Dirichlet regularity and degenerate diffusion

Wolfgang Arendt and Michal Chovanec

July 4, 2008

Abstract

Let $\Omega \subset \mathbb{R}^N$ be an open and bounded set and let $m:\Omega \to (0,\infty)$ be measurable and locally bounded. We study a natural realization of the operator $m\Delta$ in $C_0(\Omega):=\{u\in C(\overline{\Omega}): u_{|\partial\Omega}=0\}$. If Ω is Dirichlet regular, then the operator generates a positive contraction semigroup on $C_0(\Omega)$ whenever $\frac{1}{m}\in L^p_{loc}(\Omega)$ for some $p>\frac{N}{2}$. If m(x) does not go fast enough to 0 as $x\to\partial\Omega$, then Dirichlet regularity is necessary. However, if $|m(x)|\leq c\cdot dist(x,\partial\Omega)^2$, then we show that $m\Delta_0$ generates a semigroup on $C_0(\Omega)$ without any regularity assumptions on Ω . We show that the condition for degeneration of m near the boundary is optimal.

1 Introduction

Let $\Omega \subset \mathbb{R}^N$ be open and bounded and let $m \in L^\infty_{loc}(\Omega)$ be strictly positive. The aim of this paper is to investigate when a natural realization of the operator $m \triangle$ in $C_0(\Omega) := \left\{u \in C(\overline{\Omega}): u_{|\partial\Omega} = 0\right\}$ generates a C_0 -semigroup. If Ω is Dirichlet regular, then it suffices that $\frac{1}{m} \in L^p_{loc}(\Omega)$ for some $\frac{N}{2} . If <math>\frac{1}{m} \in L^p(\Omega)$, then Dirichlet regularity is a necessary condition. However if the diffusion is weak at a point $z \in \partial\Omega$ in the sense that $m(x) \le c \cdot dist(x,\partial\Omega)^2$ in a neighbourhood of z, then Dirichlet regularity is not needed.

In fact, these phenomena are of local nature. Our main result (Theorem 7.1) says the following. Let $m \in L^{\infty}(\Omega)$ be strictly positive such that $\frac{1}{m} \in L^p_{loc}(\Omega)$ for some $\frac{N}{2} . Assume that for each <math>z \in \partial \Omega$ one of the following conditions is satisfied

- (a) z is a regular point (in the sense of Wiener) or
- (b) the diffusion is weak at z

Then $m\triangle_0$ generates a positive C_0 -semigroup on $C_0(\Omega)$. Here $m\triangle_0$ is the natural realization of $m\triangle$ in $C_0(\Omega)$ (see Section 4).

Our notion of weak diffusion is optimal. We show that it does not suffice that $m(x) \leq c \cdot dist(x, \partial\Omega)^{\beta}$ for some $\beta < 2$ to ensure that $m\Delta_0$ generates a semigroup.

It is much easier to study the operator in the setting of L^p spaces. In fact, introducing a weight, we use form methods to obtain a symmetric submarkovian semigroup in Section 3. However, there are good reasons to study the operator on the space $C_0(\Omega)$. One reason is that we obtain a Feller semigroup in this way with the corresponding relations to stochastic processes. Another reason concerns

⁰ AMS Mathematics subject classification. 35K05, 47D06. Keywords. heat equation, degenerate diffusion, Dirichlet problem, Wiener regularity, semigroups.

possible applications to non-linear problems and dynamical systems. For semilinear problems the space $C_0(\Omega)$ is much better suited than $L^p(\Omega)$ -spaces since composition with a locally Lipschitz continuous function is locally Lipschitz continuous on $C_0(\Omega)$ but never on $L^p(\Omega)$, see the treatise of Cazanave-Haraux ([9]), for example. Studying arbitrary measurable functions m seems to be useful for possible applications to quasilinear equations.

Operators of the form $m\triangle$ are partially contained in the class of operators considered by Davies ([11]) and by Pang ([19]) who study mainly spectral properties but also invariance of $C_0(\Omega)$ for Ω of class C^{∞} . However, the investigation of the role of Dirichlet regularity seems to be completely new in this context.

2 Preliminaries

Here we fix some notation and explain frequently used arguments. Let $\Omega \subset \mathbb{R}^N$ be open and bounded. We write $\omega \subset \subset \Omega$ if ω is an open subset of \mathbb{R}^N such that $\overline{\omega} \subset \Omega$. The space $C_c(\Omega)$ denotes continuous functions on Ω with values in \mathbb{R} having compact support. $\mathcal{D}(\Omega) = C_c^{\infty}(\Omega)$ is the space of all test functions and $\mathcal{D}(\Omega)'$ the space of all distributions.

We denote by $H^1(\Omega) := \{ u \in L^2(\Omega) : D_j u \in L^2(\Omega), j = 1, ..., d \}$ the first Sobolev space and by $H^1_0(\Omega)$ the closure of $\mathcal{D}(\Omega)$ in $H^1(\Omega)$. We let

$$L^p_{loc}(\Omega) := \left\{ u : \Omega \to \mathbb{R} \quad \text{measurable: } \int_{\omega} |u(x)|^p \, dx < \infty \quad \text{whenever } \omega \subset \subset \Omega \right\},$$

where $1 \leq p < \infty$. Similarly,

$$H^1_{loc}(\Omega) := \left\{ u \in L^2_{loc}(\Omega) : D_j u \in L^2_{loc}(\Omega) \text{ for } j = 1, ..., d \right\}.$$

We let

$$C_0(\Omega) := \{ u \in C(\overline{\Omega}) : u_{|\partial\Omega} = 0 \}$$

where $\partial\Omega$ is the boundary of Ω .

Then $H^1(\Omega) \cap C_0(\Omega) \subset H^1_0(\Omega)$, but

$$H_0^1(\Omega) \cap C(\overline{\Omega}) \subset C_0(\Omega)$$
 if and only if Ω is regular in capacity

(see [8]). The spaces $H_0^1(\Omega)$ and $H^1(\Omega)$ are sublattices of $L^2(\Omega)$. More precisely

$$u \in H^{1}(\Omega)$$
 implies $D_{j}u^{+} \in H^{1}(\Omega)$ and $D_{j}u^{+} = \chi_{\{u>0\}}D_{j}u$ $j = 1, ..., d$,

where by χ_A we denote the characteristic function of a set A. If $u \in H_0^1(\Omega)$, then also $u^+ \in H_0^1(\Omega)$.

If $u \in L^1_{loc}(\Omega)$, then the Laplacian Δu is a distribution. By

$$-\triangle u \leq 0 \quad \text{in } \mathcal{D}(\Omega)'$$

we mean that

$$-\langle \triangle u, v \rangle \le 0$$
 whenever $0 \le v \in \mathcal{D}(\Omega)$.

If $u \in H^1_{loc}(\Omega)$, this is equivalent to

$$\int_{\Omega} \nabla u(x) \nabla v(x) \, dx \le 0 \quad \text{for } 0 \le v \in \mathcal{D}(\Omega)$$
 (1)

and if $u \in H^1(\Omega)$, both inequalities remain true for all $0 \le u \in H^1_0(\Omega)$. In fact, the cone $\mathcal{D}(\Omega)_+$ of all positive test functions is dense in $H^1_0(\Omega)_+ := \{u \in H^1_0(\Omega) : u \ge 0\}$.

We frequently use the following **Maximum principle:** Let $u \in H^1(\Omega)$ such that

$$-\triangle u \leq 0.$$

If $u^+ \in H_0^1(\Omega)$, then $u \leq 0$.

In fact, taking v=u in (1) we obtain $\int_{\Omega} |\nabla u(x)^+|^2 dx \leq 0$. By Poincaré's inequality, this implies that $u^+=0$.

3 The semigroup on $L^2(\Omega, \frac{dx}{m(x)})$.

Let $m: \Omega \to (0, \infty)$ be measurable such that $\frac{1}{m} \in L^1_{loc}(\Omega)$. We consider the Hilbert space $L^2(\Omega, \frac{dx}{m(x)})$ with the scalar product

$$\langle u|v\rangle = \int_{\Omega} u(x)v(x) \frac{dx}{m(x)}.$$

On $L^2(\Omega, \frac{dx}{m(x)})$ we define the operator $m\triangle_2$ by

$$\mathcal{D}(m\triangle_2) := \left\{ u \in H_0^1(\Omega) \cap L^2(\Omega, \frac{dx}{m(x)}) : \exists f \in L^2(\Omega, \frac{dx}{m(x)}) \text{ such that } \triangle u = \frac{f}{m} \right\}$$
$$(m\triangle_2)u := f$$

Note that $\frac{f}{m} \in L^1_{loc}(\Omega)$ since for $\omega \subset\subset \Omega$

$$\int_{\omega} \frac{|f(x)|}{m(x)} dx \le \left(\int_{\omega} |f(x)|^2 \frac{dx}{m(x)} \right)^{\frac{1}{2}} \left(\int_{\omega} \frac{dx}{m(x)} \right)^{\frac{1}{2}}.$$

Thus the identity $\triangle u = \frac{f}{m}$ is well-defined in $\mathcal{D}(\Omega)'$. The expression $m\triangle_2$ is purely symbolic and has to be understood in the sense of the above definition. In fact, in general $\triangle u$ is merely in $\mathcal{D}(\Omega)'$ and $m\triangle u$ cannot be defined as a distribution. We will prove the following theorem.

