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Abstract

The Stokes multipliers of Okubo's con�uent hypergeometric system

can, in general, not be expressed in closed form using known special func-

tions. Instead they may themselves be regarded as highly interesting new

functions of the system's parameters. In this article we study their depen-

dence on the eigenvalues of the leading term. Doing so, we obtain several

interesting representations in terms of power series in several variables. As

an application we show that the Stokes multipliers may be obtained with

help of the sum of a formal solution of a system of di�erence equations

whose dimension is smaller than that of the hypergeometric one.

Introduction

The so-called hypergeometric system and its con�uent form have recently been
investigated in great detail � for a discussion of existing results, and for a rep-
resentation of its solutions in terms of a single (scalar) function, compare an
article of B. and Röscheisen [6], or the PhD thesis of C. Röscheisen [16]. In a
very recent paper of the author's [2], it has been made clear that all the entries
in the Stokes multipliers of (0.1) can also be expressed explicitly in terms of one
(scalar) Stokes function v that depends on the parameters of the system. By
choice, this function is equal to the entry v21 in the (2, 1)-position of one Stokes
multiplier, and the entries in all the other multipliers may be expressed using
the same function, evaluated for suitably permuted parameter values.
In this publication we shall continue the study of the Stokes function v. To

do so, we denote the con�uent hypergeometric system as

z x′ = A(z)x , A(z) = z Λ + A1 , Λ = diag [λ1, . . . , λn] (0.1)

and assume for the moment that the values λ1, . . . , λn are mutually distinct. In
the theory of formal and proper invariants, presented in work by Balser, Jurkat,
and Lutz [3,4,15], the diagonal elements of A1 have been shown to be so-called
formal invariants, and hence are of a special nature. Therefore, we shall always



split A1 = Λ′ +A, with

Λ′ = diag [λ′1, . . . , λ
′
n] , A =


0 a12 . . . a1n

a21 0 . . . a2n
...

. . .
...

an1 an2 . . . 0

 (0.2)

By choice of v, the values λ1, λ2 play a special role in our investigations. To
simplify some formulas and/or proofs, we shall not aim at covering the most
general situation, but instead shall make the following assumptions:

• Throughout this article, we assume that the matrix Λ is such that

λ1 = 0 , λ2 = 1 , λk 6∈ {0, 1} (k ≥ 3) (0.3)

without assuming that the values λ3, . . . , λn are mutually distinct.

• Concerning the values λ′1, . . . , λ
′
n, we restrict ourselves to the situation of

λ′1 = 0 (0.4)

• Assuming that (0.3), (0.4) hold, let α, β be so that

α+ β = λ′2 , α β = −a12 a21 (0.5)

In fact, these numbers are the (not necessarily distinct) eigenvalues of the
2× 2 matrix

A2 :=

[
0 a12

a21 λ′2

]
which for n = 2 is equal to A1. With α and β as in (0.5), we assume that
neither α nor β is equal to zero or a negative integer. In other words, we
assume that1

p(j) := (j + α) (j + β) = j (j + λ′2) − a12 a21 6= 0 ∀ j ∈ N0 (0.6)

Note that this assumption implies that neither a12 nor a21 are allowed to
vanish!

Remark 0.1 Observe that some of these assumptions may be made to hold
by means of prenormalizing transformations: An exponential shift x = eλ1zx̃
together with a change of variable z = (λ2 − λ1) ζ, provided that λ2 6= λ1,
leads to a new system for which (0.3) is satis�ed. Then, the transformation
x = zλ

′
1 x̃ may be used to make (0.4) hold. It is well known that neither one

of these transformations changes the Stokes multipiers, while the e�ect on the
parameters of the system (0.1) is easily found to be as follows:

• Given a general system (0.1), the normalizing transformations described
above lead to a new system with the same matrix A, but with new values
λ̃1, . . . , λ̃n and λ̃′1, . . . , λ̃

′
n given by λ̃1 = 0, λ̃2 = 1, λ̃′1 = 0, and

λ̃k = (λk − λ1)/(λ2 − λ1) (3 ≤ k ≤ n) ,

λ̃′k = λ′k − λ′1 (2 ≤ k ≤ n) .

1Observe that in this article N = {1, 2, . . .} denotes the set of natural numbers, while

N0 = N ∪ {0}.
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In accordance with this, one can easily extend the results derived in this article
to a con�uent hypergeometric system with general matrices Λ and Λ′.
Concerning the last one of the assumptions made above, note that it has

been shown in [16] that the Stokes multipliers of (0.1) are entire functions of
the entries in the matrix A. Therefore, while assumption (0.6) certainly is
restrictive, most of the results that shall be obtained in this article carry over
to cases for which (0.6) is violated. We shall not go into details about this,
however.

In this article we shall, under the assumptions listed above, analyze the de-
pendence of v = v21 on the variables λ3, . . . , λn. Since it shall turn out later
that the inverses of the λk are the more natural variables, we shall throughout
write (using superscript τ to denote the transposed of a vector or matrix)

v = v(w) , w = (w3, . . . , wn)τ , wk = λ−1k (0.7)

