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Abstract

We present a step by step algorithm which allows to compute a formal funda-
mental solution for certain systems of first order linear difference equations.
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Introduction
In many applications, one is concerned with higher order difference equations, or even
more generally with first order systems of difference equations, in an independent vari-
able n that varies within either the set of natural numbers or the set of integers. In
the elementary cases when the equations are linear and its coefficients are constants,
fundamental solutions can be computed explicitly, but even when these coefficients are
polynomials, no explicit formulas for solutions are known, in general. On the other
hand, given initial conditions, the difference equation can serve as a recursion formula
for computing the values of the corresponding solution, but little can be said about its
behavior as n →∞. In this article we in a sense take the opposite approach and compute
“solutions” that have a known behavior at infinity, but since these “solutions” involve
power series (in 1/n) whose radius of convergence may be equal to zero, we refer to
them as formal solutions. According to known results (see the discussion below), these
formal solutions determine the asymptotic behavior of any solution of the underlying
equation, except for the non-trivial question of how a solution of an initial value prob-
lem is related to these formal solutions. In any case, however, one may read off from
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the formal solutions what kind of asymptotic behavior a solution may have as n → ∞.
So our results should be interesting even for experts who are not so familiar with the
concept of formal solutions.

Whenever working with power series, it is more natural to denote the independent
variable by z instead of n, regarding z as a complex variable, but in our context this
is just a trivial change of notation. More importantly, since we are concerned with
formal power series anyway, we may just as well allow such series to come up in the
coefficients of our difference equation, too. In addition, we shall apply various kinds
of transformations to a given system, and some of these are such that the transformed
system has a coefficient matrix that is a formal power series in a root of 1/z. Therefore,
we choose to consider such systems right from the beginning. For these reasons, we
consider a d–dimensional formal system of difference equations of the following form:

x(z + 1) = Â(z) x(z), Â(z) = p(z1/q)I +
∞∑

n=0

z−n/q An , (0.1)

for which the following additional assumptions hold:

• p(z) ∈ C[z] is a scalar polynomial without constant term that may be identically
zero, but otherwise is of degree deg p(z) ≤ q. Hence the (rational) powers of z
occuring in the term p(z1/q)I have exponents at most equal to 1.

• The dimension d = 1 is also considered as a particularly simple case. For d ≥ 2,
however, we shall assume that not all the matrices An are diagonal, since other-
wise the system decouples into d scalar equations.

• If deg(p(z)) < q holds, then we assume in addition that the matrix A0 is not equal
to a scalar multiple of the identity matrix. As shall be made clear later, a general
system can be put into this form by some elementary transformation. Also note
that this case cannot occur in dimension d = 1.

• We assume the formal determinant of Â(z) not to be the zero series, which is a
natural assumption for difference equations. However, observe that no assump-
tion is made concerning the radius of convergence of the power series occuring
in (0.1). Only occasionally we shall speak of a convergent system, meaning to
say that this power series has a positive, but otherwise arbitrary, radius of conver-
gence.

Starting in 1882, after H. Poincaré developed the notion of asymptotic representa-
tion, J. Horn [11], G. D. Birkhoff [3,4], and Birkhoff and Trjitzinsky [5], as well as many
others, applied Poincaré’s concept and proved so-called fundamental existence theorems
for convergent systems (0.1). This is to say that, given a formal fundamental solution of
a form described later, they showed existence of solutions which are analytic and have
the formal one as their asymptotic expansion as z →∞ in a sufficiently small sector of
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the complex plane. After J. Ecalle presented his concept of multisummability, G. Im-
mink, B. Braaksma, and B. Faber in various publications [6,7,9,12] showed that formal
solutions even for non-linear systems are, under relatively weak assumptions, multi-
summable in all but a discrete set of directions. This, however, shall not be discussed
further in this article. Instead, we shall concentrate on the question of how to compute a
set of formal fundamental solutions, even for formal systems (0.1). A. Duval [8] and C.
Praagman [13] have shown existence of formal solutions using algebraic tools, while
H. L. Turrittin [14] gave such a proof in a more algorithmic manner, but left out many
details. In this article, we shall present a completely algorithmic approach, which en-
ables us to compute explicitly a formal fundamental solution (1.1) of (0.1), and which
gives rise to recursion formulas which can in principle be implemented in computer al-
gebra packages. We use techniques which are analogous to those for the computation
of formal solutions of systems of meromorphic differential equations, and which have
been simplified in this case by the first author in [1, 2].

This paper is organized as follows: First, we discuss the form of the formal funda-
mental solutions whose existence is to be shown later. In Section 2 we introduce formal
transformations of several different kinds, while in the next one we recall briefly some
properties of matrix equations that are needed later on. In Section 4 we compute formal
solutions for systems in case 0 < deg p(z) = q, whereas in Section 5 we discuss cases
when a system can be transformed into one that is a direct sum of smaller systems (for
which the formal fundamental solutions can be computed individually). In the next,
main, section we treat the remaining cases, showing that one can still make transforma-
tions to a new system that, in some sense, is easier to solve than the previous one. We
conclude with a summary of our results in the final section.

