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Abstract. For Ω a bounded open set in RN we consider the space H1
0 (Ω̄) =

{u|Ω
: u ∈ H1(RN ) : u(x) = 0 a.e. outside Ω̄}. The set Ω is called stable if

H1
0 (Ω) = H1

0 (Ω̄). Stability of Ω can be characterised by the convergence of the
solutions of the Poisson equation

−∆un = f in D(Ωn)′, un ∈ H1
0 (Ωn)

and also the Dirichlet Problem with respect to Ωn if Ωn converges to Ω in
a sense to be made precise. We give diverse results in this direction, all with
purely analytical tools not referring to abstract potential theory as in Hedberg’s
survey article [Expo. Math. 11 (1993), 193–259]. The most complete picture
is obtained when Ω is supposed to be Dirichlet regular. However, stability does
not imply Dirichlet regularity as Lebesgue’s cusp shows.

1. Introduction. There are two natural ways to define Dirichlet boundary condi-
tions on a bounded open set Ω ⊂ R

N for functions in the Sobolev space H1(Ω) :=
{u ∈ L2(Ω): Dju ∈ L2(Ω), j = 1, . . .N}. The most common one consists in consid-
ering the space H1

0 (Ω) defined as the closure of the test functions D(Ω) in H1(Ω).
The other natural space is

H1
0 (Ω̄) := {u|Ω : u ∈ H1(RN ), u(x) = 0 a.e. on R

N \ Ω}.
The last one always contains H1

0 (Ω) but the inclusion is strict in general.
The purpose of this article is to characterise when both spaces coincide. We then

say that Ω is stable. We may associate two realizations ∆Ω and ∆Ω̄ of the Laplacian
on L2(Ω) associated with the form domains H1

0 (Ω) and H1
0 (Ω̄) corresponding to a

“minimal” and a “maximal” realisation of the Laplacian with Dirichlet boundary
conditions. Both can be obtained by approximation, the first from the inside,
the second from the outside. If Ωn ↑ Ω, that is, if Ωn ⊂ Ωn+1 are open and⋃

n∈N
Ωn = Ω, then

et∆Ωn → et∆Ω
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strongly in L2(Ω). On the other hand, if Ωn ↓ Ω, that is, if Ωn+1 ⊂ Ωn for all n ∈ N

and
⋂

n∈N
Ωn = Ω̄, then

et∆Ωn → et∆Ω̄

as n→ ∞. Thus stability of Ω is equivalent to the fact that et∆Ωn converges to et∆Ω

if Ωn ↓ Ω. The convergence of the heat semigroups is equivalent to the convergence
of the solutions of the Poisson equation

−∆u = f

where u ∈ H1
0 (Ω) or u ∈ H1

0 (Ω̄). Much more interesting is the relation to conver-
gence of the solutions of the Dirichlet problem

D(ϕ,Ω) h ∈ H(Ω) ∩ C(Ω̄), h = ϕ on ∂Ω

where H(Ω) denotes the space of all harmonic functions. As usual we call Ω Dirichlet
regular if the above problem has a unique solution for every ϕ ∈ C(∂Ω). We will
show by rather elementary means that for a Dirichlet regular set Ω, stability is
equivalent to the fact that

hn → h uniformly on Ω̄

whenever Ωn ↓ Ω,Φ ∈ C(Ω̄1), hn is the solution of D(Φ|∂Ωn
,Ωn) and h the solution

of D(Φ|∂Ω
,Ω). Indeed we will study the close connections of Poisson’s equation and

the Dirichlet problem. For questions of uniform convergence, harmonic functions
are easier to treat because of the mean-value theorem. Indeed, we exploit and
generalise a clever argument by Keldyš (see [22, Lemma 4.1]) and prove a very
general convergence result (Theorem 5.2). Our approach is based on elementary
arguments in analysis. There is a different approach by abstract potential theory
which is exposed in the survey article of Hedberg [21] and also subject of the books
by Landkof [23, Chapter V.5] and Adams and Hedberg [1, Chapter 11]. We obtain
several of the results of Hedberg [21] concerning stability by elementary arguments.
Such a direct approach might be welcome by analysts who encounter the stability
problem treating linear and non-linear equations such as, for instance, Dancer [13,
14, 15, 16], or [17], [11, 10], [12], [7, 8]. Our paper in particular complements results
contained in Dancer’s paper [16].

The last section is devoted to a detailed analysis of Lebesgue’s cusp which is an
example of a stable open set which is not Dirichlet regular. In this example, the
Dirichlet problem is not solvable for a function ϕ ∈ C(∂Ω) which is the restriction
of an extremely regular function defined on R

N (C∞ and even locally harmonic).

2. The Poisson problem with Dirichlet and pseudo Dirichlet boundary

conditions. The purpose of this section is to discuss the two realisations of the
Laplace operator with Dirichlet boundary conditions, a minimal and a maximal
realisation. Let Ω be a bounded open set in R

N . For u ∈ L2(Ω) we denote by ũ the

extension of u by 0. If u ∈ H1
0 (Ω), then ũ ∈ H1(RN ) and Dj ũ = D̃ju (see e.g. [9,

Proposition IX.18]). We let

H1
0 (Ω̄) := {u|Ω : u ∈ H1(RN ), u = 0 a.e. on Ω̄c}.

Thus H1
0 (Ω) ⊂ H1

0 (Ω̄). Note that for u ∈ H1(Ω), u+ ∈ H1(Ω) and Dju
+ =

1{u>0}Dju (see [20, §7.4]). Moreover, the mapping u 7→ u+ is continuous. It

follows that u ∈ H1
0 (Ω) implies u+ ∈ H1

0 (Ω) and u ∈ H1
0 (Ω̄) implies u+ ∈ H1

0 (Ω̄).
Moreover, if u ∈ H1

0 (Ω), v ∈ H1
0 (Ω̄) and 0 ≤ v ≤ u, then v ∈ H1

0 (Ω). This means
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that H1
0 (Ω) is a closed ideal in H1

0 (Ω̄). We shall use this property without further
comment in the sequel.

We also identify H1
0 (Ω̄) with a subspace of H1(RN ) by identifying u and ũ. If

u ∈ H1(Ω) vanishes outside a compact subset K of Ω, then u ∈ H1
0 (Ω) (see [9,

Lemma IX.5]). Thus, if Ω1,Ω2 are open sets such that Ω̄1 ⊂ Ω2, and if Ω1 is
bounded then

H1
0 (Ω̄1) ⊂ H1

0 (Ω2). (2.1)

We consider the bilinear form

a : H1
0 (Ω̄) ×H1

0 (Ω̄) → R

given by

a(u, v) =

∫

Ω

∇u∇v dx.

Then a is continuous and coercive, that is,

a(u, u) ≥ α‖u‖2
H1

0(Ω̄)

for all u ∈ H1
0 (Ω̄). In fact, let B be a ball such that Ω̄ ⊂ B. Then u ∈ H1

0 (B)
by (2.1) and the claim follows from Poincaré’s inequality. We denote by −∆Ω̄

the operator associated with a and call ∆Ω̄ the pseudo-Dirichlet Laplacian. The
operator associated with the restriction a0 of a to H1

0 (Ω) × H1
0 (Ω) is denoted by

−∆Ω. We call ∆Ω the Dirichlet Laplacian. The operators ∆Ω and ∆Ω̄ are both
self-adjoint and invertible. Thus for f, u, v ∈ L2(Ω) we have

u ∈ D(∆Ω̄), −∆Ω̄u = f (2.2)

if and only if u ∈ H1
0 (Ω̄) and

∫
Ω ∇u∇w dx =

∫
Ω fw dx for all w ∈ H1

0 (Ω̄). On the
other hand,

u ∈ D(∆Ω), −∆Ωu = f (2.3)

if and only if u ∈ H1
0 (Ω) and

∫
Ω ∇u∇w dx =

∫
Ω fw dx for all w ∈ H1

0 (Ω). Since the

space of all test functions D(Ω) is dense in H1
0 (Ω), we have

D(∆Ω) := {u ∈ H1
0 (Ω): ∆u ∈ L2(Ω)},

∆Ωu := ∆u,
(2.4)

where ∆u ∈ D(Ω)′ is understood in the sense of distributions. Note that ∆Ω = ∆Ω̄

if and only if H1
0 (Ω) = H1

0 (Ω̄). More precisely, if H1
0 (Ω) 6= H1

0 (Ω̄) then D(∆Ω) 6⊂
D(∆Ω̄) and D(∆Ω̄) 6⊂ D(∆Ω). This means in particular, if H1

0 (Ω) 6= H1
0 (Ω̄), then

there exists u ∈ H1
0 (Ω) such that ∆u ∈ L2(Ω) but there exists w ∈ H1

0 (Ω̄) such that
∫

Ω

∇u∇w dx 6= −
∫

Ω

w∆u dx.