In detail, we shall show that v(w) may be expanded into a power series in the
variables wk which converges for w with ‖w‖∞ = sup{|wν | : 3 ≤ ν ≤ n} < 1.
In fact, we shall instead of v(w) analyze another function denoted as γ(w),
which shall be de�ned in Theorem 2.1. For the elementary relation between
v(w) and γ(w), compare Theorem 2.4. As an application of our investigations,
we shall show that the Stokes' function can be explicitly expressed in terms of a
solution of an (n−1)-dimensional system of di�erence equations. This solution,
in turn, can be computed as the 1-sum of a formal solution � for details compare
Theorem 4.3 and the discussion in the �nal section.
In the case of dimension n = 2 the set of variables w3, . . . , wn is empty, and

the (constant) entries v and γ have been computed in a paper of Balser, Jurkat,
and Lutz [4] � also compare the book of W. B. Jurkat [15]: In this situation we
have, with α, β as in (0.5),

v = 2πi e−iπλ
′
2 γ , γ =

a21
Γ(1 + α) Γ(1 + β)

(0.8)

In this dimension, observe that assumption (0.6) is violated if, and only if,
v = γ = 0, in which case the system (0.1) is said to be reducible. As shall follow
from Theorem 3.1 for higher dimensions of n ≥ 3, the numbers v and γ are equal
to the constant terms in the power series expansion of the functions v(w) and
γ(w), resp. Accordingly, assumption (0.6) is equivalent to the constant term of
v(w) and γ(w) being non-zero!

1 A formal power series solution

In what follows, we shall always assume that n ≥ 3, although our results, when
properly interpreted, stay correct even for n = 2.
Under the assumptions (0.3), (0.4), it is well understood that the system (0.1)

has a formal (vector) solution that is a power series in inverse powers of z. We
here shall pay special attention to the dependence of this solution on the vector
w = (w3, . . . , wn)τ , and thus we state this result as follows:
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Lemma 1.1 Suppose that (0.3), (0.4) hold. Then (0.1) has exactly one formal
solution of the form

x̂(z;w) =

∞∑
j=0

z−j xj(w) , x0(w) = e1 ,

with e1 denoting the �rst unit vector in the canonical basis of Cn. For j ≥ 1,
we choose to write xj(w) = (x1,j(w), . . . , xn,j(w))τ . The entries xν,j(w) can be
recursively computed from the identities

−j x1,j(w) =

n∑
k=2

a1k xk,j(w) (1.1)

−x2,j+1(w) = (j + λ′2)x2,j(w) +
∑

1≤k≤n
k 6=2

a2k xk,j(w) (1.2)

−xν,j+1(w) = wν
(
(j + λ′ν)xν,j(w) +

∑
1≤k≤n
k 6=ν

aνk xk,j(w)
)

(1.3)

which hold for every j ≥ 0 and 3 ≤ ν ≤ n. In particular, for j = 0 the �rst
identity is trivially satis�ed, while we conclude from (1.2), (1.3) that

x2,1(w) = −a21 , xν,1(w) = −wν aν1 (3 ≤ ν ≤ n) (1.4)

For j ≥ 1, each xν,j(w) is a polynomial in the variables wk (k ≥ 3) of total
degree j whenever ν 6= 2, resp. j − 1 for ν = 2.

Proof: Follows immediately by inserting the power series x̂(z;w) into (0.1)
and comparing coe�cients. 2

For j ≥ 1, note that we may use (1.1) to eliminate x1,j(w) from (1.2), (1.3),
and doing so, we obtain a system of n − 1 linear di�erence equations for the
remaining entries xν,j(w), ν ≥ 2.

2 The asymptotic behaviour of the coe�cients

The following result on the asymptotic behaviour of the entries xν,j(w) for
j → ∞ has been obtained earlier by R. Schäfke [17, 18] and, independently,
by Balser, Jurkat, and Lutz [5]. However, here we pay special attention to the
holomorphy with respect to w of the main term in the asymptotics.

Theorem 2.1 Suppose that (0.3), (0.4) and (0.6) hold. Then for ‖w‖∞ < 1
the limit

γ(w) := lim
j→∞

(−1)j Γ(j)

Γ(j + α) Γ(j + β)
x2,j(w)

exists, with convergence being uniform on compact subsets of the unit polydisc,
and the function γ(w) is holomorphic for ‖w‖∞ < 1 in Cn−2. Moreover, we
have

(−1)j Γ(j)

Γ(j + α) Γ(j + β)
xν,j(w) = O(1/j) (j →∞) (ν = 3, . . . , n)

and for ‖w‖∞ ≤ c, with arbitrary c < 1, the O-constant may be taken indepen-
dent of w.
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Proof: As was said above, the existence of the limit γ(w) has been shown
before, and analyzing the proofs in the articles mentioned, it is even possible to
obtain its analyticity. However, for convenience of the reader, we shall supply
the necessary estimates here: We set

γν,j(w) :=
(−1)j Γ(j)

Γ(j + α) Γ(j + β)
xν,j(w) (j ≥ 1 , 2 ≤ ν ≤ n)

and, with p(j) as in (0.6), use the abbreviations

rνk(j) =
pνk(j)

p(j)
, pνk(j) =


(j + λ′ν) j − aν1 a1ν (ν = k)

j aνk − aν1 a1k (ν 6= k)

(2.1)

Observe that r22(j) ≡ 1 for all j, and that by assumption p(j) 6= 0 for all j ≥ 0.
From (1.2), (1.3), after using (1.1) to eliminate x1,j(w), we conclude that

γ2,j+1(w) = γ2,j(w) +

n∑
k=3

r2k(j) γk,j(w)

γν,j+1(w) = wν

n∑
k=2

rνk(j) γk,j(w) (3 ≤ ν ≤ n)


(j ≥ 1) (2.2)

Let c ∈ (0, 1) be given and restrict to ‖w‖∞ ≤ c. We may estimate for j ≥ 1

|rνk(j)| ≤


1 + r/j (ν = k)

r/j (ν 6= k)