1 Formal fundamental solutions
By definition, a formal fundamental solution of (0.1) is a d× d matrix of the following
form:

X̂(z) = F̂ (z)
(
Γ(z)

)Λ
eP (z) zD , (1.1)

consisting of a formal invertible matrix power series∗ F̂ (z) in z−1/q, for some q ∈ N, a
constant diagonal matrix Λ of rational numbers with common denominator q (and Γ(z)
denoting the well-known Gamma function), a diagonal matrix P (z) of polynomials in
z1/q of degree less than or equal to q without constant term, and a constant matrix D that
may even be chosen in Jordan canonical form. Moreover, the matrices Λ, P (z), and D
all commute with one another, but in general do not commute with F̂ (z). By definition,
X̂(z) is a formal solution of (0.1) if, and only if

Â(z) = X̂(z + 1) X̂(z)−1 = F̂ (z + 1) zΛ eP (z+1)−P (z) (1 + 1/z)D F̂ (z)−1 , (1.2)

∗Observe that the term invertible refers to the fact that det F̂ (z) is not the zero series – however,
observe that the inverse matrix need not be a power series, but in general is a formal Laurent series.
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with the second identity using the commutativity of the matrices involved. Observe that
for any r ∈ C we have

(z + 1)r − zr = zr

∞∑

k=1

(
r

k

)
z−k , |z| < 1 .

Therefore, due to the fact that the matrix P (z) only involves powers of z with exponents
at most 1, one can verify that the term eP (z+1)−P (z) can be expanded into a Laurent series
in z−1/q that does not involve terms with positive rational powers of z. In addition, using
a matrix version of the binomial coefficients, namely†

(
D

k

)
=

1

k!
D (D − 1) . . . (D − k + 1) ,

we can expand the term (1 + 1/z)D into the (matrix) binomial series as

(1 + 1/z)D =
∞∑

k=0

(
D

k

)
z−k , |z| < 1 .

Accordingly, both sides of (1.2) are of the same (formal) nature, namely are formal
Laurent series‡ in z−1/q. So by comparing coefficients one can always verify whether
or not a given X̂(z) is a solution of (0.1) – however, it is non-trivial to show existence
of X̂(z) for which (1.2) holds, and this is what this article is about!

Remark 1.1. Instead of (Γ(z))Λ, one may in the definition of formal fundamental solu-
tions also use the more elementary term zzΛ – due to Stirling’s formula for the asymp-
totic expansion of the Gamma function, the quotient of the two terms formally gives
a power series in z−1 times e−zΛ z−(1/2)Λ, which may be absorbed into F̂ (z), resp.
eP (z) zD. This is a form which is theoretically more satisfactory, since it avoids us-
ing a transcendental function which by itself solves a difference equation of the form
we study here. On the other hand, the term (z + 1)(z+1)Λz−zΛ, which would come up
frequently in later calculations, is not so easy to use, and that is why we use formal
solutions of the form (1.1). Correspondingly, we shall in the next section define pole
transformations using the Gamma function instead of zz.

In order to prove existence of, or even to compute a formal fundamental solution
(1.1), we shall apply finitely many (formal) transformations of various kinds, all of
which are discussed in the next section. Each of these transformations simplifies a
given system in one way or another, such that in the end we obtain a system of which
we can compute a formal fundamental solution directly. Such systems are discussed in
Section 4.

†Here and throughout, for a square matrix A and a complex number α we shall write A − α instead
of A− α I .

‡By definition, a formal Laurent series is one with terminating principal part, and a power series part
whose radius of convergence may vanish.
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2 Formal transformations
In this section we consider a formal system with a coefficient matrix that is an arbitrary
formal Laurent series in z−1/q; i. e., we assume

x(z + 1) = Â(z) x(z) , Â(z) =
∞∑

n=−m

z−n/q An , A−m 6= 0 , (2.1)

where m may be an arbitrary integer number, and m/q is referred to as the formal pole
order of the system. To exclude trivial cases, we shall assume that not all coefficients
An are diagonal matrices, since otherwise the system decouples into d one-dimensional
equations. Note that every system (0.1) is of the form (2.1), with m = deg p(z), and
we shall explain that the first transformation introduced below may be used to reduce a
general system to the form (0.1).

Given any d × d invertible matrix T̂ (z) and setting x(z) = T̂ (z) y(z), we observe
that x(z) is a solution of (2.1) if, and only if, y(z) solves the transformed equation

y(z + 1) = B̂(z) y(z) , B̂(z) = T̂ (z + 1)−1 Â(z) T̂ (z) . (2.2)

For a general transformation matrix T̂ (z), the new coefficient matrix B̂(z) may not
again be of the form (2.1), and that is why we are going to restrict ourselves and consider
very particular kinds of transformations which we shall now present:

1. If T̂ (z) =
(
Γ(z)

)r
I for some r ∈ Q, we call T̂ (z) a pole transformation, since

then we have B̂(z) = z−r Â(z). Therefore, unlike in the case of differential
equations, the pole order of Â(z) has no special meaning when computing formal
solutions of difference equations! Instead, for a general system (2.1) it is of im-
portance to determine the maximal number k ≥ −m for which the matrices An,
with −m ≤ n < k all are scalar multiples of the identity matrix. If we then apply
a pole transformation with value −r = min{k/q, m/q + 1}, we obtain a trans-
formed system that, after a change of notation, is of the form (0.1). In particular,
observe that in dimension d = 1 we can always transform a given system into one
of this form, and in addition have that deg p(z) = q.