Example 2.1. Let N = 1, Ω = (−1, 0) ∪ (0, 1). Observe that H1(R) ⊂ Cb(R) (the
bounded continuous function on R). Then H1

0 (Ω) = {u ∈ H1(−1, 1): u(0) = u(1) =
u(−1) = 0} and

H1
0 (Ω̄) = {u ∈ H1(−1, 1): u(−1) = u(1) = 0} = H1

0 (−1, 1).

If Ω is reasonably smooth, then

H1
0 (Ω) = H1

0 (Ω̄). (2.5)

A proof of the following result can be found in [25, pages 24–26].

Proposition 2.2. If Ω is bounded and has continuous boundary, then (2.5) is true.
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The purpose of this article is to characterise when (2.5) holds in terms of the
Dirichlet and the Poisson problems. This section is devoted to the Poisson equation.
For λ ≥ 0 we denote by R(λ,∆Ω) and by R(λ,∆Ω̄) the resolvents of ∆Ω and ∆Ω̄ at
λ. Since we will mainly be interested in λ = 0 we let shortly

RΩ := R(0,∆Ω) and RΩ̄ := R(0,∆Ω̄).

Thus RΩ = (−∆Ω)−1 and RΩ̄ = (−∆Ω̄)−1. For f, u, v ∈ L2(Ω) we have RΩf = u
if and only if u ∈ H1

0 (Ω) and −∆u = f in D(Ω)′ if and only if u ∈ H1
0 (Ω) and∫

Ω
∇u∇w dx =

∫
Ω
fw dx for all w ∈ H1

0 (Ω). Similarly we have RΩ̄f = v if and

only if v ∈ H1
0 (Ω̄) and

∫
Ω
∇v∇w dx =

∫
Ω
fw dx for all w ∈ H1

0 (Ω̄). Thus RΩf and
RΩ̄f are the solutions of the Poisson problem with Dirichlet and pseudo-Dirichlet
boundary conditions.

Next we establish some monotonicity properties.

Proposition 2.3. Let Ω1,Ω2 be bounded, open sets, such that Ω̄1 ⊂ Ω2, and let
λ ≥ 0. Then

0 ≤ R(λ,∆Ω1 ) ≤ R(λ,∆Ω̄1
) ≤ R(λ,∆Ω2 ).

Proof. Let f ∈ L2(Rn), u1 := RΩ1(λ)f , ū1 := RΩ̄1
(λ)f and u2 := RΩ2(λ)f . Then

λ

∫
ujv dx+

∫
∇uj∇v dx =

∫
fv dx

for all v ∈ H1
0 (Ωj), i = 1, 2, and

λ

∫
ū1v dx+

∫
∇ū1∇v dx =

∫
fv dx.

for all v ∈ H1
0 (Ω̄1). First assume that f ≤ 0 and set v = u+

1 . Then

λ

∫
|u+

1 |2 dx+

∫
|∇u+

1 |2 dx = λ

∫
u1v dx+

∫
∇u1∇v dx =

∫
fv dx ≤ 0.

Hence u+
1 = 0 and so u1 ≤ 0. This shows that RΩ1(λ) ≥ 0. Since also ū+

1 ∈ H1
0 (Ω̄1),

it follows similarly that RΩ̄1
(λ) ≥ 0.

Next let f ≥ 0. Then u1, ū1, u2 ≥ 0 by what we have just shown, and λ
∫
(u1 −

ū1)v +
∫
∇(u1 − ū1)∇v = 0 for all v ∈ H1

0 (Ω1). Consider v = (u1 − ū1)
+. Then

v ∈ H1
0 (Ω̄1) and v ≤ u1 since ū1 ≥ 0. Hence v ∈ H1

0 (Ω1) and

λ

∫
v2 +

∫
|∇v|2 dx = λ

∫
(u1 − ū1)v dx+

∫
∇(u1 − ū1)∇v dx = 0.

Consequently, v = (u1 − ū1)
+ = 0 and so u1 ≤ ū1. Moreover, from the first lines of

the proof,

λ

∫
(ū1 − u2)v dx+

∫
∇(ū1 − u2)∇v dx = 0

for all v ∈ H1
0 (Ω̄1) ⊂ H1

0 (Ω2). To prove the last inequality let now v = (ū1−u2)
+ ∈

H1
0 (Ω2). Since u2 ≥ 0, we have 0 ≤ v ≤ ū1 and consequently, v ∈ H1

0 (Ω̄1). It
follows that

λ

∫
v2 dx +

∫
|∇v|2 dx = λ

∫
(ū1 − u2)v dx+

∫
∇(ū1 − u2)∇v dx = 0.

Thus (ū1 − u2)
+ = 0, that is, ū1 ≤ u2.
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Since Ω is bounded, the injections H1
0 (Ω) →֒ L2(Ω) and H1

0 (Ω̄) →֒ L2(Ω) are
compact. Thus ∆Ω and ∆Ω̄ are self-adjoint and have compact resolvent. We denote
by λ(Ω) and λ(Ω̄) the first eigenvalues of −∆Ω and of −∆Ω̄, respectively. Then

0 < λ(Ω̄) = inf
u∈H1

0 (Ω̄)

‖∇u‖2
L2(Ω)

‖u‖2
L2(Ω)

≤ inf
u∈H1

0 (Ω)

‖∇u‖2
L2(Ω)

‖u‖2
L2(Ω)

= λ(Ω). (2.6)

We shall see next that there is equality if and only if (2.5) holds and also relate it
to properties of the corresponding first eigenfunctions.

Proposition 2.4. Let Ω be an open, connected bounded set in R
N . The following

statements are equivalent.

(i) H1
0 (Ω) = H1

0 (Ω̄);
(ii) λ(Ω) = λ(Ω̄);
(iii) The first eigenfunction u of ∆Ω̄ lies in H1

0 (Ω);
(iv) There exists f > 0 such that RΩ̄f ∈ H1

0 (Ω).

Proof. (ii) ⇒ (i). The semigroups (et∆Ω)t≥0 and (et∆Ω̄)t≥0 are irreducible (see [2]
or [24, § 4.2] for two different proofs). Assume that λΩ = λΩ̄. If we let A = ∆Ω̄−λΩ̄

and B = ∆Ω − λΩ in [3, Theorem 1.3], then (i) follows. The implications (i) ⇒ (ii)
and (i) ⇒ (iii) are obvious.

(iii) ⇒ (iv). Let u be the first eigenfunction of ∆Ω̄; that is, u ∈ D(∆Ω̄) and
−∆Ω̄u = λ(Ω̄)u. Then u is strictly positive and RΩ̄u = λ−1

Ω̄
u.