(2.3)

with su�ciently large r > 0. De�ning aj+1 = aj + (n − 2) r bj/j and bj+1 =
c [bj (1 + r (n− 2)/j) + r aj/j], beginning with a1, b1 su�ciently large and inde-
pendent of w, we may estimate (2.2) to �nd by induction with respect to j that
(aj) and (bj) are majorant sequences for (γ2,1(w)) and (γν,1(w)), respectively.
Since a1, b1 are independent of w, we conclude the same for aj , bj , j ≥ 2. For
arbitrary j0, to be selected later, the above recursion for aj implies that

aj = aj0 + (n− 2) r

j−1∑
`=j0

b`/` (j ≥ j0) (2.4)

For some j ≥ j0, let b ≥ 0 be so large that b` ≤ b/` for every ` ≤ j. Such a
number b certainly exists, but we aim at showing that we can, in fact, �nd one
that is independent of j. To do so, we estimate the recursions to �nd

aj ≤ aj0 + (n− 2) r

j−1∑
`=j0

b/`2 , bj+1 ≤ c [b (1 + r (n− 2)/j) + r aj ]/j .

With d so that
∑∞
`=j0

`−2 ≤ d/j0, this implies

bj+1 ≤ c [b (1 + r (n− 2)/j) + r aj0 + r2(n− 2) d b/j0 ]/j ,
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and the right hand side is at most b/(j + 1) if, and only if, we have for every
j ≥ j0

c [1 + r (n− 2)/j + r aj0/b+ r2(n− 2) d/j0 ] (1 + 1/j) ≤ 1 .

Using the fact that c < 1, we see that this is correct for j0 and b su�ciently
large, and thus we have shown existence of b > 0 such that bj ≤ b/j for every
j ≥ 1. This then implies, in view of (2.4), that the sequence (aj) is bounded.
Hence, summing up, we have shown that a, b > 0 exist such that

|γ2,j(w)| ≤ aj ≤ a , |γν,j(w)| ≤ bj ≤ b/j (3 ≤ ν ≤ n) (2.5)

for every j ≥ 1 and ‖w‖∞ ≤ c. From (2.2) we �nd, observing γ2,1(w) = γ with
γ as in (0.8) (also see Remark 2.3 below), that

γ2,j(w) = γ +

n∑
k=3

j−1∑
`=1

r2k(`) γk,`(w) (j ≥ 1) (2.6)

Owing to (2.3) and (2.5) we see that the series
∑∞
`=1 r2k(`) γk,`(w), for k ≥ 3, all

are absolutely convergent, and convergence is uniform for ‖w‖∞ ≤ c. Therefore,
for these w's the limit γ(w) exists and is holomorphic at interior points. Hence
the proof is completed. 2

Remark 2.2 For �xed w, the identities (2.2) may be viewed as a linear system
of di�erence equations with rational coe�cients. There is a well-developped the-
ory of formal solutions and their multi-summability of even non-linear systems
of di�erence equations that could be applied to prove Theorem 2.1. For the very
simple situation studied here, this theory is not needed, but it can prove very
useful for more complicated systems. We refer the reader to papers of Braaksma
and others [7�11] for a presentation of this very beautiful theory that deserves
to be better known among the specialists for di�erence equations � also compare
the last section of this article for some more details.

Remark 2.3 With γ as in (0.8) we conclude from (1.4) and the de�nition of
γν,j(w) that

γ2,1(w) = γ , γν,1(w) = wν γ
(ν) , γ(ν) :=

aν1
Γ(1 + α) Γ(1 + β)

(2.7)

Furthermore, we obtain from (2.6) the following representation for the limit
γ(w) that shall be very important in our investigations:

γ(w) = γ +

n∑
k=3

∞∑
j=1

r2k(j) γk,j(w) (‖w‖∞ < 1) (2.8)

The γν,j(w) are polynomials in w and, roughly speaking, the functions

γν(t;w) :=

∞∑
j=1

(−t)j γν,j(w)

are a formal Borel-like transformation in the sense of [1, Section 5.5], corre-
sponding to the moment sequence

m(j) :=
Γ(j + α) Γ(j + β)

Γ(j)
,

of the formal solution x̂(z;w). This shall not be needed here, however.
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The Stokes function v(w) and the limit γ(w), whose existence and analyticity
has been shown above, satisfy the following elementary relation which agrees
with (0.8) in dimension n = 2:

Theorem 2.4 Under the assumptions (0.3), (0.4), and (0.6) we have

v(w) = 2πi e−iπλ
′
2 γ(w) (‖w‖∞ < 1) (2.9)

Proof: The proof follows directly from [5, Proposition 3 or Corollary 1]; also
compare the PhD thesis of R. Schäfke [17]. 2

Due to this elementary relation, we may from now on restrict our investi-
gations to the function γ(w). In fact, it also follows that it is not necessary
to assume that the numbers w3, . . . , wn are mutually distinct. It may even be
shown that v(w), and then by means of (2.9) the function γ(w) as well, can be
analytically continued, in every variable wν , along every path that avoids the
point wν = 1. So the Stokes function is resurgent in the sense of Ecalle's [12,13].
Note, however, that w = 1 is, in general, a branch point!

3 Power series expansions

It follows from Lemma 1.1 that the functions γν,j(w), which di�er from the
coe�cients xν,j(w) by constants only, are polynomials in w3, . . . , wn. Therefore,
the series (2.8) can be used to �nd the power series expansion of γ(w): Let
p = (p3, . . . , pn) ∈ Nn−20 be a multi-index, and set as usual

wp = wp33 · . . . · wpnn .