2. For T̂ (z) = exp[p̃(z1/q)]I , with a scalar polynomial p̃(z) ∈ C[z] of degree less
than or equal to q, we speak of an exponential shift. In this case, B̂(z) =
exp[−p̃((1 + z)1/q) + p̃(z1/q)] Â(z), and such transformations shall be used to
normalize the term p(z1/q) in systems of the form (0.1) – for details, compare the
proof of Proposition 4.1.

3. As the main type of transformations, we use formally q–analytic transformations

T̂ (z) =
∞∑

n=0

z−n/q Tn , det T0 6= 0 .
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Note that the inverse is again a transformation of the same type. As an especially
simple case we may have that Tn = 0 for all n ≥ 1, and then we shall occasionally
speak of a constant transformation. In order to avoid dealing with the inverse
matrix, we shall always rewrite the transformation equation in the form

T̂ (z + 1) B̂(z) = Â(z) T̂ (z) . (2.3)

One may directly verify that§

T̂ (z + 1) = T̂ (z) +
∞∑

n=q+1

z−n/q T̃n , T̃n =

n−q∑
j=1

( −j/q

(n− j)/q

)
Tj , (2.4)

and this implies for a matrix Â(z) as in (2.1) that the transformed matrix B̂(z) is
of the same form, with coefficients that we denote by Bn. Inserting into (2.3) and
comparing coefficients, we obtain

n+m∑
ν=0

(Tν Bn−ν − An−ν Tν) = −
n+m∑

ν=q+1

T̃ν Bn−ν ∀ n ≥ −m. (2.5)

For a system of the form (0.1) we have m ≤ q, and An = an I for n ≤ −1. Hence
we conclude from (2.5) that

n+m∑
ν=0

Tν (Bn−ν − an−ν) = 0 (−m ≤ n ≤ −1) .

Using the invertibility of T0, we inductively obtain Bn = an I for n ≤ −1,
so the new system is again of the form (0.1), and the polynomial p(z) remains
unchanged. So we may say that p(z) is a formal q-analytic invariant. In particular,
we observe that (2.5) is satisfied for −m ≤ n ≤ −1, and for other n simplifies to

n∑
ν=0

(Tν Bn−ν − An−ν Tν) = −
n+m∑

ν=q+1

T̃ν Bn−ν ∀ n ≥ 0 . (2.6)

Note that this is also correct for the case of p(z) ≡ 0. The importance of these for-
mally q-analytic transformations lies in the fact that for systems (2.1), for which
the coefficient A0 has more than one eigenvalue, we show existence of such a
transformation for which B̂(z) is the direct sum of smaller systems. So in other
words, we can partially decouple a given system unless A0 has one eigenvalue
only.

§In order to simplify notation we use the following convention:
(

α

r

)
= 0 if α ∈ C, r ∈ Q\N≥0.
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4. Transformations of the type T̂ (z) = diag[zr1 , . . . , zrd ], with ri ∈ Q, shall be
named shearing transformations. These transformations are needed when we are
left with a system (0.1) whose coefficient A0 has one eigenvalue only. Observe
that such a shearing transformation, when applied to a system of the form (2.1),
leads to a system that may again be written in this form, but with q and m changed
accordingly. However, a system of the form (0.1) will, in general, be transformed
by a shearing transformation to one which no longer is of this form, since off-
diagonal terms may occur that involve positive (rational) powers of z. If this is
not the case, then the transformed system can again be written in the form (0.1),
with a possibly different value of q, say: q̃, which is a multple of q. The polynomial
p(z) is accordingly changed to p̃(z), so that p(z1/q) = p̃(z1/q̃). However, observe
that the transformed matrix B̂(z) may be so that B0 is a scalar multiple of the
identity matrix, and a pole transformation then is applied to produce yet another
matrix that then satisfies all the requirements made for systems (0.1). For more
details on this, refer to Section 6.

3 Matrix equations
The following results are well-known, and are used here to solve matrix equations of a
certain form; for proofs a reader may, e. g., refer to [2]:

Lemma 3.1. Suppose that A ∈ Cd1×d1 and B ∈ Cd2×d2 , for d1, d2 ∈ N, have disjoint
spectra, i. e., do not have an eigenvalue in common. Then for every C ∈ Cd1×d2 the
matrix–equation

A X − X B = C (3.1)

possesses a unique solution X ∈ Cd1×d2 .

In case A and B have eigenvalues in common the situation is more difficult – how-
ever, we only need to deal with A and B being two Jordan blocks, i. e., matrices of the
form J = λI + N, λ ∈ C, where N is the nilpotent matrix with ones in all places of the
first superdiagonal, and zeros elsewhere.