Theorem 3.1 The operator $m\triangle_2$ is self-adjoint and generates a positive, contractive C_0 -semigroup T_2 on $L^2(\Omega, \frac{dx}{m(x)})$. Moreover, the semigroup is submarkovian.

Here, an operator S on $L^2(\Omega, \frac{dx}{m(x)})$ is called *submarkovian* if $f(x) \leq 1$ a.e. implies $Sf(x) \leq 1$ a.e. This is equivalent to saying that S is positive and

$$||Sf||_{\infty} \le ||f||_{\infty} \text{ for all } f \in L^2(\Omega, \frac{dx}{m(x)}) \cap L^{\infty}(\Omega).$$

To say that the semigroup T_2 is *submarkovian* means that each $T_2(t)$, $t \ge 0$ is submarkovian.

We set $V:=H^1_0(\Omega)\cap L^2(\Omega,\frac{dx}{m(x)})$. We let $\mathcal{D}(\Omega)_+:=\{v\in\mathcal{D}(\Omega):v\geq 0\}$ and $V_+:=\{u\in V:u\geq 0\text{ a.e.}\}$.

Proposition 3.2 $\mathcal{D}(\Omega)$ is dense in V and $\mathcal{D}(\Omega)_+$ is dense in V_+ .

Proof. We prove the second assertion. The first assertion then follows since $V = V_+ - V_+$.

a) Let $u \in V_+$. There exists a sequence $\varphi_n \in \mathcal{D}(\Omega)$ s.t. $\varphi_n \to u$ in $H^1(\Omega)$. Let $u_n := (\varphi_n \wedge u) \vee 0$. Then $0 \le u_n \le u$ and $u_n \to u$ in $H^1(\Omega)$. Moreover $u_n \to u$ a.e. (for a subsequence which we denote also by u_n). Hence $u_n \to u$ in $L^2(\Omega, \frac{dx}{m(x)})$ by the dominated convergence theorem. We have shown that $V_+ \cap L_c^{\infty}(\Omega)$ is dense in V_+ , where

$$L_c^{\infty}(\Omega) := \{ u \in L^{\infty}(\Omega) : \text{supp } u \subset \Omega \text{ is compact} \}$$

b) Let $u \in V_+ \cap L_c^{\infty}(\Omega), u_n := \rho_n * u$, where ρ_n is a mollifier. Then $u_n \in \mathcal{D}(\Omega)$, supp $u_n \subset K \subset\subset \Omega$ (for $n \geq n_0$) and $\|u_n\|_{\infty} \leq c$ (for $n \geq n_0$), $u_n \to u$ in $H^1(\Omega)$ and $u_n \to u$ a. e. after choosing a subsequence. Hence $u_n \to u$ in $L^2(\Omega, \frac{dx}{m(x)})$. \square

Proof of the Theorem 3.1. Let $a: V \times V \to \mathbb{R}$ be given by

$$a(u,v) = \int_{\Omega} \nabla u(x) \nabla v(x) dx.$$

Then a is continuous, symmetric and bilinear. Moreover, a is accretive, i.e., $a(u, u) \ge 0$ for all $u \in V$ and elliptic with respect to $L^2(\Omega, \frac{dx}{m(x)})$, i.e.,

$$a(u, u) + \omega \|u\|_{L^2(\Omega, \frac{dx}{m(x)})}^2 \ge \alpha \|u\|_V^2$$

for some $\omega \in \mathbb{R}$ and $\alpha > 0$.

This follows from Poincaré's inequality, which asserts that $\sqrt{\int_{\Omega} |\nabla u(x)|^2 dx}$ defines an equivalent norm on $H_0^1(\Omega)$.

Let A be the operator associated with a. Then A is self-adjoint and -A generates a contractive semigroup T_2 on $L^2(\Omega, \frac{dx}{m(x)})$. We show that $-m\triangle_2 = A$. In fact, for $u, f \in L^2(\Omega, \frac{dx}{m(x)})$ we have by definition,

$$u \in \mathcal{D}(A)$$
 and $-Au = f$ if and only if
$$a(u,v) = -\int_{\Omega} f(x)v(x) \frac{dx}{m(x)}$$
 for all $v \in V$.

Taking $v \in \mathcal{D}(\Omega)$, this implies that $\triangle u = \frac{f}{m}$. Hence $u \in \mathcal{D}(m\triangle_2)$ and $(m\triangle_2)u = f$. Conversely, if $u \in \mathcal{D}(m\triangle_2)$ and $(m\triangle_2)u = f$, then $\triangle u = \frac{f}{m}$ in $\mathcal{D}(\Omega)'$. Since $u \in H_0^1(\Omega)$, this implies that

$$\int_{\Omega} \nabla u(x) \nabla v(x) \, dx = -\langle \triangle u, v \rangle = -\int_{\Omega} f(x) v(x) \frac{dx}{m(x)}$$

for all $v \in \mathcal{D}(\Omega)$. Since $\mathcal{D}(\Omega)$ is dense in V it follows that $u \in \mathcal{D}(A)$ and Au = f. It follows from the Beurling-Deny criterion ([10], Theorem 1.3.3) or ([17], Corollary 2.17) that the semigroup is submarkovian.

As a consequence we find a consistent family T_p , $1 \le p \le \infty$, of semigroups on $L^p(\Omega, \frac{dx}{m(x)})$, such that T_2 is the given semigroup generated by $m\Delta_2$. Here T_p is a positive, contractive C_0 -semigroup for $1 \le p < \infty$ and $T_\infty(t) = T_1'(t)$ for all $t \ge 0$. We denote the generator of T_p by $m\Delta_p$. Thus $m\Delta_\infty = (m\Delta_1)'$.

We note that the consistency of semigroups implies the consistency of the resolvents. In particular

$$R(\lambda, m\triangle_{\infty})f = R(\lambda, m\triangle_2)f \tag{2}$$

for all $\lambda > 0$, $f \in L^{\infty}(\Omega) \cap L^{2}(\Omega, \frac{dx}{m(x)})$. We also note that

$$R(\lambda, m\triangle_{\infty}) \ge 0$$
 for all $\lambda > 0$.

Finally, we will frequently use the following local regularity of the Laplacian. Let $\frac{N}{2} . Then$

$$u \in L^1_{loc}(\Omega), \, \Delta u \in L^p_{loc}(\Omega) \quad \text{implies } u \in C(\Omega).$$
 (3)

See ([12], II.3 Proposition 6). To avoid confusion in the case N=1 we shall tacitly assume $p \ge 1$ throughout the paper.

If $m \equiv 1$, then the operator $\triangle_p = m \triangle_p$ is just the Dirichlet Laplacian on $L^p(\Omega)$. We need the following properties of this operator.