In particular, with e(ν) denoting the multi-index with entries δj,ν−2, 3 ≤ ν ≤ n,
we have

we
(ν)

= wν , 3 ≤ ν ≤ n .
With |p| := p2 + . . .+ pn denoting the length of p, we use (2.2) to see by means
of induction with respect to j that the polynomials γν,j(w) may be written in
the form

γ2,j(w) =
∑

0≤|p|≤j−1

γ2,j,p w
p

γν,j(w) = wν
∑

0≤|p|≤j−1

γν,j,p w
p (3 ≤ ν ≤ n)

 (3.1)

Due to (2.7) we �nd that γ2,1,0 = γ and γν,1,0 = γ(ν) for ν = 3, . . . , n. Inserting
(3.1) into (2.2) and comparing coe�cients, we �nd that the other coe�cients
may be recursively computed from the identity

γν,j+1,p = rν2(j) γ2,j,p +

n∑
k=3

rνk(j) γk,j,p−e(k) (2 ≤ ν ≤ n) (3.2)

observing that r22(j) ≡ 1, and for simplicity of notation setting γ2,j,p = 0 when
|p| ≥ j, and γk,j,p−e(ν) = 0 if pν = 0. In particular, we conclude for p = 0 and
2 ≤ ν ≤ n that

γν,j,0 = rν2(j − 1) γ (j ≥ 1) . (3.3)
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Check that this agrees with the above formulas in case of j = 1. For ν = 2 we
have that γ2,j,0 ≡ γ for every j ≥ 1. For general p we obtain from (3.2), setting
ν = 2, that

γ2,j,p =

j−1∑
`=|p|

n∑
k=3

r2k(`) γk,`,p−e(k) (j ≥ |p|+ 1) .

This equation may be used to get a recursion formula for the remaining γν,j,p:

γν,j+1,p = rν2(j)

j−1∑
`=|p|

n∑
k=3

r2k(`) γk,`,p−e(k)

+
n∑
k=3

rνk(j) γk,j,p−e(k) (3 ≤ ν ≤ n , j ≥ |p|) (3.4)

Observe that this identity allows recursive computation of γν,j,p, not only with
respect to j, but also the length of p. For example, we obtain for multi-indices
of length 1 that

γν,j+1,e(µ) = γ
(
rνµ(j) rµ2(j − 1) + rν2(j)

j−1∑
`=1

r2µ(`) rµ2(`− 1)
)

In term of these entries γν,j,p we obtain the power series expansion of γ(w) as
follows:

Theorem 3.1 Suppose that (0.3), (0.4) and (0.6) hold. For w with ‖w‖∞ < 1
we have γ(w) =

∑
|p|≥0 γp w

p, with coe�cients γp given by

γp = lim
j→∞

γ2,j,p =

∞∑
j=|p|

n∑
ν=3

r2ν(j) γν,j,p−e(ν) (3.5)

In particular we obtain γ0 = γ, with the number γ as in (0.8). Furthermore, for
the coe�cients of length 1 we have the representation

γe(ν) = γ

∞∑
j=0

(j+1) a2ν−a21 a1ν

(j+1+α) (j+1+β)

j aν2−aν1 a12

(j+α) (j+β)
(3.6)

for ν = 3, . . . , n.

Proof: According to the proof of Theorem 2.1, the series (2.8) converges
compactly on the unit polydisc of Cn−2, and therefore the proof follows from
the Cauchy formula for (partial) derivatives of holomorphic functions in several
variables [14]. 2

Remark 3.2 Based on the above formula for the coe�cients γp, we can �nd a
slightly di�erent representation for γ(w): De�ne

γ(ν)(w) =
∑
|p|≥0

wp
∞∑

j=|p|+1

r2ν(j) γν,j,p (3 ≤ ν ≤ n) .
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Then we obtain from the formula (3.5), through an interchange of summation
and a change of summation index p− e(ν) ↔ p, that

γ(w) = γ +

m∑
ν=3

wν γ
(ν)(w) .

4 More on the coe�cients of the power series

A di�erent representation for the coe�cients γp may be obtained ty means of
a generalization of (2.8). In order to achieve this, we introduce the following
numbers:

• With p as above, we de�ne for 3 ≤ k ≤ n and j ∈ N0: %k(p; j) = r2k(j)
for p = 0, with rνk(j) as in (2.1), and for |p| ≥ 1:

%k(p; j) =

n∑
ν=3

[
%ν(p− e(ν); j + 1) rνk(j)

+ r2k(j)

∞∑
`=j+1

%ν(p− e(ν); `+ 1) rν2(`)
]
 (4.1)

with the interpretation that %ν(p− e(ν); j+ 1) = %ν(p− e(ν); `+ 1) = 0 for
multi-indices p with pν = 0. Observe that by induction with respect to
|p| one can easily see that %k(p; j) = O(1/j) as j →∞, and that therefore
the series in (4.1) is absolutely convergent.

Remark 4.1 It shall be convenient to use formula (4.1) with k = 2 to de�ne
numbers %2(p; j) for |p| ≥ 1, and in view of r22(j) ≡ 1 this equation simpli�es
to

%2(p; j) =

n∑
ν=3

∞∑
`=j

%ν(p− e(ν); `+ 1) rν2(`)

= %2(p; j + 1) +

n∑
ν=3

%ν(p− e(ν); j + 1) rν2(j) (j ≥ 0 , |p| ≥ 1) .

In addition we set %2(0; j) = r22(j) (≡ 1). With this de�nition we may rewrite
(4.1) as

%k(p; j) = %2(p; j + 1) r2k(j) +

n∑
ν=3

%ν(p− e(ν); j + 1) rνk(j) (4.2)

which then holds for k = 2, . . . , n, j ≥ 1, and all multi-indices p.