Lemma 3.2. Suppose that J1 ∈ Cd1×d1 and J2 ∈ Cd2×d2 are two Jordan blocks having
the same eigenvalue, and assume d1 ≥ d2 (resp. d2 ≥ d1). Then for every C ∈ Cd1×d2

there exists a unique matrix B ∈ Cd1×d2 having nonzero entries in the last row (resp.
first column) only, such that the matrix equation

J1X −XJ2 = C −B (3.2)

has a solution X ∈ Cd1×d2 . which is unique within the set of matrices X having zero
entries in the first row (resp. last column).
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4 Elementary solvable systems
The following proposition is analogous to the case of a linear system of ODE with
a regular singularity; its proof follows the same line as the corresponding one in the
book of F. R. Gantmacher [10]. More precisely, we shall be concerned with a system
(0.1) with deg p(z) = q. In particular we wish to recall that in dimension d = 1,
a formal equation can always be made to satisfy this assumption by means of a pole
transformation! As we shall see in the proof, the differences of the eigenvalues of the
matrix A0 which are integer multiples of 1/q shall play a special role: Let the spectrum
of A0 be the set {λ1, . . . , λµ}, with the enumeration chosen according to the following
rules:

• Any two eigenvalues λj, λk are said to be equivalent modulo q, once their differ-
ence is an integer multiple of 1/q. This is an equivalence relation on the set of
eigenvalues, and we assume the enumeration of the spectrum be so that equivalent
eigenvalues come consecutively.

• In addition, we enumerate the eigenvalues so that, within each equivalence class,
the real parts of the eigenvalues λk are weakly increasing. So each equivalence
class of eigenvalues is of the form {λ + kν/q : ν = j, . . . `}, with λ ∈ C and
integer values 0 = kj < . . . < k`.

Observe that these rules do not uniquely determine the ordering of the eigenvalues,
but this shall not be relevant here. However, since we shall later on observe that an
exponential shift shall change A0 to a matrix A0 + λ, with λ ∈ C, it is important to
keep in mind that we may choose the same enumeration of the elements of the shifted
spectrum!

In terms of the spectrum of A0, we now define a diagonal matrix

K = diag [k1 Is1 , . . . , kµ Isµ ]

with sj being the algebraic multiplicity of the eigenvalue λj , and the kj being as follows:

• Suppose that {λj, . . . , λ`} is one of the equivalence classes of eigenvalues of A0.
Then we set kj = 0 and define kν = q (λν − λj) for ν = j + 1, . . . , `. Hence the
entries kj all are integers, and we have that λν = λj + kν/q, for j ≤ ν ≤ `.

Note that the matrix K does not change once A0 is replaced by A0 + λ, for arbitrary
λ ∈ C, since then the spectrum of A0 changes accordingly. Along with the ordering
of the spectrum of A0, we also consider two block structures for d × d matrices: In
the first, coarser block structure, the diagonal blocks correspond in size and ordering to
the equivalence classes of the spectrum, while in the second, finer one, their sizes are
determined by the multiplicity of each eigenvalue.

With these preparations, we are now ready to formulate the following result:
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Proposition 4.1. Let a formal system (0.1) be given and assume deg p(z) = q. Then
there exists a formal fundamental solution of the form (1.2), with

• Λ = I and P (z) = q(z1/q) I , q(z) ∈ C[z], deg q(z) = q,

• F̂ (z) = T̂ (z) zq−1K , with a formally q-analytic matrix T̂ (z) and K as defined
above,

• a constant matrix D that is diagonally blocked in the coarser block structure
induced by the spectrum of A0, with each diagonal block being upper triangularly
blocked in the finer block structure.

Moreover, in the finer one of the two block structures induced by the spectrum of A0,
each diagonal block of D has only one eigenvalue, and these eigenvalues are the same
for all such blocks belonging to the same diagonal block of the coarser block structure.

Proof. To construct the formal fundamental solution, we first use an exponential shift
to reduce the polynomial p(z) in (0.1) to a monomial. Since any exponential shift is
equivalent to a succesion of finitely many such shifts with p̃(z) itself being a monomial,
we begin by observing that the shift ea z may be used to multiply the coefficient matrix
Â(z) by e−a, and thus we may from now on assume that the highest coefficient of p(z)
is equal to 1. Observing that for 1 ≤ µ ≤ q − 1 we have

e−a ((z+1)µ/q−zµ/q) = 1 − µ a/q zµ/q−1 + . . . ,

we find that such shifts can be used to, one after the other, remove all lower order terms
from the polynomial p(z). Accordingly, we shall from now on assume p(z1/q) = z. Also
note that these exponential shifts shall change the coefficient A0 of (0.1) into A0 +λ, for
some λ ∈ C, hence the matrix K, as well as the two block structures defined in terms of
the spectrum of A0, are left invariant! Next, we observe that a constant transformation
T̂ (z) ≡ T0 may be employed in order to reduce to an equation with a coefficient A0 that
is of the form

A0 = A01 ⊕ . . .⊕ A0µ ,

where each block A0k has only one eigenvalue, and all these eigenvalues are mutually
distinct. In fact, we may even assume that all the blocks A0j are arranged in accor-
dance with our preselected enumeration of the spectrum of A0, meaning that A0j has
eigenvalue λj , for all j = 1, . . . , µ. Note that then the block structure of A0 agrees
with the finer one of the two block structure that were defined above. Moreover, by
definition of the matrix K, its diagonal entries are constant within each one of its
corresponding blocks. Within any diagonal block of the coarser block structure, the
diagonal entries of K increase strictly when going from one (fine) diagonal block to
the next. In this situation, we intend to find a formally q-analytic transformation T̂ (z)
with leading term T0 = I , to obtain a transformed equation with fundamental solution
Ŷ (z) = Γ(z) zq−1KzD, with a so far undetermined matrix D of the form described above
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– if we did so, then the proof is completed, since the exponential shifts we used before
commute with T̂ (z) and zq−1K . The coefficient matrix of this transformed equation then
necessarily is of the form

B̂(z) = Ŷ (z + 1) Ŷ (z)−1 = z + zq−1K
(
q−1K + D + O(1/z)

)
z−q−1K .

