

UNIVERSITY OF ULM

Discussion: Friday, 13.2.2014

Applied Analysis: Mock Exam

- **1.** Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces and $f: X \to Y$ a map.
 - (a) Show that f is continuous if f is Lipschitz continuous.
 - (b) Show that a Lipschitz continuous linear map $T: X \to Y$ is a bounded linear operator.
 - (c) Let $K \subset X$ be compact. Show that for every $x \in X$ there exists some $y_0 \in K$ such that

$$||x - y_0||_X = \inf_{y \in K} ||x - y||_X$$

- **2.** Let $f: [0,1] \to \mathbb{R}$.
 - (a) Show that the inverse images under f of disjoint sets $A, B \subset \mathbb{R}$ are disjoint.
 - (b) Let $\Omega = [0,1]$ and $\Sigma = \sigma(\{[0,1/4] \cup (3/4,1], [1/4,3/4]\})$. Describe all $\Sigma/\mathcal{B}(\mathbb{R})$ -measurable functions.
- **3.** Let $(X, \|\cdot\|)$ be a Banach space and let $(x_k)_{k \in \mathbb{N}}$ be an X valued sequence such that $\sum_{k=1}^{\infty} ||x_k|| < \infty$ and such that the real valued sequence $(||x_k||)_{k \in \mathbb{N}}$ is monotonically decreasing. Show that $k||x_k|| \to 0$.

[Hint: Consider the Cauchy criteria for the sequence of the partial sums of $\sum_{k=1}^{\infty} ||x_k||$ and choose $n, m \ge n_0$ with m = 2n.]

- 4. Formulate the monotone convergence theorem.
- **5.** Let (Ω, Σ, μ) be a measure space and ν another measure on (Ω, Σ) with

$$\mu(A) \ge \nu(A)$$
 for all $A \in \Sigma$.

- (a) Let $f, g: \Omega \to \mathbb{R}$ be $\Sigma/\mathcal{B}(\mathbb{R})$ -measurable functions. Show that if $f = g \mu$ -a.e., then $f = g \nu$ -a.e.
- (b) Given some non-negative Σ -measurable function $f: \Omega \to [0, \infty)$. Show that

$$\int f \, \mathrm{d}\mu \geq \int f \, \mathrm{d}\nu.$$

- (c) We define a map $T: L^2(\Omega, \Sigma, \mu) \to L^2(\Omega, \Sigma, \nu)$ by Tf = f for all $f \in L^2(\Omega, \Sigma, \mu)$. If follows from (a) and (b) that T is well-defined. You can assume this without proof.
 - (i) Prove that T is linear.
 - (ii) Prove that T is continuous.
- **6.** Let us suppose that a set Ω and a subset \mathcal{E} of the power set $\mathcal{P}(\Omega)$ is given.
 - (a) Define $\sigma(\mathcal{E})$ and $dyn(\mathcal{E})$.
 - (b) Given some fixed A ∈ dyn(E). Show that G_A := {B ⊂ Ω : A ∩ B ∈ dyn(E)} is a Dynkin system.
 [Hint: The identity A ∩ B^c = (A^c ∪ (A ∩ B))^c might be helpful.]

- (c) Use part (b) to show Dynkin's π-λ theorem: If *E* is stable under intersections, then dyn(*E*) = σ(*E*).
 You can use without a proof the following fact: Every Dynkin system which is stable under intersections is a σ-algebra.
- 7. Give an example for each of the following situations. Only state your example, no further explanation is required.
 - (a) Give an example of a separable normed space where the norm does not come from an inner product, but where there exists an equivalent norm that does come from an inner product.
 - (b) Give an example of a measure space (Ω, Σ, μ) such that $L^p(\Omega, \Sigma, \mu) \subset L^q(\Omega, \Sigma, \mu)$ for all $1 \le p < q \le \infty$.
- 8. Decide, without an explanation, if the following statements are true or false.
 - (a) Every continuous function $f \colon \mathbb{R} \to \mathbb{R}$ is Lebesgue integrable.
 - (b) Let (Ω, Σ, μ) be an arbitrary measure space. Every Cauchy sequence in $L^2(\Omega, \Sigma, \mu)$ has an almost everywhere convergent subsequence.
 - (c) Let $A \in \mathcal{B}(\mathbb{R})$. Then $\lambda(A) = 0$ if and only if A is countable.
 - (d) $\mathcal{B}(\mathbb{R}) = \mathcal{P}(\mathbb{R})$
 - (e) $\mathcal{B}(\mathbb{R}) = \sigma(C(\mathbb{R}))$
 - (f) Let $(\Omega, \Sigma, \mathbb{P})$ be an arbitrary probability space, $A \in \Sigma$ and $\mathcal{E} \subset \Sigma$. Then A is independent of \mathcal{E} if and only if A is independent of $\sigma(\mathcal{E})$.
 - (g) Let $(X, \|\cdot\|)$ be a normed space and $A \subset X$. Then the closure of A° equals the closure of A.
 - (h) A nullset is always measurable.
 - (i) The trigonometric polynomials are dense in $(C([0, 2\pi]), \|\cdot\|_{\infty})$.
 - (j) Given two norms $\|\cdot\|_1, \|\cdot\|_2$ on \mathbb{R}^d where $d \in \mathbb{N}$. Then the compact sets of the normed spaces $(\mathbb{R}^d, \|\cdot\|_1)$ and $(\mathbb{R}^d, \|\cdot\|_2)$ coincide.
 - (k) Let $f: \Omega \to [0, \infty)$ be measurable on (Ω, Σ) . Then the uncountable intersection

$$\bigcup_{\varepsilon>0}\{x\in\Omega:f(x)>\varepsilon\}$$

is measurable.

9. Calculate the following Lebesgue integrals, respectively limits of Lebesgue integrals.

(a)
$$\int_{\mathbb{N}} \frac{1}{3^n} d\zeta(n)$$

(b) $\int_{\mathbb{N}\times\mathbb{R}} \frac{2x^3 \exp(-x^2)}{(1+x^2)^n} d(\zeta \otimes \lambda)(n,x)$
(c) $\lim_{n \to \infty} \int_{\mathbb{R}} (1+|x|+x^2)^{-1} \left(\exp(-n^{-1}|x|)-1\right) d\lambda(x)$

Here λ is the Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and ζ is the counting measure in $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.