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Abstract

The paper is concerned with properties of an ill-posed problem for
the Helmholtz equation when Dirichlet and Neumann conditions are
given only on a part Γ of the boundary ∂Ω. We present an equivalent
formulation of this problem in terms of a moment problem defined on
the part of the boundary where no boundary conditions are imposed.
Using a weak definition of the normal derivative, we prove the equiv-
alence between these two problems for an arbitrary Lipschitz domain
in Rd. Moreover, uniqueness of the solution is proved for the general
case when Γ is a non-empty open subset of the Lipschitz boundary.

1 Introduction

The Helmholtz equation arises naturally in many physical applications, in
particular related to acoustic or electromagnetic wave propagation. Direct
problems connected with this equation are typically defined by Dirichlet or
Neumann conditions on a boundary of the considered domain. The well
posedness of the direct problems, i.e., properties of uniqueness, existence and
stability of the solution, are well established. However, in many engineering
problems the boundary conditions are underspecified or overspecified on dif-
ferent parts of the boundary. Such boundary value problems are in general
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ill-posed, which means that at least one of the properties of well-posedness
fails to hold (cf. [9]).

The boundary value problem considered in this paper consists in solving
the Helmholtz equation "u + k2u = 0 on an open domain Ω ⊂ Rd with a
real wave number k, under Dirichlet and Neumann conditions posed on Γ, a
part of the boundary ∂Ω of Ω. Such a problem is sometimes called a Cauchy
problem for the Helmholtz equation (cf. [8], [6]) and it can be considered
as the inverse problem to the Neumann (or the Dirichlet) problem for the
Helmholtz equation on Ω. Some reasons for an investigation of this inverse
problem following from optoelectronics are explained in [10]. One possibility
of solving this ill-posed problem is presented in [11]. The proposed method
is based on an equivalent formulation of the boundary value problem in
terms of a moment problem defined on the part ∂Ω \ Γ of the boundary. A
corresponding equivalence theorem is proved there under a strong regularity
assumption for the boundary. Namely, the property ∂Ω ∈ C1+ε is required. A
moment problem formulation was previously applied in [4] for the boundary
value problem for the Laplace equation in the two-dimensional case.

In the present paper, by using a weak normal derivative introduced in [1]
(see also [3] in the present volume of Ulmer Seminare), we show the corre-
sponding equivalence theorem for arbitrary Lipschitz domains in Rd under
the assumption that k2 is not an eigenvalue of Neumann-Laplace operator
−∆N on this domain. Moreover, uniqueness of the solution of the boundary
value problem is shown for the general case when Γ is a non-empty open
subset of the Lipschitz boundary ∂Ω. Such uniqueness result is known for
the case of a regular boundary of the class C2 (cf. [5]).

Acknowledgements We wish to thank Ralph Chill and Mourad Choulli
in Metz for helpful discussions.

2 Weak normal derivative and Neumann-Laplace
operator

Let V, H be real Hilbert spaces such that V is continuously embedded in
H. Assume furthermore that V is dense in H. Let a : V × V → R be a
continuous, symmetric bilinear form which is H-elliptic; i.e.

a(u, u) + ω‖u‖2
H ≥ α‖u‖2

V (u ∈ V )



3

where ω ∈ R, α > 0. The associated operator A in H is defined as follows:

D(A) = {u ∈ V : ∃f ∈ H a(u, v) = (f, v)H , ∀v ∈ V } (1)

and
Au = f.

Then A is selfadjoint and bounded below by −ω. We consider H as a sub-
space of V ′ identifying f ∈ H with the linear form jf given by

< jf , v >= (f, v)H for all v ∈ V.

Then we may define the continuous linear mapping Λ : V → V ′ given by

< Λu, v >= a(u, v) (u, v ∈ V ). (2)

Considering Λ as an unbounded operator on V ′, the spectrum σ(Λ) is defined
as the complement of the resolvent set

%(Λ) := {λ ∈ R : (λ− Λ) : V → V ′ is bijective }.

From [2], Proposition 3.10.3, we note the following

Corollary 2.1 If A and Λ are the operators defined above, then

σ(A) = σ(Λ).