Proposition 3.3 The operator \triangle_p is invertible. Moreover, for $\frac{N}{2} the following holds:$

- (a) $\mathcal{D}(\triangle_p) = \{ u \in H_0^1(\Omega) : \triangle u \in L^p(\Omega) \}$ and $\triangle_p u = \triangle u$ in $\mathcal{D}(\Omega)'$ for all $u \in \mathcal{D}(\triangle_p)$
- **(b)** $\mathcal{D}(\triangle_p) \subset C^b(\Omega) := \{u : \Omega \to \mathbb{R} : u \text{ is bounded and continuous } \}$

Proof. The invertibility follows from ([10], Theorem 1.6.3), for example. Note that for $\frac{N}{2}$

$$||T_p(t)||_{\mathcal{L}(L^p(\Omega), L^{\infty}(\Omega))} \le ct^{-\frac{N}{2p}}e^{-\omega t} \quad (t \ge 0)$$

for some c > 0, $\omega > 0$ ([17] Lemma 6.5). Thus

$$R(0, \triangle_p) = \int_0^\infty T_p(t) dt \in \mathcal{L}(L^p(\Omega), L^\infty(\Omega)).$$

Let $f \in L^p(\Omega)$, $u = R(0, \triangle_p)f$. Then $u \in L^{\infty}(\Omega)$. Moreover, $-\triangle u = f$ in $\mathcal{D}(\Omega)'$. In fact, let $f_k \to f$ in $L^p(\Omega)$ where $f_k \in L^2(\Omega) \cap L^p(\Omega)$. Then $u_k := R(0, \triangle_p)f_k \to u$ in $L^{\infty}(\Omega)$. Moreover, since $R(0, \triangle_p)f_k = R(0, \triangle_2)f_k$, one has $u_k \in H_0^1(\Omega)$ and $-\triangle u_k = f_k$ in $\mathcal{D}(\Omega)'$. Since $u_k \to u$ in $L^{\infty}(\Omega) \hookrightarrow \mathcal{D}(\Omega)'$, it follows that $\triangle u_k \to \triangle u$ in $\mathcal{D}(\Omega)'$. Thus $-\triangle u = f$. It follows from (3) that $u \in C(\Omega)$. Finally, by the definition of \triangle_2 , one has

$$\int_{\Omega} |\nabla u_k(x)|^2 \, dx = \int_{\Omega} f_k(x) u_k(x) \, dx \le \|f_k\|_{L^p(\Omega)} \|u_k\|_{L^{\infty}(\Omega)} |\Omega|^{\frac{1}{p'}}$$

where $\frac{1}{p} + \frac{1}{p'} = 1$. Thus $(u_k)_{k \in \mathbb{N}}$ is bounded in $H_0^1(\Omega)$. Taking a subsequence, we may assume that $u_k \rightharpoonup w \in H_0^1(\Omega)$. Since $u_k \to u \in L^{\infty}(\Omega)$, it follows that $u = w \in H_0^1(\Omega)$. Thus (b) and one inclusion in (a) are proved.

Let $u \in H_0^1(\Omega)$ such that $f := \Delta u \in L^p(\Omega)$. It remains to show that $u \in \mathcal{D}(\Delta_p)$ and $\Delta_p u = \Delta u$. Let $w = R(0, \Delta_p)f$. Then $w \in H_0^1(\Omega)$ and $-\Delta w = f$ by what has been proved above. Thus $u + w \in H_0^1(\Omega)$ and $\Delta(u + w) = 0$. By the maximum principle (see Introduction) this implies u + w = 0.

Now we can add the following local regularity of the Laplacian. Let $\frac{N}{2} Then$

$$u \in L^1_{loc}(\Omega), \, \Delta u \in L^p_{loc}(\Omega) \text{ implies } u \in H^1_{loc}(\Omega).$$
 (4)

In fact, let $u \in L^1_{loc}(\Omega)$ such that $\Delta u \in L^p_{loc}(\Omega)$. Let $\omega \subset\subset \Omega$ be arbitrary and $f = \Delta u_{|\omega} \in L^p(\omega)$. Consider the operator Δ_p on $L^p(\omega)$. Then $w := \Delta_p^{-1} f \in H^1_0(\omega)$

by Proposition 3.3. Since $\triangle w = f = \triangle u$ in $\mathcal{D}(\Omega)'$, the function u - w is harmonic and hence in $C^{\infty}(\omega)$. Thus $u \in H^1(\omega)$.

In the following we consider again a function $m:\Omega\to(0,\infty)$ satisfying $\frac{1}{m}\in L^1_{loc}(\Omega)$. We first show how $m\triangle_\infty$ operates on functions.

Proposition 3.4 (a) Let $u \in \mathcal{D}(m\triangle_{\infty})$, $f = (m\triangle_{\infty})u$. Then

$$\Delta u = \frac{f}{m} \quad in \ \mathcal{D}(\Omega)'.$$

(b) If $\frac{1}{m} \in L^p_{loc}(\Omega)$ for some $p > \frac{N}{2}$, then

$$\mathcal{D}(m\triangle_{\infty}) \subset C^b(\Omega) \cap H^1_{loc}(\Omega).$$

(c) If $m \in L^{\infty}_{loc}(\Omega)$, then $\mathcal{D}(\Omega) \subset \mathcal{D}(m\Delta_{\infty})$ and $(m\Delta_{\infty})u = m \cdot \Delta u$ for $u \in \mathcal{D}(\Omega)$.

Proof. (a) Let $\lambda > 0$. Define $g := \lambda u - f \in L^{\infty}(\Omega)$. Then $u = R(\lambda, m \triangle_{\infty})g$. If $g \in L^{\infty}(\Omega) \cap L^{2}(\Omega, \frac{dx}{m(x)})$, then the claim follows from the fact that $R(\lambda, m \triangle_{\infty})g = R(\lambda, m \triangle_{2})g$. In the general case there exist $g_{k} \in L^{\infty}(\Omega) \cap L^{2}(\Omega, \frac{dx}{m(x)})$ such that $g_{k} \to g$ for $\sigma(L^{\infty}(\Omega), L^{1}(\Omega, \frac{dx}{m(x)}))$. Let $u_{k} = R(\lambda, m \triangle_{\infty})g_{k}$. Then

$$-\triangle u_k = \frac{g_k - \lambda u_k}{m}$$

Now we use that $R(\lambda, m\triangle_{\infty}) = R(\lambda, m\triangle_1)'$ is continuous for the weak*-topology $\sigma(L^{\infty}(\Omega), L^1(\Omega, \frac{dx}{m(x)}))$. Hence $u_k \to u$ for $\sigma(L^{\infty}(\Omega), L^1(\Omega, \frac{dx}{m(x)}))$. Since $\mathcal{D}(\Omega) \subset L^1(\Omega, \frac{dx}{m(x)})$ we conclude that $u_k \to u$ in $\mathcal{D}(\Omega)'$. Hence $\triangle u_k \to \triangle u$ in $\mathcal{D}(\Omega)'$. Since $g_k \to \lambda u_k \to g \to \lambda u$ for $\sigma(L^{\infty}(\Omega), L^1(\Omega, \frac{dx}{m(x)}))$, it follows that $\frac{g_k \to \lambda u_k}{m} \to \frac{g \to \lambda u}{m}$ in $\mathcal{D}(\Omega)'$. Thus

$$-\triangle u = \frac{g - \lambda u}{m} = -\frac{f}{m}.$$

The proof of (a) is complete.

(b) This follows now from (3) and (4).

(c) Assume that $m \in L^{\infty}_{loc}(\Omega)$. Let $u \in \mathcal{D}(\Omega)$, $f = m \cdot \Delta u$. Then $u \in H^1_0(\Omega)$, $f \in L^2(\Omega, \frac{dx}{m(x)})$ and $\Delta u = \frac{f}{m}$. Thus $u \in \mathcal{D}(m\Delta_2)$ and $(m\Delta_2)u = f$. Let $\lambda > 0$ and set $g := \lambda u - f$. Then $g \in L^{\infty}(\Omega) \cap L^2(\Omega, \frac{dx}{m(x)})$ and $R(\lambda, m\Delta_{\infty})g = R(\lambda, m\Delta_2)g = u$. Thus $u \in \mathcal{D}(m\Delta_{\infty})$ and $\lambda u - (m\Delta_{\infty})u = g = \lambda u - f$, i.e., $(m\Delta_{\infty})u = f$. \square In Proposition 3.4, the boundary condition is not incorporated. But if $\frac{1}{m} \in L^1(\Omega)$, then $L^{\infty}(\Omega) \subset L^2(\Omega, \frac{dx}{m(x)})$ and the operator $m\Delta_{\infty}$ is just the part of $m\Delta_2$ in $L^{\infty}(\Omega)$. Thus, if $\frac{1}{m} \in L^1(\Omega)$, then

$$\mathcal{D}(m\triangle_{\infty}) = \left\{ u \in H_0^1(\Omega) \cap L^{\infty}(\Omega) : \exists f \in L^{\infty}(\Omega) \text{ s.t. } \triangle u = \frac{f}{m} \right\}$$
 (5)
$$(m\triangle_{\infty})u = f.$$

If $\frac{1}{m} \in L^p(\Omega)$ for some $\infty \geq p > \frac{N}{2}$, we can even assert more.

Proposition 3.5 Assume that $\frac{1}{m} \in L^p(\Omega)$ where $\frac{N}{2} . Then <math>m\triangle_{\infty}$ is invertible.