(iv) ⇒ (i) Let f > 0 such that u = RΩ̄f ∈ H1
0 (Ω). Then u(x) > 0 almost

everywhere by irreducibility. By the resolvent identity

RΩ̄(1)u = RΩ̄(0)f −RΩ̄(1)f ≤ RΩ̄(0)f = u,

so if g ∈ L2(Ω) and |g| ≤ cu, then

|RΩ̄(1)g| ≤ cRΩ̄(1)u ≤ cu.

Hence RΩ̄(1)g ∈ H1
0 (Ω) by the ideal property. The set of all g ∈ L2(Ω) such that

|g| ≤ cu for some c > 0 is dense in L2(Ω). It follows that D(∆Ω̄) = RΩ̄(1)L2(Ω) ⊂
H1

0 (Ω).

We will need the following elementary regularity properties of the Laplacian (see
[19, Chapter II § 3, Proposition 6]).

Proposition 2.5. Let u ∈ D(Ω)′ where Ω ⊂ R
N is open.

(a) If ∆u ∈ Lp
loc(Ω) for some p > N/2, then u ∈ C(Ω).

(b) If ∆u ∈ Lp
loc(Ω) for some p > N , then u ∈ C1(Ω).

From this proposition we obtain the following uniform local estimate. We write
ω ⊂⊂ Ω if ω is open, bounded and ω̄ ⊂ Ω.

Proposition 2.6. Let Ω be open and ω ⊂⊂ Ω. Let p > N . Then there exists a
constant c > 0 such that

‖u‖C1(ω̄) ≤ c
(
‖∆u‖Lp(Ω) + ‖u‖L2(Ω)

)

for all u ∈ L2(Ω) such that ∆u ∈ Lp(Ω). Here ‖u‖C1(ω) = ‖u‖L∞(ω) + ‖∇u‖L∞(ω).

Proof. The space X := {u ∈ L2(Ω): ∆u ∈ Lp(Ω)} is a Banach space, as well as

C1(ω̄) = {u ∈ C1(ω) : u,Dju have a continuous extension to ω̄}.
The mapping

T : X → C1(ω̄), u 7→ u|ω
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is linear and has a closed graph. Hence T is continuous.

3. Stability of the Poisson problem. In this section we consider a sequence of
bounded open sets Ωn ⊂ R

N which converges to a bounded open set Ω ⊂ R
N in a

sense to be made precise.

Definition 3.1. We write Ωn ↑ Ω if Ωn ⊂ Ω and if for each compact set K ⊂ Ω
there exists n0 ∈ N such that K ⊂ Ωn for all n ≥ n0.

Proposition 3.2. Let Ωn ↑ Ω, f ∈ L2(Ω), u = RΩf and un = RΩn
f , then un → u

in L2(Ω). If f ∈ Lp
loc(Ω) where p > N . Then un, u ∈ C1(Ω) and

lim
n→∞

un(x) = u(x)

uniformly on compact subsets of Ω.

Proof. The first property follows for instance from [18, Proposition 7.1] or [4, proof
of Theorem 6.2]. Let ω ⊂ ω1 ⊂ Ω be open sets with ω̄ ⊂ ω1 and ω̄1 ⊂ Ω compact. It
follows from Proposition 2.6 that un, u ∈ C1(Ω) and ‖un‖C1(ω̄1) ≤ c

(
‖∆un‖Lp(Ω) +

‖un‖L2(Ω)

)
. Thus sup ‖un‖C1(ω̄1) < ∞, so the sequence (un)n∈N is equicontinuous

on ω̄. Hence there exists a subsequence which converges in C(ω̄). Since un → u in
L2(ω), it follows that un converges to u in C(ω̄).

Next we consider convergence from the exterior.

Definition 3.3. We write Ωn ↓ Ω if

(a) Ω̄ ⊂ Ωn for all n ∈ N and
(b) λ

(
(Ωn ∩B) \ Ω̄

)
→ ∞ as n→ ∞ for every ball B.

Remark 3.4. Condition (b) is in particular satisfied if

|(Ωn ∩B) \ Ω̄| → 0 as n→ ∞
for each ball B where |F | denote the Lebesgue measure of a Borel set F ⊂ R

N .
This follows from the Faber-Krahn inequality (see [18, Proposition 7.6]).

Proposition 3.5. Let Ωn ↓ Ω, let f ∈ L2(RN ), un = RΩn
f and u = RΩ̄f . Then

un → u in L2(RN ) as n → ∞. If f ∈ Lp
loc, p > N , then un, u ∈ C1(Ω) and

convergence is uniform on compact subsets of Ω.

Proof. The first assertion follows from [18, Theorem 6.1], the second as in Proposi-
tion 3.2.

Thus convergence from above and from below lead to different limits if

H1
0 (Ω) 6= H1

0 (Ω̄).

On the other hand if H1(Ω) = H1
0 (Ω̄), then we may simultaneously approximate

from the interior and the exterior.

Definition 3.6. We write Ωn → Ω if the following two conditions are satisfied:

(a) For each compact K ⊂ Ω there exists n0 ∈ N such that K ⊂ Ωn for all n ≥ n0.
(b) For each ball B ⊂ R

N , λ
(
(Ωn ∩B) \ Ω̄

)
→ ∞ as n→ ∞.

Theorem 3.7. Let Ω be open and bounded. The following assertions are equivalent.

(i) H1
0 (Ω) = H1

0 (Ω̄);
(ii) For every sequence (Ωn) with Ωn → Ω and every f ∈ L2(RN ) we have RΩn

f →
RΩf in L2(RN ).
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Moreover, in this case, if f ∈ Lp
loc for some p > N , then RΩn

f ∈ C1(Ωn), RΩf ∈
C1(Ω) and the convergence is uniform on each compact subset of Ω.

Proof. (ii) ⇒ (i) is clear from the previous discussion.
(i) ⇒ (ii) follows from [13, 25] or [18, Theorem 7.5]. The last assertion is proved

as Proposition 3.2.

In view of this characterisation given in Theorem 3.7 we give the following defi-
nition.

Definition 3.8. An open set Ω ⊂ R
N is stable if H1

0 (Ω) = H1
0 (Ω̄).

In the following section we will relate the notion of stability to stability of the
Dirichlet problem.

4. Stability of the Dirichlet problem. Let Ω be a bounded open set with topo-
logical boundary ∂Ω. We say that Ω is Dirichlet regular if for every ϕ ∈ C(∂Ω)
there exists a solution of

D(ϕ,Ω) h ∈ H(Ω) ∩C(Ω̄), h|∂Ω
= ϕ,

where H(Ω) = {u ∈ C2(Ω): ∆u = 0} is the space of all harmonic functions. There is
at most one solution of D(ϕ,Ω) by the maximum principle. If for a given ϕ ∈ C(∂Ω)
there exists a solution of D(ϕ,Ω) we say that D(ϕ,Ω) is solvable. We recall the
notion of the Perron solution and refer to [19, Chapter II § 4] for the proof of
the following proposition. The Perron solution is a generalised solution of D(ϕ,Ω)
which always exists. A function v ∈ C(Ω) is called subharmonic if −∆v ≤ 0 in
D(Ω)′, that is, −

∫
Ω v∆ω dx ≤ 0 for all 0 ≤ ω ∈ D(Ω). The function v is called

superharmonic if −v is subharmonic. Given ϕ ∈ C(∂Ω), u ∈ C(Ω) we write u ≤ ϕ
on ∂Ω if

lim
x→z

u(x) ≤ ϕ(z)

for all z ∈ ∂Ω and u ≥ ϕ on ∂Ω if

lim
x→z

u(x) ≥ ϕ(z)

for all z ∈ ∂Ω. We let Hb(Ω) := H(Ω) ∩ L∞(Ω), which is a Banach space for the
supremum norm.

Theorem 4.1 (Perron solution). Let Ω ⊂ R
N be an arbitrary open bounded set.