Let Ω be a bounded open subset of Rd, with Lipschitz boundary ∂Ω.
Then there exists a linear continuous mapping Tr : H1(Ω) → L2(∂Ω) such
that Tr(u) = u|∂Ω for all u ∈ C(Ω) ∩ H1(Ω). To simplify the notation
we frequently write u instead of u|∂Ω. In [1] the following definition of the
weak normal derivative was introduced. It requires the following usual weak
definition of the Laplacian. If w ∈ L2(Ω), then we say that "w ∈ L2(Ω) if
there exists f ∈ L2(Ω) such that

∫

Ω

"vwdx =

∫

Ω

vfdx

for all test functions v ∈ D(Ω). Then f is unique and we define f =: "w. If
in addition w ∈ H1(Ω), then "w = f if and only if

−
∫

Ω

∇v∇wdx =

∫

Ω

vfdx

for all w ∈ D(Ω).
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Definition 2.2 Let u ∈ {w ∈ H1(Ω) : "w ∈ L2(Ω)}. We say that u has a
weak normal derivative if there exists a function b ∈ L2(∂Ω) such that

∫

Ω

∇u∇wdx +

∫

Ω

"uwdx =

∫

∂Ω

bwdσ ∀w ∈ H1(Ω). (3)

Then b is unique and called the weak normal derivative ∂u
∂ν = b.

Now, let V = H1(Ω), H = L2(Ω) and let

a(u, v) :=

∫

Ω

∇u∇vdx, ∀u, v ∈ H1(Ω). (4)

The associated operator A : D(A) ⊂ H1(Ω) → L2(Ω) has the domain

D(A) := {u ∈ H1(Ω) : ∃f ∈ L2(Ω)

∫

Ω

∇u∇vdx =

∫

Ω

fvdx ∀v ∈ H1(Ω)}.

(5)
The operator Λ : H1(Ω) → H1(Ω)′ is defined by (2).

Proposition 2.3 The operator A is the Neumann-Laplace operator A =
−"N with domain

D("N) = {u ∈ H1(Ω) : "u ∈ L2(Ω),
∂u

∂ν
= 0 on ∂Ω},

where ∂u
∂ν denotes the weak normal derivative of u according to Definition 2.2.

Proof: Let u ∈ D(A) and Au = f . Then
∫

Ω

∇u∇vdx =

∫

Ω

fvdx ∀v ∈ H1(Ω)

In particular, this holds for all v in the test space D. Hence −"u = f.
Introduce this into the previous equation:

∫

Ω

∇u∇vdx +

∫

Ω

"uvdx = 0 ∀v ∈ H1(Ω).

It means that ∂u
∂ν = 0, by the definition of a weak normal derivative (3). Thus

u ∈ D("N) and Au = −"Nu.
Conversely, let u ∈ D("N) and −"Nu = f . From the definition of a

weak normal derivative (3), ∀v ∈ H1(Ω)
∫

Ω

∇u∇vdx +

∫

Ω

"uvdx =

∫

∂Ω

∂u

∂ν
vdσ = 0
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That means ∫

Ω

∇u∇vdx =

∫

Ω

fvdx ∀v ∈ H1(Ω).

So, a(u, v) = (f, v) ∀v ∈ H1(Ω), i.e. u ∈ D(A) and Au = f .

Now, given h ∈ L2(∂Ω), let us consider a Neumann problem for the
Helmholtz equation: find u in the domain of the normal derivative

D

(
∂

∂ν

)
:= {u ∈ H1(Ω) : "u ∈ L2(Ω),

∂u

∂ν
∈ L2(∂Ω)} (6)

such that {
∆u + µu = 0, on Ω
∂u
∂ν = h on ∂Ω, (7)

where the normal derivative is understood in a weak sense according to Def-
inition 2.2, and where µ is a fixed real parameter.

Theorem 2.4 If Ω ⊂ Rd is a bounded open subset with Lipschitz boundary
and µ is not an eigenvalue of the negative Neumann-Laplace operator −"N ,
then for any h ∈ L2(∂Ω) the Neumann problem (7) has a unique solution in
H1(Ω).

Proof: According to Corollary 2.1, if µ /∈ σ(−"N) then µ /∈ σ(Λ). This
means that for any linear continuous functional F on H1(Ω) there exists a
unique solution u ∈ H1(Ω) to the equation

∫

Ω

∇u∇vdx− µ(u, v)L2(Ω) = F (v) for all v ∈ H1(Ω). (8)

This holds also for

F (v) :=

∫

∂Ω

hvdσ,

since the trace operator from H1(Ω) into L2(∂Ω) is a linear continuous
mapping for a Lipschitz domain. Applying (8) for v ∈ D(Ω) one obtains
"u + µu = 0. Then from the definition of the weak normal derivative we
deduce that u ∈ D( ∂

∂ν ) and ∂
∂ν = h. Uniqueness of the solution of (7) follows

from the uniqueness of (8).
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3 The boundary value problem via a moment
problem

Throughout this section Ω is a bounded open set in Rd with Lipschitz bound-
ary ∂Ω. Moreover, Γ ⊂ ∂Ω is a given Borel set. On ∂Ω we consider the surface
measure dσ. Given f, g ∈ L2(Γ) we consider the boundary value problem

BP(f ,g)






u ∈ D( ∂
∂ν ),

∆u + µu = 0, on Ω
u = f on Γ,
∂u
∂ν = g on Γ.