Proof. Let $f \in L^{\infty}(\Omega)$. Then $\frac{f}{m} \in L^{p}(\Omega)$. Thus by Proposition 3.3 there exists $u \in H^{1}_{0}(\Omega)$ such that $\Delta u = \frac{f}{m}$. This shows that $m\Delta_{\infty}$ is surjective. If $u \in \mathcal{D}(m\Delta_{\infty})$, $(m\Delta_{\infty})u = 0$, then by (5) we have $u \in H^{1}_{0}(\Omega)$ and $\Delta u = 0$. This

implies that u = 0. Thus $(m\triangle_{\infty})$ is injective. Since the operator is closed, the proof is finished.

The positive semigroups T_p generated by $m\triangle_p$ on $L^p(\Omega,\frac{dx}{m(x)})$ have many interesting properties. We just mention that they are always irreducible if Ω is connected (where we assume only 0 < m, $\frac{1}{m} \in L^1_{loc}(\Omega)$ as before). This means that

$$(e^{t(m\triangle_p)}f)(x)>0 \text{ a.e. for all } 0\leq f\in L^p(\Omega,\frac{dx}{m(x)}),\ f\neq 0, \text{ and for all } t>0.$$

For p=2 this follows from Ouhabaz' simple criterion that

$$\chi_C \cdot H_0^1(\Omega) \subset H_0^1(\Omega)$$
 implies $|C| = 0$ or $|\Omega \setminus C| = 0$

for each Borel set $C \subset \Omega$ (see [17], Section 4.2 or [3]). For another proof of irreducibility we refer to [13], and for consequences to [4].

4 The operator $m\triangle_0$ on $C_0(\Omega)$

Let $\Omega \subset \mathbb{R}^N$ be open and bounded. Let $m: \Omega \to (0, \infty)$ be a measurable function such that $m \in L^{\infty}_{loc}(\Omega)$ and $\frac{1}{m} \in L^p_{loc}$ where $p > \frac{N}{2}$. We want to define a maximal realization of $m \triangle$ in $C_0(\Omega)$. If $u \in C_0(\Omega)$ then $\triangle u \in \mathcal{D}(\Omega)'$, but $m \triangle u$ may not be defined as a distribution. Thus the following definition is natural.

Definition 4.1 We define the operator $m\triangle_0$ on $C_0(\Omega)$ by

$$\mathcal{D}(m\Delta_0) := \left\{ u \in C_0(\Omega) : \exists f \in C_0(\Omega) \ s.t. \ \Delta u = \frac{f}{m} \right\}$$
$$(m\Delta_0)u := f$$

Since $\frac{f}{m} \in L^1_{loc} \subset \mathcal{D}(\Omega)'$ this definition makes sense. The notation $(m\triangle_0)$ is purely symbolic. But if $u \in C_0(\Omega) \cap C^2(\Omega)$ such that $m \cdot \triangle u \in C_0(\Omega)$, then $u \in \mathcal{D}(m\triangle_0)$ and $(m\triangle_0)u = m \cdot \triangle u$.

Proposition 4.2 The operator $m\triangle_0$ is closed and dissipative. Moreover, if $R(\lambda_0, m\triangle_\infty)C_0(\Omega) \subset C_0(\Omega)$ for some $\lambda_0 > 0$, then $m\triangle_0$ generates a C_0 -semigroup of positive contractions on $C_0(\Omega)$. In that case

$$(0,\infty) \subset \rho(m\triangle_0)$$

 $R(\lambda, m\triangle_\infty)C_0(\Omega) \subset C_0(\Omega)$ for all $\lambda > 0$ and $R(\lambda, m\triangle_0) = R(\lambda, m\triangle_\infty)|_{C_0(\Omega)}$.

Note that in general, $\mathcal{D}(\Omega) \nsubseteq \mathcal{D}(m\Delta_0)$ since we do not assume that m is continuous. Thus in Proposition 4.2 density of the domain (which is necessary for the generation property) needs a separate argument.

Since $m\triangle_0$ is dissipative, it follows in particular that no proper restriction of $m\triangle_0$ may generate a C_0 -semigroup on $C_0(\Omega)$. We first prove dissipativity.

Lemma 4.3 Let $\lambda > 0$, $u = \mathcal{D}(m\triangle_0)$, $f = \lambda u - (m\triangle_0)u$. Let c > 0 be such that

$$f(x) \le c$$
 for all $x \in \Omega$.

Then $\lambda u(x) \leq c$ for all $x \in \Omega$.

Proof. By the definition of the operator we have

$$\lambda \frac{u}{m} - \triangle u = \frac{f}{m} \le \frac{c}{m}.$$

Since by (4) $u \in H^1_{loc}(\Omega)$, this implies that for $0 \le v \in \mathcal{D}(\Omega)$

$$\int_{\Omega} \frac{(\lambda u(x) - c)}{m(x)} v(x) \, dx + \int_{\Omega} \nabla u(x) \nabla v(x) \, dx \le 0.$$
 (6)

Since $u \in C_0(\Omega)$, $(\lambda u - c)^+$ has compact support. Let $\omega \subset \Omega$ such that supp $(\lambda u - c)^+ \subset \omega$. Then $(\lambda u - c)^+ \in H_0^1(\omega)$ and $(\lambda u - c) \in H^1(\omega)$. Now (6) implies that

$$\int_{\omega} \frac{(\lambda u(x) - c)}{m(x)} v(x) \, dx + \frac{1}{\lambda} \int_{\omega} \nabla (\lambda u(x) - c) \nabla v(x) \, dx \le 0$$

for all $0 \le v \in H_0^1(\omega)$. Taking in particular, $v := (\lambda u - c)^+$ we see that

$$\int_{\omega} \frac{(\lambda u(x) - c)^{+2}}{m(x)} dx + \frac{1}{\lambda} \int_{\omega} |\nabla (\lambda u(x) - c)^{+}|^{2} dx \le 0$$

This implies that $(\lambda u - c)^+ = 0$, i.e., $\lambda u \le c$.

Applying Lemma 4.3 to $\pm u$, we see that

$$\|\lambda u\|_{L^{\infty}(\Omega)} \leq \|\lambda u - (m\triangle_0)u\|_{\infty}$$

for all $u \in \mathcal{D}(m\triangle_0)$, i.e., $m\triangle_0$ is dissipative. But in fact, Lemma 4.3 shows that the operator $m\triangle_0$ is dispersive. We refer to ([5], [16], Chapter II) for this notion.

Proof of Proposition 4.2. The dissipativity has been proved above and the closedness is easy to see. Let now $R(\lambda, m\triangle_{\infty})C_0(\Omega) \subset C_0(\Omega)$ for some $\lambda > 0$. We show that $\lambda \in \rho(m\triangle_0)$ and $R(\lambda, m\triangle_0) = R(\lambda, m\triangle_{\infty})|_{C_0(\Omega)}$. Let $f \in C_0(\Omega)$ and consider $u = R(\lambda, m\triangle_{\infty})f \in C_0(\Omega)$. Then (by Proposition 3.4)

$$\lambda \frac{u}{m} - \Delta u = \frac{f}{m}$$
 in $\mathcal{D}(\Omega)'$.

It follows that $u \in \mathcal{D}(m\triangle_0)$ and $(\lambda u - (m\triangle_0)u) = f$. We have shown that $\lambda - (m\triangle_0)$ is surjective. Since the injectivity of $(\lambda - m\triangle_0)$ follows from the dissipativity of $m\triangle_0$, the closed graph theorem implies now that $\lambda \in \rho(m\triangle_0)$. The calculation above shows also that $R(\lambda, m\triangle_0)f = u = R(\lambda, m\triangle_\infty)f$.

By the resolvent identity (see ([1], Proposition 3.II.2)) we have for $0 \le f \in C_0(\Omega)$ and $\lambda > \lambda_0$

$$0 \le R(\lambda, m\triangle_{\infty})f \le R(\lambda_0, m\triangle_{\infty})f \in C_0(\Omega).$$

Since by Proposition 3.3 the function $R(\lambda, m\triangle_{\infty})f$ is continuous, it follows from the domination property above that $R(\lambda, m\triangle_{\infty})f \in C_0(\Omega)$. Thus $C_0(\Omega)$ is invariant for all $\lambda \geq \lambda_0$. Hence $[\lambda_0, \infty) \subset \rho(m\triangle_0)$.

Next we show that $\mathcal{D}(m\triangle_0)$ is dense in $C_0(\Omega)$. Since $m \in L^{\infty}_{loc}(\Omega)$, we have $\mathcal{D}(\Omega) \subset \mathcal{D}(m\triangle_{\infty})$ by Proposition 3.4. Hence $C_0(\Omega) \subset \overline{\mathcal{D}(m\triangle_{\infty})}$. Thus, for $f \in C_0(\Omega)$ one has

$$\lim_{\lambda \to \infty} \lambda R(\lambda, m \triangle_0) f = \lim_{\lambda \to \infty} \lambda R(\lambda, m \triangle_\infty) f = f.$$

Since $\lambda R(\lambda, m\triangle_0)f \in \mathcal{D}(m\triangle_0)$, density of the domain is proved. Now the Lumer-Phillips theorem implies that $m\triangle_0$ generates a contractive C_0 -semigroup. Since the resolvent of $m\triangle_0$ is positive, this semigroup is positive. It follows also that $(0, \infty) \subset \rho(m\triangle_0)$.