Due to the required form of D, we observe that B̂(z) is diagonally blocked in the coarser
one of the block structures defined above. Moreover, each diagonal block is upper tri-
angularly blocked with respect to the finer block structure. Aside from the leading term
p(z1/q) = z, the diagonal blocks begin with a constant term which we set equal to the
diagonal blocks of A0, which implies that the diagonal blocks of D have eigenvalues
that satisfy the statement in the proposition. The off-diagonal blocks of B̂(z) begin with
a term of the form z−kj` Dj`, with an undetermined block Dj`, j < `, of D, and accord-
ing to the definition of K, kj` is a positive integer and in fact equal to the difference
of the single eigenvalues of A0j and A0`. To show existence of a formally q-analytic
transformation linking the one system to the other, we first observe that (2.6) holds for
n = 0, since we have chosen the diagonal blocks of D so that B0 = A0. We now
consider any n ≥ 1: In this case, observing that B−q = I , B−k = 0 for 1 ≤ k ≤ q − 1,
we find that (2.6) is equivalent to

Tn

(
A0 − (n/q)

) − A0 Tn + Bn = Rn ,

where the matrix Rn only involves matrices Tm and Bm with m < n. Blocking all
matrices in the block structure induced by A0, this in turn can be written as

T (jk)
n

(
A

(kk)
0 − (n/q)

)
− A

(jj)
0 T (jk)

n + B(jk)
n = R(jk)

n , 1 ≤ j, k ≤ µ . (4.1)

According to Lemma 3.1 we can uniquely determine T (jk)
n from this identity provided

λk − λj 6= n/q. This is always the case when the two eigenvalues are not equivalent
modulo q, while for equivalent ones this condition is violated only for one value of
n ≥ 1, and then k > j follows, due to the assumptions made on the ordering of the
blocks of A0. So whenever λk − λj 6= n/q, we solve (4.1) for T (jk)

n . In the opposite
case, we decide to choose T (jk)

n = 0 and determine B(jk)
n , i.e. to say, the corresponding

block of D, such that (4.1) holds. In this fashion, we get a unique transformation T̂ (z)
that is as desired.

Remark 4.2. Observe that, unlike in the case of a regular singularity for a system of
differential equations, the formal fundamental solution obtained in the previous propo-
sition involves, in general, a divergent power series F̂ (z) – that this is so can already be
observed in the most elementary situation of d = 1; for details a reader may refer to the
proof of Stirling’s formula for the Gamma function given in [2, p. 229].
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5 The splitting lemma
In this and the next section we deal with general systems (0.1) of dimension d > 1
and deg p(z) < q. Observe that this includes the case when p(z) vanishes identically,
since then it is natural to set deg p(z) = −∞. Whenever the leading term A0 of (0.1)
has several distinct eigenvalues, we will show existence of a splitting transformation,
i. e., a formally q-analytic transformation for which the transformed system is partially
decoupled, or in other words is a direct sum of systems of smaller dimensions. So this
situation is completely analogous to the case of differential equations!

Lemma 5.1 (Splitting Lemma). Let (0.1) be a formal system of dimension d > 1 with
deg p(z) < q, and assume that A0 = A

(11)
0 ⊕ A

(22)
0 , such that the two diagonal blocks

have no eigenvalue in common. Then there exists a unique formally q–analytic trans-
formation of the form

T̂ (z) =

[
I T̂12(z)

T̂21(z) I

]
, T̂ij(z) =

∞∑
n=1

T (ij)
n z−n/q, (5.1)

such that the transformed formal system is diagonally blocked in the block structure of
A0.

Proof. Setting B̂(z) = p(z1/q) I+
∞∑
0

Bnz−n/q, B0 = A0, and T̂ (z) = I+
∞∑
1

Tnz
−n/q,

we conclude from (2.2) that

Tn A0 − A0 Tn = An − Bn + Rn ∀ n ≥ 1 , (5.2)

where Rn only involves coefficients Tm, Bm with m < n. Blocking

Tn =

[
0 T (12)

n

T (21)
n 0

]
, An =

[
A(11)

n A(12)
n

A(21)
n A(22)

n

]
, Bn =

[
B(11)

n 0

0 B(22)
n

]
, n ≥ 1

and inserting into (5.2) leads to

T (21)
n A

(11)
0 − A

(22)
0 T (21)

n = A(21)
n + R(21)

n

B(11)
n = A(11)

n +
n−1∑
m=1

A(12)
m T

(21)
n−m, n ≥ 1

plus two other equations with indices 1, 2 permuted that are omitted but can be treated
in the same way. Since R(21)

n only involves blocks T (21)
m , B(11)

m with m < n we can sub-
stitute the second equation into the first one and compute all coefficients T (21)

n uniquely
according to Lemma 3.1.

Applying the splitting lemma repeatedly we obtain an analogous result if A0 has
more than two eigenvalues:
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Theorem 5.2. Let (0.1) be a formal system of dimension d > 1 with deg p(z) < q, and
assume that A0 = diag[A

(11)
0 , . . . , A

(µµ)
0 ], such that any two blocks have no eigenvalue

in common. Then there exists a unique formally q–analytic transformation T̂ (z) with
diagonal blocks all equal to I and off–diagonal ones having no constant term, such that
the transformed formal system is diagonally blocked in the block structure of A0.