In order to understand the meaning of the numbers %k(p; j), we (formally)
de�ne functions

yk(j;w) :=
∑
|p|≥0

wp %k(p; j) (j ≥ 0 , 2 ≤ k ≤ n) (4.3)

and prove the following result:
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Lemma 4.2 Suppose that (0.3), (0.4) and (0.6) hold.

a) For every ε > 0 there exists constants C and j0 ≥ 1 such that for every
multi-index p, every j ≥ j0, and k = 3, . . . , n

|%k(p; j)| ≤ C (1 + ε)|p|/j .

b) The series (4.3) all converge absolutely for ‖w‖∞ < 1, and the functions so
de�ned satisfy

yk(j;w) = y2(j + 1;w) r2k(j) +

n∑
ν=3

wν yν(j + 1;w) rνk(j) (4.4)

for j ≥ 0 and 2 ≤ k ≤ n.
c) For ‖w‖∞ < 1 and k = 3, . . . , n we have yk(j;w) = O(1/j) as j →∞, with

a O-constant that is locally uniform in w, while

lim
j→∞

y2(j;w) = 1 ,

with convergence being locally uniform in w.

Proof: Let ε > 0 be given. For |p| ≥ 1, assume that the �rst statement is
correct for every multi-index of length |p|−1. This is so for |p| = 1 and arbitrary
j0, due to %k(0; j) = r2k(j) = O(1/j). Estimating (4.1), we then �nd for j ≥ j0
and every k

|%k(p; j)| ≤ C (1 + ε)|p|−1

j

[
1 + (n− 2) r/j + (n− 2) r2

∞∑
`=j+1

1

(`(`+ 1)

]
.

For su�ciently large j0, independent of p, the term in brackets is not larger than
1+ε, hence by induction with respect to |p| we obtain that a) is correct. Due to
this estimate we see that convergence of the series (4.3) follows for j ≥ j0, and
using (4.1) we obtain correctness of b) for such j. For smaller j, we may take
the identity in b) as the de�nition for yk(j;w), implying that all these functions
are holomorphic in the unit polydisc in C(n−2). The coe�cients of their power
series expansion may then be veri�ed to satisfy (4.1), so that b) follows for all
j ≥ 0. Statement c) then can be proven using a). 2

As we shall make clear in the �nal section, the identities (4.4) can be equiv-
alently written as a system of linear di�erence equations, and the functions
yk(j;w) are the components of a vector solution that is uniquely characterized
by the behaviour as j →∞.
In terms of the numbers %k(p; j) we obtain the following formula for the

coe�cients γp:

Theorem 4.3 Assume (0.3), (0.4) and (0.6).

a) For all w with ‖w‖∞ < 1 and every m ∈ N0 we have the following general-
ization of (2.8):

γ(w) =
∑
|p|≤m

γp w
p + %(m)(w)

%(m)(w) :=
∑
|p|=m

wp
n∑
k=3

∞∑
j=1

%k(p; j) γk,j(w)

 (4.5)
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b) The coe�cients γp with |p| ≥ 1 are given by the formula

γp = γ %2(p; 0) = γ

n∑
ν=3

∞∑
j=0

%ν(p− e(ν); j + 1) rν2(j) (4.6)

the in�nite series being absolutely convergent.

c) For all w with ‖w‖∞ < 1. the function γ(w) is given by

γ(w) = γ y2(0;w) = γ y2(1;w) +

n∑
ν=3

wν yν(1;w) γ(ν) (4.7)

Proof: To prove a), we proceed by induction with respect to m: For m = 0,
the statement is correct, owing to (2.8), hence we may assume correctness for
some m ≥ 0. Inserting (2.6) into the second line in recursion (2.2), we obtain
for 3 ≤ ν ≤ n and every j ≥ 1:

γν,j+1(w) = wν γ rν2(j) +

wν

n∑
k=3

[
rνk(j) γk,j(w) + rν2(j)

j−1∑
`=1

r2k(`) γk,`(w)
]
 (4.8)

Splitting o� the term for j = 1 from the in�nite series in the de�nition of %(m)(w)
and observing (2.7), we can then use (4.8) to obtain

%(m)(w) =
∑
|p|=m

n∑
ν=3

wp+e
(ν)
[
γ(ν) %ν(p; 1) + γ

∞∑
j=1

%ν(p; j + 1) rν2(j)
]

+
∑
|p|=m

n∑
ν=3

wp+e
(ν)
∞∑
j=1

%ν(p; j + 1)

n∑
k=3

rνk(j) γk,j(w)

+
∑
|p|=m

n∑
ν=3

wp+e
(ν)
∞∑
j=1

%ν(p; j + 1) rν2(j)

n∑
k=3

j−1∑
`=1

r2k(`) γk,`(w) .

In the third line we may interchange summation with respect to j and `, and
afterwards rename the index ` by j and vice versa. Also, the double sums
at the beginning of the lines are equivalent to one sum over all multi-indices
q := p+ e(ν) of length m+ 1, but one has to be careful to observe that the same
q can be written in more than one way in the form p+ e(ν). Doing all this, we
obtain after interchanging the sums with respect to ν and k:

%(m)(w) =
∑

|q|=m+1

wq
n∑
ν=3

[
γ(ν) %ν(q − e(ν); 1) + γ

∞∑
j=1

%ν(q − e(ν); j + 1) rν2(j)
]

+
∑

|q|=m+1

wq
n∑
k=3

∞∑
j=1

γk,j(w)

n∑
ν=3

[
rνk(j)%ν(q − e(ν); j + 1)

+ r2k(j)

∞∑
`=j+1

%ν(q − e(ν); `+ 1) rν2(`)
]
.
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Verifying that γ(ν) = −γ aν1 a12/(αβ) = γ rν2(0), we can momentarily de�ne
γq in analogy with (4.6), and then read o� that

%(m)(w) =
∑

|q|=m+1

γq w
q + %(m+1)(w) .