(a) If ϕ ∈ C(∂Ω), then

hϕ(x) = sup{u(x) : u subharmonic and u ≤ ϕ on ∂Ω}
exists for all x ∈ Ω and defines a harmonic function hϕ on Ω. Moreover
hϕ(x) = inf{v(x) : v superharmonic, v ≥ ϕ on ∂Ω}.

(b) The mapping ϕ ∈ C(∂Ω) 7→ hϕ ∈ Hb(Ω) is linear, positive and contractive.
(c) If D(ϕ, ω) has a solution h, then hϕ = h.

We call the function hϕ the Perron solution of D(ϕ,Ω). Next we want to describe
the Perron solution with the help of the solution of the Poisson equation. The
following is a generalisation of [6, Lemma 2.2.a)] with a similar proof which we
include for completeness. We let C0(Ω) := {u ∈ C(Ω̄) : u|∂Ω

= 0}.
Proposition 4.2. Let Ω be a bounded open set and u ∈ C0(Ω). Suppose that
∆u ∈ L2(Ω). Then u ∈ H1

0 (Ω).
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Proof. Let v ∈ H1
0 (Ω) such that −∆v = ∆u. Then h = u + v ∈ H(Ω) ⊂ C∞(Ω).

Consequently, u = h − v ∈ H1
loc(Ω). Let ε > 0. Since u ∈ C0(Ω), it follows that

(u−ε)+ ∈ Cc(Ω) (the space of all continuous functions on Ω with compact support).
Let ω ⊂⊂ Ω such that supp(u−ε)+ ⊂ ω. Then (u−ε)+ ∈ H1

0 (ω) by [9, Lemma IX 5]
(see Section 2). If we let f := −∆u, then for w ∈ D(ω),

∫
∇u∇w dx = −

∫
u∆w dx =

∫
fw dx.

This identity remains true for w ∈ H1
0 (ω). Take w = (u− ε)+. Then

∫
|∇(u − ε)+|2 dx =

∫
∇u∇(u− ε)+ dx =

∫
f(u− ε)+ dx

≤ ‖f‖2‖(u− ε)+‖2 ≤ ‖f‖2|Ω|1/2‖u‖∞.
Thus {(u − ε)+ : ε ∈ (0, 1]} is bounded in H1

0 (Ω). Hence there exists a weak limit
point v ∈ H1

0 (Ω) as ε ↓ 0. Since (u − ε)+ → u+ in L2(Ω) as ε ↓ 0, it follows
that u+ = v ∈ H1

0 (Ω). Applying this to −u instead of u, we obtain that also
u− ∈ H1

0 (Ω).

Corollary 4.3. Let Ω be Dirichlet regular and Φ ∈ C2(Ω̄), ϕ = Φ|∂Ω
. Let h be the

solution of D(ϕ,Ω). Then u = h− Φ ∈ H1
0 (Ω), that is, h− Φ = RΩ(∆Φ).

Next we describe the Perron solution by approximation from the interior. Keldyš
[22, Theorem 2] refers to the following result as Wiener’s Theorem. We give a proof
to be complete.

Theorem 4.4 (the Perron solution by approximation from the interior). Let Ωn

be Dirichlet regular and Ω open and bounded. Suppose that Ωn ↑ Ω and let Φ ∈
C(Ω̄), ϕ = Φ|∂Ω

. Let hn be the solution of D(Φ|∂Ωn
,Ωn). Then

lim
n→∞

hn(x) = hϕ(x)

uniformly on compact subsets of Ω. Here hϕ is the Perron solution of D(ϕ,Ω).

Proof. (a) If we assume that Φ ∈ C2(Ω̄), then hn := un + Φ, where un = RΩn
(∆Φ)

by Corollary 4.3. By Proposition 3.2, limn→∞ un = u uniformly on compact subsets
of Ω, where u = RΩ(∆Φ).

(b) Let now Φ ∈ C(Ω̄) and ε > 0 be arbitrary. Choose Φ̃ ∈ C2(Ω̄) such that

‖Φ − Φ̃‖L∞(Ω̄) ≤ ε

and let h̃n be the solution of D(Φ̃|∂Ω
,Ωn). Then h̃n converges uniformly on compact

subsets of Ω by (a). Let K ⊂ Ω be compact. Then there exists n0 ∈ N such that
K ⊂ Ωn for all n ≥ n0. For n,m ≥ n0 we have

‖hn − hm‖L∞(K)

≤ ‖hn − h̃n‖C(K) + ‖h̃n − h̃m‖C(K) + ‖h̃m − hm‖C(K)

≤ 2ε+ ‖h̃n − h̃m‖C∞(K)

by the maximum principle. Thus (hn) is a Cauchy sequence in C(K) for every
compact subset K ⊂ Ω, showing that hn converges to a function h uniformly on
compact subsets of Ω.

(c) The function h merely depends on ϕ and not on the choice of the extension

Φ ∈ C(Ω̄) of ϕ. In fact, let Φ̃ ∈ C(Ω̄) such that Φ̃|∂Ω
= ϕ. Let h̃m be the solution of
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D(Φ̃|∂Ωn
,Ωn) and fix ε > 0 and x ∈ Ω arbitrary. Since Φ = Φ̃ on ∂Ω there exists a

compact set K ⊂ Ω containing x such that |Φ(y)− Φ̃(y)| ≤ ε for all y ∈ Ω \K. Let

n0 ∈ N such that K ⊂ Ωn for all n ≥ n0. Then |hn(x)− h̃n(x)| ≤ ‖Φ−Φ̃‖L∞(∂Ωn) ≤
ε. Thus |h(x) − h̃(x)| ≤ ε, where h = limn→∞ hn and h̃ = limn→∞ h̃n. Since ε > 0

is arbitrary, h(x) = h̃(x).
(d) Let h(x) = limn→∞ hn(x) as before. We show that h = hϕ. Let Φ ∈

C(Ω̄) such that Φ|∂Ω
= ϕ. Let u ∈ C(Ω) be a subharmonic function such that

u ≤ ϕ on ∂Ω. Then Φ̃ := Φ ∨ u ∈ C(Ω̄) and Φ̃|∂Ω
= ϕ. If h̃n is the solution of

D(Φ̃|∂Ωn
,Ωn), then u ≤ h̃n on ∂Ωn. Hence u ≤ hn on Ωn by the maximum principle

[19, Chapter II § 4.1]. Thus u(x) ≤ limn→∞ h̃n(x) = h(x) for all x ∈ Ω. We see
similarly that v(x) ≥ h(x) for all x ∈ Ω for each superharmonic function v such
that v ≥ ϕ on ∂Ω. Now Theorem 4.1 implies that h = hϕ.

Recall that there always exist Ωn of class C∞ such that Ωn ⊂ Ωn+1 and Ωn ↑ Ω
(see [19, Lemma II.4.2.1]). Thus Theorem 4.4 describes completely the Perron
solution. Finally we characterise the Perron solution in terms of solutions of the
Poisson problem for boundary data in a dense subspace of C(∂Ω).

Theorem 4.5 (Perron solution via Poisson equation). Let ϕ ∈ C(∂Ω) and assume
that there exists Φ ∈ C2(Ω̄) such that ϕ = Φ|∂Ω

. Let u ∈ H1
0 (Ω) such that

−∆u = ∆Φ in D(Ω)′.

Then hϕ = Φ + u.

Proof. Let Ωn be Dirichlet regular such that Ωn ↑ Ω. Let hn be the solution of
D(Φ|∂Ωn

,Ωn), un = hn −Φ. Then un ∈ H1
0 (Ωn) and −∆un = ∆Φ by Corollary 4.3.

Moreover by Proposition 3.2, un converges to u in L2(Ω), where u is the solution of

−∆u = ∆Φ in D(Ω)′, u ∈ H1
0 (Ω).

