2*)
- 33. Bestimme die Fouriertransformierte \hat{f}_a für folgende Funkionen $f_a : \mathbb{R} \to \mathbb{R}$ für a > 0: (6) Bemerkung: In beiden Fällen ist $f_a \notin \mathcal{S}(\mathbb{R})$, da beide Funktionen nicht glatt sind, aber \hat{f}_a ist dennoch wohldefiniert.
 - (i) $f_a: x \mapsto \chi_{[-a,a]}(x)$.
 - (ii) $f_a: x \mapsto e^{-a|x|}$.
- **34.** Im Folgenden seien $f, g \in \mathcal{C}_c^{\infty}(\mathbb{R})$. Drücke die Fouriertransformierten der Funktionen F_i (4) durch \hat{f} und \hat{g} aus:
 - (i) $F_1: \mathbb{R} \to \mathbb{R}, x \mapsto f(ax+b), a, b \in \mathbb{R}, a \neq 0.$
 - (ii) $F_2: \mathbb{R} \to \mathbb{R}, x \mapsto f(x) \cdot e^{2\pi i x b}, b \in \mathbb{R}.$
 - (iii) $F_3: \mathbb{R} \to \mathbb{R}, x \mapsto (f * g)(x).$
- **35.** Wir betrachten die Gleichung

$$u(x) - u''(x) = e^{-|x|}, \qquad (x \in \mathbb{R}),$$
 (1)

für eine Funktion $u \colon \mathbb{R} \to \mathbb{R}$.

(i) Wir nehmen an, dass $\mathcal{F}(u) =: \hat{u}$ wohldefiniert ist. Verwende die Fouriertransformierte (2*) der Gleichung (1) um zu zeigen, dass gilt:

$$\hat{u}(\xi) = \sqrt{\frac{2}{\pi}} \left(\frac{1}{1 + \xi^2} \right)^2.$$

Hinweis: In **33.**(ii) wurde gezeigt: $\mathcal{F}(x \mapsto e^{-|x|})(\xi) = \sqrt{\frac{2}{\pi}} \frac{1}{1+\xi^2}$.

(ii) Berechne $\mathcal{F}^{-1}(\hat{u})$.

Hinweis: Zeige zunächst mit der Inversionsformel, dass $\sqrt{2\pi}\mathcal{F}^{-1}(f\cdot g)=\mathcal{F}^{-1}(f)*\mathcal{F}^{-1}(g)$ gilt (mit $f,g\in\mathcal{C}_c^\infty$). Dies darf auch für die hier auftretenden Funktionen verwendet werden.

(iii) Überprüfe, inwiefern $u := \mathcal{F}^{-1}(\hat{u})$ eine Lösung von (1) darstellt. Welche Regularität (4*) besitzt u?

Hinweis: Es ist

$$\int_{\mathbb{R}} e^{-|x-y|-|y|} \, \mathrm{d}y = \begin{cases} (1-x)e^x & x \le 0, \\ (1+x)e^{-x} & x > 0. \end{cases}$$