We will now consider two cases which imply the invariance given in Proposition 4.2 namely that Ω is Dirichlet regular or that the diffusion coefficient m(x) tends to 0 fast enough as x approaches the boundary. We start discussing Dirichlet regularity.

5 Regular points

Let $\Omega\subset\mathbb{R}^N$ be open, bounded and let $\frac{N}{2}< p\leq\infty$. Let $m:\Omega\to(0,\infty)$ be measurable such that $m\in L^\infty_{loc}(\Omega)$ and $\frac{1}{m}\in L^p_{loc}(\Omega)$.

Theorem 5.1 If Ω is Dirichlet regular, then $m\triangle_0$ generates a positive contractive C_0 -semigroup on $C_0(\Omega)$.

Thus in the case of a Dirichlet regular set, no condition on m(x) as x approaches the boundary is needed. We merely impose a (very weak) regularity condition on m in the interior of Ω .

It will be useful to prove an individual version of Theorem 5.1 first. For this we have to recall the notion of regular points.

Consider the Dirichlet problem.

$$h \in C(\overline{\Omega}) \cap C^{2}(\Omega)$$

$$\triangle h = 0 \text{ in } \Omega$$

$$h_{|\partial\Omega} = \varphi$$
(7)

where $\varphi \in C(\partial\Omega)$ is given. Recall that Ω is called *Dirichlet regular*, if for each $\varphi \in C(\partial\Omega)$ a (necessarily unique) solution exists. If Ω has Lipschitz boundary then Ω is Dirichlet regular. Much weaker geometric properties of the boundary suffice, though. In dimension N=1 each bounded open subset Ω of $\mathbb R$ is Dirichlet regular. If N=2 then each simply connected bounded open set is Dirichlet regular. This is no longer true in $\mathbb R^3$. The Lebesgue cusp gives an example of a simply connected domain with continuous boundary, which is not Dirichlet regular (see [6] for more information).

A function $u \in C(\overline{\Omega})$ is called a subsolution if

$$-\triangle u \le 0 \text{ in } \mathcal{D}(\Omega)'$$
 and $\limsup_{x \to z, x \in \Omega} u(x) \le \varphi(z)$ for all $z \in \partial \Omega$.

A function $u \in C(\overline{\Omega})$ is called a supersolution if

$$-\Delta u \ge 0 \text{ in } \mathcal{D}(\Omega)'$$
 and $\liminf_{x \to z, x \in \Omega} u(x) \ge \varphi(z)$ for all $z \in \partial \Omega$.

Theorem 5.2 (Perron)

Let $\varphi \in C(\partial\Omega)$. Then for all $x \in \Omega$

$$h_{\varphi}(x) := \sup \{u(x) : u \text{ is a subsolution}\}\$$

exists. Moreover,

$$h_{\varphi}(x) = \inf \{ v(x) : v \text{ is a supersolution} \}.$$

The function h_{φ} is harmonic and

$$\inf_{\partial\Omega}\varphi \le h_{\varphi}(x) \le \sup_{\partial\Omega}\varphi$$

for all $x \in \Omega$. If (7) has a solution h, then $h_{\varphi} = h$.

The function h_{φ} is called the *Perron solution* of (7). A point $z \in \partial \Omega$ is called *regular* if

$$\lim_{x \to z, x \in \Omega} h_{\varphi}(x) = \varphi(z)$$

for all $\varphi \in C(\partial\Omega)$. Thus Ω is Dirichlet regular if and only if each point $z \in \partial\Omega$ is regular. It is possible to characterize regular points by the existence of a barrier or by a capacity condition (Wiener's theorem). We refer to [15].

Now we can formulate the local version of Theorem 5.1 which we want to prove.

Theorem 5.3 Let Ω be bounded and open. Let $z \in \partial \Omega$ be a regular point. Let $\lambda > 0$, $f \in C_0(\Omega)$, $u = R(\lambda, m \triangle_\infty) f$. Then

$$\lim_{x \to z, \, x \in \Omega} u(x) = 0.$$

Thus, if Ω is Dirichlet regular, then $C_0(\Omega)$ is invariant under $R(\lambda, m\triangle_{\infty})$ and Theorem 5.1 follows from Proposition 4.2.

For the proof of Theorem 5.3 we use the following variational characterization of the Perron solution (see [7]).

Theorem 5.4 Let $\Phi \in C(\overline{\Omega})$ be such that $\Delta \Phi \in H^{-1}(\Omega)$. Let $\varphi = \Phi_{|\partial\Omega}$. Let u be the unique solution of

$$u \in H_0^1(\Omega)$$
$$-\triangle u = \triangle \Phi.$$

Then $h_{\varphi} = \Phi + u$.

For our purposes the following consequence is important. Recall that by Proposition 3.3 for all $f \in L^p(\Omega)$ there exists a unique $u \in H_0^1(\Omega)$ such that

$$-\triangle u = f \quad \text{in } \mathcal{D}(\Omega)'.$$

In fact, $u = R(0, \Delta_p)f$ where Δ_p denotes the Dirichlet Laplacian on $L^p(\Omega)$. Moreover, one has $u \in C^b(\Omega)$.

Corollary 5.5 Let $f \in L^p(\Omega)$, $u = R(0, \triangle_p)f$. Then

$$\lim_{x \to z, \ x \in \Omega} u(x) = 0$$

for each regular point $z \in \partial \Omega$. Thus, if Ω is Dirichlet regular, then $u \in C_0(\Omega)$.

Proof. It follows from the Sobolev embedding theorem that $L^p(\Omega) \subset H^{-1}(\Omega)$. Let $f \in L^p(\Omega)$. Let $\Phi = E * f$, where E is the Newtonian potential. Then (by [12], II.3, Proposition 6) $\Phi \in C(\mathbb{R}^N)$ and in $\mathcal{D}(\Omega)'$ we have

$$\triangle \Phi = f \in L^p(\Omega) \subset H^{-1}(\Omega).$$

Let $u = R(0, \Delta_p)f$. Then it follows from Theorem 5.4 that $h_{\varphi} = \Phi + u$. Thus

$$\lim_{x \to z, x \in \Omega} h_{\varphi}(x) = \varphi(z) \quad \text{if } z \in \partial \Omega \text{ is regular.}$$

Consequently¹, $\lim_{x\to z} u(x) = 0$.

Remark. a) In [2] a more special case of Corollary 5.5 is proved with the help of H^1 -barriers (proof of Theorem 3.8 in [2]).

b) Special cases of Theorem 5.4 were obtained before by Hildebrandt [14] and Simader [20].

Proof of Theorem 5.3. (a) Let $\lambda > 0$, $0 \le f \in C_c(\Omega)$, $u = R(\lambda, m \triangle_{\infty})f$. Then $u \in H_0^1(\Omega)$ and

$$\lambda \frac{u}{m} - \triangle u = \frac{f}{m}$$
 in $\mathcal{D}(\Omega)'$.

¹We will sometimes use the notation $\lim_{x\to z} f(x) := \lim_{x\to z, x\in\Omega} f(x)$ for $f:\Omega\to\mathbb{R}$

Moreover $0 \le u \in C^b(\Omega)$. Observe that $0 \le \frac{f}{m} \in L^p(\Omega)$. Let $w = R(0, \triangle_p) \frac{f}{m}$. Then we know that $0 \le w \in H^1_0(\Omega) \cap C^b(\Omega)$ and, by Corollary 5.5, $\lim_{x \to z} w(x) = 0$ for all regular points $z \in \partial \Omega$. By definition

$$-\triangle w = \frac{f}{m} \quad \text{in } \mathcal{D}(\Omega)'.$$

Thus $-\triangle(u-w) \leq 0$ in $\mathcal{D}(\Omega)'$. Since $u-w \in H^1(\Omega)$ and $(u-w)^+ \in H^1_0(\Omega)$, it follows from the maximum principle that $u \leq w$. Hence $\lim_{x\to z} u(x) = 0$ for each regular point $z \in \partial\Omega$.