Since hn → hϕ uniformly on compact subsets of Ω by Theorem 4.4 we conclude
that u = hϕ − Φ on Ω as claimed.

Instead of approximating hϕ from the interior (that is, by considering Ωn ↑ Ω),
we might consider Ωn ⊃ Ω̄. This however leads to another harmonic function.
We quote the following facts which are proved by Keldyš [22, V]. Let Ωn ⊃ Ω̄
such that

⋂
n∈N

Ωn = Ω̄, Ωn ⊃ Ωn+1. Assume that Ωn is Dirichlet regular. Let

ϕ ∈ C(∂Ω) and choose Φ ∈ C(Ω̄1) such that Φ|∂Ω
= ϕ. Let hn be the solution of

D(Φ|∂Ωn
,Ωn). Then hn converges to a function Hϕ ∈ Hb(Ω) uniformly on compact

subsets of Ω. This function Hϕ does not depend on the choice of the Ωn and
the extension Φ of ϕ (see the proof of Theorem 4.4). Moreover, the mapping
ϕ 7→ Hϕ : C(∂Ω) → Hb(Ω) is linear, contractive and positive. Now consider the case
where ϕ has an extension Φ ∈ C2(Ω̄1). Then hn = Φ|Ωn

+ un where un ∈ H1
0 (Ωn)

is the solution of −∆un = ∆Φ in D(Ωn)′. It follows from Proposition 3.5 that un

converges uniformly on compact subsets of Ω to the function u = RΩ̄(∆Φ). We
have proved the following result.

Proposition 4.6. Let Ω be a bounded open set, ϕ ∈ C(∂Ω). Assume that there
exists Φ ∈ C2(RN ) such that Φ|∂Ω

= ϕ. Then

Hϕ = Φ +RΩ̄

(
∆Φ|Ω

)
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Since the space

F := {ϕ ∈ C(∂Ω): ϕ has an extension Φ ∈ C2(RN )}
is dense in C(∂Ω) by the Stone-Weierstraß Theorem we obtain the following result.

Theorem 4.7. Let Ω be open and bounded. The following assertions are equivalent.

(i) H1
0 (Ω) = H1

0 (Ω̄);
(ii) Hϕ = hϕ for all ϕ ∈ C(∂Ω).

Keldyš calls Ω stable if property (ii) holds. Thus our terminology coincides with
his.

Finally, we consider arbitrary convergence of Ωn, neither from the outside nor
from the inside. It is clear from the preceding theorem that then we have to assume
in general that Ω is stable in order to obtain a limit.

Theorem 4.8. Let Ω be an open, bounded, stable set. Let Ωn be Dirichlet regular
such that Ωn → Ω (Definition 3.6). Let Φ: R

N → R be uniformly continuous,
ϕ = Φ|∂Ω

. Let hn be the solution of D(Φ|∂Ωn
,Ωn) and let hϕ be the Perron solution

of D(ϕ,Ω). Then

lim
n→∞

hn(x) = hϕ(x)

uniformly on compact subsets of Ω.

Proof. (a) Assume that Φ ∈ C2(RN ), f := ∆Φ, un := RΩn
f and u := RΩf . Then

hn := Φ+un is the solution of D(Φ|Ωn
,Ωn) and hϕ = Φ+u (by Theorem 4.5). Since

Ω is stable un converges to u uniformly on compact subsets of Ω by Theorem 3.7.
Thus also hn converges to hϕ uniformly on compact subsets of Ω.

(b) Let ε > 0. With the help of a mollifier we find Φ̃ ∈ C2(RN ) such that

‖Φ̃ − Φ‖L∞(RN ) ≤ ε. Let h̃n be the solution of D(Φ̃|∂Ωn
,Ωn) and let hϕ̃ be the

Perron solution on Ω with respect to ϕ̃ = Φ̃|∂Ω
. Let K ⊂ Ω be compact. There

exists n0 ∈ N such that K ⊂ Ωn for all n ≥ n0. Let n ≥ n0, then

‖hn − hϕ‖C(K)

≤ ‖hn − h̃n‖C(K) + ‖h̃n − hϕ̃‖C(K) + ‖hϕ̃ − hϕ‖C(K)

≤ 2ε+ ‖h̃n − hϕ̃‖C(K).

It follows from (a) that lim supn→∞ ‖hn − hϕ‖C(K) ≤ 2ε.

5. Uniform convergence. Let Ω be a bounded open set and let Ωn be bounded,
open and Dirichlet regular and Φ ∈ BUC(RN ), where BUC(RN ) denotes the set
of bounded and uniformly continuous functions on R

N . Consider the solution hn

of D(Φ|∂Ωn
,Ωn) and the Perron solution h of D(Φ|∂Ω

,Ω). In Section 4 we showed

the following. Assume that Ω is stable (that is, H1
0 (Ω) = H1

0 (Ω̄)) and that Ωn →
Ω (in the sense of Definition 3.6). Then by Theorem 4.8 hn → h uniformly on
compact subsets of Ω. We also saw that stability is a necessary assumption for this
convergence to hold. Now assume in addition that Ω is Dirichlet regular. Then
h ∈ C(Ω̄) and h|∂Ω

= Φ|∂Ω
. We extend h to a continuous function on R

N by letting

h(x) = Φ(x) for x ∈ R
N \ Ω̄. Similarly, we let hn(x) = Φ(x) for x ∈ R

N \ Ω̄n. Thus
h, hn ∈ BUC(RN ). It is surprising that under these hypotheses hn converges to h
uniformly on R

N . This is the main result of this section (Theorem 5.2). Its proof
is based on the following basic lemma, which is a modification and generalisation
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of Keldyš Lemma VI in [22]. Our hypotheses are considerably weaker than those
given by Keldyš.

Basic Lemma 5.1. Let Ωn,Ω bounded, open sets and

hn, h,Φ ∈ BUC(RN )

such that hn = Φ on R
N \ Ωn, h = Φ on R

N \ Ω and such that hn is harmonic on
Ωn and h harmonic on Ω. Assume that

(a) hn → h in measure;
(b) for each compact set K ⊂ Ω there exists n0 ∈ N such that K ⊂ Ωn for all

n ≥ n0.

Then hn → h uniformly in R
N as n→ ∞.

Proof. Let 0 < ε ≤ 2. Choose δ > 0 such that |x−y| ≤ δ implies |Φ(x)−Φ(y)| ≤ ε/2
and |h(x) − h(y)| ≤ ε/4. Such a choice is possible since Φ and h are uniformly
continuous. Next choose c > 0 such that

1

σN · (δ/2)N−1

(
c · 2

δ

)(
2‖Φ‖L∞(RN ) + 1

)
=
ε

2
(5.1)

where σN is the surface area of the unit sphere in R
N . Define

Fn := {x ∈ R
N : |hn(x) − h(x)| > ε/4} (5.2)

and note that since hn → h in measure, |Fn| → 0 as n→ ∞. Hence we can choose
n1 ∈ N such that

|Fn| < c (5.3)

for all n ≥ n0. By assumption we can choose n2 ∈ N such that also

K := {x ∈ Ω: dist(x, ∂Ω) ≥ δ} ⊂ Ωn.

We set n0 := max{n1, n2}. We have to show that

|hn(z) − h(z)| ≤ ε (5.4)

for all n ≥ n0 and all z ∈ R
N . If z ∈ Ωc

n∩Ωc and n ≥ n0, then hn(z) = Φ(z) = h(z)
for all n ∈ N and thus (5.4) follows. If z ∈ Ωc

n ∩ Ω, then z 6∈ K by definition of K.
Hence there exists y ∈ ∂Ω such that |z − y| < δ by choice of δ. As z 6∈ Ωn we have
hn(z) = Φ(z) and thus

|h(z) − hn(z)| ≤ |h(z) − hn(y)| + |Φ(y) − Φ(z)| ≤ ε

4
+
ε

2
< ε.

as claimed. We finally need to show (5.4) for z ∈ Ωn. We fix z ∈ Ωn and n ≥ n0

and define

f(x) := |hn(x) − h(z)|
Then f(z) ≤ ε is equivalent to (5.4). For 0 < ̺ ≤ δ we consider B̺ := {x ∈
R

N : |x− z| < δ} and S̺ := ∂B̺. Let ω̺ ∈ H(B̺) ∩C(B̺̄) such that

ω̺ = f ∨ ε/2 on S̺.

