Musterlösung Serie 8

1. Aufgabe

\[f : \mathbb{R} \rightarrow \mathbb{R}, \quad f(x) = 2x^2 - 4x + 16 \]

\[= 2 \left[\left(x - \frac{1}{2} \right)^2 + \frac{7}{4} \right] \]

Dieser Darstellung entnimmt man, dass \(f \) auf \(D_1 = (-\infty, 1] \) streng monoton fallend und auf \(D_2 = [1, \infty) \) streng monoton wachsend ist, dass \(f : D_1 \rightarrow \mathbb{R}, \quad f : D_2 \rightarrow \mathbb{R} \) gilt.

Konstruktion der expliziten Form der Umkehrfunktion:

Setze \(f(x) = y \)

Dann gilt

\[y = 2 \left[\left(x - \frac{1}{2} \right)^2 + \frac{7}{4} \right] \]

\[\frac{y}{2} - 7 = \left(x - \frac{1}{2} \right)^2 \]

\[\frac{\sqrt{y/2 - 7}}{2} = x - \frac{1}{2} \]

\[x = \frac{\sqrt{y/2 - 7}}{2} + \frac{1}{2} \quad (\ast) \]

Definiere \(f_1 := f|_{D_1} \) [d.h. \(f_1 \) ist die Funktion \(f \), die man auf \(D_1 \) einstrahlt]

\(f_2 := f|_{D_2} \) [analoga 1]

Aus (\ast) folgt

\(f_1^{-1} : [1, \infty) \rightarrow (-\infty, 1], f_1^{-1}(x) = -\sqrt{\frac{x}{2} - 7} + 1 \)

\(f_2^{-1} : [1, \infty) \rightarrow [1, \infty), f_2^{-1}(x) = \sqrt{\frac{x}{2} - 7} + 1 \)
2. Aufgabe

(a)

Es wird zunächst per vollständige Induktion gezeigt, daß gilt:

Für eine Abbildung \(f : A \rightarrow B \) zwischen zwei endlichen Mengen \(A \) und \(B \) gilt:

\[
\text{f injectiv } \iff |f(A)| = |A|
\]

\(|A| \) bezeichnet die Anzahl der Elemente der entsprechenden endlichen Menge.

Beweis von "\(\Rightarrow \)"

per Induktion nach der Anzahl der Elemente von \(A \).

Durch Aufstellen

Sei \(|A| = 1 \).

Da \(A \) nur ein Element enthält, ist \(f \) automatisch injectiv, was wir aber nicht nötig haben, da dann

\[|f(A)| = 1 = |A| \]

"\(\Rightarrow \)" ist bewiesen.

Induktional kann

Es gelte die Aussage "\(f \) injectiv \(\Rightarrow |f(A)| = |A| \)"

für alle Mengen \(A \) mit \(|A| = n \).

Sei nun \(A \) eine Menge mit \(|A| = n + 1 \) und \(f : A \rightarrow B \) injectiv. Dann folgt \(A \) wie in (a) mit

\[A = \tilde{A} \cup \{a_0\} \text{ aus, wobei } \tilde{A} \subset A \text{ mit } |\tilde{A}| = n, a_0 \in A, a_0 \notin \tilde{A}.\]

Offenbar ist auch die Einschränkung von \(f \) auf \(\tilde{A} \) injectiv.
Nach Induktionsannahme ist \(|f(A)| = |A| = n \).
Da \(f \) injektiv ist, gilt \(f(a_0) \neq f(a) \) für alle \(a_0, a \in A \). Also ist \(|f(A)| = |f(A)| + 1 = n + 1 \), womit \(|f(A)| = |A| \) gilt. Nach dem Prinzip der vollständigen Induktion ist die Aussage für alle \(n \in \mathbb{N} \) bewiesen.