(b) Let $z \in \partial \Omega$ be a regular point. Then by (a)

$$\lim_{x \to z, x \in \Omega} (R(\lambda, m \triangle_{\infty}) f)(x) = 0$$

for each $0 \leq f \in C_c(\Omega)$, hence also for each $f \in C_c(\Omega)$. Since $C_c(\Omega)$ is dense in $C_0(\Omega)$, this remains true for all $f \in C_0(\Omega)$.

Next we show a converse of Theorem 5.1. If the diffusion coefficient m is not weak enough at the boundary, then Dirichlet regularity is necessary for $m\Delta_0$ to generate a C_0 -semigroup. More precisely, the following holds. Recall that $\frac{N}{2} .$

Theorem 5.6 Assume that $\frac{1}{m} \in L^p(\Omega)$. Then $m\triangle_0$ generates a C_0 -semigroup if and only if Ω is Dirichlet regular.

For the proof we need the following.

Proposition 5.7 Let $u \in C_0(\Omega)$ be such that $-\Delta u = f \in L^p(\Omega)$ for some $p > \frac{N}{2}$. Then $u \in H_0^1(\Omega)$, hence $u = R(0, \Delta_p)f$.

This follows from ([6], Corollary 1.4) since $L^p(\Omega) \subset H^{-1}(\Omega)$.

Proof of Theorem 5.6. Assume that $m\triangle_0$ generates a C_0 -semigroup. Since $\frac{1}{m}\in L^p(\Omega)$, we know from Proposition 3.5 that $[0,\infty)\subset \rho(m\triangle_\infty)$ and $R(\lambda,m\triangle_\infty)\geq 0$ for all $\lambda\geq 0$. We now claim that $R(\lambda,m\triangle_\infty)C_0(\Omega)\subset C_0(\Omega)$ and $R(\lambda,m\triangle_0)=R(\lambda,m\triangle_\infty)_{|C_0(\Omega)}$ for any $\lambda>0$. Let $f\in C_0(\Omega)$, $u=R(\lambda,m\triangle_0)f$. Then

$$-\Delta u = \frac{f}{m} - \lambda \frac{u}{m} \in L^p(\Omega).$$

Since $u \in C_0(\Omega)$, it follows from Proposition 5.7 that $u \in H_0^1(\Omega)$. Since $\frac{1}{m} \in L^p(\Omega)$ we have $L^{\infty}(\Omega) \subset L^2(\Omega, \frac{dx}{m(x)})$. Thus by (5) we have $u \in \mathcal{D}(m\Delta_{\infty})$ and $\lambda u - (m\Delta_{\infty})u = f$. Hence $u = R(\lambda, m\Delta_{\infty})f$. This proves the claim. Since $0 \in \rho(m\Delta_{\infty})$, the claim implies that

$$\lim \sup_{\lambda \to 0} \|R(\lambda, m\triangle_0)\|_{\mathcal{L}(C_0(\Omega))} < \infty,$$

hence $0 \in \rho(m\triangle_0)$ and $R(0, m\triangle_0) \ge 0$.

Let $0 \leq f \in C_0(\Omega)$, f(x) > 0 for all $x \in \Omega$, $u = R(0, m \triangle_0) f$. Then $u \in C_0(\Omega)$ and $-\triangle u = \frac{f}{m}$ in $\mathcal{D}(\Omega)'$. Hence $R(0, \triangle_p) \frac{f}{m} = u \in C_0(\Omega)$ by Proposition 5.7. We deduce that $R(0, \triangle_p) g \in C_0(\Omega)$ for all $g \in L^p(\Omega)$ such that $|g| \leq \frac{f}{m}$ for some $0 \leq f \in C_0(\Omega)$. The space of all such functions g is dense in $L^p(\Omega)$. Thus $R(0, \triangle_p) L^p(\Omega) \subset C_0(\Omega)$. Now it follows from ([2], Theorem 2.4) that Ω is Dirichlet regular.

6 Points of weak diffusion

Let $\Omega \subset \mathbb{R}^N$ be open and bounded and let $m:\Omega \to (0,\infty)$ be a bounded measurable function such that $\frac{1}{m} \in L^p_{loc}(\Omega)$ for some $\frac{N}{2} . Instead of regularity we may assume that <math>m$ is small in a neighbourhood of a boundary point. We say that $z \in \partial \Omega$ is a point of weak diffusion (for the operator $m\triangle$) if there exist $r>0,\ c>0$ such that

$$m(x) \le c \cdot dist(x, \partial \Omega)^2$$
 (8)

for all $x \in \Omega \cap B(z,r)$. If $z \in \partial \Omega$ is a point of weak diffusion, then we show that

$$\lim_{x \to z, \ x \in \Omega} (R(\lambda, m \triangle_{\infty}) f)(x) = 0$$
(9)

for all $f \in C_0(\Omega)$. We will also show that the condition (8) is optimal in the sense that

$$m(x) \le c \cdot dist(x, \partial \Omega)^{\alpha}$$

for some $0 < \alpha < 2$ does not suffice to enforce (9).

We need the notion of a regularized distance function.

Lemma 6.1 There exist a constant $c_{\sigma} > 0$ and a function $\sigma : \Omega \to (0, +\infty)$, which is of class $C^{\infty}(\Omega)$ and fulfills:

$$c_{\sigma}^{-1}d(x) \le \sigma(x) \le c_{\sigma}d(x)$$

 $|\nabla \sigma|^2 \le c_{\sigma}$
 $|\sigma \triangle \sigma| \le c_{\sigma}$

for all $x \in \Omega$, where $d(x) := \inf \{ ||x - y||, y \in \mathbb{R}^d \setminus \Omega \}$.

See ([21], Chapter 6) for a proof based on the Whitney decomposition of Ω .

Since $\sigma \in C_0(\Omega)$ it follows in particular that $\sigma \in H_0^1(\Omega)$. At first we now consider the case $m(x) := \sigma(x)^2$.

Proposition 6.2 The operator $\sigma^2 \triangle_0$ generates a strongly continuous semigroup of positive contractions on $C_0(\Omega)$.

Proof. Let $\lambda \geq c_{\sigma} + 1$ where c_{σ} is a constant from Lemma 6.1. Set $u = R(\lambda, \sigma^2 \triangle_{\infty}) \sigma$. Since $\sigma \in L^2(\Omega, \frac{dx}{\sigma(x)^2})$ it follows from (2) that $0 \leq u \in H^1_0(\Omega) \cap L^2(\Omega, \frac{dx}{\sigma(x)^2})$ and

$$\lambda \frac{u}{\sigma^2} - \triangle u = \frac{\sigma}{\sigma^2}$$
 in $\mathcal{D}(\Omega)'$.

Since $\sigma \triangle \sigma \le c_{\sigma}$, it follows that $\sigma \le \lambda \sigma - c_{\sigma} \sigma \le \lambda \sigma - \sigma^2 \triangle \sigma$. Thus

$$\lambda \frac{u}{\sigma^2} - \triangle u = \frac{1}{\sigma^2} \sigma \le \lambda \frac{\sigma}{\sigma^2} - \triangle \sigma \quad \text{in } \mathcal{D}(\Omega)'.$$

Hence

$$\lambda \frac{(u-\sigma)}{\sigma^2} - \triangle (u-\sigma) \le 0 \quad \text{in } \mathcal{D}(\Omega)'.$$

Since $u - \sigma \in H^1(\Omega)$ and $(u - \sigma)^+ \le u \in H^1_0(\Omega)$, it follows that $(u - \sigma)^+ \in H^1_0(\Omega)$. Now the maximum principle (see Preliminaries) implies that $(u - \sigma)^+ \le 0$, i.e., $u \le \sigma$.

We have shown that

$$R(\lambda, \sigma^2 \triangle_{\infty}) \sigma \le \sigma \quad (\lambda \ge \lambda_0 := 1 + c_{\sigma}).$$
 (10)

Thus, for $f \in C_0(\Omega)$ such that $|f| \leq c\sigma$ one has

$$|R(\lambda, \sigma^2 \triangle_{\infty})f| \le cR(\lambda, \sigma^2 \triangle_{\infty})\sigma \le c\sigma.$$

Consequently, $R(\lambda, \sigma^2 \triangle_{\infty}) f \in C_0(\Omega)$ for $\lambda \geq \lambda_0$. Since functions satisfying $|f| \leq c\sigma$ for some $c \geq 0$ are dense in $C_0(\Omega)$ we deduce that $R(\lambda, \sigma^2 \triangle_{\infty}) C_0(\Omega) \subset C_0(\Omega)$ for $\lambda \geq \lambda_0$. Now the claim follows from Proposition 4.2.

We comment that the result of Proposition 6.2 may be alternatively deduced from ([11], Theorem 5.4). However, our argument given here is quite different from [11].