We now show that

f ≤ ω̺ on Ωn ∩B̺. (5.5)

Since hn(x) − h(z) is harmonic on Ωn ∩ B̺ and thus f subharmonic on Ωn ∩ B̺

it is sufficient to show that (5.5) holds on ∂(Ωn ∩ B̺). If x ∈ ∂B̺, then ω̺(x) =
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f(x)∨ ε/2 ≥ f(x). If x ∈ ∂Ωn ∩B̺ ∩Ω, then x 6∈ K. Thus there exists y ∈ ∂Ω such
that |x− y| < δ. As hn(x) = Φ(x) we get

f(x) = |Φ(x) − h(z)| ≤ |Φ(x) − Φ(y)| + |h(y) − h(z)| ≤ ε

4
+
ε

2
< ε

by choice of δ. Finally, if x ∈ ∂Ωn ∩B̺, but x 6∈ Ω. Then f(x) = |Φ(x)−Φ(x)| = 0,
so (5.5) is satisfied.

To prove (5.4) for z ∈ Ωn we therefore need to find 0 < ̺ ≤ δ such that ω̺(z) ≤ ε.
For this we will use the spherical mean-value property of the harmonic function ω̺.
Recall that |Fn| < c by (5.3) and so there exists ̺ ∈ [δ/2, δ] such that

σ(F̺) < c · 2

δ
(5.6)

where F̺ = Fn ∩ S̺ and σ is the surface measure of S̺. Indeed, assume that

σ(F̺) ≥ c · 2

δ
for all ̺ ∈ [δ/2, δ].

Then |Fn| ≥
∫ δ

δ/2
σ(F̺)d̺ ≥ (c · 2

δ ) δ
2 = c, contradicting (5.3). Hence (5.6) follows.

By the mean-value theorem we have

ω̺(z) =
1

σ(S̺)

∫

S̺

w̺(y)dσ(y)

=
1

σ(S̺)

∫

S̺\F̺

w̺(y)dσ(y) +
1

σ(S̺)

∫

F̺

w̺(y)dσ(y).

The second integral is estimated by (5.6) and by using that w̺ ≤ f ∨ ε/2 ≤
2‖Φ‖L∞(RN ) + 1. Hence by (5.1)

1

σ(S̺)

∫

F̺

w̺(y)dσ(y) ≤ 1

σN · ̺N−1

(
c · 2

δ

)(
2‖Φ‖L∞(RN ) + 1

)

≤ 1

σN (δ/2)N−1

(
c · 1

δ

)(
2‖Φ‖L∞(RN ) + 1

)
=
ε

2
.

In order to estimate the first integral let y ∈ S̺ \ F̺. Then |hn(y) − h(y)| ≤ ε/4
since y 6∈ Fn. Hence

f(y) = |hn(y) − h(z)| ≤ |hn(y) − h(y)| + |h(y) − h(z)| ≤ ε/4 + ε/4 = ε/2.

Hence ω̺(y) = f(y) ∨ ε/2 = ε/2 on S̺ \ F̺. Consequently,

1

σ(S̺)

∫

S̺\F̺

w̺(y)dσ(y) ≤ ε/2,

completing the proof of the basic lemma.

Now the L2-theory of Section 3 gives us simple criteria for hn to converge to h
in measure. When doing so we will identify C0(Ω) with a subspace of

C0(R
N ) := {u ∈ C(RN ) : lim

|x|→∞
u(x) = 0}

extending functions by 0, that is,

C0(Ω) = {u ∈ C(RN ) : u(x) = 0 if x 6∈ Ω}.
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Theorem 5.2. Let Ωn,Ω be bounded open sets such that Ωn → Ω. Assume that
Ω is stable. Let Φ ∈ BUC(RN ). Assume that the Dirichlet problems D(Φ|∂Ωn

,Ωn)

and D(Φ|∂Ω
,Ω) are solvable. Let hn, h be the solutions extended to R

N by Φ. Then

hn → h uniformly on R
N .

Proof. As a first step we assume that Φ ∈ C2(RN ). Then hn = Φ + un where
un ∈ C0(Ωn),−∆un = ∆Φ in D(Ωn)′, h = Φ + u where u ∈ C0(Ω) and −∆u = ∆Φ
in D(Ω)′. It follows from Proposition 4.2 that un ∈ H1

0 (Ωn) and u ∈ H1
0 (Ω).

Now Theorem 3.7 implies that un → u in L2(RN ) and hence also in measure.
Thus hn → h in measure and the claim follows from the Basic Lemma 5.1. If
Φ ∈ BUC(RN ), then the assertion is reduced to the above exactly as in the proof
of Theorem 4.8.

Finally we want to establish a result on the convergence in the operator norm
(Theorem 5.6). We need some preparation.

Proposition 5.3. Let Ω be a Dirichlet regular, bounded open set. Let N/2 < p <
∞. Then for each f ∈ Lp(Ω) there is a unique solution of the Poisson problem

u ∈ C0(Ω), −∆u = f in D(Ω)′. (5.7)

Proof. Uniqueness is clear from the maximum principle. The solution can be ob-
tained as follows. Denote by EN ∈ C∞(RN \ {0}) the Newtonian potential. Then

EN ∈ Lp′

loc(R
N ). Thus Φ := EN ∗ f ∈ C(RN ). Let h be the solution of D(Φ|∂Ω

,Ω).
Then u := h− Φ ∈ C0(Ω) and −∆u = ∆Φ = f .

We denote by Rp
Ω ∈ L(Lp(RN ), C0(R

N )) the operator which to each f ∈ Lp(Ω)
associates the solution u of (5.7).

Proposition 5.4. Rp
Ω is a compact operator.

Proof. Let T (t) = e−t∆Ω . Since T is dominated by the Gaussian semigroup (see
Proposition 2.5), we have

‖T (t)‖L(Lp,L∞) ≤ Ct−N/2pe−ωt

for all t ≥ 0 for some ω > 0 (see [5, § 7.3]). We have Rp
Ω =

∫ ∞

0
T (t) dt. Let

fn ⇀ f in Lp(Ω) weakly. Since T (t) = T (t/2)T (t/2) ∈ L(Lp, C0(Ω)) ◦ L(Lp(Ω)) is
compact (since T (t/2): Lp(Ω) → Lp(Ω) is compact) it follows that T (t)fn → T (t)f .
By Lebesgue’s Theorem we deduce that Rp

Ωfn → Rp
Ωf . Thus Rp

Ω is completely
continuous and so compact since Lp(Ω) is reflexive.

We will use the following simple interpolation inequality.

Lemma 5.5. Let 1 ≤ p1 < p2 ≤ ∞, 0 < θ < 1, 1
p = θ

p1
+ 1−θ

p2
. Let X be a Banach

space and T ∈ L(Lp1(Ω), X). Then

‖T ‖L(Lp(Ω),X) ≤ ‖T ‖θ
L(Lp1,X) · ‖T ‖1−θ

L(Lp2,X).

Proof. Consider T ′ ∈ L(X ′, Lp1(Ω)′). Let x′ ∈ X ′, ‖x′‖ ≤ 1. Then

‖T ′x′‖Lp′ ≤ ‖T ′x′‖θ
Lp

1′ ‖T ′x′‖1−θ
Lp

2′

≤ ‖T ′‖θ
L(X′,Lp

1′ )‖T ′‖1−θ
L(X′,Lp

2′ )
= ‖T ′‖θ

L(Lp1 ,X)‖T ′‖1−θ
L(Lp2 ,X).