Since the power series expansion of %(m+1) contains only terms of total degree at
least m+2, we conclude that the numbers γq are indeed equal to the coe�cients
of the expansion of γ(w) of degree m + 1, which completes the proof of a) as
well as of b). The remaining statement then follows from the �rst two. 2

Observe that according to (4.7) the function y(0;w) is closely related to the
Stokes function. In the �nal section we shall say more about the computation
of the sequence y(j;w) with help of 1-summability!

5 Another representation of the Stokes function

In this section we prove new identities for γ(w), which lead to a more elementary
representation of this function. To do so, we introduce a countable family of
rational functions of j by the following recursive de�nition:

• Let rνk(j) and p = (p3, . . . , pn) be as in the previous section. Starting
with rk(0; j) = r2k(j), we de�ne for |p| ≥ 1, 3 ≤ k ≤ n, and j ∈ N0

rk(p; j) =

n∑
ν=3

[
rν(p− e(ν); j + 1) rνk(j)

− r2k(j)

j∑
`=1

rν(p− e(ν); `+ 1) rν2(`)
]
 (5.1)

with the interpretation that rν(p − e(ν); j + 1) = rν(p − e(ν); ` + 1) = 0
for multi-indices p with pν = 0. Note in particular that for j = 0 the sum
with repsect to ` is empty, so that we obtain

rk(p; 0) =

n∑
ν=3

rν(p− e(ν); 1) rνk(0) (3 ≤ k ≤ n) .

Observe the strong similarity of (5.1) with (4.1); however, here there is
only a �nite sum instead of an in�nite series involved! Therefore, the
rk(p; j) are rational functions of j, hence much more elementary than the
%k(p; j).

• For p 6= 0 and j ≥ 1 we de�ne numbers r2(p; j) by

r2(p; j) = −
n∑
ν=3

j−1∑
`=1

rν(p− e(ν); `+ 1) rν2(`) (5.2)

= r2(p; j + 1) +

n∑
ν=3

rν(p− e(ν); j + 1) rν2(j) (5.3)
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Observe that this implies r2(p; 1) = 0, and that the de�nition of r2(p; j)
coincides with (5.1) for k = 2. Note that we can use (5.3) (but not (5.2))
to de�ne

r2(p; 0) =

n∑
ν=3

rν(p− e(ν); 1) rν2(0)

For p = 0 we set r2(0; j) = r22(j) ≡ 1.

Remark 5.1 By induction with respect to |p| one can easily see that for every p
and every k = 3, . . . , n we have rk(p; j) = O(1/j) as j →∞, while the sequence
r2(p; j) is convergent. We may rewrite (5.1) as

rk(p; j) = r2(p; j + 1) r2k(j) +

n∑
ν=3

rν(p− e(ν); j + 1) rνk(j) (5.4)

which then holds for k = 2, . . . , n, for j ≥ 0, and all multi-indices p.

Analogous to the previous section we de�ne functions

ỹk(j;w) :=
∑
|p|≥0

wp rk(p; j) (j ≥ 0 , 2 ≤ k ≤ n) (5.5)

Observe that in particular we have ỹk(1;w) ≡ 1. Convergence of the series for
w near the origin is shown in the next lemma:

Lemma 5.2 Suppose that (0.3), (0.4) and (0.6) hold. Then for all j ≥ 0 we
have:

a) The power series (5.5) converge for ‖w‖∞ < r0, with some r0 independent
of j. Moreover, for these w we have

yk(j;w) = ỹk(j;w) y2(1;w) (2 ≤ k ≤ n) (5.6)

b) The functions ỹk(j;w) can be continued meromorphically onto the unit poly-
disc of Cn−2, with possible poles at places where y1(1;w) vanishes. For all
other w, they satisfy

ỹk(j;w) = ỹ2(j + 1;w) r2k(j) +

n∑
ν=3

wν ỹν(j + 1;w) rνk(j) (5.7)

for 2 ≤ k ≤ n.
c) For ‖w‖∞ < 1 with y1(1;w) 6= 0 and k = 3, . . . , n we have ỹk(j;w) = O(1/j)

as j →∞, with a O-constant that is locally uniform in w, while

lim
j→∞

ỹ2(j;w) = 1/y1(1;w) ,

with convergence being locally uniform in w.

