Crashkurs: Diagonalisieren

Schema F

Wenn wir eine Matrix $A \in \mathbb{C}^{(n,n)}$ diagonalisieren wollen, dann kann man so vorgehen:

- 1. Man bestimme das charakteristische Polynom $P_A(\lambda) = \det(A \lambda E_n)$.
- 2. Man bestimme die Eigenwerte von A, also die Nullstellen von P_A .
- 3. Man berechne mit dem Algorithmus von Gauß eine Basis der Eigenräume für jeden Eigenwert.
- 4. Sind die Vektoren aus dem Schritt 3 zusammengenommen genau n viele, dann ist die Matrix diagonalisierbar. Wenn nicht, dann ist die Matrix nicht diagonalisierbar. Für den letzten Schritt kann man dann davon ausgehen, dass es n Vektoren sind.
- 5. Seien $v_1, ..., v_n$ die Vektoren aus dem Schritt 4 und $\lambda_1, ..., \lambda_n$ die zugehörigen (nicht notwendig verschiedenen) Eigenwerte zu den Eigenvektoren. Man setze dann

$$\mathcal{X} = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \dots & v_n \\ | & | & & | \end{pmatrix}, D = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Mit diesen Matrizen gilt $\mathcal{X} \in \mathrm{GL}(n,\mathbb{C})$ und

$$A = \mathcal{X}D\mathcal{X}^{-1}$$
.

Aufgabe 1

Wir wollen nun die folgenden Matrizen diagonalisieren:

$$A_1 = \begin{pmatrix} i & 1 \\ 0 & -i \end{pmatrix} \qquad A_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad A_3 = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \qquad A_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

Aufgabe 2

Welche der folgenden Matrizen sind diagonalisierbar?

$$A_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad A_3 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \qquad A_4 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Aufgabe 3

Wir wollen die Potenzen der Matrix

$$A = \begin{pmatrix} 3 & -1 \\ 5 & -1 \end{pmatrix}$$

berechnen. Speziell zum Beispiel A^{1000} .

Aufgabe 4

Welche der folgenden Matrizen kann man diagonalisieren? Man führe gegebenenfalls eine Diagonalisierung durch.

$$A_{1} = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 3 & 1 \\ 2 & 0 & 2 \end{pmatrix} \qquad A_{2} = \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{pmatrix} \qquad A_{3} = \begin{pmatrix} 0 & 1 & -1 \\ 0 & -2 & 0 \\ -1 & 1 & 0 \end{pmatrix}$$
$$A_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 0 \\ 1 & -1 & 0 \end{pmatrix} \qquad A_{5} = \begin{pmatrix} 1 & i & 25 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \qquad A_{6} = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 3 & 3 \\ 1 & 1 & 1 \end{pmatrix}$$

Aufgabe 5

Richtig oder falsch (alle Gegenbeispiele, die man benötigt sind in den anderen Aufgaben zu finden)?

- (a) Ist A diagonalisierbar, dann ist die Diagonalmatrix D eindeutig bestimmt.
- (b) Ist A diagonalisierbar, dann ist die Basiswechselmatrix eindeutig bestimmt.
- (c) Ist A diagonalisierbar, dann ist die Basiswechselmatrix bis auf Multiplikation der Spalten mit Skalaren eindeutig bestimmt.
- (d) Ist A eine reelle Matrix, dann hat A nur reelle Eigenwerte.
- (e) Ist A eine reelle Matrix und $\lambda \in \mathbb{C}$ ein Eigenwert mit Eigenvektor $v \in \mathbb{C}^n$. Dann ist \overline{v} ein Eigenvektor zum Eigenwert $\overline{\lambda}$.
- (f) Hat eine Matrix nur einen Eigenwert λ und ist die Matrix diagonalisierbar, dann ist $A = \lambda E_n$.
- (g) Hat eine Matrix nur einen Eigenwert λ , dann ist $A = \lambda E_n$.

Aufgabe 6

Welche der folgenden Matrizen sind diagonalisierbar?

$$A_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad A_{2} = \begin{pmatrix} 1 & i \\ -i & 0 \end{pmatrix}$$

$$A_{3} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad A_{4} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$A_{5} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad A_{6} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

$$A_{7} = \begin{pmatrix} 2 & i \\ i & 0 \end{pmatrix} \qquad A_{8} = \begin{pmatrix} i & i \\ i & 0 \end{pmatrix}$$