Beweis von \(\subseteq \) :

Beweis per Kontraktion, d.h. \(\subseteq \) wird gezeigt

\[f \text{ nicht injektiv } \Rightarrow |f(A)| < |A| \]

Da eine Abbildung höchstens genauso viele Bilder wie Ur bilde hat, gilt \(|f(A)| \leq |A| \) für alle \(A \).
\(\subseteq \) sei die Menge der Bilder der Menge \(A = \{a_1, a_2, \ldots, a_n\} \) mit \(f(a_1) = f(a_2) \).

\[\Rightarrow \{ f(a_1), \ldots, f(a_n) \} = \{ f(a_1), \ldots, f(a_n) \} \quad \text{mit } \{ f(a_1), \ldots, f(a_n) \} \]

\[\Rightarrow |f(A)| \leq |A| + 1. \]

(i) Sei jetzt \(M = \{1, 2, \ldots, n+1\} \), \(N = \{1, 2, \ldots, n\} \).

Also gilt eine injektive Funktion \(f: M \rightarrow N \).

Nach dem oben gezeigten gilt dann

\[|f(M)| = |M| = n + 1 \]

Da aber \(f(M) \subseteq N \), ist auch \(|f(M)| \leq n \) folgendermaßen.

Also existiert keine injektive Abbildung

\(f: M \rightarrow N \).
(ii) \textbf{Aug.} Es existiert eine injektive Abbildung \(g: N \rightarrow M \).

Einerseits gilt \(|g(N)| \leq |N| = n \),
andererseits ist \(g(N) = M \) und damit
\(|g(N)| = |M| = n + 1 \).

Damit existiert ein solches \(g \) nicht.

(g) Seien nun \(M \) und \(N \) endliche Mengen mit
\(|M| = |N| \) und \(f: M \rightarrow N \) eine Funktion.

Eigentlich "\(f \) injektiv \(\Rightarrow \) "

Sei also \(f \) injektiv. Dann ist \(|f(M)| = |M| \).
Da \(|M| = |N| \) gilt, folgt \(|f(M)| = |N| \).

Die Funktion "\(f \) surjektiv" bedeutet, dass \(f(M) = N \) gilt. Also ist \(f \) surjektiv.

\(f \) surjektiv \(\Rightarrow \) "\(f \) injektiv".

Sei also \(f \) surjektiv. Dann gilt \(|f(M)| = |N| \),
also auch \(|f(M)| = |N| = |M| \), womit
\(f \) injektiv ist.

Die übrigen Implikationen sind nun trivial:

Sei \(f \) surjektiv. Dann ist \(f \) injektiv, da \(f \) surjektiv und

Sei \(f \) injektiv. Dann ist \(f \) nach Voraussetzung surjektiv.

\(f \) bijectiv.
3. Aufgabe
(a) \(\Rightarrow \):

Sei \(f \) injektiv. Dann gibt es in jedem \(y \in f(M) \) genau ein \(x \) mit \(f(x) = y \). (\(*\))

Definiere nun die Funktion \(g: N \rightarrow M \) durch

\[
g(y) = \begin{cases}
 x & \text{jefalls } y \in f(M) \\
 \text{beliebiges Element aus } M, \text{ falls } y \notin f(M)
\end{cases}
\]

Sei nun \(x \in M \). Dann gilt offenbar \(g(x) \in f(M) \).

Also ist \(g(f(x)) = x \), da für \(y = f(x) \) dasjenige Element aus \(M \) ist, das \((*) \) erfüllt.

\(\Leftarrow \)

Es gebe eine Funktion \(g: N \rightarrow M \) mit

\[
g(f(x)) = x \quad \text{f.a. } x \in M.
\]

Ang. \(f \) ist nicht injektiv. Dann gibt es \(x_1, x_2 \in M \) mit \(x_1 \neq x_2 \) und \(f(x_1) = f(x_2) \).

Dann kann aber nicht

\[
g(f(x_1)) = x_1 \quad \text{und} \quad g(f(x_2)) = x_2
\]

gelten, da \(x_1 \neq x_2 \) und \(g(f(x_1)) = g(f(x_2)) \) gilt.

Also ist \(f \) nicht injektiv.

(b) \(\Rightarrow \):

Sei \(f \) injektiv. Dann gibt es für alle \(y \in N \)

(\text{mimdestens}) ein \(x \in M \) mit \(f(x) = y \). Für jedes \(y \in N \)

(\text{existiert} \(x \)) so gewählt, dass \(f(x) = y \) gilt.