We need a local extension of the resolvents of $\sigma^2 \triangle$. Recall that $\frac{N}{2} .$

Lemma 6.3 Let $\omega \subset\subset \Omega$, $\lambda > 0$. There exists an operator

$$Q(\lambda, \omega) \in \mathcal{L}(L^p(\omega), C_0(\Omega))$$

such that

$$Q(\lambda, \omega)f = R(\lambda, \sigma^2 \triangle_0)f$$
 for all $f \in L^p(\omega) \cap C_0(\Omega)$.

For $f \in L^p(\omega)$ the function $u = Q(\lambda, \omega)f$ is the unique solution of

$$u \in C_0(\Omega)$$

 $\lambda \frac{u}{\sigma^2} - \Delta u = \frac{f}{\sigma^2} \text{ in } \mathcal{D}(\Omega)'.$ (11)

Moreover, $u \in H_0^1(\Omega)$.

Here we consider $L^p(\omega)$ as a subspace of $L^p(\Omega)$ extending functions by 0 outside ω . Similarly, we consider $C_c(\omega) \subset C_0(\omega) \subset C_0(\Omega)$.

Proof. (a) Let $0 \le f \in C_c(\omega)$. There exists $\delta > 0$ such that $\sigma^2 \ge \delta$ on ω . Let $u = R(\lambda, \sigma^2 \triangle_0) f = R(\lambda, \sigma^2 \triangle_2) f$. Then $0 \le u \in H_0^1(\Omega)$ and

$$\lambda \frac{u}{\sigma^2} - \triangle u = \frac{f}{\sigma^2} \le \frac{1}{\delta} f.$$

Let $w:=\frac{1}{\delta}R(0,\Delta_p)f$, where Δ_p denotes the Dirichlet Laplacian on $L^p(\Omega)$. Then $w\in H^1_0(\Omega)\cap L^\infty(\Omega)$ and

$$-\triangle w = \frac{1}{\delta} f$$
 in $\mathcal{D}(\Omega)'$.

Moreover $||w||_{L^{\infty}(\Omega)} \leq c_1 ||f||_{L^p(\omega)}$ where $c_1 = \frac{1}{\delta} ||R(0, \triangle_p)||_{\mathcal{L}(L^p(\Omega), L^{\infty}(\Omega))}$ (see Proposition 3.3(b)). We show that $u \leq w$. In fact, we have

$$-\Delta u \le \lambda \frac{u}{\sigma^2} - \Delta u \le \frac{1}{\delta} f \quad \text{and}$$
$$-\Delta w = \frac{1}{\delta} f,$$

hence $-\triangle(u-w) \leq 0$ in $\mathcal{D}(\Omega)'$. Consequently, by the maximum principle (see Preliminaries), $u \leq w$. Thus

$$||u||_{L^{\infty}(\Omega)} \le ||w||_{L^{\infty}(\Omega)} \le c_1 ||f||_{L^p(\omega)}.$$

We have shown that

$$||R(\lambda, \sigma^2 \triangle_0) f||_{L^{\infty}(\Omega)} \le c_1 ||f||_{L^p(\omega)}$$
(12)

for $0 \le f \in C_c(\omega)$. Since for arbitrary $f \in C_c(\omega)$,

$$|R(\lambda, \sigma^2 \triangle_0)f| \le R(\lambda, \sigma^2 \triangle_0)|f|,$$

the estimate (12) remains true for all $f \in C_c(\omega)$. By the density of $C_c(\omega)$ in $L^p(\omega)$ the first claim is proved.

(b) In order to prove the second, let $f \in L^p(\omega)$, $u = Q(\lambda, \omega)f$. Let $f_k \in C_c(\omega)$ be such that $f_k \to f$ in $L^p(\omega)$. Then $u_k := Q(\lambda, \omega)f_k \to u$ in $C_0(\Omega)$. We have $u_k \in H_0^1(\Omega) \cap C_0(\Omega)$ and

$$\lambda \frac{u_k}{\sigma^2} - \Delta u_k = \frac{f_k}{\sigma^2} \quad \text{in } \mathcal{D}(\Omega)'. \tag{13}$$

Passing to the limit as $k \to \infty$ shows that (11) holds.

It remains to show that $u \in H_0^1(\Omega)$. Multiplying (13) by u_k and integrating yields

$$\lambda \int_{\Omega} \frac{u_k(x)^2}{\sigma(x)^2} dx + \int_{\Omega} |\nabla u_k(x)|^2 dx = \int_{\Omega} \frac{f_k(x)u_k(x)}{\sigma(x)^2} dx \le$$
$$\le \|u_k\|_{L^{\infty}(\Omega)} \frac{1}{\delta^2} \cdot |\Omega|^{\frac{1}{p'}} \|f_k\|_{L^p(\Omega)}.$$

This shows that $(u_k)_{k\in\mathbb{N}}$ is bounded in $H_0^1(\Omega)$. Thus, passing to a subsequence we may assume that $u_k \to w \in H_0^1(\Omega)$. Since $u_k \to u$ in $C_0(\Omega)$, it follows that $u = w \in H_0^1(\Omega)$.

Now we consider a more general function m satisfying the hypothesis formulated in the beginning of this section. We prove regularity of $m\triangle_{\infty}$ at points of weak diffusion.

Theorem 6.4 Let $z \in \partial \Omega$ be a point of weak diffusion (in the sense of (8)). Let $f \in C_0(\Omega)$, $\lambda > 0$, $u = R(\lambda, m \triangle_\infty) f$. Then

$$\lim_{x \to z, \ x \in \Omega} u(x) = 0.$$

Proof. Let $r_1 > 0$ be a large radius such that $\overline{\Omega} + \overline{B}(0,r) \subset B(0,r_1)$. Consider the open set

$$\tilde{\Omega} := (\Omega \cap B(z,r)) \cup (B(0,r_1) \setminus \overline{B}(z,\frac{r}{2})).$$

Then $\Omega \subset \tilde{\Omega}$ and $\overline{B}(z, \frac{r}{2}) \cap \partial \Omega \subset \partial \tilde{\Omega}$. In particular, $z \in \partial \tilde{\Omega}$. Consider a regularized distance $\tilde{\sigma}$ with respect to $\tilde{\Omega}$. Then there exists a constant c > 0 such that

$$m(x) \le c\tilde{\sigma}(x)^2$$
 for all $x \in \Omega$. (14)

In fact, for $x \in B(z,r) \cap \Omega$ this follows from (8). But for $x \in \Omega \setminus B(z, \frac{3}{4}r)$, one has $dist(x, \partial \tilde{\Omega}) \geq \frac{r}{4}$. Since m is bounded, it follows that

$$m(x) \le c_2(\frac{r}{4})^2 \le c_2 dist(x, \partial \tilde{\Omega})^2$$

for all $x \in \Omega \backslash B(z, \frac{3}{4}r)$. This shows that (14) is valid for a suitable constant c > 0. Now let $\lambda > 0$. Let $0 \le f \in C_c(\Omega), \ u = R(\lambda, m \triangle_\infty) f$. Then $u \in C^b(\Omega) \cap H_0^1(\Omega)$ and

$$\lambda \frac{u}{m} - \triangle u = \frac{f}{m}$$
 in $\mathcal{D}(\Omega)'$.

Let $\rho := \frac{m}{\tilde{\sigma}^2}$. Then $0 < \rho \le c$ on Ω and

$$\frac{1}{c} \le \frac{1}{\rho} = \frac{\tilde{\sigma}^2}{m} \in L^p_{loc}(\Omega).$$

Hence

$$\frac{\lambda}{c} \frac{u}{\tilde{\sigma}^2} \le \frac{\lambda}{\rho} \frac{u}{\tilde{\sigma}^2} = \frac{\lambda u}{m}.$$

Thus

$$\frac{\lambda}{c} \frac{u}{\tilde{\sigma}^2} - \Delta u \le \frac{f}{m} = \frac{1}{\tilde{\sigma}^2} \frac{f}{\rho}.$$

Let $\omega \subset\subset \Omega$ be such that $supp\ f\subset \omega$. Consider the operator $Q(\lambda,\omega)\in \mathcal{L}(L^p(\omega),C_0(\tilde{\Omega}))$ of Lemma 6.3 defined with respect to $\tilde{\sigma}$. Let $w=Q(\frac{\lambda}{c},\omega)\frac{f}{\rho}$. Note that w is well defined, since $\frac{f}{\rho}\in L^p(\omega)$. Then $0\leq w\in C_0(\tilde{\Omega})\cap H_0^1(\tilde{\Omega})$ and by (11),

$$\frac{\lambda}{c} \frac{w}{\tilde{\sigma}^2} - \Delta w = \frac{1}{\tilde{\sigma}^2} \frac{f}{\rho} \quad \text{in } \mathcal{D}(\tilde{\Omega})'$$

and hence also in $\mathcal{D}(\Omega)'$. Thus

$$\frac{\lambda}{c} \frac{(u-w)}{\tilde{\sigma}^2} - \triangle(u-w) \le 0$$
 in $\mathcal{D}(\Omega)'$.