So the results of the previous sections show that we are left with discussing systems
for which deg p(z) < q, while A0 only has one eigenvalue. This we shall do in the next
section with help of shearing transformations.

6 Shearing transformations
In the following we have to investigate formal systems (0.1) with deg p(z) < q, whose
leading term A0 only has one eigenvalue, so that the splitting lemma does not apply.
Without loss of generality we may assume A0 to be in Jordan canonical form, since
otherwise we can apply a constant transformation. According to our normalizing as-
sumption we have that A0 is not equal to a multiple of the unit matrix, hence we may
assume that

A0 = λ I + NA , NA = N1 ⊕ . . .⊕Nµ 6= 0 , λ ∈ C , µ ∈ N , (6.1)

with nilpotent Jordan blocks Nj of dimensions dj , which we assume to be ordered so
that d1 ≥ . . . ≥ dµ ≥ 1. The treatment of these cases shall be completely analogous
to the case of differential equations studied in [2]); in particular we shall use the same
order relation for nilpotent matrices introduced there:

(Order relation for nilpotent matrices) Given any two nilpotent matrices
NA, NB ∈ Cd×d, we say that NB is superior to NA, if for some n ≥ 1 we
have rank Nm

A = rank Nm
B for 1 ≤ m ≤ n− 1, and rank Nn

A < rank Nn
B.

Note that this indeed defines a (partial) order relation on the set of d × d nilpotent
matrices, with the nilpotent Jordan block, i. e., the matrix with ones above the diagonal
and zeros everywhere else, being a maximal element. The strategy that we shall follow
is to find transformations that will produce a transformed equation with superior nilpo-
tent matrix NB, and in order to achieve this goal, we shall first arrange finitely many
coefficients A1, . . . An0 to have a special form. To do so, it shall be convenient to block
both the transformation as well as the two systems in the block structure induced by NA:

Lemma 6.1. Let a formal system (0.1) with leading term as in (6.1) be given. Then for
every n0 ∈ N there exists a terminating q–analytic transformation T̂ (z) = I + [Tij(z)],
blocked in the block structure of NA, such that the coefficient matrix of the transformed
system has the form B̂(z) = p(z1/q)I + A0 + [B̂ij(z)], with

Tij(z) =

n0∑
n=1

T (ij)
n z−n/q , B̂ij(z) =

∞∑
n=1

B(ij)
n z−n/q ,
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and so that for 1 ≤ n ≤ n0 the coefficients B(ij)
n

1. have all zero columns except for the first one in case 1 ≤ i ≤ j ≤ µ,

2. have all zero rows except for the last one in case 1 ≤ j < i ≤ µ.

Furthermore the transformation T̂ (z) is unique if we require for 1 ≤ n ≤ n0 that

1. all T (ij)
n have vanishing last column in case 1 ≤ i ≤ j ≤ µ,

2. all T (ij)
n have vanishing first row in case 1 ≤ j < i ≤ µ.

Proof. Insertion into (2.2) implies the following recursion formula for the coefficients
of the blocks of Â(z), B̂(z), T̂ (z):

T (ij)
n Nj −NiT

(ij)
n = −B(ij)

n + R(ij)
n , n ≥ 1, 1 ≤ i, j ≤ µ, (6.2)

where R(ij)
n only involves blocks of Tm, Bm with m < n. For n ≤ n0 Lemma 3.2

implies existence of a unique matrix B(ij)
n with nonzero entries in the first column (resp.

last row), such that (6.4) possesses a solution T (ij)
n . This solution is unique if we require

its last column (resp. first row) to vanish. Which case applies depends upon the position
of the block. In case n > n0 we have T (ij)

n ≡ 0 and choose B(ij)
n so that (6.4) holds.

Remark 6.2. We say that (0.1) with A0 as in (6.1), µ ≥ 1, is normalized up to n0, if all
coefficients A(ij)

n , for 1 ≤ n ≤ n0, have nonzero entries only in the first column resp.
last row (in case i ≤ j resp. i > j). If (0.1) is normalized up to n0, and in addition
all A(ij)

n with i 6= j vanish for 1 ≤ n ≤ n0, then we say that (0.1) is reduced up to
n0. We mention briefly that a system (0.1) normalized up to n0 can be normalized up to
ñ0 > n0 using a transformation T (z) with coefficients Tn = 0 for 1 ≤ n ≤ n0; therefore
the corresponding coefficients An remain unchanged.

Next, we we will apply shearing transformations for systems (0.1) normalized up to
some n0 in order to get a transformed system with leading term B0 = λI + NB and
superior NB.

Proposition 6.3. For some n0 ∈ N, let (0.1) be a formal system with leading term
A0 = λI + NA as in (6.1), normalized up to n0 and assume µ ≥ 2. Assume the
existence of n1 ∈ N : 1 ≤ n1 ≤ n0, so that

Âiµ(z) =
∞∑

n=n1

A(iµ)
n z−n/q , 1 ≤ i ≤ µ− 1 , (6.3)

and not all A(iµ)
n1

vanish. Then the shearing transformation

T (z) = diag[Id1 , . . . , Idµ−1 , z
n1/qIdµ ]

produces a system with leading term B0 = λI + NB, with NB being superior to NA.
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Proof. Defining Ci = A(iµ)
n1

, 1 ≤ i ≤ µ − 1 one checks easily that the stated shearing
transformation produces a transformed system

B̂(z) = p(z1/q)I + λI + NB +
∞∑

n=1

Bnz−n/q (6.4)

with

NB =




N1 0 · · · 0 C1

0 N2 · · · 0 C2
...

... . . . ...
...