Here ∂u
∂ν ∈ L2(∂Ω) has to be understood in the sense of Definition 2.2. More-

over, µ ∈ R is a given parameter. In applications µ = k2 for some k > 0.
We will always assume that µ /∈ σ(−"N). Then, given ϕ ∈ L2(∂Ω \ Γ), by
Theorem 2.4 there exists a unique solution of the Neumann Problem

NP(g, ϕ)






u ∈ D( ∂
∂ν )

∆u + µu = 0, on Ω
∂u
∂ν = ϕ on ∂Ω \ Γ,
∂u
∂ν = g on Γ.

Thus BP(f,g) has a solution if and only if there exists ϕ ∈ L2(∂Ω \ Γ)
such that the solution of NP(g,ϕ) satisfies u = f on Γ (by which we mean
more precisely Tr(u) = f dσ-a.a on Γ).

This in turn can be described by the following moment problem.

Theorem 3.1 Assume that µ /∈ σ(−"N). Let ϕ ∈ L2(∂Ω \ Γ) and let u be
the solution of NP (g, ϕ). Then u = f on Γ if and only if

MP(f ,g)

∫

∂Ω\Γ
ϕvdσ =

∫

Γ

[
f

∂v

∂ν
− gv

]
dσ for all v ∈ V (µ, Γ).

Here V (µ, Γ) consists of all µ-harmonic functions in D( ∂
∂ν ) whose normal

derivative vanishes on ∂Ω \ Γ, i.e.,

V (µ, Γ) :=

{
v ∈ D

(
∂

∂ν

)
: "v + µv = 0 in Ω, and

∂v

∂ν
= 0 on ∂Ω \ Γ

}
,

Of course, to say that v ∈ D( ∂
∂ν ) is µ-harmonic means that "v + µv = 0 in

the sense of distributions, or equivalently, since v ∈ H1(Ω),
∫

Ω

∇v∇w = µ

∫

Ω

vw for all w ∈ H1
0 (Ω).
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Proof: of Theorem 3.1.
a) First of all we note that for µ-harmonic functions v1, v2 ∈ D( ∂

∂ν ) one
has ∫

∂Ω

∂v1

∂ν
v2dσ =

∫

∂Ω

v1
∂v2

∂ν
dσ. (9)

In fact, since "vj = −µvj, by the definition of the normal derivative
∫

Ω

∇vj∇vdx− µ

∫

Ω

vjvdx =

∫

∂Ω

∂vj

∂ν
vdσ

for all v ∈ H1(Ω). Thus taking j = 1, v = v2 and j = 2, v = v1 gives the
same expression on the left hand side . This proves (9)

b) Now, let ϕ ∈ L2(∂Ω \ Γ) and let u be the solution of NP (g, ϕ). Then,
since ∂u

∂ν = g on Γ and by a), for all v ∈ V (µ, Γ) we have
∫

∂Ω\Γ
ϕvdσ =

∫

∂Ω\Γ

∂u

∂ν
vdσ

=

∫

∂Ω

∂u

∂ν
vdσ −

∫

Γ

gvdσ

=

∫

∂Ω

u
∂v

∂ν
dσ −

∫

Γ

gvdσ

=

∫

Γ

(
u

∂v

∂ν
− gv

)
dσ.

Thus, if u|Γ = f then ϕ satisfies MP(f,g). Conversely, if ϕ satisfies
MP(f,g), then it follows from the identity above that

∫

Γ

u
∂v

∂ν
dσ =

∫

Γ

f
∂v

∂ν
dσ

for all v ∈ V (µ, Γ). By Theorem 2.4 there exists v ∈ V (µ, Γ) such that
∂v
∂ν = u− f on Γ. Hence

∫

Γ

(u− f)2dσ =

∫
(u− f)

∂v

∂ν
dσ = 0

and thus u = f on Γ.

Concerning existence we now have the following characterization.

Corollary 3.2 Assume that µ /∈ σ(−"N). Let f, g ∈ L2(Γ). Then the
problem B(f, g) has a solution if and only if the moment problem MP(f,g)
has a solution ϕ ∈ L2(∂Ω \ Γ).
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Concerning uniqueness we obtain the following result.