Recall that $u \in H_0^1(\Omega) \cap C^b(\Omega)$. Thus $(u-w) \in H^1(\Omega)$. Hence

$$\frac{\lambda}{c} \int_{\Omega} \frac{(u(x) - w(x))}{\widetilde{\sigma}(x)^2} v(x) \, dx + \int_{\Omega} \nabla (u(x) - w(x)) \nabla v(x) \, dx \le 0 \tag{15}$$

for all $0 \le v \in \mathcal{D}(\Omega)$. Since $(u-w)^+ \in H^1(\Omega)$ and $(u-w)^+ \le u \in H^1_0(\Omega)$, it follows that $(u-w)^+ \in H^1_0(\Omega)$.

Since $u = R(\lambda, m\triangle_{\infty})f = R(\lambda, m\triangle_2)f$, it follows that

$$u\in L^2(\Omega,\frac{dx}{m(x)})\subset L^2(\Omega,\frac{dx}{\widetilde{\sigma}(x)^2})$$

because of (14). It follows (since also $w \in L^2(\Omega, \frac{dx}{\tilde{\sigma}(x)^2})$ that

$$v_1 := (u - w)^+ \in V := L^2(\Omega, \frac{dx}{\widetilde{\sigma}(x)^2}) \cap H_0^1(\Omega).$$

Since $\mathcal{D}(\Omega)_+$ is dense in V_+ by Proposition 3.2, (15) remains true for $v := v_1$. This means that

$$\frac{\lambda}{c} \int_{\Omega} \frac{(u(x) - w(x))^{+2}}{\widetilde{\sigma}(x)^2} dx + \int_{\Omega} |\nabla (u(x) - w(x))^+|^2 dx \le 0.$$

This implies that $(u-w)^+=0$. Hence $0 \le u \le w$.

$$\lim_{x \to z, x \in \tilde{\Omega}} w(x) = 0,$$

it follows that

$$\lim_{x \to z, x \in \Omega} u(x) = 0.$$

We have proved the theorem for the case when $0 \leq f \in C_c(\Omega)$. Hence it is also true for arbitrary $f \in C_c(\Omega)$. Since $R(\lambda, m\triangle_{\infty}) \in \mathcal{L}(L^{\infty}(\Omega))$, and $C_c(\Omega)$ is dense in $C_0(\Omega)$ it follows that

$$\lim_{x \to z, x \in \Omega} (R(\lambda, m\triangle_{\infty})f)(x) = 0$$

for all $f \in C_0(\Omega)$.

Corollary 6.5 Assume that each $z \in \partial \Omega$ is a point of weak diffusion (in the sense of (8)). Then $m\triangle_0$ generates a positive, contractive C_0 -semigroup on $C_0(\Omega)$.

7 Conclusion

We may now formulate the following general generation theorem. Let $\Omega \subset \mathbb{R}^N$ be bounded, open and $\frac{N}{2} . Let <math>m: \Omega \to (0, \infty)$ be bounded and such that $\frac{1}{m} \in L^p_{loc}(\Omega)$.

Theorem 7.1 Assume that for each point $z \in \partial \Omega$ one of the following conditions is satisfied:

- (a) z is a regular point or
- **(b)** z is a point of weak diffusion (in the sense of (8)).

Then $m\triangle_0$ generates a positive, contractive C_0 -semigroup on $C_0(\Omega)$.

Proof. Theorem 5.3 and Theorem 6.4 show that $C_0(\Omega)$ is invariant. Thus the claim follows from Proposition 4.2.

Finally, we show that the condition (8) of being a point of weak diffusion is optimal.

Let N=2 and $\Omega=\left\{x\in\mathbb{R}^2:\ 0<|x|<2\right\}$. Then $\partial\Omega=\mathbb{T}\cup\{0\}$ where $\mathbb{T}=\left\{x\in\mathbb{R}^2:\ |x|=2\right\}$. The points in \mathbb{T} are regular but 0 is not regular. Consider the function d given by $d(x)=|x|,\ x\in\Omega$. Thus $d(x)=dist(x,\partial\Omega)$ for $0<|x|<\frac{1}{2}$. Then $\frac{1}{d}\in L^q(\Omega)$ if and only if q<2. Now let $0<\beta<2$. Then $\frac{1}{d^\beta}\in L^p(\Omega)$ for some $p>1=\frac{N}{2}$. Since Ω is not Dirichlet regular, it follows from Theorem 5.6 that $d^\beta\triangle_0$ is not a generator.

On the other hand, if $\beta \geq 2$, then for $m = d^{\beta}$, the point 0 is of weak diffusion. Since the other boundary points are regular, it follows from Theorem 7.1 that $d^{\beta} \triangle_0$ generates a C_0 -semigroup on $C_0(\Omega)$.

An interesting open set in \mathbb{R}^3 with continuous boundary and exactly one singular point is the Lebesgue cusp (see e.g. [7] for a detailed investigation).

References

- [1] W. Arendt, Ch. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Birkhäuser, Basel 2001
- [2] W. Arendt, Ph. Bénilan, Wiener regularity and heat semigroups on spaces of continuous functions, In: Topics in Nonlinear analysis, J.Escher, G.Simonett eds., Birkhäuser, Basel 1999
- W. Arendt, Heat Kernels. Internetseminar 2005/2006, https://tulka.mathematik.uni-ulm.de/2005/lectures/internetseminar.pdf, 2005/06
- [4] W. Arendt, Positive semigroups of kernel operators, Positivity 12 (2008), 25-44
- [5] W. Arendt, P.R. Chernoff, T. Kato, A generalisation of dissipativity and positive semigroups, J. Operator Theory 8 (1982), 167-180
- [6] W. Arendt, D. Daners, *The Dirichlet problem by variational methods*, Bull. London Math. Soc. **40** (2008), 51-56

- [7] W. Arendt, D. Daners, Varying domains: Stability of the Dirichlet and the Poisson problem, Discrete and Continuous Dynamical Systems 21 (2008), 21-39
- [8] M. Biegert, M. Warma, Regularity in capacity and the Dirichlet Laplacian, Potential Anal. 25 (2006), 389-405
- [9] T. Cazanave, A. Haraux, Introduction aux Problémes d'Evolution Semilinéaires Elliptiques, Paris 1990
- [10] E. B. Davies, Heat Kernels and Spectral Theory, University Press, Cambridge 1989
- [11] E. B. Davies, L^1 properties of second order elliptic operators, Bull. London Math. Soc. 17 (1985), 417-436
- [12] R. Dautray, J. L. Lions Mathematical Analysis and Numerical Methods for Science and Technology. Vol. I, Springer, Berlin 1990
- [13] R. Haller-Dintelmann, M. Hieber, J. Rehberg, Irreducibility and mixed boundary conditions, Positivity 12 (2008), 83-91
- [14] S. Hildebrandt, On Dirichlet's principle and Poincaré's méthode de balayage, Math. Nachr. 278 (2005), 141-144
- [15] O. D. Kellogg, Foundations of Modern Potential Theory, Springer, Berlin 1972
- [16] R. Nagel (ed.), One-parameter Semigroups of Positive Operators, Springer LN 1184, Berlin 1986
- [17] E. M. Ouhabaz, Analysis of Heat Equations on Domains, Princeton University Press, Princeton 2005
- [18] E. M. Ouhabaz, Invariance of closed convex sets and domination criteria for semigroups, Potential Analysis 5 (1996), 611–625.
- [19] M. M. H. Pang, L¹ properties of two classes of singular second order elliptic operators, J. London Math. Soc. 38 (1988), 525-543
- [20] C. G. Simader, Equivalence of weak Dirichlet's principle, the method of weak solutions and Perron's method towards classical solutions of Dirichlet's problem for harmonic functions, Math. Nachr. 279 (2006), 415-430
- [21] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton 1970

WOLFGANG ARENDT Institute of Applied Analysis University of Ulm D-89069 Ulm Germany

wolfgang.arendt@uni-ulm.de

MICHAL CHOVANEC
Institute of Applied Analysis
University of Ulm
D-89069 Ulm
Germany

michal.chovanec@uni-ulm.de