0 0 · · · Nµ−1 Cµ−1

0 0 · · · 0 Nµ




, Ci =




ci,1 0 · · · 0
...

...
...

ci,di
0 · · · 0




di×dµ

. (6.5)

By assumption we have Ci 6= 0 for at least one i and for n ≥ 1 we find

Nn
B =




Nn
1 0 · · · 0 C

(n)
1

0 Nn
2 · · · 0 C

(n)
2

...
... . . . ...

...
0 0 · · · Nn

µ−1 C
(n)
µ−1

0 0 · · · 0 Nn
µ




, C
(n)
i = Nn−1

i Ci + Cn−1
i Nµ, n ≥ 2. (6.6)

We conclude that the nth column of C
(n)
i equals the first column of Ci, while the fol-

lowings vanish. Therefore we have rank Nn
A ≤ rankNn

B, n ≥ 1 and equality holds iff
the columns of C

(n)
i , for every 1 ≤ i ≤ µ − 1, are linear combinations of the columns

of Nn
i . Choosing n = dµ we have Nn

µ = 0 and finally rank N
dµ

A < rankN
dµ

B because
C

(dµ)
i 6= 0 for at least one i.

Due to Proposition 6.3 we are left to deal with the following two situations: Either
we have Âiµ(z) = O

(
z−(n0+1)/q

)
, 1 ≤ i ≤ µ − 1, or there is a shearing transformation

producing a transformed system with leading coefficient B0 = λI + NB and superior
NB. Since the nilpotent matrix with rank equal to d − 1 is a maximal element for
our order relation, it follows that after finitely many applications of Proposition 6.3,
in combination with constant transformations for the leading terms, we find that either
µ = 1 or Âiµ(z) = O

(
z−(n0+1)/q

)
, 1 ≤ i ≤ µ− 1. Much more can be said, however:

Theorem 6.4. Let (0.1) be a formal system with leading term A0 = λI + NA as in
(6.1), normalized up to n0 ∈ N. Moreover, let µ ≥ 2. Then we can find a shearing
transformation producing a system with leading term B0 = λI + NB and NB superior
to NA, except when all coefficients An, 1 ≤ n ≤ n0 are already diagonally blocked in
the block structure of A0, i.e. when (0.1) is reduced up to n0.
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Proof. According to Proposition 6.3 such a shearing transformation always exists, ex-
cept when condition (6.3) is violated, meaning when all An, 1 ≤ n ≤ n0, are lower
triangularly blocked in the block structure consisting of two diagonal blocks, with the
second one of the same size as Nµ. Next, one may check that a shearing transformation
inverse to the one used in Proposition 6.3 shall lead to an equation with superior lead-
ing term, except when the coefficients An, 1 ≤ n ≤ n0, even are diagonally blocked
in the same block structure. Repeating the same argument for the first diagonal block
completes the proof.

According to the previous results we are left to deal with a formal system (0.1) with
deg p(z) < q, a leading term A0 as in (6.1), and such that for some n0 ∈ N that we may
choose as large as we want, we have for all n = 1, . . . , n0, 1 ≤ i, j ≤ µ

A(ii)
n =




a(i,1)
n 0 · · · 0
...

...
...

a(i,di)
n 0 · · · 0




di×di

, A(ij)
n = 0 (i 6= j). (6.7)

For such a system, with a suitable rational value r satisfying 0 < r ≤ 1/q, we are going
to show existence of a transformation of the form

T (z) = (Γ(z))r diag[T1(z), . . . , Tµ(z)]

Ti(z) = diag[1, z−r, z−2r, . . . , z−(di−1)r]



 (6.8)

which is a shearing transformation combined with a pole transformation, for which the
transformed system B̂(z) is again of the form (0.1), with new entries q̃ and p̃(z), such
that either q̃ = q and deg p̃(z) > q̃ hold, or so that the leading term B0 has several
eigenvalues. To achieve this goal, it is necessary to discuss the effect of such a trans-
formation: It is natural here to block both Â(z) and B̂(z) in the block structure defined
by A0, and then we obtain from (2.2) that B̂jk(z) = z−r T−1

j (z + 1) Âjk(z) Tk(z). Ac-
cordingly, elements in off-diagonal blocks of Â(z) get multiplied by factors of the form
zr(τ−ν) (1+1/z)rτ , where ν, τ are non-negative integers bounded by the number of rows,
resp. columns, of this block. Hence, |r(τ − ν)| ≤ max

j
dj r ≤ d follows. Consequently,

• if we assume that n0 ≥ d + 1, which we shall do without loss of generality, then
the off-diagonal blocks of B̂(z) are formal power series in z−1/q̃, for q̃ being the
least common multiple of q and the denominator of r.