Corollary 3.3 Let µ ∈ R\σ(−"N). The following assertions are equivalent:

(i) The space {v|∂Ω\Γ : v ∈ V (µ, Γ)} is dense in L2(∂Ω \ Γ);

(ii) if u ∈ D( ∂
∂ν ) such that ∆u + µu = 0, u|Γ = 0 and ∂u

∂ν |Γ
= 0, then u = 0;

(iii) for all f, g ∈ L2(Γ) the problem BP (f, g) has at most one solution.

Proof: The equivalence of (ii) and (iii) is obvious by linearity.
(i)⇒(ii). Let u ∈ D( ∂

∂ν ) such that u|Γ = 0 and ∂u
∂ν |Γ

= 0. Let ϕ = ∂u
∂ν |∂Ω\Γ

.

Then ϕ satisfies MP (0, 0), i.e.
∫

∂Ω\Γ φvdσ = 0 for all v ∈ V (µ, Γ). By

assumption (i) this implies that ϕ = 0. Hence u = 0 since µ /∈ σ(−"N).
(ii)⇒(i). Let ϕ ∈ L2(∂Ω\Γ) such that

∫
∂Ω\Γ ϕvdσ = 0 for all v ∈ V (µ, Γ).

Then ϕ satisfies MP(f,g) for f = g = 0. Let u be the solution of NP (0, ϕ).
Then u|Γ = 0 by assumption. Hence ϕ = ∂u

∂ν |∂Ω\Γ
= 0. This proves the density

assertion (i).

Here Γ ⊂ ∂Ω is an arbitrary Borel set. If Γ has non-empty interior with
respect to the topology relative to ∂Ω, then we will see in the next section
that the equivalent conditions of Corollary 3.3 are satisfied.

Finally we add some remarks concerning the regularity assumptions.

1. If Γ is the entire boundary ∂Ω, then for each g ∈ L2(∂Ω) there is a
unique solution u ∈ D( ∂

∂µ) which is µ-harmonic such that ∂u
∂ν = g on

∂Ω. Thus BP(f,g) has a solution if and only if f = u|Γ .

2. Also if Γ is different from the entire boundary, some regularity on f
is needed in order a solution to exist. In fact, f is the trace of an
H1-function on Γ.

3. Theorem 3.1 depends crucially on the fact that we require the solution u
of BP(f,g) to lie in D( ∂

∂ν ), i.e., the normal derivative of u has to exist on
the entire boundary. One might also investigate a weaker assumption,
namely that ∂u

∂ν exists merely on Γ in some appropriate sense.
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4 Uniqueness of the inverse problem

Let Ω ⊂ Rd be an open, connected, bounded set with Lipschitz boundary
∂Ω. Let Γ ⊂ ∂Ω. Assume that there exist z ∈ ∂Ω, r > 0 such that

B(z, r) ∩ ∂Ω ⊂ Γ

where B(z, r) = {x ∈ Rd, |x− z| < r}.

Theorem 4.1 Let µ ∈ R, u ∈ H1(Ω) such that −∆u = µu in D(Ω)′. If
Tr(u) = 0 on Γ and ∂u

∂ν ∈ L2(∂Ω) such that ∂u
∂ν = 0 on Γ, then u = 0.

Proof: Let
Ω̃ = Ω ∪B(z, r),

ũ =

{
u on Ω
0 on B(z, r) \ Ω.

We show that
−∆ũ = µũ

in D′(Ω̃). This implies that ũ is analytic in Ω̃. Since Ω̃ is connected, it follows
that ũ ≡ 0 (because ũ ≡ 0 on an open set), cf. [7], Corollary 4.4.4.

Let v ∈ D(Ω̃). We have to show that

−
∫

Ω̃

ũ"vdx = µ

∫

Ω̃

ũvdx.

Since ∂u
∂ν |Γ = 0 and v|∂Ω\Γ = 0, we have

µ

∫

Ω̃

ũvdx =

∫

Ω

µuvdx

= −
∫

Ω

"uvdx

=

∫

Ω

∇u∇vdx−
∫

∂Ω

∂u

∂ν
vdσ

=

∫

Ω

∇u∇vdx

= −
∫

Ω

u"vdx +

∫

∂Ω

u
∂v

∂ν
dσ

= −
∫

Ω̃

ũ"vdx,

since u = 0 on Γ and ∂v
∂ν = 0 on ∂Ω \ Γ. This proves the claim.

For the case when ∂Ω is of class C2, the uniqueness result is shown in [5],
Corollary 4.4.
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