Definiere \(h: N \rightarrow M \) durch \(h(y) := x \), wenn \(y \in N \) und \(x \) gemäß \((\ast) \) gewählt ist. Dann gilt

\[
f(h(y)) = f(x) = y.
\]
Es gebe eine Funktion \(h : N \to M \) mit \(f(h(y)) = y \) für alle \(y \in N \).
Wir zeigen, dass \(f \) dann injektiv sein muss.
Sei also \(y \in N \) vorgegeben. Wähle \(x := h(y) \in M \).
Dann gilt \(f(x) = f(h(y)) = y \). Also ist \(y \in f(M) \)
und \(f \) ist injektiv.

(c) Sei \(f \) bijektiv und \(g : N \to M \) mit \(g(f(x)) = x \)
für \(x \in M \).
Er zeigt: \(g = f^{-1} \).

1. Lösung

Nach Voraussetzung ist \(f^{-1} \) die eindeutige Funktion
von \(N \) nach \(M \), die jedes \(y \in N \), das das
eindeutige Bild eines Elements \(x \in M \) unter \(f \),
"umkehrend" auf das \(x \) abbildet.
Offenbar ist diese Eigenschaft von \(g \) für alle
\(y \in f(M) \) erfüllt wegen \(g(f(x)) = x \) für \(x \in M \).
Da \(f \) bijektiv ist, gilt \(f(M) = N \). Damit
ist \(g = f^{-1} \).

2. Lösung

\(f^{-1} : N \to M \)
Man kann die inverse Funktion durch die folgende
Eigenschaft definieren: \(\forall x \in M \) gilt \(f^{-1}(f(x)) = x \) (1)
und für alle \(y \in N \) gilt \(f(f^{-1}(y)) = y \) (2).
Da (1) von \(f \) erfüllt wird, erfüllt \(f^{-1} \) nach (2):
Sei \(y \in N \). Da \(f \) bijektiv ist, existiert ein eindeutiges \(x \in M \) mit
\(f(x) = y \). Dann gilt \(g(y) = g(f(x)) = x \).
Damit ist \(f(f^{-1}(y)) = f(x) = y \). Insgesamt folgt \(g = f^{-1} \).
4. Aufgabe

(i) Sei \(f(x) = px + q \), \(p \in \mathbb{R} \), \(q \in \mathbb{R} \), schräge oder horizontale asymptote von \(f \) in Richtung \(\infty \).

Dann gilt also

\[
\lim_{x \to \infty} \{ f(x) - (px + q) \} = 0
\]

Da \(x \to \frac{x}{x} \) für \(x \to \infty \) gegen 0 strebt, folgt mit der Übertragung der Grenzwertregeln für Folgen auf Funktionen

\[
\lim_{x \to \infty} \left\{ \frac{1}{x} \left[f(x) - px - q \right] \right\} = \lim_{x \to \infty} \frac{1}{x} \cdot \lim_{x \to \infty} \left[f(x) - px - q \right] = 0
\]

Damit gilt

\[
\lim_{x \to \infty} \left\{ \frac{f(x)}{x} - p - \frac{q}{x} \right\} = 0
\]

\[
\lim_{x \to \infty} \left\{ \frac{f(x)}{x} \right\} = p - \lim_{x \to \infty} \frac{q}{x} = 0
\]

Also \(\lim_{x \to \infty} \frac{f(x)}{x} = p \)

(ii) Dies ist trivial, denn:

\[
0 = \lim_{x \to \infty} \left\{ f(x) - px - q \right\} = \lim_{x \to \infty} \left\{ f(x) - px - q \right\}
\]

⇒ \(\lim_{x \to \infty} \left\{ f(x) - px \right\} = q \)
(b) Die Funktion \(f(x) \) ist in \(x = -1 \) nicht
definiert, da der Nenner des Termes für \(f \)
dort gleich 0 ist. Für alle \(x \in (-1, 1) \)
ist \(f \) definiert. Die maximale Definition.
Gleich ist also \(D = (-1, 1) \).

\[\]

(c) Es liegt eine vertikale Asymptote in \(x = -1 \) vor.
Es gilt nämlich

(1) \(\lim_{x \to -1} f(x) = -\infty \)

(2) \(\lim_{x \to -1} f(x) = \infty \)

Beweis von (1):