Since ‖T ‖L(Lp,X) = ‖T ′‖L(X,Lp′) = sup‖x′‖≤1 ‖T ′x′‖Lp′ the claim follows.
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Theorem 5.6. Let Ωn,Ω be open, Dirichlet regular sets, all contained in a large
ball B. Assume that Ω is stable. Let p > N/2. If Ωn → Ω, then Rp

Ωn
→ Rp

Ω in

L(Lp(RN ), C0(R
N )).

Proof. (a) First assume that p > N . Let fn ⇀ f in Lp(RN ). We show that

un = Rp
Ωn
fn → u = Rp

Ωf in C0(R
N ).

This implies the claim (see [18, Proposition B1]). We may assume that fn and f
vanish outside the ball B. Let Φn = EN ∗fn, Φ = EN ∗f . Since fn ⇀ f in Lp(RN ),

and since EN ∈ Lp′

loc(R
N ), it follows that

Φn(x) =

∫

B

EN (x− y)fn(y) dy → Φ(x) =

∫

B

EN (x− y)f(y) dy

as n → ∞ for all x ∈ R
N . Since p > N , we have DjEN ∈ Lp′

loc(R
N ). This shows

that Φn ∈ C1(Rn) and DjΦn = DjEN ∗ Φ is bounded in C(B̄). Now Arzela’s
Theorem implies that Φn → Φ uniformly on B̄. We modify Φn and Φ outside B̄
such that Φn → Φ uniformly on R

N . Let hn, h, h̃n ∈ C(RN ) such that hn and h̃n

are harmonic on Ωn and hn = Φn on R
N \ Ωn and h̃n = Φ outside Ωn, h harmonic

on Ω and equal to Φ outside Ω. Then hn = Φn + un, h = Φ + u. Since Φn → Φ
uniformly, it follows that h̃n−hn → 0 uniformly on R

N . It follows from Theorem 5.2
that h̃n → h uniformly on R

N . Hence hn → h uniformly on R
N .

(b) Now let N ≥ p > N/2. Choose q1 > N and 1 < q2 < p, 0 < θ < 1 such that

1

p
=

θ

q1
+

1 − θ

q2
.

Then by the preceding lemma

‖Rp
Ωn

−Rp
Ω‖L(Lp,C0) ≤ ‖Rq1

Ωn
−Rq1

Ω ‖θ
L(Lq1 ,C0)

‖Rq2

Ωn
− Rq2

Ω ‖1−θ
L(Lq2 ,C0)

which converges to 0 as n→ ∞ by the first part (a) of the proof.

6. Conclusion: The diverse notions of stability. Let Ω ⊂ R
N be an open,

bounded set. Here we collect the diverse notions of stability and discuss their rela-
tionships. In particular, we compare the results with those established by Hedberg
[21] with the help of abstract potential theory. At first we consider the case where Ω
is stable but possibly not Dirichlet regular. Lebesgue’s cusp is a concrete example
which will be discussed in detail in Section 7. Note that in (c) and (d) below we
assume that the Dirichlet problems are solvable.

Theorem 6.1. For the purpose of this theorem we write Ωn ց Ω if Ωn ⊃ Ωn+1 for
all n ∈ N and

⋂
n∈N

Ωn = Ω̄. Consider the following statements.

(a) Ω is stable, that is, H1
0 (Ω) = H1

0 (Ω̄);
(b) If Ωn ց Ω, Φ ∈ C(Ω̄1), hn ∈ C(Ω̄n) ∩ H(Ωn) and hn|∂Ωn

= Φ|∂Ωn
, then hn

converges to hϕ uniformly on compact subsets, where ϕ = Φ|∂Ω
.

(c) If Ωn ց Ω, Φ ∈ C(Ω̄1), hn ∈ C(Ω̄n) ∩ H(Ωn), hn|∂Ωn
= Φ|∂Ωn

, and h ∈
C(Ω̄) ∩H(Ω), h|∂Ω

= Φ|∂Ω
, then hn → h uniformly on Ω̄.

(d) If h ∈ C(Ω̄) ∩ H(Ω), then for each ε > 0 there exist an open set U ⊃ Ω̄ and
k ∈ H(U) such that

‖h− k‖C(Ω̄) ≤ ε.
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(e) If Ωn ց Ω, f ∈ Lp(Ω1) for some p > N/2, un ∈ C0(Ωn) such that −∆un = f
in D(Ωn)′ and u ∈ C0(Ω) such that −∆u = f in D(Ω)′, then un → u uniformly
on Ω̄.

Then (a) ⇔ (b) ⇒ (c) ⇔ (d) ⇒ (e).

Proof. (a) ⇒ (b) follows from Theorem 4.7 and (a) ⇔ (c) from Theorem 5.2. We
prove (c) ⇒ (d). Let h ∈ C(Ω̄)

⋂
n∈N

H(Ωn). Choose Ωn Dirichlet regular such that

Ωn ց Ω. Then hn from (c) converges to h uniformly on Ω̄. Given ε > 0 there exists
n ∈ N such that ‖hn − h‖C(Ω̄) ≤ ε. Choose U = Ωn and k = hn.

Next we prove (d) ⇒ (c). Consider the setting of (c). Let ε > 0. By assumption
(d) there exists k ∈ H(U) such that ‖k − h‖C(Ω̄) ≤ ε where U is open such that

Ω̄ ⊂ U . Choose n0 ∈ N such that Ω̄n0 ⊂ U . By the uniform continuity of k and Φ
on Ω̄ there exists δ > 0 such that

|k(x) − k(z)| ≤ ε, |Φ(x) − Φ(z)| ≤ ε whenever |x− z| ≤ δ, x, z ∈ Ω̄n0 .

Let n1 ≥ n0 such that dist(∂Ω, ∂Ωn1) < δ. Let n ≥ n1. We claim that

‖h− hn‖C(Ω̄) ≤ 4ǫ.

For that, it suffices to show that ‖k−hn‖C(Ω̄n)
≤ 3ǫ. (In fact, then ‖h−hn‖C(Ω̄) ≤

‖h − k‖C(Ω̄) + ‖k − hn‖C(Ω̄n)
≤ 4ǫ). Let x ∈ ∂Ωn. By the maximum principle it

suffices to show that |k(x)−hn(x)| ≤ 3ǫ. There exists z ∈ ∂Ω such that |z−x| ≤ δ.
Hence |k(x)−hn(x)| = |k(x)−Φ(x)| ≤ |k(x)−k(z)|+|k(z)−h(z)|+|Φ(z)−Φ(x)| ≤ 3ǫ,
where we use that h(z) = Φ(z).

(c) ⇒ (e) Let Φ = E ∗ f ∈ C(RN ), hn = Φ + un, h = Φ + u. Then hn ∈
C(Ω̄n)∩H(Ωn), h ∈ C(Ω̄)∩H(Ω). It follows from (c) that hn → h uniformly on Ω̄.
Hence un → u uniformly on Ω̄.

If Ω is topologically regular, that is, ˚̄Ω = Ω, then Hedberg proves the equivalence
of (a), (b) and (d) by using abstract potential theory (see [21, Theorem 11.9],
where (i) is our (a), (iv) our (d)), and by a capacity condition which is equivalent
to Keldyšh’s notion of stability (c). This may be interpreted in the following way.
Assume that Ω is not stable. Then (c) is violated. Thus we find ϕ ∈ C(∂Ω) such
that hϕ ∈ C(Ω̄) (that is, hϕ is a classical solution of the Dirichlet problem) but hϕ 6=
Hϕ. This shows that the harmonic function Hϕ obtained by approximating from
the exterior does not coincide with the classical solution. So the good generalised
solution is the Perron solution which is obtained by approximating from the interior.