Hence, to continue our discussion, we may concentrate on a diagonal block Âjj(z):
Within this block, the elements directly above the diagonal (which all are series begin-
ning with a constant term equal to 1) are multiplied by (1 + 1/z)νr, for 0 ≤ ν ≤ dj − 1,
hence they all become power series in z−1/q̃ which again have constant term 1. Other
elements of this block are identically zero (and remain so under this transformation), ex-
cept for some of those in the first column, which are multiplied by zτr, with 1 ≤ τ ≤ dj .
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Therefore, the corresponding element of B̂jj(z) is a formal series beginning with a
power of the form zτr−nτj/q, for some nτj ≥ 1, except if the series happens to vanish
completely, in which case we set nτj = ∞. We do not want to have any positive powers
of z occuring, hence we restrict r so that τ r ≤ nτj/q. On the other hand, the idea is to
pick r, if possible, so that equality holds for at least one pair (τ, j). This implies that

• we only need to consider a finite set of rationals r, since τ r = nτj/q for some
τ ∈ {1 ≤ τ ≤ dj ≤ d1} and some j implies that the denominator of r is bounded
by d1 q, and the set of such r ≤ 1/q indeed is finite.

So let r be the maximal value from this finite set for which τ r ≤ nτj/q holds for all
1 ≤ τ ≤ dj , and all j = 1, . . . , µ. First, assume that r = 1/q: Then q̃ = q, and the
transformed equation is again of the form (0.1), but with p(z) replaced by z(p(z) + λ),
hence indeed its degree has risen by 1. In the second case of r < 1/q, we have τ r ≤
nτj/q for all 1 ≤ τ ≤ dj and j = 1, . . . , µ, with equality holding for at least one pair
(τ, j). Then, the corresponding transformation leads to

B̂(z) = p̃(z1/q̃) +
∞∑

n=0

z−n/q̃ Bn , (6.9)

with q̃ as above, p̃(z) so that p̃(z1/q̃) = zr (p(z1/q) + λ), and B0 = B01 ⊕ . . . ⊕ B0µ,
with at least one block B0j being of the form

B0j = Nj + Cj ,

with a non-zero matrix Cj whose entries vanish except for some in the first column.
Since r < 1/q, we find that the entry in position (1, 1) of Cj is equal to zero, so that for
Cj to be different from the zero matrix we necessarily have dj ≥ 2. Moreover, Bj0 is
a companion matrix and therefore not nilpotent (since Cj 6= 0). However, the trace of
Bj0 vanishes, and thus B0 has more than one eigenvalue.

We summarize the result of the foregoing discussion as

Theorem 6.5. Let a system (0.1) with deg p(z) < q and a leading term A0 as in (6.1) be
given, and assume that (6.7) holds for n0 ≥ d + 1. Then there exists a transformation
of type (6.8) which produces a transformed matrix B̂(z) being as follows:

• If r = 1/q, then B̂(z) is as in (0.1), with the same value of q but with p(z) replaced
by a polynomial of higher degree.

• If 0 < r < 1/q, then B̂(z) is as in (0.1), but with q replaced by a larger value
q̃, with p(z) replaced by a different polynomial p̃(z), and the constant term B0

having more than one eigenvalue.

In particular, observe that in the first one of the two cases, we can again apply the
results of this section until either we end with a system as in the second case, or one
with a polynomial of degree equal to q.
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As shall be explained in more detail in the following section, the results of this,
together with those of the preceding sections, enable us to show existence of a formal
fundamental solution of any linear system of difference equations, and at the same time
allow for its computation in an algorithmic manner.

7 Summary

Summing up the results we have obtained in this article, we come to the following
conclusion:

Theorem 7.1. (Main Result) Every formal system of linear difference equations of
the form (2.1) possesses a formal fundamental solution of the form (1.1), that can be
computed by the following algorithmic procedure:

(a) Determine the maximal number of leading coefficients in (2.1) that are scalar
multiples of the unit matrix, and apply a pole transformation to put the coefficient
matrix into the form (0.1).

(b) If the system is as in (0.1), with deg p(z) = q, refer to Proposition 4.1 to compute
the formal fundamental solution. Note that this in particular covers the case of
dimension d = 1.

(c) If the system is as in (0.1), with deg p(z) < q and A0 having more than one eigen-
value, apply Theorem 5.2 to compute a formally q-meromorphic transformation
to obtain a coefficient matrix that is the direct sum of several smaller matrices
that then can be treated seperately.

(d) If the system is as in (0.1), with deg p(z) < q and A0 having only one eigenvalue,
apply the results of the previous section to produce a new system that either is as
in case (b), or as in case (c).

In conclusion we wish to say that the computation of a formal fundamental solution
for difference equations can be done in the same fashion as for differential equations.
What has not been discussed here is the problem of summation of the formal power
series occuring in Theorem 5.2. However, observe that on one hand existing results on
(non-linear) systems of difference equations may be applied to see how these series can
be summed, and when one meets the phenomenon of level 1+. On the other hand, it is
very likely that there are more direct ways of examining this question for the relatively
easy situation of Theorem 5.2, or the even easier one of Lemma 5.1, but this is not done
here.
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différences. Funkcial. Ekvac., 26(3):349–368, 1983.

[9] Bernard F. Faber. Summability theory for analytic difference and differential–dif-
ference equations. PhD thesis, Rijksuniversiteit Groningen, 1998.

[10] F. R. Gantmacher. Theory of Matrices, vol. I & II. Chelsea, New York, 1959.
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