Sei \(x < -1 \) angenommen und \(M < 0 \) beliebige
Schranke. Es gilt dann

\[f(x) = \frac{x(x - 1)}{x + 1} \leq M \]

\[\iff x(x - 1) > M(x + 1) \]

\[\iff x^2 - (M + 1)x - M > 0 \]
\[\Rightarrow \quad x^2 + Mx - M - x - M > 0 \]

\[\Rightarrow \quad \frac{x^2}{x} > M - 1 \]

\[\Rightarrow \quad \frac{x}{x-1} > 0 \]

\[\Rightarrow \quad \frac{1}{x-1} > 1 \]

\text{Der Nenner } x^2 - Mx - M - x \text{ konvergiert für } x \to -1, x < -1, \text{ gegen } 2. \text{ Daher existiert ein } \varepsilon > 0, \text{ so daß } f(a, x < -1) \text{ mit } |x - (-1)| < \varepsilon \]

\[x^2 - Mx - M - x > 0 \text{ gilt. Für solche } x \text{ gilt dann auch } f(x) < M. \]

\text{Beweis von (2):}

Sei \(x > -1 \) angenommen und \(C > 0 \) beliebige Schranke. Es gilt dann

\[f(x) = \frac{x(x-1)}{x + 1} > C \]

\[\Rightarrow \quad x(x-1) > C(x+1) \]

\[\Rightarrow \quad x^2 - CX - C - x > 0 \]

\text{Der Nenner } x^2 - CX - C - x \text{ konvergiert für } x \to -1, x > -1, \text{ gegen } 2. \text{ Daher kann folgendes werden: daß ein } \varepsilon > 0 \text{ existiert mit }

\[f(x) > M \text{ für alle } x \in \mathbb{R}_{> -1} \text{ mit } |x - (-1)| \leq \varepsilon \]

\text{Also gilt } \lim_{x \to -1} f(x) = \infty.
Es wird nun behauptet, dass die Gerade \(r(x) = x - 2 \)

relative asymptotische von \(f \) sowohl in \(+\)-Richtung als auch in \(-\)-Richtung ist.

Es gilt

\[
\frac{f(x)}{x} = \frac{x(x-1)}{x+1} \rightarrow \frac{x-1}{x+1} = \frac{1}{1+\frac{1}{x}}
\]

Der Nenner \(\frac{1}{x+1} \) strebt mit \(x \to \infty \) als auch für \(x \to -\infty \) gegen 1.

Der Nenner \(-\frac{1}{x+1} \) strebt in beiden Fällen gegen 0.

Dadurch gilt

\[
\lim_{x \to \infty} \frac{f(x)}{x} = 1 \quad \text{und} \quad \lim_{x \to -\infty} \frac{f(x)}{x} = 1
\]

Weiter ist

\[
f(x) - x = \frac{x(x-1) - (x+1) \cdot x}{x+1} = \frac{-2x}{x+1} = \frac{-2}{1+\frac{1}{x}}
\]

Also \(\lim_{x \to \infty} \{f(x) - x\} = -2 \) und \(\lim_{x \to -\infty} \{f(x) - x\} = -2 \).

Daraus folgt unmittelbar \(\lim_{x \to \infty} \{f(x) - (x-2)\} = 0 \)

und \(\lim_{x \to -\infty} \{f(x) - (x-2)\} = 0 \).

Damit sind alle asymptotischen gefunden. Es leiste nochmals noch verhältnis asymptotisch geben. Da \(x = -1 \) eine der einzige Polstelle von \(f \) ist, gibt es diese nicht.
Bemerkung: Führt man eine Polynomsdivision

\[
\frac{x^2 - x}{x^3 + 1} = \frac{x - 2}{x^2 + x}
\]

\[
\begin{array}{c}
-2x \\
\hline
-2x - 2 \\
\hline
2
\end{array}
\]

durch, so kann man sehr leicht aus dieser gelenkten Darstellung \(g(x) = \frac{2}{x^2 + x} \) das asymptotische Verhalten für \(x \to \infty \) bzw. \(x \to -\infty \) ableiten. Unter Berücksichtigung von \(\lim_{x \to \infty} \frac{2}{x^2 + x} = 0 \) und \(\lim_{x \to -\infty} \frac{2}{x^2 + x} = 0 \), sieht man, dass \(g(x) = x - 2 \)

Asymptote von \(f \) in \(\infty \)-Richtung und
\((-\infty)\)-Richtung ist.