

Übungsblatt 3 Evolutionsgleichungen

Abgabe ist am 5.11.2014 um 12 Uhr in der Übung

Aufgabe 1 (Multiplikationsoperatoren)

(3+4+5+2)

Es sei (Ω, Σ, μ) ein σ -endlicher Maßraum und $p \in [1, \infty)$. Weiter sei $m \colon \Omega \to \mathbb{K}$ eine messbare Funktion. Wir definieren den Operator

$$M_m := mf$$

mit Definitionsbereich

$$D(M_m) := \{ f \in L^p(\Omega, \Sigma, \mu) : mf \in L^p(\Omega, \Sigma, \mu) \}.$$

- (a) Man zeige, dass M_m abgeschlossen und dicht-definiert ist und M_m genau dann ein beschränkter Operator ist, wenn m wesentlich beschränkt ist.
- (b) Man beweise

$$\sigma(M_m) = \operatorname{essim} m = \left\{ x \in \mathbb{R} : \ \forall r > 0 \text{ ist } m^{-1}(B(x,r)) \text{ keine Nullmenge.} \right\}.$$

- (c) Man zeige, dass falls $\operatorname{Re} m(x) \leq \omega$ für alle $x \in \Omega$ bis auf eine Nullmenge für ein $\omega \in \mathbb{R}$ gilt, dann ist M_m der Erzeuger der C_0 -Halbgruppe $\left(M_{\exp(tm)}\right)_{t>0}$ aus Blatt 1 Aufgabe 3.
- (d) Man zeige analoge Aussagen (man muss die Behauptungen in (a) und (b) leicht abändern) auch für den Fall, dass (Ω, Σ, μ) nicht σ -endlich ist.

Aufgabe 2 (Erzeuger der Translationshalbgruppe)

(3+3+5*+5*)

Es sei T die Translationshalbgruppe auf $L^p(I)$ aus Aufgabe 1 auf Blatt 1 für $p < \infty$, d.h. es ist (T(t)f)(s) = f(t+s) für fast alle $s \in I$ mit $t+s \in I$ und (T(t)f)(s) = 0 sonst. Dabei ist I = (a,b) ein offenes nicht-triviales Intervall.

(a) Man zeige, dass der Erzeuger der Translationshalbgruppe gegeben ist durch den Abschluss \overline{A} des Operators $A: D(A) \to L^p((a,b))$ mit

$$Af = f'$$

und $D(A) = C_c^1([a,b))$, falls $a > -\infty$ und $D(A) = C_c^1((a,b))$, falls $a = -\infty$.

(b) Wir betrachten im Falle von $b < \infty$ und $a > -\infty$ den Operator $B \colon D(B) \to X$ mit Bf = f' und

$$D(B) = \left\{ f \in C^1([a,b]) : f'(b) = 0 \right\}.$$

Man zeige, dass der Abschluss von B für $X = L^p((a,b))$ existiert und B im Falle X = C([a,b]) abgeschlossen ist.

- (c) Wir betrachten den Operator B aus Teilaufgabe (b) mit $X = L^p((a,b))$. Man zeige, dass \overline{B} keine C_0 -Halbgruppe erzeugt.
- (d) Wir betrachten wieder den Operator B aus Teilaufgabe (b) aber diesmal mit X = C([a, b]). Man zeige, dass B eine C_0 -Halbgruppe erzeugt.