Proof: Since even in the de�nition of the rk(p; j) the case of j = 0 is di�erent
from the other ones, we �rst restrict ourselves to j ≥ 1: For such j, similar
estimates as in the proof of Lemma 4.2 a) show existence of c so that |rk(p; j)| ≤
c|p|/j for all p and 3 ≤ k ≤ n, from which convergence of (5.5) follows for
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‖w‖∞ < 1/c =: r0 and these j and k. For k = 2, we then obtain convergence
using (5.2). Moreover, observe that (5.6) is equivalent to

%k(p; j) =
∑
q≤p

rk(p− q; j) %2(q; 1) (2 ≤ k ≤ n , |p| ≥ 0 , j ≥ 1) (5.8)

with q ≤ p meaning that qν ≤ pν for 3 ≤ ν ≤ n. This identity is certainly
correct for p = 0, hence let p 6= 0 be given and assume correctness for all multi-
indices of length strictly less than |p| (and all j ≥ 1 and 2 ≤ k ≤ n). Then we
use the de�nition of %2(p; j) together with the induction hypothesis to conclude
(with q < p meaning q ≤ p and q 6= p)

%2(p; j) = %2(p; 1) −
n∑
ν=3

j−1∑
`=1

∑
q≤p−e(ν)

rk(p− q − e(ν); `+ 1) %2(q; 1) rν2(`)

= %2(p; 1) −
∑
q<p

%2(q; 1)

n∑
ν=3

j−1∑
`=1

rk(p− q − e(ν); `+ 1) rν2(`)

= r2(0; 1) %2(p; 1) +
∑
q<p

r2(p− q; j) %2(q; 1)

(using the de�nition of r2(p − q; j) and the fact that r2(0; 1) = 1). This shows
(5.6) for k = 2 and j ≥ 1 (and the selected p). In the same manner one can
prove correctness for k = 3, . . . , n, using either (4.2) or (4.1). Thus, the proof
of statement a) is completed, and the other two follow from a), using (5.4) and
Lemma 4.2c). In order to cover the case j = 0, note that the de�nition of
rk(p; 0) immediately implies convergence of (5.5) even in this case, and then
one can verify (5.7) for j = 0. From this and (4.4) we then obtain validity of
(5.6) for this j. 2

In terms of the entries introduced above, we show the following generalization
of (2.8):

Proposition 5.3 Assume (0.3), (0.4) and (0.6). For every integer m ≥ 0 and
‖w‖∞ < 1 we have the following representation formula for γ(w):

γ(w)
(

1 −
∑

1≤|p|≤m

αp w
p
)

= γ +
∑

1≤|p|≤m

βp w
p + r(m)(w) (5.9)

with entities of the form

αp =

n∑
ν=3

∞∑
j=1

rν(p− e(ν); j + 1) rν2(j) = − lim
j→∞

r2(p; j) (5.10)

βp =

n∑
ν=3

γ(ν) rν(p− e(ν); 1) = γ r2(p; 0) (5.11)

r(m)(w) =
∑
|p|=m

wp
n∑
k=3

∞∑
j=1

rk(p; j) γk,j(w) (5.12)

Proof: The proof is very much analogous with that of Theorem 4.3: Assuming
correctness of the statements for some m ≥ 0 (which is so when m = 0), we use
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(2.8) and (2.6) to obtain

γ2,j(w) = γ(w) −
n∑
k=3

∞∑
`=j

r2k(`) γk,`(w) (j ≥ 1)

and insert this into the second line in recursion (2.2) to show for 3 ≤ ν ≤ n and
every j ≥ 1:

γν,j+1(w) = wν γ(w) rν2(j) +

wν

n∑
k=3

[
rνk(j) γk,j(w) − rν2(j)

∞∑
`=j

r2k(`) γk,`(w)
]
 (5.13)

Splitting o� the term for j = 1 in the series for r(m)(w) we can then use (5.13)
to prove

r(m)(w) =
∑
|p|=m

n∑
ν=3

wp+e
(ν)
[
γ(ν) rν(p; 1) + γ(w)

∞∑
j=1

rν(p; j + 1) rν2(j)
]

+
∑
|p|=m

n∑
ν=3

wp+e
(ν)
∞∑
j=1

rν(p; j + 1)

n∑
k=3

rνk(j) γk,j(w)

−
∑
|p|=m

n∑
ν=3

wp+e
(ν)
∞∑
j=1

rν(p; j + 1) rν2(j)

n∑
k=3

∞∑
`=j

r2k(`) γk,`(w) .

In the third term we again interchange summation with respect to j and `, and
afterwards rename the index ` by j and vice versa, to obtain

r(m)(w) =
∑

|p|=m+1

wp
n∑
ν=3

[
γ(ν) rν(p− e(ν); 1)

+ γ(w)

∞∑
j=1

rν(p− e(ν); j + 1) rν2(j)
]

+
∑

|p|=m+1

wp
n∑
k=3

∞∑
j=1

γk,j(w)

n∑
ν=3

[
rνk(j)rν(p− e(ν); j + 1)

− r2k(j)

j∑
`=1

rν(p− e(ν); `+ 1) rν2(`)
]

=
∑

|p|=m+1

wp
[
αp + βp +

n∑
k=3

∞∑
j=1

rk(p; j) γk,j(w)
]

where for the last identity we use (5.1). Inserting into (5.9) and moving the
term containing γ(w) over to the left hand side, we complete the proof. 2

Theorem 5.4 Suppose that (0.3), (0.4) and (0.6) hold. Then the power series

α(w) :=
∑
|p|≥1

αp w
p , β(w) :=

∑
|p|≥1

βp w
p
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both converge for ‖w‖∞ < r0, with r0 as in Lemma 5.2 a), and for such w we
have the identities

α(w) = 1 − lim
j→∞

ỹ2(j;w) , β(w) = γ
(
ỹ2(0;w)− 1

)
(5.14)

γ(w) =
γ + β(w)

1− α(w)
= γ

ỹ2(0;w)

lim
j→∞

ỹ2(j;w)
(‖w‖∞ < r0) (5.15)

Proof: From the estimate in the proof of Lemma 5.2 a) we conclude conver-
gence of the two power series. Furthermore, note that r(m)(w) omits a power
series containing only terms wp with |p| ≥ m + 1, so that we conclude from
Proposition 5.3

γp −
∑

0<q≤p

γp−q αq = βp (0 < |p| ≤ m) .