We do not know whether (e) implies (a). For that we should know that the ϕ
above has an extension Φ ∈ C(RN ) such that ∆Φ ∈ Lp(Ω) on Ω for some p > N

2 .
But ϕ is obtained in a very indirect way in the work of Hedberg. Things are different
if Ω is Dirichlet regular. Then we obtain the following entire characterisation with
a complete proof.

Theorem 6.2. Let Ω be a bounded open set, which is Dirichlet regular. Then the
statements (a)–(e) of Theorem 6.1 are equivalent.

Proof. We have to show that (e) ⇒ (a). Let f ∈ L∞(Ω), f > 0, ū = RΩ̄f . By
Proposition 2.4 it suffices to show that u ∈ H1

0 (Ω). Let Ωn be Dirichlet regular such
that Ωn ց Ω and un := Rp

Ωn
f , where p > N/2. Then un ∈ C0(Ωn) and −∆un = f

in D′(Ωn). Moreover un → ū in L2(RN ) by Proposition 3.5. It follows from the
assumption (e) that un → u = RΩf uniformly on Ω̄. Thus u = ū.
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7. Lebesgue’s cusp: An example for a non-regular domain. In this section
we provide a detailed discussion on a domain with one singular point. This means
there exists a function ϕ ∈ C(∂Ω) such that the Dirichlet problem D(Ω, ϕ) does not
have a classical solution. The fact which surprised us is that ϕ can be the restriction
of a very smooth function on R

N which is constant in the neighbourhood of the
singular point. Even more surprisingly it can be locally near each point of ∂Ω be
the restriction of a real analytic function. This shows that the solvability of the
Dirichlet problem does not depend on local properties of ϕ near the singular point,
but on global properties, which was another surprise to us.

The explicit construction is based on remarks in Keldyš [22, page 6], who at-
tributes it to an unidentified paper of Lebesgue published in 1912.

The domain is constructed with the help of the level surfaces of the function

u(x, y, z) = r + z log(r − z)

with r :=
√
x2 + y2 + z2. This function is analytic on its natural domain which is

R
3 minus the positive z-axis. An explicit calculation shows that u is harmonic on

its domain. Indeed, an elementary computation shows that

ux =
x

r − z
, uy =

y

r − z
, uz = log(r − z) (7.1)

and

uxx =
r2 − rz − x2

(r − z)2r
, uyy =

r2 − rz − y2

(r − z)2r
, uzz = −1

r
. (7.2)

Adding the latter up we see that ∆u = 0. The function u is radially symmetric
with respect to the z-axis, so in order to determine the level surfaces it will be
enough to look at the function of two variables v(x, z) := u(x, 0, z). By (7.2) the
function z 7→ v(x, z) is strictly concave attaining a maximum at z = (x2 − 1)/2.
Since v(x, 0) = |x| > 0 if x 6= 0 we have that given c ≤ 0, there exists a unique
z = z(x) > 0 such that v(z, x) = c. We now look at the properties of that function
z(x) for some fixed c ≤ 0.

Since that v(z, x) = r− z log(r− z) = c ≤ 0 with z, x > 0, clearly log(r− z) < 0.
Thus by the the implicit function theorem

z′(x) = −vx

vz
=

x

(r − z) log(r − z)
> 0,

showing that z(x) is strictly increasing in the first quadrant. It therefore has a limit
as x → 0+ which can only be zero as otherwise z log(r − z) becomes unbounded.
We next determine z′(0). Since v(x, z) is decreasing in z for 0 < |x| < 1 we have
for 0 < z < |x|α, α ∈ (0, 1),

x > v(x, z) > v(x, |x|α) > 2|x| + |x| log
( |x|2−α

√
1 + |x|2−2α + 1

)
→ 0

as x → 0. Hence, if (x, z) → (0, 0) and z < |x|α for some α ∈ (0, 1) we have
v(x, z) → 0. This means that for the function z(x) defined above,

lim
x→0+

z′(x) = ∞.

The contour map of v(x, z) is shown in Figure 1. Hence the surface u(x, y, z) forms
a cusp at (0, 0, 0) which is in fact stronger than any polynomial (The general theory
of singular points also implies that). We now take a function ψ ∈ D(R) with
ψ(x) = ψ(−x), ψ = 1 on (0, 1/2) and ψ = 0 for x > 3/4. The curve given by

ψ(x)z(x) + (1 − ψ(x))
√

1 − x2 in the upper half plane and −
√

1 − x2 in the lower



VARYING DOMAINS: STABILITY 37

−1

−1

−1

−1

−0.5

−0.5

−0.5

−0
.5

0

0

0

0

0
0

0.25

0.25

0.
25

0.
25

0.25

0.25 0.25

0.5

0.5

0.5

0.
5

0.5

0.5
0.5

0.5

0.75

0.75

0.75

0.
75

0.
75

0.75

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1. Contour map of v(x, z)

half plane is a closed C∞-curve except for (0, 0). Now let Ω be the open set enclosed
by the surface obtained by revolving that curve about the z-axis. Figure 2 shows ∂Ω
cut open to reveal the inwards pointing cusp at (0, 0, 0). From the above discussion

Figure 2. Domain with a singular point (cut open)

we know the following.

Lemma 7.1. The function u = r + z log(r − z) is harmonic on Ω and continuous
on Ω̄ \ {0}. Moreover, u = 1 on B(0, 1/2) ∩ ∂Ω, but

−1 = lim
(x,y,z)→(0,0,0)

u(x, y, z) < lim
(x,y,z)→(0,0,0)

u(x, y, z) = 0,

so u is not continuous at (0, 0, 0).
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To conclude that u coincides with the Perron solution of

∆w = 0, w = u|∂Ω

we use the following theorem proved in [22, Theorem IX].

Theorem 7.2. Let Ω ⊂ R
N be a bounded open set and ϕ ∈ C(∂Ω). Moreover,

suppose that h is a bounded harmonic function on Ω such that limx→z h(x) = ϕ(z)
for every regular point z of ∂Ω. Then h = hϕ is the Perron solution.

Since u is continuous on Ω̄\{0} and harmonic in Ω we know that it coincides with
the Perron solution. We now use this to make some observations on the solvability
of the Dirichlet problem.

Remark 7.3. Let now Ψ be a C∞-function such that Ψ = 1 if r < 1/2 or
√
x2 + y2 <

1/2 and z > 0, and Ψ = 0 if r > 3/4 or
√
x2 + y2 > 3/4 and z > 0. If we set

Φ := −Ψ + (1 − Ψ)u,

then Φ ∈ C∞(R3) and Φ|∂Ω = u|∂Ω. Hence the Dirichlet problem ∆u = 0 in Ω,
u = ϕ on ∂Ω does not need to be solvable even if ϕ is the restriction of a C∞-function
which is constant in the neighbourhood of a singular point. This means that the
local behaviour of the boundary function ϕ near a singular point has no influence
whatsoever on the solvability of the Dirichlet problem! Also the smoothness of Φ
has no influence.

We further observe that ϕ = u|∂Ω can be seen locally as the restriction of a
harmonic function in the neighbourhood of each point. Indeed, ϕ = u|∂Ω is the
restriction of the harmonic function u in the neighbourhood of every point of ∂Ω
except for (0, 0, 0). In a neighbourhood of (0, 0, 0), ϕ is the restriction of the constant
function with value minus one.

The conclusion is that solvability depends on global, not local properties of ϕ,
and also smoothness does not imply solvability at all. In particular, taking −1 as
the boundary function, the solution is −1 which is continuous on Ω̄, but if we take
the above example which is also −1 in a neighbourhood of the singular point, then
the Dirichlet problem is not solvable.
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