1. Let (Ω, Σ, μ) be a probability space. Two sets $A, B \in \Sigma$ are called (stochastically) independent, if and only if

$$\mu(A \cap B) = \mu(A)\mu(B).$$

Let us suppose that $A \in \Sigma$ and $E \subset \Sigma$ are given. We say that A is independent of E, if and only if A, B are independent for all $B \in E$.

(a) Find a concrete example of the above situation such that A is independent of E but A is not independent of $\sigma(E)$.

(b) Let us suppose that E is stable under intersections. Prove that A and E are independent if and only if A and $\sigma(E)$ are independent.

2. Let $F: \mathbb{R} \to \mathbb{R}$ be a monotonically increasing function, i.e., $F(x) \leq F(y)$ if $x \leq y$. Define $F_+(t) := \inf\{F(s) : s > t\}$. Show that there exists a measure μ on $\mathcal{B}(\mathbb{R})$ such that $\mu((a, b]) = F_+(b) - F_+(a)$ for all $a, b \in \mathbb{R}$ with $a < b$.

3. Let (Ω, Σ, μ) be a measure space and $f: \Omega \to [0, \infty)$ be a measurable function.

(a) Show that $\nu(A) = \int 1_A f \, d\mu$ defines a measure on (Ω, Σ).

(b) When is the measure ν finite?

4. Suppose μ is the counting measure on the measurable space $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$. Let $f: \mathbb{N} \to [0, \infty)$ be a function. Note that f is measurable. Show that f is integrable if and only if $f \in \ell^1$.