Since m is an arbitrary natural number, we obtain the �rst identity in (5.15),
while the remaining one and (5.14) follow using the identities for αp, βp obtained
in Proposition 5.3. 2

6 A system of di�erence equations

In this section, we want to better understand the meaning of the sequence of
functions yk(j;w) which have been introduced before, and which have been
shown to satisfy the identity (4.4). In order to simplify this formula, we de�ne
for j ≥ 1

y1(j + 1;w) := − j−1
(
y2(j + 1;w) a21 +

n∑
ν=3

wν yν(j + 1;w) aν1
)

(6.1)

Observe that this de�nition becomes meaningless for j = 0, hence the function
y1(1;w) remains unde�ned. With this new entry we then may reformulate (4.4),
recalling the de�nition of rν,k(j) from (2.1), to obtain for j ≥ 1

p(j) y2(j;w) = j
[
y1(j + 1;w) a12 + y2(j + 1;w) (j + λ′2)

+

n∑
ν=3

wν yν(j + 1;w) aν2

]
(6.2)

p(j) yk(j;w) = j
[
y1(j + 1;w) a1k + y2(j + 1;w) a2k

+ wk yk(j + 1;w) (j + λ′k) +
∑

3≤ν≤n
ν 6=k

wν yν(j + 1;w) aνk

]
(6.3)

These identities may best be understood using a matrix-vector notation: For
‖w‖∞ < 1 and j ≥ 1 we de�ne

y(j;w) = [y1(j;w), y2(j;w), w3 y3(j;w), . . . , wn yn(j;w)]τ (6.4)
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ignoring the fact that y1(1;w) has not yet been de�ned. In terms of these
vectors, equations (6.1) � (6.3) are equivalent with the simple matrix identity

p(j) y(j;w)τ Λ = j y(j + 1;w)τ
(
j +A1

)
(j ≥ 1)

with Λ and A1 as in (0.1). For �xed w and all su�ciently large j, this identity
may be solved for y(j + 1;w), and then is a system of linear di�erence equa-
tions. Since the �rst diagonal entry of Λ vanishes, one may eliminate the �rst
component of y(j + 1;w), such that the system is, in fact, of dimension n − 1.
Setting

y(j;w) =
Γ(j + α) Γ(j + β)

Γ(j) Γ(j + λ′2)
x(z;w) , z = j + λ′2 (6.5)

and then allowing z to vary freely in the complex plane, we can write this system
in even simpler form as

z x(z;w)τ Λ = x(z + 1;w)τ
(
z − λ′2 + A1

)
(6.6)

Solving for x(z+1;w) wherever possible and �xing w, we obtain a system that is
a very special case of the much more general ones treated in the articles [7�11].
Without going into any details, we brie�y explain what can be concluded from
the results in said papers:

a) The system (6.6) has a unique formal (vector) solution x̂(z;w) that is a
power series in z−1 of Gevrey order 1 and has the second unit vector e2 for
its constant term. To show this is a bit tedious, and shall not be done here.

b) The formal Borel transform ξ(t;w) of x̂(z + 1;w) satis�es the system of
Volterra-type integral equations

ξ(t;w)τ (et Λ− I) =
(
eτ2 +

∫ t

0

ξ(u;w)τ du
)

(A1 − λ′2) (6.7)

The singularities of this system, aside from the ones of the form 2 k π i with
k ∈ Z, are at all points of the form logwk = log |wk|+ i argwk, k = 3, . . . , n.
For ‖w‖ < 1, these point all have negative real parts. The (unique) solution
of this equation is holomorphic in the largest star-shaped (with respect to
the origin) region that does not contain any one of these singularities (except
for the origin which, however, is removable) and is of exponential growth at
most one as t→∞.

c) Using this information on ξ(t;w), we conclude from the theory of k-summab-
ility [1] that the formal solution x̂(z+1;w) (and, equivalently, also x̂(z;w)) is
1-summable in all directions d that avoid all the singular points. For ‖w‖ < 1
these include all d with |d| < π/2. The sum x(z + 1;w) is holomorphic for
z + 1 in C \ {x + i y : x ≤ 0}, and is Gevrey-asymptotic of order 1 to the
formal series x̂(z + 1;w). Moreover, x(z;w) is a solution of (6.6).

d) De�ning y(j;w) by (6.5), we �nd a vector whose components satisfy the
identities (6.1) � (6.3). Because of ‖w‖ < 1 this vector is, up to a factor
independent of j, the only solution that stays bounded as j → ∞. There-
fore we conclude that the components of y(j;w) coincide with the functions
yk(j;w) that we de�ned before.
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e) For values w outside of the unit polydisc, we �nd that the formal solution
x̂(z;w) remains 1-summable (at least) in direction d = 0, as long as no wν is
equal to a real number larger than 1. This shows that x(z;w) as well as the
yk(j;w), admit continuation with respect to w outside of the unit polydisc.

Roughly speaking, we conclude from above, with help of (4.7), that the Stokes
function γ(w) can be computed in terms of the sum of a formal solution of (6.6).
While this from a theoretical point of view is a very satisfying result, it still is
not so easy to directly use this for a computation of γ(w). For such a practical
approach, the results of Section 5 are more suitable, since the entries rk(p; j)
are relatively simple rational functions of j, of which �nitely many might be
computed, say, with help of standard computer algebra software.
Observe that, due to (5.6), the functions ỹk(j;w) can also be linked with a

solution x̃(z;w) of the system of di�erence equations (6.6), di�ering from x(z;w)
by a constant factor. This shall not be investigated any further in this article.
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